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Abstract

Scattering experiments can be carried out by gradient nuclear magneiic resonance(NMR)
methods. Magnetic field gradient pulses are utilized to create linear phase ramps
of the spin magnetization across the sample along arbitrary directions. The linear
phase ramps are defined as dynamic spin magnetization gratings. The measurement
of the grating after it undergoes dynamic processes characterized by the local struc-
ture leads to the measurement of the average phase changes over the whole sample,

< e 1970 . giar(t) 5 3 quantity denoted as intermediate scattering function. NMR
scattering are measured in spatial and temporal window to sub-microns to tens of
micros and milliseconds to a few seconds.

In a time scale when spin displacements are larger than the spatial scale of local
structure, NMR experiments directly measure the elastic incoherent structure func-
tion(EISF), < |S(Q)[? >powder-

The direct control of scattering vector q in NMR scattering enables easy per-
formance of multiple scattering experiments. The double scattering experiments,
as examples of multiple scattering, lead to the measurement of structure factors
< 15(Q)|* >powder and < |S(q)|*|S(qL)|® >powder- The latter correlates local struc-
tural characteristics along directions that are normal to each other. Anisotropic
information in a glassy sample can be determined without the presumptive models
which are required in one dimensional or traditional scattering techniques.

This thesis work includes detailed derivation of the theory of NMR double scatter-
ing, an experiment that can only be performed by NMR. The eccentricity information
can be extracted by the differences of scattering curves from double scattering along
one axis and along two orthogonal axes. The experiments are carried out for abnor-
mally long yeast cells.

The experimental results show good agreement with calculations where the yeast



cell shape was approximated as prolate ellipsoids.
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Chapter 1

Introduction

1.1 Motivation

A wide range of spatial information is measurable by nuclear magnetic resonance(NMR)(1,
2], extending from dipolar resolved distance measurements between distinct spins at
angstrom scale to large scale imaging (up to 100 m size samples of permafrost domes).
For the well known imaging measurements and scattering measurements to be dis-
cussed here, the spatial scale is determined by a grating of spin magnetization that is
imposed on the sample throurh differential spin precession rates in a magnetic field
gradient.

In both imaging and scattering cases the spin magnetization grating is wound up
by the differential precession rates over a time and thus the phase of the transverse
spin magnetization picks up a linear spatial dependence and is best described as a
linear phase ramp across the sample. The slope of the ramp is proportional to the
gradient strength multiplied by the evolution time, and is normally described in terms
of a wave-number, k. The vectors of the spin magnetization describe a spatial helix
with a periodicity represented by the wave-number k.

In magnetic resonance imaging(MRI) this spatially periodic phase modulation of
the spin magnetization permits the direct measurement of a specific Fourier compo-
nent of the sample’s spin density. Therefore, a Fourier transform of the measured

signal will generate a spatial mapping of the spin density.
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In NMR scattering, the measurement is of the average changes of this spatially
periodic phase modulation under the influence of varies molecular dynamic processes
such as flow and diffusion. Here, the wave-number is linked to local displacement
other than absolute position. The Fourier transform of the measured signal is the
displacement profile of the spin system.

The measurement of the NMR signal under the influences of the molecular dis-
placement provides a powerful tool to study the dynamics and the structures of bar-
rier to diffusion. Some of the key development took place in the early stage of NMR,
Hahn’s discovery of the spin echo[3], extensions by Carr and Purcell[4] to a trains
of echoes and the use of these to quantify the diffusion constant formularized by
Torrey[5]. In the mid 60’s, Stejskal and Tanner published a series of papers [6, 7, 8]
introducing pulsed field gradient methods which could separate the influences of T,
relaxation and molecular diffusion. The pulsed gradient spin echo(PGSE) and pulsed
gradient stimulated echo(PGSTE) are a powerful tool to probe the dynamics and
structure of molecular displacements in free and restricted environments. From an
NMR point of view, PGSE or PGSTE experiments measure the signal changes caused
by molecular motion, as a function of gradient amplitude and/or flow/diffusion time.

Although there have been attempts in the past to extend the gradient NMR to
diffraction of scattering experiments [9, 10] and to draw analogies between NMR
and X-ray diffraction, the most commonly used techniques in modern crystolography,
NMR hasn’t been regarded as a legitimate tecnnique to perform scattering experi-
ments until the late 80’s. Cory and Garroway introduced an optical analogy that
the echo signal amplitude of a PGSE experiment as a function of applied gradient is
directly proportional to the power diffraction pattern of a single slit whose transmis-
sion is described by it’s shape function [11]. By this method, the echo amplitude is
directly linked to the average molecular translational displacement probability. Ob-
viously the asymptotic approximation of this probability is simply the shape function
of the restrictive geometry. Fatkullin [12] and Callaghan [13] also separately made
an explicit comparison of pulsed field gradient spin echo experiments to interme-

diate neutron scattering function. Although the method sometimes is referred to
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as “g-space imaging” [14], it has essential distinctions from an imaging experiment.
Imaging experiments measures the signal intensity and phase while PGSE experi-
ment, like scattering, only measures the intensity; therefore, they provide different
aspects of the system. First, an imaging experiment gives spin density as a function
of absolute spatial locations while a PGSE experiment measures average correlations
of local structures as a function induced by relative displacements. In other words,
imaging is static and PGSE is dynamic. Secondly, an image is a direct mapping of the
spin density, an echo amplitude function measured by PGSE is the power spectrum
of the local shape function. Since the phase is irrevocably lost, there is no means by
which the original spin density can be reconstructed. However, the echo signal col-
lected in a PGSE experiment comes from all the restrictive compartments; therefore,
the sensitivity of this “q-space imaging” is greatly enhanced over “k-space imaging”.

The PGSE experiment measures the intermediate scattering function, |S(q)|*.
This discovery leads to the use of scattering formulisms to explain some NMR results
[15]. Although the inverse problem can not be solved in general, there are solutions
when specific models are assumed based on prior knowledge of the system.

One of the examples is the separation of the size distribution from the shape ori-
entation. One important example is the determination of the eccentricities of pores
inside a glassy sample. For extreme eccentricities such as surface or linear cases,
experimental data can be fit to pre-calculated curves since for different restricting
characteristics, the echo amplitude shows different curvatures. Callaghan used this
method to successfully measure 1-D and 2-D samples in grains[16, 17]. In general,
the 2-D information can also be obtained by the so called “size distribution function”
which is the second derivative of the Patterson function by implementation of the
model which assumes that the apparent size differences are due to orientation varia-
tions. The above methods are all based on single scattering events which corresponds
to one dimensional experiments. Any 2-D information are extracted based on some
degree of knowledge of the system and applying models. In a porous glass sample
of randomly oriented ellipsoids, the local anisotropy can not be measured by varying

the bulk orientation of the scattering vector.
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A unique feature of NMR scattering is the easy control over the scattering vector
q. This thesis work shows how to take advantage of this to solve problems that
conventional scattering methods can not. NMR multiple diffusive scattering methods
are developed and tested. The methods measure correlations of compartment shape
functions along two orthogonal directions of each individual compartment, averaged
over all the possible orientations. By measuring and comparing two double scattering
curves < |S(q)[*15(Q)[* >powder and < |S(qq)|* |S(QL)|* >powder, the average pore size
and eccentricity can be obtained without the requirement of the proper alignment of

the pores and/or presumption models of the sample system.

1.2 NMR Basics

The NMR scattering methods described in this thesis are classical phenomena, and
are therefore easily understood with a simple picture of spin dynamics. Below are
outline of the necessary basics is provided. The general references on principles of

NMR are books by Abragam(18] and Slichter [19].

1.2.1 Spin Ensembles

Many nuclear isotopes have non-zero spin angular momentum Ik, where fi is the
Plank’s constant. According to the basic theory of quantum mechanics of angular
momentum, I can take on only the values of %, 1, %, 2, %, etc. Associated with this

quantum number J is the magnetic dipole moment g,

p = yhI, (1.1)

where 7 is the gyro-magnetic ratio which is a property of the nucleus. In an external
magnetic field B = Byz, the magnetic moment can take one of the 2/ + 1 allowed

orientations, or in a quantum mechanical term, eigenstates. The Hamiltonian of the
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spin system is,

H = -u-B (1.2)
= —yhBol, (1.3)

In an ensemble of nuclear spins I, the 21 + 1 allowed energy levels are populated in
thermal equilibrium in accordance with the Boltzmann distribution. For I = %, the
ratio of the number of spins per unit volume in the higher energy state to that in the

lower state is given by,

#‘:‘:’l = ezp (—1’:3?) , (1.4)
where T is the Kelvin temperature of the lattice, and kp is the Boltzmann constant.
After the external magnetic field is “switched on”, the spin system requires time to
attain the state of thermal equilibrium by a first-order process known as spin-lattice

or longitudinal relaxation by a single time constant T;, a characterized measure of

energy exchange rate between the spins and the lattice,

M, (t) = Mo(1 — ™), (1.5)

where M, is the longitudinal magnetization, and,

_ N")‘zﬁzBo

M, = “akgT (1.6)

is the magnetization at equilibrium. N is the number of spins per unit volume. At

equilibrium, the spin magnetization is aligned along the external applied magnetic

field.

1.2.2 RF Pulses, FID, T} and T5, Bloch Equations

A radio frequency(RF) magnetic field transmitted through an RF coil lying in a

plane transverse to the external magnetic field B causes rotation of magnetization
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about this RF field. The amplitude and length of the RF pulse determines the tip
angle of the magnetization. An on resonance 5 pulse along the z axis will tip the
2 magnetization down to the transverse plane in the y direction. An on resonance
7 pulse will inverse the magnetization. The transverse RF field has no effect on the
magnetization components along the RF axis.

The Free induction decay(FID) is a decayed sinusoid signal, which is caused by
the precessing transverse spin magnetization, picked up by the RF coil following an
RF pulse. During a free induction decay, no RF field is present.

The longitudinal or T relaxation is the process by which the spin system exchanges
energy with the surrounding environment and back to the thermal equilibrium. The
transverse or T, relaxation is a measure of the phase coherence lifetime. The two
relaxations can each be expressed by a single time constant, T} and T5.

The Bloch equations[20] provide a very simple way of formulating the two different

relaxation phenomena,

dM, My, - M.

el —5 +v(M x B), (1.7)
dM; = M,

@ - T +v(M x B), (1.8)
dM, M,

pralialiay o + v(M x B),. (1.9)

1.2.3 Spin magnetization grating

Spatial information is available in NMR on a wide range of length scales. The most
direct measurement is a Fourier picture that based upon spin magnetization gratings.

The spin magnetization grating is created by applying a magnetic field gradient
across the sample. When a transverse magnetization is placed in a uniform external
magnetic field ByZ, it will precess in the transverse plane with a rate proportional to

BOv

w = —vBy, (1.10)
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w is called the Lamor frequency. The effect of a magnetic field gradient, or a linear
spatial variant magnetic field is to cause the spin magnetization precess at different
angular velocities proportional to position and this will create a linear phase ramp of
the spin magnetization. If a magnetic field gradient %2 is added to Byz, the Lamor

frequency depends on z,

0B,
w(z) = —yBy — 15, % (1.11)

/2

Gradient

Figure 1-1: The creation of a magnetization grating. A gradient pulse of amplitude
G and duration ¢ is turned on after the 7 pulse. The wave number of the created
grating is k = 7Go.

If the gradient field is turned on for a time 4, as seen in Figure (1-1) the phase
or the directions of the spins in in transverse plane will depend on the positions of

the spins and a periodic modulation, along the z axis of the spin magnetization, is

created,

Grating = e~iJo Y% 2dt (1.12)
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The integration of the gradient over time determines the period of the grating. If the

gradient is independent of time when it is on, the grating is written as,

Grating = e~"%%* (1.13)

where g. = %’zi and a constant phase factor of e~*720% has been thrown away since
it has no effect on the dynamic process vide infra. The wave number of the grating,

from the above equation, is,

k: = vg.0. (1.14)

Figure 1-2: A transverse magnetization(M,) grating along z-axis. The length of the
period is determined by 2, where k = 7g.d.

Figure (1-2) shows a graphical picture of a uniform M, grating along z-axis. It
can be seen that the magnetization comes from the connection between magnetic
field gradient and space. One of the application of the grating is Magnetic Resonance

Imaging(MRI) in which magnetization gratings are created across the sample with
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Figure 1-3: Magnetization grating is created to shift the whole reciprocal space in
order to measure certain components as NMR can only measure the zero component.
In imaging the spin density in reciprocal space is shifted by the addition of a magne-
tization grating permitting a complete set of measurements at £ = 0 to map out the
images.

spin density p(z),

p(z,0) = p(z,o)e—i'yggdz
= p(z,0)e”*
= p(2) ® b(k - k).

The result of this grating across the sample is to shift the whole k-space of the sample
so that a particular £ component can be measured, as seen in Figure(1-3).

The NMR scattering experiments is based on the evolution of the spin magne-
tization grating due to molecular dynamics as shown in Figure(1-4). Examples of
these are cokerent flow, free diffusion and bounded diffusion. The NMR scattering

is measured by applying an identical but inverse magnetic field gradient pulse to the
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exp(-igz) —_— fP(z'lz, A)exp(-iqz’)dz’

Figure 1-4: The evolution of spin magnetization grating under dynamics determined
by certain structures.
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magnetization grating so that the spins that do not move are “refocused” (end up
in-phase) and those that did move pick up a phase moludation proportional to their
offset along the gradient direction. Since this gradient pulse causes an inverse phase
change of the spin at a new position, the quantity measured is actually the average

phase changes of a spin under the two field gradient pulses,
E(q) =< em'ar(0)¢iar(t) (1.15)

For uniform flow along the grating direction, the grating is shifted by a spatial
offset vt, where v is the flow rate and ¢ is the time between the creating and the
detection of the grating. To measure this displacement it is sufficient to record the
pure phase shift in a caliberated magnetic field gradient. This can be described by
analogy to the interference of two waves scattered by two surfaces separated by a
distance of vt, as shown graphically in Figure(1-5). Flow measurement in NMR is an
example of coherent scattering.

Similarly, random processes such as diffusion can be measured as scattered waves
from centers but the distribution of phase offsets result in an observed amplitude
change for the ensemble.

The dynamic process of the molecules can be universally specified by the van
Hove correlation function[21), expressed as P(r|r',¢) in this thesis. The average phase

change is then,
< e~tar(0) iqr(t) >= /darP(r)e_"“"'-/dar'P(rll", t)eiq'r' (1-16)

The focus of this thesis is to explore the process that is behind the evolution of
the magnetization grating due to molelucar dynamic mechanisms. As the grating
develops under various dynamic mechanisms over time, spatial temporal information

of the dynamics can be detected.
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Figure 1-5: Scattering from two parallel planes as an analogy to flow measurement
in NMR. Shown flow measurement is a coherent scattering experiment.
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1.2.4 Spin Echo and the Stimulated Echo

A spin echo experiment contains two RF pulses spaced by a time interval 7, as seen in
Figure(1-6). The first RF pulse tips the magnetization from its equilibrium direction
to the transverse plane. The magnetization then precesses about the z axis at the
Lamor frequency. As the magnetic field inhomogeneity results in a field spread AB,
across the sample, transverse magnetization phase coherence lasts only for a time
in the order of (YAB,)~!. Hahn discovered that this phase coherence loss can be
refocused by applying a 7 RF pulse after a time delay 7. The phase loss due to
Hamiltonians that are proportional to I, during 7 will be totally refocused at 27 and
the resulting phase coincidence at 27 is known as spin echo. The signal intensity at

27 decays at the intrinsic transverse relaxation time constant 7.

2

n
= | i

Signal

Figure 1-6: Pulse sequence and signal of a spin echo experiment. The echo internsity
decays as e~?7/T2,

M(21) = Mpe™ /T2, (1.17)

It can be seen that the time window allowed in a spin echo experiment is limited
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by the relavation time T, typically less than several hundreds minisecends.

A stimulated echo experiment is made of three % pulses, as seen in Figure(1-7)
with the time between the first two 7 and the time between the last two A, where
A is usually chosen greater than 7. There are three free induction decays and five
echoes in a stimulated echo experiment. The amplitudes of the four echoes originated

from the first FID are,

n/2 /2 /2
w | | |
t
|
Signal I\ N A N AA P AN
/ 4 v /VV N N t
|t 1
oAt |
I 4
T A e A+t o

Figure 1-7: Pulse sequence and signal of a stimulated experiment. The intensity of
the stimulated echo at (27 + A) decays as e~2"/T2e=4/T1,

M@r) = %Moe‘z’m (1.18)
M2 +A) = %Moe'”/T’e‘A/T' (1.19)
M(2A) = %Moe‘zA/T’ (1.20)
M(2r +24) = %Moe“z(”A)/T’ (1.21)

It can be seen that the echo at t = 27+ A decays with the time constant T} during
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A. This can tremendously lengthen the time window as longitudinal relaxation time
constant T; offers is much longer than T;. The spins of interest are stand along the
longitudinal axis by the second % RF pulse and preserved until a measurement needs
to be done. There are subtle differences in k space trajectories between a 5 — 7 echo
and a Z — % or stimulated echo that will affect the diffusion measurement when more
than three gradient pulses are applied. The discussion on this matter will be in the

next chapter and in Appendix A.

1.3 Flow and Molecular Diffusion

After a magnetization grating is created in a sample, the measured signal after a time
will contain information about the dynamics happened during that period. The two

simplest examples are of uniform flow and molecular diffusion.

1.3.1 The Measurement of Flow Rate

If the sample is moving with a uniform flow rate v,, after a time A every spin will
have simply moved a distance of vA from their original positions towards z direction

and the probability density is,
P(z]|2',t) = 8(z — 2’ + vt). (1.22)

Usually, the flow is measured in an uniform tube, therefore p(z) =constant, the signal

is then,
E(A) = /6(2 — 2’ +vt)e"tk:(27)
= e tkvd (1.23)

where k, = 79,0 and delta is the gradient pulse duration.

It can be seen that this reflects a simple change in the phase factor from which
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the flow rate v can be determined. Since the phase is cyclic, aliasing will be present
if the phase change is greater than a period. As discussed in the previous section,
the flow measurement is a perfect and simple example of NMR coherent scattering
experiment and can be described as an analogy to the scattering from two parallel

planes separated by the distance the fluid flew.

1.3.2 Isotropic free diffusion

The random motion of molecules will cause a magnetization grating in a sample
of infinite extent to gradually lose its coherence. In other words, the phase of the
grating at each position is averaged over the local region in which the molecules
diffuse. The molecular displacement probability function is obtained by solving the

diffusion equation under Fick’s Second Law,

_3 Ar?
P (|Arx|,t) = (47Dt)" 2 exp [-—m (1.24)
The measured scattering signals is,
(r—r')z] —igt-(r—+
E(k) = 2 |eieE ) g3pgdy
(k) (41rDt)z P 4Dt
e~ T KEDA (1.25)

This is the most useful equation to determine the self diffusion ccefficient in an ho-
mogeneous media.

Samples are not infinitely large and are necessarily non-uniform. They have a
spatial varying spin density p(z). Therefore, after the grating burning gradient, the
spin system has the form of a magnetization grating superimposed onto the local spin

density function, and can be expressed as,

p(z,8) = p(z)e 1% (1.26)
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The measurement of the magnetization of this grating as a function of the wave
vector k is the Fourier transformation of the spin density. This meast'rement in
magnetic resonance imaging is referred as a constant time imaging(CTI). Each mea-

surement records one component in Fourier space.

S(g:) = [ plz)e+55:2dz (1.27)

If there is a delay time A between the creation of the grating and the measurement,
any evolution of the magnetization grating via molecular motions under a conditional
probability density function P(z|z’,A), which is also called the van Hove correlation
function, will influence the measurement. In most cases, P(z|2',A) is independent
of the experiment and only a function of the sample itself. Under this probability

density function, the system becomes,

p(z,A) = / P(2')z, A)e~"%9:%d2’, (1.28)

Again, a measurement is equivalent to taking the integration of the magnetization

over the whole sample region,

S(g.,A) = / P(#|2, A)e="9:* dzd>. (1.29)

With the spin density taking into account, the initial positions of the spin are

weighted by p(z’), the final measured signal is,

S(g:,A) = /p(z')P(z'[z, A)e "%9:% dzd2. (1.30)

It can be seen that this is a distortion of the spin density image. Usually in an
imaging experiment, most of the molecules are not allowed to diffuse far enough to see
the boundaries of the geometric feature; therefore, P is considered only a function of
the relative position of the spins (z — 2’) and independent of their original positions,

in other words, it can be written as
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P(z|Z',A) = P(z' - z,A). (1.31)

It can be immediately seen that the convolution of P with the original object
p makes P the point spread function(PSF) due to molecular motions. It'’s present
causes the image to blur. In some cases, it will limit the resolution of the image.
The effects of molecular diffusion on magnetic resonance imaging will be discussed in
detail in Chapter 6.

If a refocusing gradient pulse is applied before the measurement, the signal is,

S= / p(2)P(2 |z, A)e= 79+~ g (1.32)

The attenuation of a spin echo as a function of gradient pulse amplitude g,,

duration é and the mean square displacement of the spins AZ? is determined by

E(g.) = exp (-%7262933?) (1.33)

Here, the gradient pulses are assumed to be so short that any movements during
the pulse is neglegable. The mean square displacement Az? can be calculated by

applying Equation (1.24),

Az = (z-32)°

= 22-7.
From Eq. (1.34) and (1.24), A2 can be easily calculated as,

AZ% = 2Dt. (1.34)

Therefore, the echo attenuation due to free diffusion is
E(g.,t) = exp (—7*6°g2Dt) (1.35)
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By defining k, = vg.6, Equation(1.35) can be further written as,
E(k;) = exp (—k2Dt). (1.36)

This is the Fourier transform of Equation(1.24). For any given diffusion time ¢,
the echc attenuation is a Gaussian function in terms of the wave vector k., and hence
gradient amplitude g. or gradient duration . For any given wave vector k,, the echo

attenuation function is an exponential decay in terms of diffusion time ¢.

1.3.3 Anisotropic diffusion

For anisotropic diffusion, the diffusion constant D is replaced by a tensor. If the
measurements are made only in the principle axis system(PAS) and therefore only
the diagonal elements of the diffusion constant tensor is non-zero and different, i.e.
D.. # Dy, # D,., indicating different diffusion properties along PAS axis. The

solution to the diffusion equation with such a tensor is,

P(Ar,t) = (4nt)~2

1 A.'L'z Ay2 Az2
VDD,D.. P T (4Dut tt 4Dnt)]- (1.37)

And the mean square of the displacement is,
Ar? = Az’ sin® 0 cos? ¢ + Ay’ sin® Osin® ¢ + A% cos? 0. (1.38)

For a system with bulk order, i.e, all the geometric units are aligned in the same

way, the echo attenuation is,

E(g,) = exp [-7*0%¢?D.t], (1.39)

where D, is the effective diffusion coefficient measured along the gradient direction

r,
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D, = D,;sinfcos¢ + Dy, sinfsin¢ + D, cosé. (1.40)

It can be seen that Equation(1.39) and Equation(1.35) have no qualitative differ-
ences. Only the diffusion coefficient is different.

Many systems have no bulk orders, in other words, the local geometric units are
with anisotropic properties while the system as a whole is uniform. This means that
an integration must be taken over all the orientation angles in Equation(1.38).

The problem can be divided into three cases:

Homogeneous or 3-D

The Echo attenuation function for a 3-D homogeneous sample is Gaussian and ex-
pressed by Equation(1.35).

Planar or 2-D

For 2-D case, where diffusion is restricted to being within a plane, if the in-plane dif-
fusion constant is uniform, i.e., Dy = D,, <« D; = D, = Dy, the echo attenuation
is,

1
Eap(g-) = exp [—7?6%g2 D, ] / exp [y*6*g? D, 1%)dz. (1.41)
0

Linear or 1-D

For the 1-D case, where diffusion is restricted to being along a line, i.e., Dy > D,

the echo attenuation is,
1
Eip(9r) = / exp [-1*6%¢? Dya?|dz. (1.42)
0
In summary,

Esp(g;) = exp(—’6°g>Dt)

1
Ex(9)) = exp[-v6°¢’D.t] / exp [126%92D 2| dx (1.43)
0
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Figure 1-8: q’A dependence of echo attenuation curves in 1-D, 2-D and 3-D diffusion
calculated by Equations(1.44).

1
Ewle) = /o exp [~726%g2Dy2?)ds

As it can be seen in Figure(1-8), the dependence of E,p, E,p and E3p on y24%g?%t
shows different curvatures in the log E(g,) versus y242g%t plot. By comparing the
curvature of measured echo attenuation with the three curves, we are able to char-
acterize the dimensionality of the spin system. This method determines the over all
dimensionality by virtue of the diffusive behavior parallel to surfaces, i.e., along the
direction that is least restricted; therefore, it does not provide the scale of the re-
strictive compartment. Nevertheless, its appearance in the laboratory frame reflects

a characteristic spatial dimentionality. In addition, changing of curvature of echo at-
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tenuation function can be caused by many other reasons, e.g., multiple-diffusion con-
stants and size/shape distributions. There are certain ambiguities in interpretation
of the results. Certain assumptions must be made in order to avoid the ambiguities
in structure or behavior.

The translational motion of molecules in a sample with heterogeneous structures
will be influenced by boundaries. These restrictions mean that the distribution of
displacements described by the conditional probability function P(r|r’, A) may not
be Gaussian anymore and will have a temporal dependence characteristic of the length
scales and tke local molecular self-diffusion constant. In his early papers on pulsed
gradient spin echo measuring molecular diffusion, Stejskal pointed out that it can
be used as a potential useful tool of probing the micro structure and introduced
the concept of diffusion data analysis in the Fourier space. Since the late 1980’s,
the PGSE experiments have been looked upon with new prospectives, e.g., g-space
imaging and scattering. There have been successful simulations and experiments on

phantom samples since then.

1.4 Summary

Although gradient NMR experiments have been around for more than 35 years, only
recently have people started to look at the experimental results in terms of a dynamic
structure factor. NMR specialists are tempted to take the advantage of the full-
fledged scattering formulism developed over the span of this century. However, the
exploration of relationship of NMR experiments to scattering methods is still in the
early stage. In this thesis NMR as a scattering experiment is introduced by the
behavior of the magnetization grating-the “wave” in NMR scattering, under varies
dynamical process. In Chapter 3, the scattering in NMR is expanded to a field where
NMR is unique to other scattering methods, the multiple scattering experiment. It is
demonstrated in theory and experiments that double scattering experiments correlates
the Van Hove correlation functions along orthogonal directions in the principle axis

system of the microscopic compartments. Microscopic diffusion anisotropy can be
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measured in a glassy sample with no bulk alignments. In Chapter 4 and Chapter 5,
the discussion moved on to a particular example of NMR double scattering experiment
performed on yeast cells with different eccentricities. Chapter 6 discusses the influence
of the magnetization grating in restrictive geometries on NMR microscopy. The
details in k pathway selection and filtering of single scattering events via RF and

ADC phase cycling are listed in Appendix A.
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Chapter 2

NMR Scattering

To exglore molecular displacements in condensed phase, the most useful experimental
methods identify dynamic processes with respect to their spatial and temporal be-
haviors. A given type of motion defines a certain dynamic structure in space. Every
scattering experiment leads to a dynamic structure factor S(q,w) or its four dimen-
sional, i. e., spatial and temporal, Fourier transform, also known as the van Hove
correlation function[21] G(r,t). G(r,t) denotes the probability of finding a particle
at time t at position r if at an earlier time t = 0 some other or the same particle had
been at r = 0. In NMR scattering, this quantity is denoted as, in 2 more general
form, P(r|r’,t) where the initial position is at r and the probability is of the same
particle displacement.

By incoherent neutron scattering(30], the Van Hove auto-correlation function at
spatial regime of 0.1 — 10A and temporal regime of < 1085 is obtained. Although
there has been a lot of effort to extend the temporal window toward longer times,
i.e. higher energy resolution, processes slower than 10~%s remain defficult to access
with neutron scattering. Other scattering techniques such as Mossbauer- Rayleigh
scattering can sample beyond this limit but still doesn’t provide sufficient intensity
for practical applications.

A different approach to extend the dynamic range toward processes slower than
10~%s without losing the information about the microscopic geometry of the pro-

cess is NMR which measures temporzl regime of 10~3s — 10!s and spatial regime of
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10~% — 10?m. Because of recent interest in NMR imaging and NMR microscopy, there
have been a number of interpretations of NMR dynamics in terms of 2 dynamic struc-
ture factor. In this chapter, the behavior of magnetization grating created in NMR
experiments is studied by looking at the evolutions of such grating under different
physical processes. To establish a generalized NMR scattering formulism, some com-
parisons are made to the traditional scattering methods which we hope avoid drawing
any forced or farfetched analogies.

2.1 The Effects of Radio Frequency Pulses on a
Magnetization Grating

An on resonance(wrr = —7vBp) radio frequency(RF) pulse applied in an external
longitudinal field is equivalent to a magnetic field transient(effective magnetic field)
in the transverse plane in the frame that is rotating around z axis with the same RF
frequency([19]. The effect of the RF field is to rotate the magnetization vector around
the direction of the RF at a frequency of,

w = —7311 (21)

where B, is the amplitude of the RF field. The duration of the RF pulse determines
the tip angle. Since the spin’s motion is the result of a magnetic torque, the RF pulse
does not change the magnetization component along the same direction as the RF
field. The influences of RF pulses with various durations(3 and 7) and phases(z’ and
¥') on each magnetization component(I;, I, and I;) are summarized in Table(2.1).
As homogeneous RF pulses change the phase of all the perpendicular magnetiza-
tions by the same amount, they will not change the wave number of the grating, but
can change the phases of the spin magnetization and hence change the appearance of
the grating. For example, a 7 pulse along the z' axis in the rotating frame applied to
a sample with a magnetization grating Me—*** rotates the magnetization com; ~neats

along the y’ axis, —M sin kz, into —y’ axis, while leaving the components along the
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RF exiku sin kuz cos kuz
. | +5 (€™ + ™) Fsinkuz | +5 (™ —e™*) | +5 (e™ + ™)
yl :E% (elku + e—lku) + coskuz +% (elku _ e-zku) ___% (elku + e—zku)
z' +eFiku —sinkuz —cos kuz
s .
Yy —eTFiku —sinkuz — cos kuz

Table 2.1: Table shows effects of different RF pulses on spin magnetization grating
within transverse plane and along Z axes.

z' axis, M cos kz, unchanged. As a result, the wave-vector grating changes sign and
the grating becomes Me'**, as shown in Figure(2-1).

For a 7 pulse applied along the z’ axis, the magnetization components along the y
axis are tipped to the longitudinal direction -not measurable, and only the components
along the z axis, M cos kz, are left in the transverse plane. The resulting grating in the
transverse plane is M cos kz, or equavalently %(e""’ + e~***). A complete description

of RF pulses on magnetization grating can be found in Sodickson’s thesis[31].

2.2 Pulsed Gradient Spin Echo Experiments

All NMR scattering experiment, including the simplest pulsed gradient spin echo
(PGSE) experiment, contains three stages of NMR scattering process: creation, evo-
lution and detection of the magnetization gratings. The three processes can be treated
as analogies to incoming wave, scattering under a potential and outgoing wave de-
tected.

Figure(2-2) shows the pulse sequence of a PGSE experiment. The magnetization
grating with wave number k = yGJ is created by applying a magnetic field gradient
pulse with amplitude G for a duration of 4 after the first 7 RF pulse. During the
diffusion or mixing time A, the grating is allowed to evolve under certain dynamic
processes such as bounded diffusion. At the grating detection stage, the measure-
ment of the k' component of the grating can be accomplished by measuring the total

magnetization after a gradient pulse corresponding to a k' grating is applied. For
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Figure 2-1: A m RF pulse does not change the wave number of the magnetization
grating. However, it inverts the grating’s direction.

unbounded diffusion in an infinite extent, the grating will only see a attenuation in
amplitude - the wave number is kept the same. Therefore, in a normal PGSE ex-
periment, only an identical gradient pulse is applied in the detection stage because
only the components of the same wave number as the initial grating is measured. In
general NMR scattering measurements, the detecting gradient pulse is not neccesarily
the same as the creation pulse.

In some cases, the restrictive behavior of molecular movement can be approxi-
mated by a restraining potential function as suggested by Stejskal[7]. For most of
the cases, however, the restrictive process is treated as under influences of reflecting
walls and often solved by analogy to heat transfer equations under identical boundary

/.conditions.
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Figure 2-2: Pulse sequence of a PGSE experiment. The first RF pulse tips the
spin magnetization from its equilibrium position z to the transverse plane. The first
gradient pulse will superimpose a magnetization grating into the sample. The wave
number is determined by k = yGé4. The m RF pulse inverts the magnetization grating
that has evolved during A. The second gradient pulse is identical to the first one. It
refocuses the component with the same wave number k£ and the coherent of phases is
re-established and measured at 27 when an spin echo is observed.
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Figure 2-3: Diffusion experiment using the stimulated echo and pulsed field gradients.
The range of dynamic that can be measured is extended to longer times. The time
window of a stimulated echo is on the order of seconds.

2.3 Pulsed Gradient Stimulated Echo Experiment

The stimulated echo of a three pulse experiment is shown to be useful in extending
the range of measurement of diffusion coefficients to more viscous matter where the
diffusive correlation time is longer than the transverse relaxation time 75. The use
of a stimulated echo experiment can significantly widen the time window of the dy-
namic processes to be measured because during the storage time, the magnetization
coherence is along the z axis and only decays at a rate of the longitudinal relaxation
time. As the RF pulse in the transverse plane has no effects on the magnetization
components that are in the direction of the applied RF pulse, only half of the mag-
netization coherence will be tipped back to the longitudinal direction and preserved.
The half that is left in the transverse plane decays as T, relaxation time or is inten-
tionally destroyed by a crusher gradient pulse. Figure(2-3) shows the pulse sequence
of a pulsed gradient stimulated echo experiment. The spin magnetization evolves as

following, if no molecular displacement is considered,
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I, 5 1 S coskz + Lsinkz 225 —I, coskz + I sin kz (2.2)

Crush —I,coskz 5—)3 —I,coskz S, -1, cos’ kx — I sinkzcoskz (2.3)

It can be seen that in a PGSTE experiment, the evolving magnetization grating is

cosine modulated. It can be decomposed as two parts with opposite k wave vectors,
1 —ikz tkx
coskz = -2-(e + e™%). (2.4)

The measurement of a cosine modulated grating by applying a gradient pulse
identical to the one that created the grating will unwrap one term of the grating and
more tightly wrap the other grating component. Since only the integrated magne-
tization over the whole sample contributes to the signal, the signal from the tightly
wrapped grating components will be average to zero. However, if more gradient pulses
are applied, this magnetization component may contribute to a future echo intensity.
This is a concern in the multiple scattering experiments and is discussed in the next

chapter and in Appendix A.

2.4 Correlation Equations for 1-D PGSE/PGSTE
Experiments

The sample has a spatial varying spin density p(r). Therefore, after the grating burn-
ing gradient, the spin system has the form of a magnetization grating superimposed

onto the local spin density function, and can be expressed as,

ps(r) = p(r)e 1% (2.5)

Now the spin system will evolve by molecular motions under a conditional proba-

bility density function P(r|r’,t). After the system has evolved for a tirne A the spin
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system becomes,
py(r, A) = / P(F'|r, A)e-e2 " gy’ (2.6)

For many cases such as free diffusion, P(2'|z,A) can be written as function of the

relative displacement of the molecules (r — r’) regardless of the initial positions,
P(rjr',A) = P(r - ', A). (2.7

After the second gradient pulse intended to unwrap the phase twist to measure the

coherent magnetization, the signal as a function of ¢ = yg/ is,
E(q) = / p(r)P(r'|r, A)e 9~ gy’ (2.8)

In his original paper on pulsed gradient echo in restricted diffusion study, Stejskal
pointed out that the analysis of the data could be more informative in the Fourier
reciprocal space. He used a method very close to a scattering approach of interpreting
P(r'|r,t) as a solution of a wave function with an attractive potential. In the field of
neutron scattering, the elastic incoherent structure function(EISF) is calculated as,

V(r e, 3
e*B’ge ardir

2

IS(@)I* = (2.9)

Obviously, for dynamic mechanisms, such as free diffusion or flow, the probability
of a particular displacement is independent of the initial position and the probability
function can be obtained by an inverse Fourier transform. However, this is only true
for short time diffusion limits in which the root mean square of the displacement is
far smaller than the spatial scale of the local geometric features, and where p(r) can
be treated as constant.

However, in the long time limit, i.e. the root mean square(r.m.s.) of the spin
displacement during A is larger than the features in the sample so that the spin can

be bounced back and forth within the boundaries and hence lose any “memory” of
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its original position, Equation(2.8) can then be written as,

E(q) — / p(r)p(rt)e—iq;i:.(r’—r)dard:!rl

/ p(r)e'***dr / p(r')e 9% 3. (2.10)

It can be easily seen that the equation is the product of the Fourier transform of the

spin density p(r) and its complex conjugate,

E(q) = |S(9)?, (2.11)
where,
S(q) = / p(r)ei® dr (2.12)

The irverse Fourier transformation of E(q) is the auto-correlation of the spin density

function, also known as the generalized Patterson function[32],

I(z) = / p(r)p(r + zz)d’r
p(z) © p(z), (2.13)

where,

p(z) = / p(r)dydz. (2.14)

The Patterson function is widely used in scattering and diffraction to interpret ex-
perimental data especially in crystolography where the samples possess lattice struc-
tures, the Patterson function shows strong coherence peaks. However, for the incoher-
ent scattering experiments, the main peak at ¢ = 0 is dominant and almost includes
all the information. This is the main reason that analysis often consists of fitting the

main peak with models to extract the structural information.

48



2.5 The Patterson Function

2.5.1 Definition of the Patterson Function

The solution to the correlation function involves assigning phases to the measured
power spectrum |S(q)|, since a direct Fourier transformation of |S| will yield the
spin density map or imaging. While no completely automatic technique exists for
obtaining these phases, there are some approaches that are always possible and may
yield useful information. One of these approaches is known as Patterson synthests
after A. L. Patterson who initiated this technique in 1934. Patterson sought to obtain
information directly from measured |S|?’s by considering their Fourier Transform.

It has been well known in magnetic resonance imaging that the direct mapping in

reciprocal space of a sample of spin density p(r) is given by:

S(q) = /V e 'rqv, (2.15)

so the corresponding intensity is

S(q)S*(q) = /V p(r)e=" 9V /V p(r)e V. (2.16)

Substituting r — r' = u, and rearranging

S(q)S°*(q) = / { /;/ ' p(u+r')p(r')dV’ }e‘“"“dV (2.17)
= §F{I(u)} (2.18)

where,
I(u) = /v ' p(u+r')p(r')dV’, (2.19)

which is known as the Patterson function. Thus we see that if we take the inverse

transform of the measured intensity S(q)S*(q), we obtain the Patterson function:
7 S@s@) = [ Is@pesrav (2.20)
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From the definition in Eq.(2.19), it can be seen that the Patterson function will have
large values only when p(r) and p(u+r) are both large, i.e., for u equal to inter-porous
vectors. That is, it is a function which shows peaks for all inter-porous vectors in
the structure, provided that these pores are connected by narrow paths. These peaks
will be broader than the individual pores, since I(u) will still have finite values when
either p(r) and p(u + r) (but not both) is small. Thus a vector joining pores of
diameters d4 and dg will have a Patterson peak of diameter {(d4 + dp). Further more,
the areas of the peaks are the products of the spin densities at the two ends of the
vector involved.

A one-dimensional example is illustrative. Consider the system consists of three

interlinked pores located at z;, zo, £3. The Patterson function for p(z) is

I(z) = / p(z + u)p(u)du (2.22)

To obtain this result for a fixed z, we must take p at each point » and multiply it by
p evaluated at T + u, then sum these values up for all u. Peaks will occur at values
of x equal to r3 — 1, 7, — Z,, T3 — ), T) — T3, T2 — T3 and I3 — Iy, as shown in Fig.
The peak at the origin of I(z) is due to all inter-porous vectors z = 0, i.e., the sum
of all terms of the type p?(u) for each pore. For n pores or cells in the system, there
are n such peaks at £ = 0 and they are all summed up as a unique major peak. For
a system of isolated pores, only this peak will be detected. For simple interconnected

pore system like this, the structure can be easily inferred from the Patterson function.

2.5.2 Correlation Functions of Simple Geometries

Ther= are certain simple geometries in one and two dimensional cases, such as a
top hat function and cylinder. The correlations or Patterson functions can be easily
obtained and are shown in Figure(2-4). For an ensemble of isolated pores, even if

they are aligned in a lattice structure, there are no NMR tetectable coherence peaks
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Figure 2-4: Simple spin density function, their auto-correlation and scattering curves,
i.e. Fourier transforms of the correlation functions. Left: 1-D top-hat pore; Right: 2-

D cylindrical pore. From top to bottom: spin density functions, correlation functions
and scattering curves.
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Figure 2-5: A pore and its “ghost”, displaced from it by z. Their convolution is the
common shaded area.

corresponded to the alignment, as the movement of molecules is bounded within each
pores. However, if the pores are interlinked by thin channels whose contribution of
spin density function can be ignored, there will be coherence peaks in the scattering
curve that are linked to the flux between the pores. Nevertheless, the flux between
pores is so small compared to the probability that the molecules will stay in the
same pore, the coherence peaks are hardly discernible. The bright side is that these
coherence peaks appear at the low ¢ region of the curve as the spatial length scale
of the inter-porous distance is much larger compare with the size of the actual porod

region. Studies on this can be found in paper by Kuchel etal[33).

2.5.3 Obtaining Other Information from Patterson Function

The most common pore geometry is well approximated by a sphere with radius a. The
Patterson function I(z) of such a geometry with spin density zero outside and unity

[13

inside is the common volume between the spherical pore and it’s “ghost” displaced
by z, as in Figure(2-5).

The Fourier transform of a sphere is,

FT{I(r)} = gwa:’ {3[sin qa(;a)q: & qa]} (2.23)
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The scattering signal E(q) is proportional to the square of this

1 242 222 1 4a
E oc[—+—+(———)cos2 a — —sin2 a] 2.24
(q)qsq4q4qsqq5q (2.24)
For large ¢, the terms with ¢’s higher than powers of four can be ignored and the
equation is rewritten as,

E(q) x %(l + cos 2qa). (2.25)

Here, S is the total surface area within the sample. The oscillations arise due to the
trigonometric term and will be present only if the size distribution is narrow. For a
sample with a relatively broader size distribution, the trigonometric term will cancel
due to contributions from the various size distribution of a. Dividing the signal by
the signal at ¢ = 0, all the constants are gone and surface to volume ratio can be

obtained by fitting the curve:

5@ _, SV
50 = (2.26)

As we are measuring a surface to volume ratio, the inverse of this is related to an
average dimension called the Porod radius, R,. Thic is related to a moment of the
distribution < R > / < R? >.

From the Patterson function, it is possible to obtain not only moments of any
size distribution like R,, but also information on the size distribution itself. Consider
the one dimensional Patterson function I(z) and take the average < I(z) >, for all
possible directions of . We define the “characteristic function”, y(z) as < I(z) > /V,
and P(z)dV = 4rAp?V~y(z)dV. Now the Fourier transform of I(z) is the measured

signal,
E(q) = [ I(z)edz (2.27)
With all possibie orientations, the exponential term is averaged over the angles and,
E(g) = / P(r)Sl:frdV (2.28)

Therefore, the sine transform of ¢S(q) gives P(r)r or y(r). With G(l) the distribution
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of chord lengths through a pore,
1 D
¥(r) = 7/ (I -r)G()dl (2.29)
(]

Where D is the maximum length and [ = foD IG(l)dl. Therefore:

d?y(r)
dr?

= %G(l) (2.30)

Thus, the second derivative of the characteristic function gives the chord length dis-

tribution.

2.6 The k and q Gratings and Spaces

In the last chapter, the evolutions of magnetization due to dynamics and structures of
a pore system were introduced. This section further discusses the differences between
the gratings that correspond to the static scructures and coherent motions (which are
defined as k gratin'gs), and the gratings that correspond to incoherent motions(which
are defined as q gratings).

2.6.1 The k Gratings and Space

By the Fourier theorem, any information concerning structures in a certain domain,
e.g., position and time, can be represented by either the coordinates in that domain
or the coordinates in its reciprocal domain, wave vector and frequency respectively for
the example, through Fourier transformation. Consider a spatial structure described
by a spin density p(z) in space, an MRI image is taken by mapping the reciprocal
space and reconstructed by a Fourier transformation. The measured NMR signal is
the sum of the total magnetization with magnitude and phase, of the sample, The
measured signal always corresponds to the DC term or the k = 0 reciprocal component

of the sample,
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In order to obtain non-zero reciprocal components of the spin density function,
the whole reciprocal space is shifted by the creation of magnetization gratings across

the sample,

Pk — ki)le=k; = p(k) ®8(k — ki) e=s; (2.32)
= / p(z)e % dzr|y_,. (2.33)

The k grating is created to shift the k space to measure k components of the object.

Therefore, k space is the Fourier reciprocal space of the absoiute spin density function.

2.6.2 The q Gratings

To define the q gratings, let’s look at a simple PGSE experiment on a spin system, as
shown in Figure(2-6), made of pores centered at r,, z, etc, with identical local spin
density functions p(z),

pe(z) = Zp(z - z;). (2.34)

The first RF pulse tips all the spin magnetization to the transverse plane, the first

gradient pulse will create a magnetization grating into the sample,
plz) =Y ol - m)e . (235)

The molecular diffusive motidn of the spins will average the gratings inside each pore.
After a time that allows the molecules carrying the spin magnetization to travel longer
distance than the size of the pore, the gratings inside each pore will be disappeared
while a grating at larger scales still exists because the averaged magnetization inside

each pore will reflect the pore’s overall location. The spin system is expressed as,
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Figure 2-6: A PGSE experiment on a sample with ensemble of bounded pores at
different positions. (a) After the first gradient pulse, a k grating is created across
the whole sample. (b) The grating inside each pore is smeared out due to long time
molecular diffusion. However, the averaged phases of the pores still show features of
the k grating. (c) After the second gradient pulse, the leftover k grating is totally
refocused. Within each pore, there is a ¢ grating with the wave number the same as
the original k grating. The ¢ gratings are identical in phase within the pores.
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p(z) = Z p(x — z;)e %= / p(z')e *= dr’. (2.36)
: pore

/

In the equation, the integration is taken over the local pore region which represents
the k’th component in the Fourier space of the pore density function (same for all
the pores, as the pores are identical). The phase factor in front of the integral is from
the k grating. The k grating doesn’t fade away because the pores are at different
locations and the spins are not allowed to migrate from one pore to another.

When the second gradient is applied with identical strength and length as the first
one after the m pulse which inverts the k of the existing magnetization grating, the

spin system is,
pa) =T [ o) de'pla - e (2.37)
i pore
The signal measured is the integration of magnetizations over the whole sample,
E(k) = Z e’k / p(z')e*® dr' e~k / p(z)e~**dz (2.38)
i pore pore

— 2 / p(zl)eik::’dxl / p(z)e‘"‘"dﬂ: (2.39)

The equation shows that the signal is independent of the positions of the pores. The
gratings e~*** only exists within the pores. They are the same regardless of the
location of the pores. These gratings can no longer represent the reciprocal space of

the whole. Replace k with ¢, the equation becomes,
E(q) = z: / p(z')e dz' p(z)e = dx (2.40)
i pore

It can be seen that due to the motion average of the grating inside the pores, after the
refocusing gradient pulse, the NMR signal is measured with new grating within but
no gratings outside the pores. The measurement of this grating clearly corresponded

to the size and shape of the pores. The ¢ grating is defined as gratings that present
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Figure 2-7: PGSE-MASSEY pulse sequence with g-gradient pulses and k gradient
pulses. The read gradient enables the restoration of spatially dependent phase twist,
i.e., the residual k-grating.

only within the local regions while the overall grating is refocused elsewhere.

2.6.3 Mapping of £ and g Space

Pulsed gradient NMR experiments include two main branches, imaging and diffusion
measurements. The images are measured in k space. The diffusion are measured
in ¢ space, at k = 0. The modulus addition using spatially separated echo spec-
troscopy(MASSEY) technique, see Figure(2-7), by Callaghan[34)] is the first work
that realizes the existing of two reciprocal spaces. However, MASSEY is introduced
only as a technique to avoid artifacts of residual k space components due to gradient
pulse mismatch or sample movements. 'The mapping of the entire reciprocal space of
k and q can be achieved by deliberately creating a mismatch between the gradient

pulses and the measurement at the projected spin echo time is,

B = [ Poxe [

local

pi(z")e"" dz’ / p(z)e " dzd X, (2.41)

local

where k = ¥(g; — ¢2)0 and q = 7vg26, with ¢, and g, the amplitude of the first and
second gradient pulses. The expected E(q,k) is sketched in Figures(2-8) and (2-9).
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S(k.q9)

Figure 2-8: Expected space of k and ¢ of NMR experiment. NMR imaging measures
the line of ¢ = 0, while a PGSE experiment measures the line of k = 0.

E(0,q)

Ek,0)

a N
VeV

Figure 2-9: Above: A scattering experiment that only measures E(k,q) at k = 0;
Below: An imaging experiment that only measures E(k,q) at ¢ = 0.
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2.7 Summary

Spatial NMR measurements are sensitive to the spin density p(r) and local displace-
ments specified by P(r|r’/,t) as measured by imaging and scattering experiments,
respectively. In truths there is a continuon between these studies sinc both rely on
an imposed magnetization grating and are carried out in Fourier space. Scattering
measurements ideally will average over the volume of spins and imaging experiments
ideally will occur faster than the spins can move. These considerations impose a lower
bound on the imaging resolution of about 5um and an upper bound on the scattering
measurements of about 100um for water at room temperature.

In NMR scattering, as will be discussed in the next chapter, multiple scattering
can be performed very easy. The correlation and convolution relations in double NMR
scattering experiments provide us with dynamic information that a single scattering
experiment can not. Scattering formulism has come to NMR and provide new ways
of interpreting the physics and the results, in return, NMR enhanced the scattering

world by contribution of the multiple scattering experiments.
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Chapter 3

Multiple Scattering Experiments

3.1 Introduction

A very significant difference between NMR scattering technique and other, say, ther-
mal neutron scattering, experiments is that multiple scattering experiments are easy
to perform by NMR. Due to experimental limitations, conventional scattering mea-
surements such as X-ray and neutron scattering, are mostly limited to single scattering
events while in the case of NMR scattering, a multiple scattering measurement is not
much more difficult than a single scattering as in NMR, the scattering vector q is
easily controlled by the direction, amplitude and duration of the field gradient pulses
and the lifetime of the spin magnetization is long. The general idea is to have more
than two gradient pulses with the total vectorial sum of the wave vectors associated

with the gradient pulses to be zero,

Y a=o0. (3.1)

i

For example, a gradient pulse combination is shown in Figure(3-1). Since a =
radio frequency(RF) pulse inverts the direction of the wave vectors, they can be
added to the experiments to generate a spin echo. In practice, each gradient pulse
is sandwiched tightly by two 7 RF pulses to minimize the time the magnetization

stayed in the transverse plane and to take full advantage of the stimulated echo
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Figure 3-1: A simple gradient pulse combination of an NMR multiple scattering ex-
periment. The gradient pulses are G in amplitude and ¢ in duration. The wave vectors
associated with the gradient pulses are q; = YGézZ, q27Gdy and qs = —yGoZ -vGoY,
respectively. The total vectorial sum of the three are 0.

technique. However, as shown in Figure(3-2), stimulated echo experiments evolve
along multiple paths in the reciprocal space. For a single scattering experiment, only
one path satisfies the conditions specified in Equation(3.1). For multiple scattering
using stimulated echo technique, more than one paths may satisfy Equation(3.1).
Thus, the measured signal may be a combination of the signals from different paths of
which all but one are undesired. Besides, the final measured signal are not neccesarily
all due to the excitation of the very first RF pulse. It includes not only signal from
the desired multiple scattering event but also all the previous lower order scattering
events as each excitation will contribute to the intensity in the the final signal. Proper
selection of pathways and a low order scattering filter is needed to remove these
artifacts. The use of RF phase cycling and gradient crusher pulses are two simple
but effective choices. Please refer to Appendix A for a complete description.

The ability to performing multiple scattering experiments introduces the idea of
correlation of length scales in different directions. Since each contribution of such

correlation comes from one excitation, the integrated signal are the sum of the corre-
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Figure 3-2: NMR multiple scattering experiments are essentially experiments of mul-
tiple stimulated echoes. There can be undesired paths that satisfy the condition for
multiple scattering experiments, ). q; = 0 or the ending point of the path is at 0.
There are also single scattering events in the mix when the signal comes from the
magnetization excited not by the very first but the later RF pulses. The signals from
these magnetizations only go thought part of the desired pathway.

lations other than a combination of two separated one dimensional sums. As a first
potential application of multiple scattering experiment, measurements of local micro-

scopic anisotropy of glassy samples can be achieved without any need for models.

3.2 Simple Double Scattering Experiments

Although the direction and amplitude of the scattering vectors can be controlled at
will in NMR scattering, the most important angles between the two scattering vectors
are 0° and 90°. Figure(3-3) shows the pulse sequence of a 2D,, experiment which
implements two wave vectors along same direction in ¢ space. The two sets of gradient
pulses have the same direction, amplitude and duration. If a single spin’s dynamics

" respective to the mocment

are followed, the positions of the spin are r, r', r” and r
when the first, second, third and fourth gradient pulses are applied. The probability

densities that connect the four positions are, P(r|r’, A), P(r'|[r"”, A”) and P(r"|r", A).
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Figure 3-3: A simple double diffusive scattering pulse sequence with the angle between
scattering vectors set to 0°. For complete bounded diffusion with long time limit, the
measured signal as a function of the amplitude of wave vector g is the average product
of the power of a center ray and itself in the three dimensional ¢ space reciprocal to
the spin density function of the bounded region-the pore.

A A’

The integrate the signals from all such spins, the overall measured signal is,

E(¢t,q3) = [ p(£) P(rlr’, A)P(¢'|e", A" P(e'[c", A")

x e ETMETY miai T plat T By g3yt Prt @iy, (3:2)

Figure(3-4) shows the pulse sequence of a 2D,, experiment which implements
two wave vectors with perpendicular directions in g space. The two sets of gradient
pulses have perpendicular directions but the same amplitude and duration. A similar
analysis to the above 2D, . experiment can be applied. The measured signal for 2D,

is,

E(qz,q9) = f p(r)P(rlr', A)P(r'ie", A") P(r'|x", A")

I

C s s —iane” ind.
x e WETEIeEY oiai " pial " g3 g3y B P, (3.3)
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Figure 3-4: Double diffusive scattering pulse sequence with the angle between scat-
tering vectors set to 90°. For complete bounded diffusion with long time limit, the
measured signal as a function of the amplitude of wave vector g is the average product
of the power of a center ray and a perpendicular ray in the three dimensional q space
reciprocal to the spin density function of the bounded region-the pore.

3.3 Double Scattering on Homogeneous Free Dif-
fusion

For homogeneous free diffusion, the probability density is a Gaussian centered at the
initial position r,

' 1 —(r-
P(rlr ’A) — me (r l")z/4DA’ (3.4)

where D is the homogeneous self diffusion constant.
For a double scattering on one direction, plugging in the Gaussian for the proba-

bility density functions, the signal is,

E(qz,qz) = / p(r)P(r|r', A)e" = (7~ @3rd’r’

X

./ P(x'|r", A P(x'|z", A")e' 9 " ) d3r" g3

[ / p(r)P(r|r’, A)e“f'("-')d3rd3rv] ¢—9?DA"
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The initial spin density p(r) is taken as uniform and normalized over the whole
sample region. It can be seen that the signal is independent of the middle mixing time
A' because during A’ no magnetization gratings are present and thus the measurement
is not sensitive to the displacement of the spins.

For double scattering with two perpendicular directions, the signal is,

E(et,qi) = [ p(X) P(elr’, A)e ey’

X

[ Pl )P, Anem e

= [ / p(r)P(r|r', A)e‘“f'("")diirdiirf] ¢—9°DA"
= -9DA,-g?DA"
If the mixing times are chosen to be the same, i.e., A" = A, both signals may be

further simplified to,

E(gi,qz) = 202 (35)
E(gi,qj) = e P (3.6)

This makes perfect physical sense because even though the measurements cor-
relates the diffusion length scales either along same direction or the perpendicular
directions, for homogeneous free diffusion in a sample of infinite spatial extent, the
diffusion lengths are the same for all the directions and hence the signals for the two
experiments must be the same. It is also worth noting that the results are indepen-
dent of the middle mixing time A’. This is because there is no magnetization grating

during A’ time; therefore, no molecular movements can be detected.
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3.4 Double scattering on a bounded compartment

For a pore with spin density function p(r), perfect restricting walls, and all the A’s
satisfying condition ! < vV2DA, the spin diffusing inside the pore will travel over the
whole length of the pore and lose the “memory” of its initial position. The probability

densities are only functions of the spin’s final positions,

P(rlr’,00) = p(r)
P(r'|lr",00) = p(r")

P(r"lr"” m) = p(r"l)'
The double scattering signals are then,

E(qz,qf) = / d*rp(r)e """ / d*r'p(r') e

X / dsrn p(rn)e—iqi-r" / d:;rm p(r"')ei"f""' (3.7)
E(qz,q9) = / d*rp(r)e"9* T / d®r'p(r')e' s
X / d3r" p(l'") e—iqﬁ.r’f / darm p(rm)e.‘,"-,,rm (38)

3.5 Interpretation of the Double Scattering Exper-
iments

There are two ways to interpret the double scattering experiments of restrictive struc-
tures, the 2-D correlation functions in real space, and the multiplication of powers of
center rays in q space. The former provides more physical picture while the latter is

more easily connected to the measured signal.

3.5.1 2-D Correlation Functions

It can be seen from Equation(3.8) that the ¢ components are zero in the directions

that are perpendicular to the applied ¢ vector. The integration along these directions
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can be taken separately and yield the projections of the spin density functions along

the ¢ vector direciions.

plz) = / p(z,y, 2)dydz,

oly) = / p(z,y, z)dzdz.

The measured signal is then,

E..(¢gj = / dzdz' p(z)p(z')e9=—) / dz"dz" p(z") p(z")e~9="~=")  (3.9)

E.(q)

/ dzdz p(z)p(z')e =) / dy"dy" p(y")p(y™)e~ V"~V (5.10)

-a
—— / \ -(l-.-b) I (I+b)
-b b

Figure 3-5: The comparison between (a)correlation of profiles along two orthogonal
directions within a single pore and (b)no correlations for two individual 1-D experi-
ments along two orthogonal directions on a system of randomly oriented pores which
yields the same displacement profile.



To consider all the orientations of the pore, Equations(3.10) must be averaged
over all angles, and the total signals are,

S(a) = % / S...(q) sin 8d6do, (3.11)

So() = 4% / S.(q) sin 8d0d¢. (3.12)

&
@@@% _<

Figure 3-6: A 2-D diffusive scattering performed on an arbitrarily oriented pore. for
a system of randomly oriented pcres, the result is the sum of the correlations.

The fzature of this simple two dimensional correlation function approach is to
express a \wo dimensional problem in a one dimensional formular. Suppose the sample
containss randomly oriented ellipsoidal pores with long semi-major radius b and short
semi-major radius a. A one dimensional experiment on the system will result in a
displacement profile with full width of 2b. The convolution of the profile with itself will
extended the plot to be twice as wide, i.e., a full width of 4b. But the two dimensional
experiment described above will yield a displacement profile with a smaller full width,
as within each pore, the movement of a spin along two perpendicular directions are

correlated. The profiles obtained by two experiments are compared and information of
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Figure 3-7: Plots of simulated 2-D correlation profiles verses convolutions of 1-D
profiles on samples with randomly oriented prolate pores with compress ratio 1/5
and 1/10. The full width of the 2-D determines the average correlated microscopic
length scales along two perpendicular directions. The full width of the convolution of
1-D profiles obtained separately determines the largest length scales of the randomly
oriented pores. The full width can only be obtained at very low signal intensities.

the pore eccentricity is obtained. The difficulty of this approach is that tke accurate
determination of the full width of the profile demands high ¢ components, where
noise usually dominants the signal, to be measured. Figure(3-7) shows a numerical
simulation of a 2-D experiment versus convolution of 1-D experiment of 5/1 and 10/1
prolate samples. It can be seen that the convolution of 1-D data has a full width of
4-fold of the original maximum width as predicted while the 2-D profile has smaller
width. It can be suggested that the ratio of the two reveal the eccentricity of the
geometry. It is noticed that the difference between the two profiles can not be seen

clearly until down to very small scales, typically three or four orders down. The
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overall impression of the two profiles are the same. However, as the two dimensional
correlation function and its Fourier transform contain the same information, it can

be analyzed in the Fourier domain as well.

3.5.2 Structure Factor |S(q)|* and Power Expansion

For a normalized pore(V = 1) with the shape of a rotating ellipse, the 3-D Fourier

transform can be given analytically,

§(q) = / e d’r (3.13)
v
3sintq — tqcosiq
= 5 : (3.14)
with
t = Va?sin? 0 + b2 cos? 6, (3.15)

where a and b are the two semi-major radii of the ellipse rotating around the axis
where b is lying.
The signal from a double scattering with scattering vectors along same direction

is then,
Eerla) = o f |S(q)|sin 6dbdg (3.16)

The signal from a double scattering with perpendicular vectors is,

En(@) = 5 [ IS@F1S(@.)*sinédsds, (317)

where ¢ is the angle in the plane perpendicular to the first ¢ vector, as seen in

Figure(?) and,

E(q)) = /V et oy (3.18)
_ 3sint,q — tgcost,q (3.19)
tig® ’ '
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with

t = \/ a? cos? 0 + b sin? @ cos? ¢. (3.20)

Though the integrations can no be solved analytically, they can be approximated,
given small ¢’s, by expanding S(q) and S(q.) into Taylor series around g = 0, the
integrations can then be carried out for each terms analytically. In this way, the

scattering signals for 2D,, and 2D,, are,

E:z(9) = 1+cq®+ cag® + O(¢) (3.21)
Ex(9) = 1+dag® +dag* + O(¢"), (3.22)
where
2 = dy= —g (§a2 + %b"’) (3.23)
¢ = % (1—85-a‘l + %—a"’b2 + %b‘) (3.24)
dy = % ( %a" + %azlﬁ + %b“) + % ( ga“ + %a2b2 + %b‘) . (3.25)

It can be seen that the scattering signals for 2D_, and 2D,, are identical up to the q?
term. This is because the zeroth order term corresponds to the volume of the ellipoid
and the second order term corresponds to the mean square of the radius of gyration
of the ellipsoid. They contains no anisotropic information.

Beginning from the ¢*, the two equations differ. It can be seen that E,, is always

larger than E,, which makes sense since Y A2 > 2#1 AiA;, where,
Ai = [Si(g)*. (3.26)

The difference of the coefficients for the ¢* term in the ellipsoid model is a function

of the difference between a2 and 5?2,

co—dy = % (a® - 8%)°. (3.27)
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Therefore, this can be used as an indication of the anisotropic length scales in micro-
scopic structures.

It can be seen that for each curve to the power of ¢?, a and b can be solved uniquely
and without the reference to the other curve. This goes back to the original issue
of modeling. The calculated values of a and b reflect the averaging over a normally
heterogeneous sample. Only in the case of a glass of identical pores may they be
directly related to a simple geometry. Without proper presumptions, a and b can not
be solve by only one curve as each curve may consists of contributions from different
local anisotropies including isotropic dynamic features.

Nevertheless, the goal of the double scattering experiments is to separate the con-
tribution of powder averaged local anisotropy from real size or diffusion coefficient
distribution within the sample. The comparison of the two scattering curves of parallel
and perpendicular scattering vectors created a contrast of correlations of same direc-
tion and perpendicular directions. The difference in this comparison, which started
in the ¢g* term as (dy — ¢4), is a clear indicator of the contribution of eccentricity in

the sample.

3.6 Summary

In an NMR scattering experiment, the long lifetime of the spin magnetization coher-
ence(several seconds) and the easy control over the scattering vectors allow multiple
dimensional multiple scattering experiments to be performed. The microscopic cor-
relations of scattering along different directions is a unique feature of NMR and has
not been accomplished by other scattering methods.

By NMR multiple scattering, local anisotropic features within a glassy sample can
be identified from size distributions by ‘he separation of the two double scattering
curves, E;; and E;,, at high g region. This information can not be obtained by the
one dimensional scattering methods without proper models based on prior knowledge

of the system.
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Chapter 4

Calculation énd Simulation

The theory of how NMR double scattering signal depends on the geometrical features,

as described in the previous chapter, can be explicitly expressed, in real space,

Ein) = 3= [ loen) © pelm] @ [oa(m) © pelm] 0 @)

B = 5= [ le.0)@ p(]) @ laytm) © py(m]d, (42)

and in q space,

Eyg) = / IS(@)]* d2 (43)
Ei(g) = j 1S(@)I |S(aL)[2d®, (4.4)

where,
S(a) = [ plr)e " rdr (4.5)

is the Fourier transform of the spin density function p(r). These equations are the

bases of the calculation and simulation.
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4.1 Calculate by Convolution in Real Space

The shape of the pores were approximated by prolate and oblate ellipsoids with uni-
form spin density. Considering the symmetry, the ellipsoid is anchored with the rotat-
ing axis b along 2, the advantage is that two angles suffice to describe the orientation

of the pore,

g+ 45 <

p(z,y,2) = (4.6)

otherwise

where V = §ma®b is the volume.
The cross section across the center of the above ellipsoid normal to y-axis is an

ellipse,
2 22
F + ﬁ =1 (4.7)

The eccentricity, e, of an ellipse is defined as the ratio between focal length and

the long semi-major axis,

rolate
P (4.8)

Sl oIn

oblate,

where c is the focal distance which is the distance between the focal points and the
center of the ellipse. If the shape is prolate then b is the long semi-major axis on
which two focal points are at ¢ = Vb2 — a2 on either side of the origin on z axis. If
the shape is oblate then a is the long semi-major axis. The two focal points are at
¢ = VaZ — 12 on either side of the origin on z axis.

For rotating ellipse, only two Euler angles need to be considered. The new rotating
coordinate system can be obtained by multiplying the original coordinate vector by

two rotation matrices,

T 1 0 0 ( cosyy siny 0 T
¥ | =] 0 cos@ sinf | —sin Y cosy 0O y (4.9)
Z 0 —sinf cosé 0 0 1 z

The shape functions along r and y axes are obtained by the integration of the
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Figure 4-1: Ellipse with long axis OA = OB = b and short axis OC = OD = q, focus

a2

Fy and F3, the eccentricity e = /1 —- 5.

other two orthogonal coordinates,

pz) = / o(z,y, 2)dydz (4.10)

/ p(z,y, z)dzdz (4.11)

p(y)

The spin density p(z,y,z) is assumed to be uniform inside the ellipsoid and zero
elsewhere. Therefore the projection of the spin density function onto the z — y plane

is proportional to the difference of the two roots of second order equation of z,

vb% — 4ac
p(z,y) x |21 — zo| = _a4—’ (4.12)
where,
a = Hnf 4 cod
b = 2(% - %)sinfcosf (ycosy — xsiny) : (4.13)

2.4 4,2

¢ = (5 -5) sin?0 (ycosy — zsiny)® — 1

The projection of spin density onto Z and § are obtained by integrating p(z,y) over y
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Figure 4-2: Figure shows ellipsoids with varies eccentricities. From prolate, upperleft,
to oblate, lower right.
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and z, respectively. The calculations are done on a Silicon Graphics O, workstation
with 180 MHz MPS processor. The Matlab code can be found in Appendix B.

p(z,y)’s were created as 401 x 401 matrices with each element calculated as in
Equation(4.12) and summed over all 8’s and ¢’s from 0 to § with 0.5 degree steps. The
angular resolution and range is sufficient to cover all possible spin density projections
considered the symmetry. Figure(4-2) shows pore shapes used in the calculation and
simulation. The eccentricities range from 20/1 prolate to 20/1 oblate. For each shape,
the volume are kept the same. The desired a and b are determined from the compress
ratio.

Figure(4-3) is the plots of the simulation in real space. The signal in ¢ space can

be obtained by the Fourier transformation.
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Figure 4-3: Simulation curves for different eccentricities obtained by correla-
tion/convolution method. The volume of the ellipsoids are the same V = 8um3.
The solid lines are results of 2D, and the dashed lines are results of 2D,,. The full
widths are very difficult to see in the plots.
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Figure 4-4: Figure shows phase differences of a spin due to displacement between
four points, measured by double scattering experiments with parallel or perpendicular
scattering vectors.

4.2 Simulation by Monte-Carlo in () Space

The Monte-Carlo simulation for the multiple scattering experiments assume the long
diffusion time limit, i.e., the average r.m.s. of the molecular displacement is greater
than the length scale between the restrictive boundaries.

For double scattering, the calculated quantity is the phase changes under magnetic
field gradient pulses at four random points within one pore that corresponded to
the positions of the molecule at the moments when the gradient pulses are applied.
The molecule carrying spin magnetization travels between these points as shown in
Figure(4-4).

The phase differences were obtained by first calculating the lengths and directions
of the vector that connects the first two points and then the vector that connects
the last two points, followed by projecting these two vectors onto a randomly cho-
sen gradient direction to simulate a 2D, experiment (or a pair of randomly chosen
perpendicular gradient directions to simulate a 2D, experiment). See Figure(4-4).

For each scattering event, the four positions of the spin &re determined by 12
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numbers. The gradient directions are determined by two or three numbers. All the
numbers can be generated by a random number generator. If the numbers have
the accuracy of T(l)‘o’ in order to cover all the possible combinations of the points
and directions, one must sample a minimum of 10'¢ scattering events. Additional
difficulties are seen at high ¢ values which is the most important region. The signal
is low and more accurate calculations are needed.

A direct simulation of the experiment was carried out via Monte-Carlo methods.
However, there are difficulties concerning the accuracy when dealing with calculation
of the signal at high g values while keeping a reasonable calculation time. The Monte-

Carlo code for 2D simulation in C++ is listed in Appendix B.

4.3 Analytical Calculation in ) Space

The three dimensional Fourier transformation of a sphere with radius a, normalized

uniform density inside and zero outside is,
Sty = 3 1
(9) = o [sin ag — ag cos aq] . (4.14)

The Fourier transformation of a rotating ellipse along b axis and b > a can be obtained

by reconfiguring aq in Equation(4.14),
vV .
S(q) = o [sin gt — gt cos ¢t] (4.15)

For a perpendicular orientation,

k17

S(qL) = prred [singt, — gt cosqt,], (4.16)
1
where,
t = Va?sin?6+ b2cos?0 (4.17)
t, = \/a2 cos? 6 + b2 sin? @ cos? 1. (4.18)
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Figure 4-5: The geometric drawing on how to obtain a vector g, perpendicular to
vector ¢;. Due to symmetry, only the angle 8,, which is the angle between g, and z,
is needed. The relations can be denoted by equation cos#; = sin 6 cos .

The relations between 8, ¢ and v are indicated in Figure(4-5). For this particular

orientation, the double scattering experiments measure,

E(@ = |S(@)' (4.19)
E(aq.) = IS@FIS(a.)l (4.20)

If the pores are oriented randomly, it is the same as taking different center rays

in ¢ space. Averaging over all the possible angles of q vector,

B9 = 3 [IS@)I*sinoa, (1.21)

Bu@) = ;- [1S(@)IS(a.)fsinodsdy. (4.22)
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Figure 4-6: Double scattering curves calculated for different eccentricities. Upper
curves: Ej(q); Lower curves: E,(q)

The calculated results are shown in Figure(4-6) for different eccentricities of pores.
The average was make numerically. The Matlab code is listed in Appendix B.

It can be seen in Figure(4-6) that the separation of the two curves E"(q) and
E.(q) is a clear indication of ellipsoids’ eccentricities.

For small gt and qt;, Equation(4.20) can be expanded in a power series,

E(q) = S(0)*+25(0)°S"(0)(qt)
+% [95(0)S"(0)2 + S(0)*S™] (qt)* + ... (4.23)

E(q,q1) = S(0)*+25(0)*S"(0)(qt)’
+% [95(0)S"(0)? + S(0)*S™] (qts)" + ... (4.24)
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where the coefficients S(0), S”(0) etc. are,
S@) = 1,
" _ 1
s'0) = -3,
" — _3_
Ss™0) = 35

Yielding an analytic expression for the attenuation functions,

E(@ = 1—-(qt)2+1—7—5-(qt)‘+0((qt)“) (4.25)
Blay) = 1- (@) + (@] + o @) + @0)*] + t6ia’ + .. (4.26)

This can be averaged over all angles term by term,

B o= a4 i1,

3 3
7 = i 2+3b2
th = 1E;)a‘+ 145 a®b® + 5b"
i = 185a‘+145 o + b‘
22 = %a"+%a2b2+l—1§b",

so that finally, the expansions of double scattering curves for a normalized pore are,

E(qi,qz) = 1+cg®+cug® + ... (4.27)
E(qz,q)) = 1+dyg* +dsq* + ... (4.28)
where,
g = dy= —g (i 24 3b2) (4.29)
¢y = ll% (185 ‘4 14—502b2 + -;;b") , (4.30)
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The two equations differ from each other only at the quadrapolar term. The difference
of the g* terms of the two curves is,

2

375 (a® — b*)2. (4.32)

Cy — dq =
From Equation(4.32) and the ¢, and d, formula in Equation(4.31), @ and b can be

solved uniquely.

4.4 Discussion

Although the real space and the reciprocal q space description contain the same in-
formation, one picture is usually easier to interpret than the other. For the double
scattering case, the parts that contains the most informations are in the low signal
regions for both real space and reciprocal space. In real space, the full widths of the
profiles are the quantities to measure; in reciprocal g space, it is the degree of sepa-
ration of the two scattering curves. It is also necessary to separate the contribution
of signal of the free water in between the pores. This signal from free water shows
up in the scattering curve as a rapid decay in g space. Since the information of the
eccentricity are contained in the high ¢ region where the contribution from free water
is almost zero, the g space picture is easy to use to separate contributions from water
outside and the fluid inside the pores.

However, because the Fourier transform of a sharp peak in ¢ space yields a wide
spread of signal in real space, the contribution from the water outside of the pore is
difficult to be separated from the signal from the pores. In addition, to determine the
cut off of signal in real space requires collecting signals at very high q values. This
demands gradient coils that can generate much higher gradient fields.

In the ¢ space, the separation of the scattering curves is seen at modest q levels.
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By using the power expansion method described in the previous chapter, the major
and minor axes can be calculated by fitting the high ¢ portion of the scattering curve
and extrapolating it to arrive at the coefficients of the power series. It should be
noted, however, the idea of the double scattering is not to accurately determine the
geometry of the pores from the scattering curve. The power of the double scattering
is the capability to directly measure the microscopic anisotropic behavior in a glassy

sample without any prior knowledge of the sample.
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Chapter 5

Experiments

5.1 Instrumentation

The experiments are performed on an Magnex 14 Tesla standard bore super-conducting
magnet with Bruker AMXII-600 spectrometer. The probe is home made with a gra-
dient set that can create a field gradient of 1,250 Gauss/cm(12.5T /m). This gradient
set was used to measure the one dimensional scattering curves for the round yeast
cells. Unfortunately, due to over enthusiasm, the gradient set was fried. The replace-
ment is less powerful; but nevertheless can give gradient of 1000 Gauss/cm and 600
Gauss/cm in y — 2 plane at high uniformity. See Figure(5-1).

The high gradient set is compromised by the 600 Gauss/cm set when performing
two dimension experiments as the gradient field must be kept the same along two
directions.

The linearity of the gradient was tested via diffusion measurements on free water.

As can be seen in Figure(5-2), the system shows good dynamic range and linearity.

5.2 Sample Preparation

The best system for testing the new scattering methods are sizable (4 — 10um in
diameters), isolated cells or pores filled with water, with easily discernible eccentrici-

ties. Yeast cells have been the subject of research in genetics and oncology for many
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Magnetic field and gradient at x=0 plane
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inside the gradient set. High uniformed gradient can be seen within 2 millimeters

Figure 5-1: Quiver plot of calculate of the z = 0 plane of the magnetic field gradient
from the center.



Figure 5-2: semi-logarithm verses second power of gradient pulse amplitudes of dif-
fusion measurement on free water. The straight line extended to very high gradient
strength indicates high uniformity of gradient field and high linearity of the system.
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Figure 5-3: Transmitted microscopic pictures of regular(left), medium long(middle)
and extra long yeast cells. All three pictures are taken under same amplification. In
the lower-left corner, the two tick marks are image of a standard microscopic scale
taken under the same condition. The distance between the two ticks is 0.01mn..
From the picture, the average diameter of the normal yeast cells is around 4um, the
average short semi-major diameters of the two groups of long yeast cells are 4um, the
average long diameters are 15um anu over 20um.

years since they are easy to culture and handle. Two types of yeast cells were used
in this study, normal yeast cells (which are round and have diameters of about 5
microns), and abnormally long yeast cells provided by the Genetics Lab at Harvard
Medical School. After normal yeast cells are treated with mutagenic radiation or
chemicals, the DNA inside the nuclei loses its ability to duplicate. As a result, the
cells keep growing and never receive signals from the nuclei to divide thus becoming
long yeast cells. The length of the cell depends upon the time the treated cells are
under culturing condition. The medium long yeast cells are taken out of the media,
centrifuged and froze for 5 hours after treatment. The extra long yeast cells are taken
out of the media after 12 hours. Figure(5-3) is the images of the three types of yeast
cells on slides taken by light microscope. The yeast cells can be kept frozen condition
for more than a month without losing their structures.

At the time of the experiment, the yeast cells were thawed and injected into a
one-millimeter-diameter capillary. One end of the capillary was melted and sealed
prior to introducing the cells. After centrifuging under 2000 RPM for 1 minutes and
extra water extracted, the other end of the capillary was sealed by silicone gel to

prevent water loss. The sample left was put back into the freezer for later usage.
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Figure 5-4: One dimensional scattering curves of regular round yeast cells. Both
curves taken by pulsed gradient stimulated echo. The maximum gradient strength
is 1271 Gauss/cm. Gradient pulse time is 1.5 ms. For open circles, mixing time
A = 27ms, for squares, mixing time A = 17ms. The strong oscillation feature of the
curves indicates that the cells are round and with narrow size distribution.

5.3 Results and Discussion

One dimensional diffusive scattering experiments were carried out on the normal yeast
cells by the pulsed gradient stimulated echo pulse sequence. Phase cycling was used
to get rid of the contribution due to the second and third RF pulses and the DC
bias of the receiver. 64 gradient steps were used to ramp the gradient pulses from
zero to the maximum strength, and 64 averages acquired for each gradient step. The
diffusion times A are chosen as 17ms and 27ms. The total experiment time for each
curve is about 3.4 hours with a duty cycle time (T;) of 3 seconds.

The results are shown as two curves in Figure(5-4). The average size of the pore

can be calculated from the position of the first Fourier peak. The values calculated are
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4.0um for A = 17ms and 3.8um for A = 27ms. The variation of sizes are believed to
be caused by dehydration of the yeast cells during the experiments. The experiment
for A = 27ms is performed 3.4 hours after the first experimeni.

On the medium long yeast cells, two dimensional diffusive scattering experiments
were carried out for scattering along same direction and scattering along two per-
pendicular directions. The pulse sequences for these two experiments were shown
in Figure(3-3) and Figure(3-4). Phase cycling discussed in Appendix A was used to
filter out the single scattering events and FID’s induced by the RF pulses and the
DC bias of the receiver. The same number of gradient steps(64) was used to ramp
the gradient pulses from zero to the maximum strength. The number of acquisitions
was increased to 128 since the signals from double scattering are weaker than that of
the single scattering. The diffusion times A were chosen as 27ms. The time delay
between the scattering events was 40ms. The total experiment time for each curve
is about 7 hours with a duty cycle time (7;) of 3 seconds. The double scattering
experiments 2D, were performed on both directions to avoid mismatches between
and y gradient coil sets.

The double scattering were also performed on the extra long yeast cells under the
same conditions and parameters as the experiments on the medium long yeast cells.

The experimental data for the medium long and extra long yeast cells are shown
in Figure(5-5) and Figure(5-6), respectively. In both figures, a common part at low
q value shows a rapid decrease of signal. This is from diffusion of the free water
outside of the yeast cells and contains no other useful information. The curves for
2Dy and 2D, experiments overlap at low g regicn, the separation of the two curves
starts at high q. The curves from the scattering of the extra long yeast cells show
further separations than the ones for the medium long yeast cells, indicating larger
eccentricity in cell shape.

The eccentricities can be directly calculated by solving the equations of the power
expansion coefficients. The coefficients were obtained by interpolating the fitted
curves of the experimental data, seen as solid lines in the figures.

For the medium and long yeast cells, ¢, are —5.95 and —12.2, respectively, ¢, —d,
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Figure 5-5: 2-D scattering curves from medium long yeast cells. The open circles
and squares correspond to scattering of parallel and perpendicular scattering vectors.
The solid lines are fitted curves by power expansion up to 6th power. For both data
sets: maximum gradient strength is 600 Gauss/cm, gradient pulse length is 1.0 ms.
Mixing times are 27 ms. The time interval between two scattering events is 40 ms.
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Figure 5-6: 2-D scattering curves from extra long yeast cells. The open circles and
squares correspond to scattering of parallel and perpendicular scattering vectors. The
solid lines are fitted curves by power expansion up to 6th power. For both data sets:
maximum gradient strength is 600 Gauss/cm, gradient pulse length is 1.0 ms. Mixing
times are 27 ms. The time interval between two scattering events is 40 ms.
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are 9 and 41.3, respectively. The calculated average end-to-end sizes for the two
prolate yeast cells are 2.18/2.18/13.0(um) and 2.16/2.16/18.88(um). The measured
sizes are smaller than the actual measurement by the optical microscope. This is
partially are result of the diffusion during gradient pulses[47].

The shape of prolate or ublate can be determined by the proper signing of v/cq — ds
which decide whether a or b is the long semi-major radius. Since the axis system is
always chosen to be around b, a smaller b compared to a corresponds to oblate shapes.

The microscopic correlation of scattering directions is a unique feature of NMR
scattering and can not be accomplished by other scattering methods such as light,
X-ray or neutron scattering. The spatial and temporal region of the NMR scattering
is determined by the diffusion coefficients and longitudinal relaxation time. NMR

scattering extends these two regions to seconds and the spatial scale to around 100um.
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Chapter 6

Diffusion in NMR Microscopy

Molecular diffusion in nuclear magnetic resonance imaging can be used as a contrast
mechanism. However, in the experiments in search of high spatial resolution, diffusion
is arguably the most limiting factor of the ultimate resolution. This is due to the large
attenuation of high k components which determine the spatial resolution that can be
achieved. It has been stated in the previous chapters that molecular diffusion smears
out the magnetization grating which is crucial to an imaging experiment. The finer
the magnetization grating is, the more vulnerable it is to the molecular diffusion.
The traditional way to treat the diffusion broadening of spectral line in MRI is as
a solution of Bloch equations with added diffusion terms[5). Due to complexities of
the boundaries, the problem is usually simplified to the free diffusion case. In large
scale(/2 > Az?) MRI's where diffusion is regarded as slow motion. This is a good
approximation. However, in a scale that boundary effects can not be ignored, it is no
longer valid to treat the diffusion as slow motion.

In this chapter, the discussion of diffusion effects in NMR microscopy is focused on
the evolution of the magnetization gratings. This approach presents a simple physical
picture of the influence of molecular motions and provides a detailed description of the
role of molecular diffusion in complex geometry. We intend to show that for a constant
time imaging experiment, the signal loss, or equivalently the point spread function, is
significantly less than that predicted by the familiar Bloch-Torrey eqnation-a perfect

analysis in many cases[52] but not a suitable model for microscopic imaging. We
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will then use this to argue that the limitation of spatial resolution in high field, high
gradient NMR microscopy is neither the molecular diffusion nor the low gradient field

but primarily the low sensitivity of the measurement.

6.1 Background

The goal of magnetic resonance imaging is to map out the spin density in space.
In MRI the image is taken by collecting components in the reciprocal k-space and
reconstructed by Fourier transformation. However, at any given moment, NMR can
only measure one component of the k-space (at k = 0), of the measured object
because in NMR the signal is that integrated over the whole sample. In ordcr to
measure the k # 0 components, the whole k-space must be shifted by applying
magnetic field gradients and magnetization gratings are created across the sample.
By superimposing a magnetization grating, the measured signal becomes vulnerable
to any molecular motions.

The influence of molecular motions on any magnetization grating can be directly
described by introducing the conditional probability density of spin or molecular
displacement, P(r|r',t), the probability density that a spin initial at r will be at r’
at a time t. We will use this probability density function and the development of
magnetization gratings in the sample to describe the influence of molecular diffusion
in imaging.

Since the probability density of molecular displacement is not neccesarily isoplan-
etic, we can not describe the changes of the grating by a simple convolution approach,
a.k.a. the point-spread-function theory, instead, a general integral form of equation
must be used.

The instantaneous variation of the grating that is accompanied by the molecular
motion is most easily expressed as an integral of the grating’s phase that is accumu-

lated at a point by the motions of the molecules.

grating = p,/P,(z'|z,dt)e:rp(—ik.-z’)dz’ (6.1)
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6.2 Molecular diffusion in a sample of finite extent

The well-known attenuation behavior of molecular diffusion in a grating is associated
with a uniform sample of infinite extent. The normalized probability of molecular

displacement is Gaussian,

Py(2|',t) = \/21_7me:t:p [— E'E;’L)] (6.2)

with a standard deviation of

o= V2Dt (6.3)

where D is the molecular diffusion constant. The value of the standard deviation
depends on the dimensions over which diffusion is monitored. Even though the sample
is three-dimensional, the grating will break the symmetry and only motions along the
grating will lead to observable changes. Therefore, the 1-D standard deviation is
appropriate in this analysis.

Notice that P, is described as being spatially invariant so that this description of
the problem is only consistent with a sample of infinite spatial extent in which only
one k component exists and therefore the attenuation occurs only when you shift the

= 0 component to a higher value and back like in an gradient echo experiment.
For any object with finite spatial extent, the attenuation of each k component is
dependent of it’s k-space trajectory. We can not evaluate the attenuation the same
way as the free diffusion case because in free diffusion case there is no k # 0 component

exist.

6.3 Calculations

The calculation is based on the impulse propagator method developed by Caprihan,
Wang and Fukushima[53]. The gradient is divided into N narrow impulses and a

narrow pulse approximation is assumed for each pulse. It is easily seen that after one
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gradient pulse and a time of delay, the spin system will be,
ps(r,m+) = /d3r'P,(r'|r, 0)ps(r', n)exp(—ik - r'), (6.4)

where k = g4, and § is length of each gradient impulse and the time interval between

the starting point of consequent impulses. Knowing that,

ps(r,0) = p(r), (6.5)

the signal after each impulse can be calculated as,

S(n) = /d3rp,(r,n). (6.6)

For simple geometries, such as parallel-planes, cylinders and spheres, P,(r|r',d) are
known:

(1) For parallel planes separated by 2a,

% 2,2
P(z]',8) = %Zezp [_n il D‘S] cos 22 cos T2 4

“~ a? a a

% 1\2:2s +1 Lyt
! exp [— (n+ 2)21r ] sin (n +3)mz sin (n+ 3)m2 . (6.7)
a ‘= a a

(2) For cylinders with radius a,

] Jn (ﬂ"kr) Jn (ﬂ"kr') A2, cos (nf) cos (nf') (6.8)

a a a

% 2
P(r|r',d) = Zexp [— ﬂ""?é
nk

where

1 : —_

A2, = 762 J2(Buk) ifn=0 6.9

nk — 2{’2 . ( * )
ARG fn#0.

The J, are cylindrical Bessel functions and [, are determined by,

T4 (Bus) _

,Bnk Jn(ﬂnlc)

0 (6.10)
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Figure 6-1: Comparison of two simulation methods. Dashed lines represent free
diffusion approach using Bloch-Torry equations. Solid lines represent calculation
using conditional probability density function. (a) § = 1ms, (b) § = 5ms,(c) 6 =
20ms,(d) & = 100ms, (e) & = 500ms,(f) 6 = 2000ms

6.4 Experiments and Discussion

The experiments were carried out on a Bruker AMX 600 spectrometer with home
build probe for micro imaging. The probe is has a high efficiency three dimensional
gradient coil that generates gradients up to 1000 Gauss/cm in-plane. The rf coil size
can accommecdate 1mm capillary tube cut to about 1.5 cm long.

The sample is a Teflon capillary tubes with inner diameter of 100 microns and
outer diameter of 200 microns. The tube was filled with water by a syringe and then
cut in to a 1 centimeter long section and inserted and sealed into a 1 mm sample
tube.

Two one dimensional constant time imaging experiments were performed with
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Figure 6-2: A gradient echo of a sample of a top-hat cell calculated using free diffusion
approximation(top) and conditional probability density function. 6 = 0.02ms
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Figure 6-3: The 1-D images of double top-hat cells calculated assuming free diffu-
sion(dashed lines) and using conditional probability density function. Upper left:
6 = 0.1ms; Upper right: § = 1ms; Lower left: § = 4ms; Lower right: § = 108ms;
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Figure 6-4: Amplitude of CTI signal of a 100 micron I.D. capillary tube. The ampli-
tudes of the open circles(tp=4ms) didn’t fall below the squares(tm=0.5ms), even at
the fourth and the fifth lobes, indicating no significant diffusion loss.

the same field of view FOV = 1.65mm and resolution 16.5um. The gradient pulse
lengths were 500 microseconds and 4000 microseconds in length.

Figure(6-4) shows the results of the amplitude of the CTI experiments. It can be
seen that for a gradient strength 8 times lower, there is no signs of severe diffusion
attenuation in the signal compare with the signal with 8 times stronger but 8 times
narrower gradient pulses. The ultimate spatial resolution for CTI or back-projection
experiments can be much higher than predicted by the Bloch-Torry equation. The
dominant factor in microscopic imaging for fine structures is the sensitivity of the

instrumentation and experimental schemes.
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Appendix A

Choosing Only the Desired Signal

for 2-D Scattering Experiments

There are totally seven 7 RF pulses in the two dimensional scattering experiment
pulse sequence. Each one of there will tip some “new” magnetization in to the trans-
verse plane and will affect the final signal in the forms of free induction decay(FID),
spin echoes or stimulated echoes. Crusher gradient pulses are used to dephase all
transverse magnetization during the mixing or diffusion time intervals(delay time
between 2nd and 3rd, 4th and 5th, 6th and 7th RF pulses). This leaves only the

stimulated echoes to be concerned about.

A.1 Filtering of Single Scattering Events

Other than the stimulated echo initialed by the very first RF pulse, stimulated echoes,
at the same time point, can be caused from the tip-downed new magnetization by the
third and the fifth RF pulses. The phase cycling listed in Table(A.1) helps to remove
these stimulated echoes and all the FID’s by the sixth and the seventh RF pulses.

This leaves only the signal from the multiple scattering events.
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RF | RF1 | RF2 [ RF3 | RF4 [ RF5 | RF6 | RF7 | ACQ

TipAngle|| 2 | 2 z z z z z NA
1 | 0] 0 2] 2 ]0]2]2]0
2 2 0 2 0 0 0 0 0
3 n: 0 2 0 2 2 2 2 2
4 2 2 0 0 2 0 0 2
3 2 0 2 2 0 2 2 2
6 H 0 0 2 0 0 0 0 2
7 2 2 0 2 2 2 2 0
8 0 2 0 0 2 0 0 0
9 2 0 0 2 0 2 2 0
10 0 0 0 0 0 0 0 0
11 2 2 2 2 2 2 2 2
12 0 2 2 6 2 0 0 2
13 0 0 0 2 0 2 2 2
14 2 0 0 0 0 0 0 2
15 0 2 2 2 2 2 2 0
16 | 2 | 2] 2 0] 2] 0] 0] 0

Table A.1: Phase Cycle for 2-D Scattering. All signals from single scattering events
are filtered out. For 2D,; and 2D,, experiments, three k pathway is allowed. CY-
CLOP can be implemented on top of this phase cycling.
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A.2 Selection of k¥ Pathways

During the middle mixing time, k should be zero so that the first and the second
scattering events can be treated independent. The unwanted paths are the path A
and path C shown in Figure(A-1). To kill these two paths, consider the phase cycle
listed in Table(A.2).

2 w2 w2 r2 2 w2 /2

G

4 ‘ . —
3 A e

L < 5 ~
RN e T

; ¢ 2% ~

3 \ g

Figure A-1: Because a 7 RF pulse will cause the mixing of +k and —k paths, there
are additional pathways that can contribute to the final stimulated echo.

The signal from each scan in the phase cycle are summarized as following: 1. ADC

phase +:
I, = +I,

—  +I,coskz + I sinkz

=y —I,coskz + I,sinkx
Crush —I,coskzx

=+ —I,coskr

— —I,coskz coskz' — I, coskz sin kz'
—~3 +I,coskzxcoskz' — I, cos kzsin kz'
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RF__ | RF1 | RF2 | RF3 | RF4 | RF5 | RF6 | RF7 | ACQ
TipAngle ]| 3 | 2 | 2 | 5 | 2 | 3 | 3 | NA
1 0 ] 0| 0] 0] 0] 0] 0] 0
2 0 | 1 | 1]0 000/ 2
3 0] 2 0] 00 0] 0] 2
1 0 | 3|1 ] 0] 0] 0] 0] 0
5 0 ]0 0] 00 1] 1] 2
6 0 | T |1 ]0 |01 1[0
7 0 |2 0] 0] 0] 1]1]0
8 03 | 1]0 ] 0] 1 [1] 2
9 0 | 0] o0 ]| 1|0 0] 1] 0
10 0 | 1 | 1 |1 ]0 ] 0] 1] 2
11 0| 2 0| 1|00 1] 2
12 0 | 3|1 |10 ] 0] 1] 0
13 0 |0 ] 0| 1] 01 0] 0
14 0 | 1 | 1 |1 ]0 ] 1] 0] 2
15 0 | 2] 0|10 ] 1]0] 2
16 0 | 3 |1 | 1] 0] 1]0] 0

Table A.2: Improved phase Cycle for 2-D Scattering. For all experiments, 2D,,, 2D,
and 2D,,, only one k pathway is selected. CYCLOP can be implemented on top of
this phase cycling.
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Q
s
-

' +I,coskzcoskx’
—» +I,coskzcoskz'
—>  +I, coskz cos kz' cos kz" + I cos kx cos kx' sin kz"
23 —I,coskzcoskz coskz” + I, cos kx cos kz' sin kz"
Crush I, cos kz cos kx' coskz"”
—+ —I, coskz cos kx' cos kz"
— —I,coskz coskz' cos kz" cos kz" — I cos kx cos kx' cos kz" sin kz"
2. ADC phase -:
I, 5 +I,
— +l,coskz + I;sinkzx
-4 +I,coskz + I sinkzx
Crush 41 . sinkz
Yy I sinkz
— —I,sinkzcoskz’ + I, sin kzsin kz’'
£y —I.sinkzcoskz' — I,sin kzsin ks’
Crush _J,sinkzsinkr’
—~» —I,sinkzsinkz'
— —I,sinkzsinkz' cos kz” — I, sin kz sin kz'sin kz"
-%y 41, sinkzsinkz’ coskz” — I, sin kz sin kz' sin kz”
Crush 41 , sin kz sin kz' cos kz”
—=»  +I,sinkzsin kz' cos kz"
—  +1,sinkzsin kz' cos kz"” cos kz" + I, sin kz sin kz' cos kx" sin kz"
3. ADC phase -:

I, 5 +I,
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— +I,coskz + I, sinkz
5  +I,coskz + I sinkz
Crush +I.coskzx
= +I,coskz
— +I,cos kz coskz' + I, cos kz sin kz'
=y —I,coskzcosks’ + I, coskzsin kz'
Cruh _p , cos kx cos kx'
—~» —I,coskzcoskr'
— —I,coskz coskz' coskz” — I, cos kz cos kz' sin k"
=3 +I,coskzcoskz' coskz” — I, cos kx cos kz' sin kz"
Crush 41, cos kx cos kz' cos kz"
—~+ +I,coskz coskx’ cos kz"
— 41, coskz cos kz' cos kz" cos kz" + I, cos kz cos kz’ cos kx" sin kz"
4. ADC phase +:
I, 5 +I,
~— +I,coskz + I sinkz
%  +I,coskz — I, sinkzx
Crush ~I,sinkzx
- +Isinkz
—  +I;sinkz coskz’' — I, sin kzsin kz'
= +I.sinkzcoskz' + I, sinkzsinkz’
Crush +I, sin kz sin kx’
—=» +1,sinkzsin kz'
—  +Isin kzsin kz' cos kz" + I, sin kz sin kz'sin kz"
=3 —I,sinkzsinkz' coskz" + I, sin kz sin kz' sin kz"
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Crush N .
T3 —I,sinkzsin kz' coskz”

—+ —I,sinkzsinkz coskz”

n m

— —I,sinkzsinkz’ coskz" cos kz" — I sin kz sin kz' cos kz" sin kz

5. ADC phase -:
I, =5 +I,

— 4+l coskz + I sinkz

=y —I,coskz + I, sinkz

Crush  _I,coskx

=+ —I,coskz

— —I,coskzcoskz' — I, cos kz sin kz'

-2y +I,coskzcoskz’ — I,coskzsinkz'

Crush +1I, cos kx cos kz'

—~+ +I,coskzcoskz’

— +I,coskzcoskz' coskz" + I, cos kz cos kz' sin kz"
23 +I,coskz cos kz' cos kz" + I, cos kz cos kx' sin kz"

Crush 41 , cos kzx cos kz’ sin kx"

Yy —I,coskzcoskz' sinkz"

— —I; cos kz cos kz'sin kz" cos kz" + I, cos kz cos kz' sin kz" sin kz"

6. ADC phase +:
I, = +I,

— +I,coskz + I sinkz
-4 +I,coskz + I,sinkz

Crush +1,sinkz
2y —I,sinkz
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— —I.sinkzcoskz' + I, sin kz sin kz'
=y —Isinkzcoskzr’ — I sin kx sin kz'
Crush I, sin kx sin kz'
—=» —I,sinkzsinkzr’
— —Iysinkzsinkz' cos kz" — I sin kz sin kz' sin kz"
-2 —I,sinkzsin kz’ cos kz” — I, sin kz sin kz'sin kz"
Crush I, sin kx sin kz' sin kz"
3 +I,sinkzsin kz'sin kz"
—  +I,sin kzsin kz'sin kz" cos k' — I, sin kx sin kz' sin kz" sin kz"
7. ADC phase +:
I, =5 +I,
— 4l coskz + I;sinkz
=% +I,coskz + I,sinkz
U 41 coskz
=+  +l,coskz
— +I,coskzcoskz' + I cos kz sin kz'
=3 —I,coskzrcoskz' + I, coskzsin kz'
Crush g . cos kz cos kx’
= —I,coskzcoskz’
— —I,coskzcoskz' coskz" — I, cos kz cos kx' sin kz"
- —I,coskzcoskz’ cos kz" — I, cos kx cos kz' sin kz"
U _I, cos kz cos kz' sin kz"
Yy  +I,coskz cos kz' sin kz"
—  +I,cos kx cos kx'sin kz" cos kz" — I, cos kz cos kx' sin kz" sin kz"
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8. ADC phase -:

I, =5 +I,
—  +I,coskx + I;sinkz
= +I,coskz — I,sinkz
Crush —I,sinkzx
4y I sinkz
—+ +I,sinkxz cos kz' — I, sin kz sin kz’
=~y +I,sinkzcoskz’ + I, sin kz sin kz'
Crush 41, sin kz sin kz'
=+  +I,sinkzsinkr'
—  +I,sinkzsin kz' cos kz" + I, sin kz sin kx' sin kz"
-5 +I,sinkzsin kz’ cos k=" + I, sin kz sin kz' sin kz”
Crush I, sinkzsin kz'sin kz"
-2y —I,sinkzsin kz' sin kz”
— —I,sinkzsin kz'sin kx" cos kz" + I, sin kx sin kz' sin kz" sin kz"'
9. ADC phase +:
I, 5 +I,
— +I,coskz + I sinkz
=%y —I,coskr + I sinkz
Crush —I,coskzx
= —1I,cos kx
— —I,coskzcoskz' — I, coskzsin kz'
& - ycoskz cos kz' — I cos kx sin kz'
Crush _J, cos kz sin kz'
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—I, cos kz sin kz'

—1I, cos kz sin kz' cos kz" — I, cos kz sin kx' sin kz"

o]l

+1, cos kx sin kz' cos kz" — I cos kz sin kz' sin kx"

Crush 1, cos kz sin kz' cos k"
Y, —1I,coskzsinkz coskz"
— I, coskzsinkz’ coskz" cos kz" + I, cos kz sin kz' cos kz" sin kz"
10. ADC phase -:
I, = +I,
—  +I,coskzx + I sinkzx
SN +I,coskx + I, sinkz
G 41, sinkz
Yy —I.sinkz
— —I,sinkz coskz' + I, sin kz sin kz'
-5 —I sinkzcoskz' + I, sinkzsin kz'
Crush  _I, sin kz cos kx’
—» —I,sinkzcoskz’
— —I,sinkz coskz' cos kz" — I sin kz cos kz' sin kz"
=3 +I,sinkz cos kz’ cos kx" — I, sin kz cos kz' sin kz"
Crush 41, sin kz cos kz' cos kz"
Yy —I,sinkz coskz' cos kz”
— —I,sinkz cos kz’ cos kz" cos kz" + I, sin kx cos kz' cos kxz" sin kz"
11. ADC phase -:

I, 5 +I,

— 4+l coskzx + I;sinkz
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I

+I,coskx + I sinkzx

Crush 11, coskz

= +lcoskz

— +I,coskzcoskz' + I, coskzsin kz'

N +1, cos kz cos kx' + I, cos kz sin kz'
Crush .

2% +I,coskzsinkz’

—» +I,coskzsinkz’

— +I,coskzsinkz' coskz" + I, cos kzsin kz' sin kz"

=3 —I,coskzsinkz coskz” + I, cos kz sin kz'sin kz"
Crush .

3% —I, cos kz sin kx' cos kz"

Yy 41, cos kzsin kz' cos kz"

— +I; cos kzsin kz’ cos kz" cos kz" — I, cos kz sin kz' cos kz" sin kz"'

12. ADC phase +:

I, = +I,
— +I,coskz + I, sinkzx
—%  +I,coskz — I,sinkz
Crush  _I,sinkz
2 +I sinkz
— +I,;sinkz coskz' — I sin kzsin kz'
-~y  +I,sinkzcoskz' — I, sinkzsinkz'
Crush 4 I,sinkzcoskr’
—=» +I,sinkz cos kz’
—  +Iysinkz cos kz' cos kz" + I, sin kx cos kz' sin kz"
=y —I,sinkzcos kz' coskz” + I, sin kz cos kz' sin kz"
Crush  _I, sin kz cos kz' cos kz”
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Yy +I.sinkzcoskz’ cos k"

n "

—  +I,sinkz cos kz' cos kz" cos kx"' — I, sin kz cos kz' cos kz" sin kx

13. ADC phase +:

I, 5 +I,

— +I,coskz + I;sinkz
<y —I,coskz + I, sinkz

Crush —I,coskzx
- —I,coskz
— —I,coskzcoskz’ — I, coskzsinkz'
-~y —I,coskzcoskz' — I, coskzsinkz'

Crush _I, coskzsinkr'
— —I,coskzsinkz’
— —I,coskzsinkz' coskz" — I, cos kz sin kz' sin kz"
N —1I, coskz sin kz' cos kz" — I, cos kx sin kz' sin kz"

23 _I, cos kzsin kz' sin kz”
— -1, coskzsin kz' sin kz"
— =1, cos kzsin kz' sin kz" cos kz" — I cos kz sin kz' sin kz" sin kz"'

14. ADC phase -:
I, 5 +],

— +I,coskzx + I;sinkz
2y  +I,coskz + I sinkz

Crush +1,sinkz
&y I sinkz
— —I,sinkz coskz’ + I, sin kz sin kz'
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L=

—1I, sin kz cos kz' + I sin kz sin kz'

Crush .
T —I,sinkz cos kz'

—~» —I,sinkzcoskz'
— —I,sinkzcoskz' coskz" — I, sin kz cos kz'sin kz"
-3 —I,sinkz cos kz' cos kz” — I, sin kz cos kz' sin kz”
Cresh  _ I, sin kx cos kz' sin kz"
—+ —I,sinkz cos kz'sin kz"
—> —I,sinkz coskz'sin kz" cos kx" — I, sin kz cos kz' sin kz" sin kz"'
15. ADC phase -:
I, = +I,
— +[,coskz + I;sinkz
=5 +I,coskz + I, sinkz
Crush 41, coskr
3  +I,coskz
— +I,coskzcoskz' + I, coskz sin kz'
- +1I, cos kz cos kz' + I, cos kz sin kz'
Crush 41, cos kzsin kz'
—=+ +I,coskzsinkz'
— +I,coskzsinkz' cos kz" + I cos kx sin kz' sin kz"
5  +I,coskzsinkz’ coskz” + I cos kz sin kz' sin kz”
Crush 41, cos kx sin kz' sin kz"
—+ +I,cos kzsin kz’ sin kz"
—  +1, coskzsin kz'sin kz" cos kz" + I, cos kx sin kx' sin kz" sin kz"
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16. ADC phase +:

I, = +I,

— +I,coskx + I sinkz
—%  +I,coskz — I, sinkz

QU I sinkz
2y +I.sinkz
— +Isinkzcoskz' — I, sinkzsin kz'
-~y  +I,sinkzcoskz' — I, sinkzsin k'

4% 41, sinkz cos kz'
=+  +I,sinkz coskz’
—  +I,sinkz cos kz' cos kz"” + I, sin kx cos kz' sin kz"
- +I,sinkz coskz' cos kz” + I, sin kz cos kz' sin kz"
i Y . sin kz cos kz' sin kz"
=+  +I,sinkz cos kz' sin kz"
— +I,sinkz cos kz' sin kz" cos kz" + I, sin kx cos kz' sin kz" sin kz"'

The total sum of the signal from all 16 scans is,

n m

E = -—I,coskzcoskz' coskz" coskz" — I, cos kx cos kx' cos kz" sin kx

n "

—1I, sin kz sin kz' cos kz" cos kx"' — I, sin kz sin kz' cos kz" sin kz

—1I, cos kz cos kz' cos kz" cos kx" — I, cos kz cos kz' cos kz" sin k"

n "

—1I, sin kz sin kz' cos kz" cos kx" — I, sin kz sin kz' cos kz" sin kz

n "n

+1, cos kz cos kx' sin kz" cos kz" — I, cos kz cos kz' sin kz" sin kz

" "

+1, sin kz sin kz' sin kz" cos kz" — I, sin kz sin kz' sin kz" sin kx

+1; cos kz cos kx' sin kz" cos kz" — I, cos kx cos kz' sin kz" sin kz"'

m

+1, sin kz sin kz' sin kz" cos kz" — I, sin kz sin kz' sin kz" sin k"'
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n "

—1I cos kz sin kz' cos kz" cos k=" + I, cos kz sin kz' cos kz" sin kx

+1, sin kz cos kz' cos kz" cos kz" — I, sin kz cos kz' cos kz" sin kz"

—1I, cos kz sin kz’ cos kz"” cos k=™ + I, cos kz sin kx’ cos kz" sin k"
v

+1, sin kx cos kz' cos kz" cos kz™ — I, sin kz cos kz' cos k" sin kz"’
v

—1I,, cos kz sin kz' sin kz" cos kz" — I, cos kz sin kz' sin kz" sin kz"

+1, sin kx cos kz' sin kz" cos kz" + I, sin kx cos kz' sin kz" sin kz"

m n

— I, cos kz sin kz' sin kz" cos kz" — I, cos kz sin kz' sin kx" sin kz

+1, sin kz cos kz' sin kz" cos k" + I, sin kz cos kx' sin kz" sin kx"
= —2I,cosk(z — z') cosk(z" — =) + 2I, cos k(z — z') sin k(z" — z"')
+2I, sink(z — z')sink(z" — =) + 21 sink(z — ') cos k(z" — z"')

= =2l cos[k(z — ' + 2" — "))

+2I, sin [k(z — £’ + =" — 2")]

-2e_ik(:_zl+z" _=MI)

It can be seen that only one k path is selected.
The middle period no zero k path can also be erased by setting the second pair of

gradient pulses opposite to the first pair. With this scheme, the middle path is killed
by the background gradient. See Figure(A-2).
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Figure A-2: The middle non-zero k path can be killed by setting the two pairs of the
gradient pulses opposite to each other. The unwanted path is erased by the mismatch
of the first and the second pair of gradient pulses due to background gradient.
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Appendix B

Computer Program Codes

B.1 C++ Code for Monte-Carlo Simulation for 2-
D Scattering

#include <stdio.h>
ginclude <istream.h>
#include <string.h>
#include <math.h>
#include <stdlib.h>
#include <time.h>

#include <complex.h>

int i jk |Lm,n;

FILE *fid; 10
char outfile[128];

double_complex sxx[65], sxy[65];

double rl, thetal, sintl, costl, phil, sinpl, cospl;

double r2, theta2, sint2, cost2, phi2, sinp2, cosp2;

double r3, theta3, sint3, cost3, phi3, sinp3, cosp3;
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double r4, thetad, sint4, cost4, phi4, sinp4, cosp4;
double theta5, sint5, cost5, phi5, sinp5, cosp5;
double theta6, sint6, cost6, phi6, sinp6, cosp6;
double ctant6, test;
double ratio, gmax, d_q;
double x1, x2, x3, x4, x5, x6;
double yyl, y2, y3, v4, y5, y6;;
double z1, 22, z3, z4, z5, z6;
double dx1, dx2, dx3, dx4, dy3, dy4;
double_complex phasel, phase2, phase3;
double PI=3.14159265;
double_complex 1(0,1);
main()
{
time_t t;
srand((unsigned) time(&t));
cout << "Monte-Carlo simulation of 2Dxx and 2Dxy Experiment.\n";
cout<<"Radius of rotating ellipes is set to 1 micron.\n";
cout << "Input the other radius of the ellipes: “;
cin >> ratio;
cout << "Input the value of the highest q: ";
cin >> gmax;
cout << "Name of the file to be saved: ";
cin >> outfile;
cout << "Number of 1000 cycles: ",

cin >> n;

d_-q=qmax/63.0;
for(k=1; k<=n; k++){

cout << k << "\n";
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for(j=1; j<=1000; j++){

r1=(rand() % 100)/100.0;
r2=(rand() % 100)/100.0;
r3=(rand() % 100)/100.0; 50
rd={rand() % 100)/100.0;

rl=pow(rl,1./3.);
r2=pow(r2,1./3.);
r3=pow(r3,1./3.);
rd=pow(r4,1./3.);

thetal=(rand() % 100)/100.0 * PI;
theta2=(rand() % 100)/100.0 * PI;
theta3=(rand() % 100)/100.0 * PI; 60
thetad=(rand() % 100)/100.0 * PI;
theta5=(rand() % 100)/100.0 * PI;

phil=(rand() % 100)/100.0 * 2 * PI;
phi2=(rand() % 100)/100.0 * 2 * PI;
phi3=(rand() % 100)/100.0 * 2 * PI;
phi4=(rand() % 100)/100.0 * 2 * PI;
phis=(rand() % 100)/100.0 * 2 * PI;

rl=pow(rl,1./3.); 70
r2=pow(r2,1./3.);
r3=pow(r3,1./3.);
rd=pow(r4,1./3.);

sint1=sin(thetal);
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sint2=sin(theta2);
sint3=sin(theta3);
sint4=sin(thetad);
sint5=sin(theta5);

costl=cos(thetal);
cost2=cos(theta2);
cost3=cos(theta3);
cost4=cos(thetad);
cost5=cos(theta5);

sinpl=sin(phil);
sinp2=sin(phi2);
sinp3=sin(phi3);
sinp4=sin(phi4);
sinp5=sin(phi5);

cospl=cos(phil);
cosp2=cos(phi2);
cosp3=cos(phi3);
cosp4=cos(phi4);
cosp5=cos(phi5);

if (cost5==0){
test=((rand() % 2)-0.5)*2;
sinp6=test*cosp5;
cosp6=—test*sinp5;
sinté=(rand() % 100)/100.0;
cost6=((rand() % 2)—0.5)*2*sqrt(1.0—sint6*sint6);
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else {

phi6=(rand() % 100)/100.0 * 2 * PI;

sinp6=sin(phi6);

cosp6=cos(phi6);

if (abs(cost5)==1){ 110
sint6=1;
cost6=0;

}

else {
ctant6=—sint5/cost5*cos(phi5—phi6);
sint6=1.0/sqrt(ctant6*ctant6-+1.0);

cost6=ctant6*sint6;

}
}

120
zl=ratio*r1*cost1;

z2=ratio*r2*cost2;

z3=ratio*r3*cost3;

zd=ratio*r4*cost4;

z5=cost5;

z6=cost6;

x1=r1*sint1*cospl;

x2=r2*sint2*cosp2;

x3=r3*sint3*cosp3; 130
x4=r4*sint4*cosp4;

x5=sint5*cosp5;

x6=sint6*cosp6;

yyl=r1*sint1*sinpl;
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y2=r2*sint2*sinp2;

y3=r3*sint3*sinp3;

y4=r4*sint4*sinp4;

y5=sint5*sinp5;

y6=sint6*sinp6; 140

dx1=x1*x5+yy1*y5+z1*z5;
dx2=x2*x5+y2*y5+22%25;

dx3=x3*x5+y3*y5+23*z5;
dx4=x4*x5+y4*y5+24*z5;

dy3=x3*x6+y3*y6+23*26;
dy4d=x4*x6+y4*y6+24*26;
150

for(i=1; i<=h4; i++){

phasel=exp{(1*2*PI*d_q*(i—1)*(dx1-dx2));
phase2=exp(I*2*PI*d_q*(i—1)*(dx3—-dx4));
phase3=exp(I*2*PI*d_q*(i—1)*(dy3—dy4));

sxx[i]=sxx[i]+sint1*sint2*sint3*sint4*sint5*phasel*phase2;
sxy[i]=sxy][i]+sint1*sint2*sint3*sint4*sint5*phasel *phase3;

}

} 160

}

fid=fopen(outfile,"w");
for(i=1; i <= 64; i++)
{
fprintf(fid, "%f\t%f\t%f\n", (i—1)*d_q, abs(sxx[i]), abs(sxy[i]));
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}
fclose(fid);

}

B.2 MATLAB Code for Convolution Calculation
for 2-D Scattering

x=-20:0.1:20;
y=Xx;
a=(20/bdiva)~(1/3)
b=bdiva*a
SS=zeros(1,401);
SS=conv(SS.SS);
SS1=SS;
SS=conv(SS,SS);
$S2=SS;
[X Y)=meshgrid(x,y);
for theta=0:pi/90:pi/2,
theta
ct=cos(theta);
st=sin(theta);
for phi=0:pi/90:pi/4,
cp=cos(phi);
sp=sin(phi);
b2=4*st~2*%ct"2*(1/a~2—1/b"2)"2*(cp*Y —sp*X).~2;
aa=(st"2/a"2+ct~2/b"2);
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cx2=((cp~2+ct~2*sp~2)/a-2 +st~2*sp-2/b"2)*X."2;
cy2=((sp~2+ct~2*cp~2)/a~2 +st"2*cp~2/b~2)*Y."2;
xy=2%st"2*sp*cp®(1/a~2—-1/b"2)*X.*Y;
ac4=4"aa*(cx2+cy2+xy—1);
Z=real(sqrt(b2—acd))/aa;
21=2’;
x1=sum(Z);
yl=sum(Z1);
S$S=SS-+st*conv(conv(x1l,x1),conv( Vyl,yl));
SS1=SS1+st*(conv(x1,x1)+conv(yl, y1));
$S52=S5S2+st*conv(conv(x1,x1),conv (x1,x1));
$52=SS2+st*conv(conv(yl,yl),conv(yl,yl) );
end

end

S$S=SS/sum(SS):

$52=S52/sum(SS2);

SS1=conv(SS1,SS1);

SS1=SS1/sum(SS1);

B.3 Matlab Code for Calculation Analytically

B.3.1 2-D Scattering with Parallel Scattering Vectors

NN=50;

qmax=0.5;
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q=qmax/NN:qmax/NN:qmax;

Sxx=zeros(1,NN);

for j=1:100,
theta=pi/100*j;
c=sqrt(a~2*(sin(theta))~2+b~2*( cos(theta))~2);
Sxx=Sxx+(sin(c*q)—-c*q.*cos(c*q ))."4./(c*q)."12*sin(theta);

end

B.3.2 2-D Scattering with Perpendicular Scattering Vectors

NN=50;
qmax=0.5;
q=gmax/NN:qmax/NN:qmax;
Sxy=zeros(1,NN);
for j=1:100,
theta=pi/100*j;
cl=sqrt(a~2*(sin(theta))~2+b"2 (cos(theta))~2);
for k=1:200,
phi=pi/100*k;
c2=sqrt(a~2+(b~2—a"2)*(sin theta))~2*(cos(phi)~2)); 10
sx=(sin(c1*q)—c1*q.*cos(c1*q) .~2./(c1*q)."6;
sy=(sin(c2*q)—c2*q.*cos(c2*q) .~2./(c2*q).”6;
Sxy=Sxy+sx.*sy*sin(theta);
end

end
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