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ABSTRACT

Over the last decade, the importance of quality has increased significantly. Quality improvement efforts
involve mitigating the impact of manufacturing variation through robust design, statistical process controi
(SPC), and inspection. This thesis focuses on the last: how to choose an inspection plan to remove the
most variation at the lowest cost. The optimal inspection plan balances the cost of inspection and rework
against the cost of increased quality. This thesis describes an empirical analysis and prototype software
that employs Monte Carlo simulation and simulated annealing to identify the optimal inspection plan.
This thesis demonstrates the functionality of the theory and the software through an example from the
aircraft industry.
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CHAPTER 1: INTRODUCTION

Companies cannot survive without providing high quality products. To produce high quality products, the
design and manufacturing community are using a variety of tools to improve quality throughout the
product development cycle: e.g., Six Sigma [Clifford 1997; Doherty 1997], process improvement,
inspection, statistical process control (SPC), process change, and robust design. Because no single
approach is superior in every case, product development team often utilizes a combination of approaches
to achieve the highest quality at the lowest cost [Thornton 1998]. To evaluate the different approaches,
companies need to understand the cause-and-effect relationship between the feature-level variation and
the system-level product quality. In addition, they must be able to model the quality costs and the impact

of different variation reduction strategies.

One of these strategies, inspection, is the focus of this thesis. Although significant work has been done to
determine the optimal inspection limits for a single feature, no work to dats has developed a systematic
method for identifying where in the assembly of a product inspection should occur. On one hand,
inspecting, scrapping, and reworking parts at the part feature level is relatively inexpensive; however, the
ability to influence the over-all quality of the product is small. On the other hand, inspecting, reworking,
and scrapping at the system level is very expensive; however, the ability to directly influence the final

product quality is higher.

This thesis describes an empirical analysis and user-friendly software employing Monte Carlo simulation
and simulated arnealing to identify the optimal inspection plan for a complex product. This thesis
demonstrates the functionality of the theory and the software through an example from the aircraft
industry. Section 1.1 describes a method to identify where excess variation significantly affects product
quality, Section 1.2 describes other research in the area of inspection, Section 1.3 defines the problem

statement, anc Section 1.4 describes the approach of this research.

1.1 Key Characteristics

In a complex product, it is not economically or logistically feasible to control and/or monitor the
thousands of tolerances specified in a drawing set. To identify what tolerances to control, many
organizations are using methods called Key Characteristics (KCs), which are also termed Critical

Parameters, Critical-to-Function Responses, Critical-to-Quality Variables, and Special Characteristics, by
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different companies'. KC methods are used to identify and communicate to the entire design team where

excess variation will most significantly affect product quality [Lee and Thornton 1996].

First, desigr teams identify where system-level variation may impact performance, safety, and fi
requirements. Performance requirements are determined by the market and customers, safety
requirements are set by internal and extemnal (i.e., FAA) safety groups, and fit requirements are issues that
can make mnanufacture and assembly difficult (i.e., loading a part into a fixture). The variation-sensitive
product quality requirements are called producr-KCs. Second, the design team flows these requirements
through the product decomposition. The source of variation for the Product-KCs can often be contributed

to variations occurring throughout the manufacturing and assembly processes.

Figure 1 shows a KC flowdown for the aircraft wing drag. The product-KC (drag) at the top of the tree
has several contributing subsystem-KCs (contour and gap). The subsystem-KCs are, in turn, a function of
the part-KCs (spar angle) and process-KCs (fixtures). In some cases, it may be possible to flow the KCs
down to the process level; however, there may be cases where parts are delivered by outside suppliers. In

this case, part-KCs become product-KCs for the supplier.

—_
A Product-KCs

Drag
1

Z,

ap between
Contour the skins
r [ Sub-system-KCs
[ I
orque Box Contour
1
r
Height Distance
:L %n Panel Part-KCs
S
Angi’: width
Process KCs
[gpar Fixture ] [Wing Fixlurc] PR

! For consistency. the thesis will use the term Key Characteristic (KC).
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Figure 1: KC Flowdown

A flowdown typically has multipie decomposition levels. In summary, the KC flowdown provides a
system view of potential variation risk factors and captures the design team’s collective knowledge about
variation, its contributors, and the way variation propagate from the feature level to the system level.
Traceability between process- and product-KCs through part- and subsystem-KCs is necessary to identify
what process should be controlled, to identify where process change may positively impact product
quality, and to identify root causes of quality problems. Putting resources in a prioritized list of KCs seeks

to achieve high product quality in the most cost-efficient way.

1.2 Research on Inspection

While variation risk mitigation can be achieved by different options — design changes, process changes,
process improvement, and inspection — this thesis focuses on inspection. Early papers in the field
focused primarily on the effect of inspection error on quality control [Mei, Case et al. 1975; Menzefricke
1984]. The two types of error they considered were type-I errors (a conforming item was rejected) and

type-II errors (a nonconforming item is accepted).

To optimize expected profit of the production process, the quality selection (also termed economic
selecrion) problem was also widely studied. Quality selection maximizes profits by optimizing the quality
levels. Hunter and Kartha [1977] and Bisgaard er al. [1984] formulated the problem of selecting a process
mean to maximize the expected profit. Carlsson [1989] considered lot rejection based on the average
amount of vanability in the sample containers. To include the economic effect of inspection error on the
economic selection problem, Chen and Chung [1996] proposed a method to select the optimal inspection
precision level based on the number of repeated readings on a gauge and the error factors of bias and
imprecision. While the above researchers demonstrated that inspection can be adjusted to maximize

expected profit, they do not directly address selecting an inspe<tion plan for an assembled product.

Some researchers address strategic allocation of inspection in multi-product production systems. By
treating inspection as stations in the system, some studies have focused on serial [Chakravarty and Shtub
1987] while others focused on rion-serial [Elmaghraby 1986] production process. Viswanadham et al.
[1996] presented stochastic search techniques for locating inspection stations in a multistage
manufacturing system. However, they assumed a given, independent, acceptance probability for the entire
product at each stage of assembly. In addition, their models focus on inspecting out bad products rather

than inspecting out parts that will create bad products.
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Some researchers have addressed the multi-characteristic problem, Greenshtein and Rabinowitz [1997]
developed methods to allocate inspection for multi-characteristic items. Rabinowitz «»d Emmons [1997]
then presented guidelines for scheduling multiple inspection tasks for a single inspection facility.
However, both papers only considered a serial two-stage inspection program. In addition, they cnly

proposed heuristics for cases with more than two stages of production.

In summary, a variety of mathematical models have been proposed that set the optimal inspection by
rinimizing an objective cost function. While their mathematical models provide insight, there is no work
that optimizes an inspection plan for an assembly with multi-characteristic specifications. In additicn, all
research up-to-date have used an independent constant acceptance probability for inspection. How

inspection changes the distribution was not considered.

1.3 Problem Statement

Industry faces a lack of quantitative method to help chose the best variation reduction strategy. Since
variation reduction efforts, such as inspection, depend on limited resousce, manufacterers need to
strategically allocate their resources. They look for answers to the following three questions relating to

inspection:

What features should be inspected? Out of the hundreds or thousands of dimension requirements on the
drawing, only a few features make significant impact on variation related quality issues. Those high

impact KCs need to be identified so quality improvement resources can be focused on them.

Variation sensitive quality issues can also arise from three different causes. First, the product features
may have tight tolerance requirements. This is caused by high performance, safety, or fit requirements.
Second, the contributing parts or processes may have high variation to start with. Often, process
improvement or process change has minimal effect, or too costly, to reduce variation. Or third, slight
variation in the contributing parts or processes results in high product-KC variation. This also indicates a

design not robust to variation. Resources can be applied to minimize or eliminate the three causes.

In addition, designing and manufacturing teams often ask the question: where in the assembly process
should we focus our inspection resources. When features are inspected before parts are assembled, the
cost of scrap or rework is low, but the ability to directly impact final product quality is also low.
However, if features are inspected after parts are assembled, "¢ cost of scrap or rework is high, but the
ability to directly impact final product quality is also high. A method to perform cost-benefit tradeoff

between different inspection plans is needed.
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What are the inspection tolerances? Deciding where in the product architecture to place the inspection
checkpoints is not the only decision engineers have to make; they must also set the inspection limits.
Imposing stringent inspection requirements may result in unnecessary scrap or rework. Scrap and rewor
have different costs and different impacts. The opposite may result in product-KCs not meeting

specification. An optimal inspection tolerance balances the two extremes.

Which corrective action to use? After inspection identifies nonconforming units, engineers need to
decide whether to rework the features or scrap the entire part or subassembly. The decision should be

based on a quantitative cost and benetit tradeoff for the entire production system.

The goal of this research is to develop a methodology so companies can use the Key Characteristics
approach to reduce the risk of variation. Often time, companies use a built-and-test approach when
dealing with quality issues. However, a set of analysis tools for Key characteristics will enable engineers
to analysis the cost and benefits of different variation risk management approaches, including inspection,
earlier in the design process. By dealing with the issue of variation early in the uesign process, engineers
can save valuable prototyping and ramp-up time. This can help reduce product cycle time and results in

higher quality products at lower cost.

1.4 Research Approach

This research uses two approaches to analysis the optimal inspection problem. First, mathematical
equations are used to model and analysis the cost and impact of inspection. Second, a simulation based

optimization approach is used to achieve the same goal.

The analytical equations are first formulated from a simple variation stack-up model where one out of
four parts are inspected before assembly. Instead of treating the acceptance probabilities as independent
constant probabilities, they are calculated explicitly based on the process capabilities and the inspection
tolerances. The equations are then extended into generalized equation that can be applied to the general
case where multiple inspected and uninspected parts are assembled with non-unity variation propagation
relations. Another set of equations is also formuiated to deal with the KC flowdown model where

variation propagation through multiple layers, as described in Section 1.1,

T achieve the goal of analyzing and selecting inspection plans for complex products, the simulation-

based approach is done in three steps as shown in Figure 2.
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Modeling Simulation ptimization

Figure 2: The Three-Step Approach to Quantitatively Select an Optimal Inspection Plan

Modeling. Just like the analytical approach, the modeling of inspection for the simulation-based approach
is also based on the framework of the KC flowdown with an additional product assembly hierarchy. The

general model is a non-serial multistage assembly process building a multi-characteristic product.

Simulation. To captures the effect of variation propagation, simulation uses a Monte Carlo simulation.”
In addition, the simulation models the effect of different corrective action strategies such as scrap and

rework.

Optimization. Once we can use the simulation to model variation propagation and the effect of
inspection and corrective actions, a stochastic optimization algorithm is then used to answer the question:
what inspection plan achieves the highest qualiry improvement at the lowest cost. A prototype software,
KCTool, is used as the modeling backbone foi this research [Ardayfio 1998; Thomton 1999]. KCTool
enables a designer to capture the product architecture and KC flowdown. In addition, the software

provides visual feedback abou:t the levels of risk as well as the optimal lo~~tions for inspection.

The problem is first described in Chapter 2 using the math-based approach, which derives the optimal
inspection equations for analyzing inspection problems from simple variation stack-up problems then
expending it to general multi-layer, multiple inspection analysis. Chapter 3 describes the inspection
modeling process used in the KCTool environment. Chapter 4 descrites the inspection simulation process.
Chapter 5 describes the inspection optimization process and an example. Chapter 6 contains the

conclusions.

2 Even though the distributiors are assumed to be gaussian, root sum squared (RSS) approximations can not be used to predict the final produci

quality. Inspection and rework truncate the distributions and invalidate the RSS calculations.
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NOTATION

X the value of feature i in the four- | n Number of parts in an assembly, or
part assembly; number of KCs
X24 the combined value of the other | Ci; the cost of inspecting feature k
three features in the four-part
assembly;
y the value of the product feature G the cost of not meeting the system
specification limits
lef process standard deviation for | C,x the cost of scrapping item k
feature 1;
[LL,, The lower and upper specification | C, the cost of reworking a feature
UL,] limit for the entire system
[LL,UL; | The lower and upper specification } C, the original product cost
] limit for part or KC i
m nominal specification Cr the total expected cost of the
inspection plan
7, the mean of process capability Cinspeciion | the  total  inspection cost of
producing one product
t number of standard deviation away | Cicrap the total scrap cost of producing
from nominal for feature i one product
Pi the probability of accepting part 1| Crewor the total rework cost of producing

during inspection

one product
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P, the probability of finding y | Chire the total failure cost of one product
acceptable

Py (x,)| the probability of finding y within- | Paccep the probability of accepting the
spec for a given value of x; change for simulated annealing

pdfix;) the probability density function of | T The temeprature of the state for
X simulated annealing

pdf(x;) | the probability density function of | Tn The starting temperature for
x; after inspection and scrapping simulated annealing

pmf(x;) the probability mass function of x; Tona The ending temperature for

simulated annealing

Ci the transfer coefficients of x; to the | a The ratio for simulated annealing
next level temperature decrease, a</

Vector S | Keep track of whether or not KCs | Vecror A | Keep track of whether to scrap the
are inspected part or rework the out-of-spec KCs

Vector T | Keep track of the inspection

tolerance settings
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CHAPTER 2: OPTIMUM INSPECTION ANALYSIS

2.1 Introduction

This section derives the mathematical frame works for solving an optimal inspection problem where
multiple sources of variation propagate through many intermediate layers and ultimately contribute to the
final variation at the customer requirement level. Due to the complexity of the issue, the mathematics
formulation is divided into three sections. First, the analysis starts with a simple four-block variation
stack-up problem and calculates the total cost associated with inspecting one out-of-four source of
variation. Second, the analysis is extended to muitiple inspections and eventually forming a generalized
equation that can be used to mode! the cost and benefit of inspecting k out-of-n sources. Third, the
analysis calculates a new probability density function (pdf) based on pdfs of the variation sources, both

inspected and uninspected.

2.2 Single Inspection

We will start our analysis with a simple four-part variation stack-up problem shown in Figure 3. The
purpose of this analysis is to determine the optimal inspection limit for one of the four blocks. While the
assembly stack-up architecture is simple, it provides a foundation for extending the optimal inspection
limit analysis to more complex product architectures. As in Equation 1, the product-KC, y, is a function of

the four block lengths, x;, and the variation of the four parts contribute to a variation of y.

Yy=Xx +x,+x3+x, (1

< y >

e x Pt x, Pt x, Pt x, P

1 3

Figure 3: The Assembly of Four Parts

We assume each part has a Gaussian (or normal) distribution with standard deviation o, and the

probability density function of a Gaussian distribution is defined as
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ﬁl-ﬂl )2

Pdf(x,')=T§-;a—e 20’ (2)

When no part is inspected, we can calculate the probability density function for y using the root-sum-

square method. So,

(_\'—,U\,)l"
. 1 20}
df (y) = e 3)
paf (y Varo,
where
o, =ﬁ,’ +0l+0l+0]} 4)

For the analysis, we are assuming part 1 will be inspected and the others not. To simplify the calculation,
we combine the three uninspected parts, x,, x;, and xy, into a single vanable, x4, which has a Gaussian

distribution, pdf(x,.), with a standard deviation of

Oy s = ,fo% +ol+0l &)

When part 1 is inspected, if the value falls outside the inspection limits, UL, and LL,, the part is scrapped.
The inspection upper limit, UL,, and lower limit, LL,;, can be expressed by Equation 3 and 4, where a

scalar 1, represents the tightness of tolerance allocation® and m;, is the desired nominal.
UL=m;+t,0; (6)
LLi=m-t,0; (7

We can construct the decision tree to account for all scenarios when part 1 is inspected. Figure 4 shows
the decision tree, the probabilities of each outcome, and the costs associated with the outcomes. C; is the
cost of not achieving a system target, C, is the cost of scrapping a part, and C; is the cost of inspecting a
part. C,, is the cost of manufacturing the unit without the inspection cost. The original manufacturing cost

is the same for all branches, so it can be added to the total cost separately.

3 The value 1, enables the analysis to be normalized.
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reject

1-p,

new
part

Figure 4: Probability Tree Diagram for Single Inspection

We start the process by inspecting the part before the assembly process. If the part falls within inspection
limits, a probability of p,, it is accepted and the system is assembled. Then the system is inspected within
specification. The probability of accepting the system is p,. If the part is rejected, a new part is picked
from the lot and inspected. The outcomes of the second inspection are identical to the first. As a result, an

infinite decision tree captures all possibilities.

2.2.1 Cost Calculation

We can calculate the totai expected cost by just focusing on the repetitive part of the probability tree.
Figure 5 shows the recursive inspection routine. We can also represent the rejection branch after a new

part replaces the scrapped part as a module identical to the whole probability trce.
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Figure 5: Representing the Decision Tree as Mcdules

The total expected cost of the whole module, Cr, can be calculated by summing the cost of each branch

multiplied by the probability of the branch
CT=C,',+P|'(]‘P,\-)‘Cf"'(l'Pl)'(Cpl"'CT) (8)
We can express a final equation for Cras

1 I-p
14 Pi

2.2.2 Probability Calculation

Two probabilities, p; and p,, need to be calculated because they are functions of the inspection tolerance

tightness, 1.

The probability of accepting part | when it is inspected, p;:

uL,
P = IPdf(xl )dxl (10)
U,
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where pdf (x,) is the Gaussian distribution for part 1 given a standard deviation of 0; and a mean shi:t of

Hp-m,.
Converting the equation to a function of part 1’s inspection tolerance setting, ,, results in:

uL ()
Pl(tl)= Ipdf(xl)dx! (1)
LLl(’l)

When the inspected dimension of x; is assembled with the rest of the system, the probability or accepting
the product is a function of x,, and the amount of variation, 0., in other parts. For each value of x;, the
probability of accepting the system is a conditional probability, py (this is interpreted as "the probability
of finding the system within specification if the part has variation of x;). Using the joint probability
distribution equation [Drake 1967], the expected probability that the product is acceptable, p, can be

calculated as:

= jpdf(xl)'P_q,, (x,)- dx, (12)

—oo

Since x, is inspected, the portion of pdf outside of [LL,;, UL,] is truncated. The new truncated pdf needs to
be multiplied by //p, to normalize the integration uf pdf back to 1. By replacing the original pdf with the

truncated, the calculation of p, becomes:

df (x,)

<py, () dx, (13)

F‘——-.r

During the assembly process, any value of x; from the truncated pdf combining with pdf(x;4) can be

treated as pdfix,) with a mean shift of x, as shown in Figure 6(a).
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Figure 6: Shifting the Reference Frame to pdf(x,.,)

By shifting the reference frame to pdfix,.) as shown in Figure 6(b), the probability of producing an

acceptable sys.em for any given x, can be calculated by:

ULm -5
P_\'|x| (xl )= -[U. -5

pdf (x,_4)-dx;_, (14)

Combining Equation 13 and Equation 14, p, can be calculated by:

-x

UL, oL, -
oty

I pdf(X2—4 )'d-‘z-a ~dx (15)

The plot of p, as a function of inspection tolerance, #,, is shown in Figure 7.
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Figure 7: Plotting p, as a Function of ¢,, the Inspection Tolerance Setting for Part 1.

2.2.3 Summary and Result

Since the values for p, and p, vary as the inspection limits, UL, and LL,, change, like Fsuation 11,
Equation 15 can be expressed as a function of ¢;,, which measures the inspection tolerance tightness. By
calculating Cr with different values of ;, we can optimize the inspection limits so that Cr is minimized.

SRV PSR AR DA Ly 1 D)
Crle)=— € [-5, G, Y6 (16)

Cr{1) can also be differentiated with respect tc ¢, and the optimal inspection tightness for x; can be found
by finding the ¢, value that minimizes the total expected cost. However, this equation is too complex to
explicitly find the minimum. To facilitate finding the optimal solution, a pre-packaged mathematical

software, MathCad, was used to perform the computation.

Table 1: System tolerance requirement, part process capability, and costs

System Requirement: | [LL,y,, ULy} =130,

Process Capability: 01=0,=03=04
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Costs: Cm=20, C;=0.1, C;=1, C=20

Figure 8 shows the results of the cost calculation using the values in Table 1 and assuming no mean shift,
and normalizing the inspection tolerances as a measure of 1,. The plot suggests inspecting the part at
around 1.2 g; away from nominal is the optimal plan. Inspecting at tolerance limits tighter than 1.25 o,
causes the total cost to increase significantly. The plot also shows the inspection tolerance making little
difference when the inspection tolerance is set past approximately 3.4 standard deviation. This is
consistent with statistics. When inspecting the population of a Gaussian distribution at *3.4 standard
deviation, only 0.06 percent of the population lies outside the inspection tolerance. In essence, inspecting

at tolerance >3.4 standard deviation is the same as no inspection.
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Figure 8: The Total Cost, Cr, Varies as ¢, Varies.

2.3 Multiple Inspection

2.3.1 Inspect Two Parts

Often times, inspection is carried out at multiple sources of variation. We start the analysis for multiple
inspections by extending the previous analysis from inspecting one part to inspecting two parts. When

two out-of-four parts, part] and part 2, are inspected, the probability tree becomes more complex (Figure

26



9). Instead of accepting and rejecting one part for single inspection, there are four outcomes for double
inspection: accepting both parts, rejecting part 1, rejecting part 2 and rejecting both. The first two
rejection scenarios can be represenied as modules of single inspection with the “Inspect part 1" and the
"Inspect part 2" modules represent selecting x; and new x, values until acceptable parts are found. Similar
to the previous example, the last rejection scenario merely repeats the original decision branching process

where part 1 and part 2 are inspected.

acceptable

C Coi Inspect

T12 p © parfi SN
- Inspect b -

part 1,2 ) t C I t

inspec ~p2 nspec b
parts pi(1-p) ® part 2
(I'P;) (1-p,)

Cort Cp2 Inspect >

new parts part 1,2

Figure 9: Decision Tree Modules for Inspecting Two Parts

Summing the cost of all the possible outcomes, the expected total cost of inspection becomes

Cry=C, +C +p,p,(1-p,)C, +(l—p,)p2(C,.l +Cm)

(i7)
+(=-p,)p,(Cr, +C,, )+ (1= p, X1 p, XCT.,, +C,, +Cp,)

Cr1, Cr, and Cry; are the expected cost for modules of inspecting part 1, inspecting part 2, and inspecting
both.

Cr) and Cr; are formulated using the result from the single-inspection analysis.

]_

¢ =—-¢, +(-p,}c, +—=Lc, (18)
Pi ’ P
1 1-

Cr, =—C, +(-p,)c,+—L2.C, (19)
P2 P2
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After simplifying algebraically, the final equation for inspecting two features becomes

fol -—--—l—-C,v, +L-C,-z +(|_.p‘,).c! Il J -C, + 1-p; -, (20)
P P2 ’ Py ]
where
7%
%) d Lys =X~
f pf(X. “ Pf(Xz ( e pdf(,H).dxH].dsz.dx, 3)
LL1 luq i ] ] 2

Plctting Cr as a functicn of inspection tolerance ¢, for part 1 and 1, for part 2 yields the plot in Figure 10.

-
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Figure 10: Contour Plot of Cr as a Function of Normalized Inspection Tolerances, f; and ¢,.

When both part 1 and part 2 are inspected, there is an optimal inspection level for both where the total
cost is minimal. The net cost is insensitive to small changes in the inspection limits. However, excessively

tight or loose tolerances result in higher cost.

2.3.2 Inspect Three Parts

Following the previous analysis, the case of inspecting three out of the four features can be expanded as

shown in Figure 11 below.
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Figure 11: Decision Tree Modules for Inspecting Three Parts

In this case, there are eight possible combinations of accepting and rejecting the three inspected parts. The

total expected cost, as calculated from the eight possible outcomes, is

Cr,, =G, +C, +C, + ppyps(1- p,)C,

+(1=p)paps(Cr + €, )+ - p)ois(Cra +.€,, )+ (- ppipa(Cry + C,) (22)
+py(-pXi- p, XCT,, +C, +Cp, )* pl-p M- PJXCT,, +Cp, +Cp,)

+py(1-p I - p;)(Cr,, +C, +Cp, )"'(l -pXi-p Xt- pJXCT,,, +Cp +C, +Cp,)

The equation can be simplified algebraically to

1 1 ] 1-p, 1-p; 1-ps
CT-. =_.Ci +_.C’_ +_.C, +(]_P)C + C + C +__.C
Bop " pp t opy ® YR e TR g, TRy

(23)

Py
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where

P, =1T paf (x, ){Uf pdf (x, )[T Pdf(‘l)_[jul’"-"q'-" pdf (x,)- dx, ].deJ.dx;, dx,  (24)
3 P i, P2 i, P3 R

So far, we have only dealt with inspection scenarios where at least one feature is not inspected and we

were able to use it as the basis for shifting the frame of reference and formulating our equations. If all

four sources of variation are inspected, while the Cr calculation have additional C; and C, terms, the

calculation of P, becomes more complex, and pdfix,) needs to be replaced with pdfix,), which is a

truncated normal distribution normalized to 1 using //p,.as shown in Figure 12.

pdf'(x,)

NG LA <x <UL
Pdf (xi )= D
0 otherwise

Figure 12: The Truncated pdf

2.3.3 Generalized Equations

The analysis 2bove can be formulated into generalized equation that can be applied to all cases. For the
general equations, it is assumed that the assembly is composed of n parts and each part is a source of
variation contributing to the final variation. The following sections first formulate the equations for when
k (k<n) out of n features are inspected, then describe the equations for when all n sources of variations are

inspected, and finally take the effect of non-unity variation propagation transfer coefficients into account.

Inspect & out of 1 Sources of Variation. From the above analysis, we can formulate a general equation

to account for the cost of inspecting k out of n sources of variation.

1 1 ] 1-p, I-p, 1-p,
CT =_.C’_ +—-C, +.+—-C +(]_p)c +—.C, +—L2.C +..+—L.C (25)
P opp " Pe " e Th T T e "
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UL,
p, = [ pdf (x,)dx, (26)
L,

and

vt UL UL, —X=Iy=..=X,
p, = I paf (x,) Ipdf(n)' IML)_[ L pdf(z)-dz]-dx. cbedry Vodx,  (27)
o, P i, P2 o, Pi LL,  -x=Xy=...— X

where all uninspected features are combined to form one new normal distribution, pdf{z).

Inspect All n Sources of Variation. If inspection is carried out at all n sources of variation, the total cost

of the inspection plan becomes

Cr =—l--C,-|+L-C,.z+...+L-C,-"+(|—p.‘.)-Cf+l-p'-C +—P2.c 44

P ¢ (28)
P P2 Pn 14 P2 "

since k=n.
Likewise, p, can be calcuiated using

py=

UJ’Ll Pd.);(xl), U"r Pd.;(xz),[____[w]l-l Pdf(xn-l){j‘”‘"' AT pdf'(x, )-dx, ]'dxn-l""""dxz- -dx, 29

2 i, Pn-t LLy =2y =xp=.= X,

J

where pdfx,) is the pdf of the truncated distribution, which is the unscrapped portion of the original

distribution multiplied by 1/p,.

Non-unity variation propagation. The above analysis is limited to geometric stack-up problems. For
non-stack-up geometric issues such as angle and non-geometric issues such as electromagnetic, electrical,
and thermodynamic problems, Equation 29 is not general enough to be used in all cases. Therefore, an
analysis that utilizes non-unity variation propagation is needed. For this purpose, the following equation

provides the basis for analysis:
Ay=c,-Ax, +c, Ax,, +...+¢, - Ax, (30)

Since the transfer coefficients, ¢;, do not affect inspections at the part level, the equation for p; and the
cost equation stays the same. Only p, needs to be modified to accommodate the coefficients.
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For the case where only k out of n features are inspected, Equation 29 becomes:

p,=

utL, uL, ju L ~CyXy=CyXy=..=C) X,
[l [ o

LL, =\ x)=C3X3=..~C} Xy

3
},b ay O

where pdfiz} is the probability density function created by lumping together all uninspected pdfs.
If those uninspected pdfs are normal distributions pdf{z) can be calculated using:

(z=m)’

1 20
pef ()= e ™ @
1/2:wz
and
2 ) 2
o, = \/Cmam *+C20inp +.-+C, 0, 33)

However, if one or many uninspected pdfs are not normal distributions, pdf(z) needs to be calculated

explicitly and its formulation is discribed in next Section.

In the case where all n features are inspected, p, can be calculated using:

Py =

uL, UL, ULy =X =€aX3 == Cptdp-1 34)
d) d, df (x,,_ ) (

J‘ Pf(xl)_ J‘ Pf(xz) J Pf(x 1) oG . pdf (x,)-dx, |-dx,_, |-...}-dx, )-dx,

u1 P| LL) p2 p" 1 nr 141 1‘.1 n-la-1

where pdfix,) is the pdf of truncated distribution, which is a truncated distribution multiplied by 1/p,.

2.4 Probability Density Function Propagation

While the above sections describe a methodology for analyzing multiple-inspection problems, it does not
address the issue of variation propagating through multiple layers. To deal with this issue, we need an
equation taking the inspected and uninspected pdfs from the lower level and propagate the distribution to
form a new pdf at the next level. This pdf propation method can be applied several times so all pdfs at the
lowest layer can be propagated to the next layer and ultimately the generalized equations in Section 2.3.3

can be used to calculate the total cost at the top level.
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2.4.1 Two-Part Assembly

To start our formulation, we first look at examples of simple probability mass functions (pmfs). If

y=X,+X,, and x, and x, have pmf shown in Figure 13,

1/2
1/4 I 1/4
< I i —>»
-1 0 1
Figure 13: Pmf of x; and x;

we can calculate the pmf for y using Equation 35 as follows and plot it in Figure 14:

pmf,(2) = pmf, (1)- pmif,, 1)+ pmf,, (O) prf,, @)+ prf, (=1)- pmf, )= Y

pmf, (1) = pmf,, (1)- pm.,, )+ pmf, (0) prf, ()+ pmf, (=1)- prf, @)=}/

pmf,(©) = prf, (1): pf, (~1)+ pf, ©): pmf, ©)+ prf, (1) pmf, )=3f G5
pmf (=) = prf, (1) pmif, (~2)+ pmf,, (0)- pmf,, (=1)+ pmf, (-1)- pf,, ©)= Y
prf,(-2) = pmf, (1)- pmf, (= 3)+ pmf, ) pmif, (= 2)+ pmf, (=1)- pmf, (=1)= W

e 8 14
116 I | | 1/16
«—! . >
0 1 2

2 -1
Figure 14: Pmf of y
The calculation can be formulated as:
pmf_\‘(yo)=2|.pnlfxl(xl). pmfx;(yo-xl)l (36)

When x, and x; are continuous Gaussian pdfs, we can extend the pmf equation to a pdf equation:
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pdf, (%)= [[pdr, (x)- pd,, (v - )] d an

To accommodate the input of x, and x; having a truncated pdf due to the result of inspection and

scrapping. we uses a new notation for the equation

pdf, (v0)= [[pdr; (x) pat;, (v, - x)} dx 38)

where
If x;is not inspected pdf; (x,)= pdf,(x,) —0 < x, <00 (39)

=> original pdf
If x;is i d ,

is nspecte ) EJ;_(_) L sn <UL o
0 otherwise
=> truncated pdf

Therefore, if x, is inspected, we can change the equation to

UL, d ‘
pdf, (%)= | [%‘(x)- pdf,, (¥ -x)]-dx (41)
L, 1

When x, is inspected and x; is not, the pdf of y is shown in Figure 15. The plot shows the pdf comparing
to the case of no inspection and the case of x, having perfect quality (all varnation of x,). The pdf of y
changes from the original uninspected pdf to the best possible pdf as the inspection limits for x, [LL,
UL,] move from e to 0, or from no inspection to perfect quality. If the system tolerance specification is
[-2.0,4+2.0], then the probability of failure is 15.7% for no inspection, 7.8% for inspecting x, at £1.0, and
4.6% for inspecting x; at perfect quality.
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Figure 15: Pdf of y when x, is Inspected at +1

When both x, and x; are inspected, both pdfs are truncated. The resultant pdf{y) is shown in Figure 16. If
the system specification is [-2.0, +2.0], comparing to the failure rate of 15.7% for no inspection and 7.8%
for inspecting x,, inspect both x; and x; results in a failure rate of 0%. Inspecting both x, and x; at [-1.0,
+1.0] is shown to yield a lower failure rate than eliminating all variation of x,. Therefore, it is a more

effective inspection plan.

06 | T T T T

0.4

pdf(y)

0.2

No Inspection
— — Inspect one

= = = |[nspect both
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Figure 16: Pdf of y when both x, and x; are inspected at £1

2.4.2 Three-Part Assembly

Likewise, if we extend the scenario to y=x,+x;+x;, the equation becomes
me_v (Yo) = Z{mel (xl ) Z[mez (x2 ) pmf, ()’o —X =X )]} (42)

If x,, x, and x; have continuous pdfs, we can express the pdf of y as

~

Pdfy(."o)= ]:{pdfl'(x,)- T[Pdfzi(xz ) Pdfs‘()'o =X~ X )]dxz} dx, (43)

2.4.3 General Multi-Part Assembly

As a result, we can follow the same process and extend the equation for y to a general case where

y=X;+x+. X,

pdf\ (_V0)=

f <pdf.'(x. ) ]{pdf;(xz)-...][pdf'-. (cre) G0~ 552 == )} dx}dx>dx

—

(44)

Ultimately, if the scenario is the most general variation propagation problems with non-unity variation
propagation coefficients (y=cx;+cx2+...+CnXy where y and x; are variations measured relative to

nominal), we get

pdf,Uo)=

| <pdf;(x.)- | {pdf;(x»-...f [Pdf,.'_l(x,.-n ) pdf;[”'c'*' J]dx]¢r>dx “

Cn

—co

Performing the multiple-integration is possible; however, it is not an easy task and takes heavy

computational time.
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2.5 Summary

So far, we have formulated equations for calculating the total cost of the inspecticn plan, for modeling the
effect ot multiple inspections on multiple sources of variations and, for propagating pdfs from the bottom

layer to the top layer.

1. Total cost equation:

1 1 1 1-p, 1- p, 1-p,
C;r =—C,+—C; +..+—-C, +l-p,)C, + -C, + L.C +.+—=.C (46)
Teh " p " p.‘(‘)’m "o 7 P
2. Effect of inspections on final quality equation:
P, =
uL, UL, uL,., ULy =613y =CaXy = =Cau i Xy 47)
J‘Pdf(xn)_ J’Pdf(xz)_ I pdf (x -l)_ JLL,“-t.xl-qi;--.v-f.-ll.-. pdf (x,)-dx, |-dx,_, | ...} dx, }-dx,
u‘l pl LLZ p2 n-1 p"-l Cn
Variation Propagation equation:
pdf, (yo)=
r: . I . 20 . . \'0-C|X|—02X2—...—C —1%Xn-1 (48)
[(pari ) | Pdfz(xz)'---I[Pdfn-u(xn-l)'Pdfn - 2ol ||, dy )y

The three equations can be utilized to solve the problem of finding optimal inspection settings for any

multi-layer variation propagation scenarios.



CHAPTER 3: INSPECTION MODELING

3.1 Introduction

While the analysis in Chapter 2 can be used to find the optimum inspection tolerance for a multi-layer
assembly, the problem can become more complex. Several issues make it difficult to apply the above

analysis to a complex product.

1. Computing the multiple integrals to solve the equations explicitly takes enormous amount of

computational capability

2. Complex products have several assembly layers, multiple product-KCs, and many part-KCs.
Although the analysis in Section 2.4 showed it is possible to convert the multiple layers into a
single layer by expressing the variations at the top level as functions of all contributing input

variables, the conversion and calculation becomes cumbersome for complex products.

3. While products, components, and processes have costs associated with them, the multiple KCs in
a single product or single compo: .nt cannot be assigned separate cost and it is difficult to divide

costs among the multiple product-KCs.

4. A single part or subassembly may contain multiple part-KCs each contributing to multiple
product-KCs. Scrapping a part based on its contribution to product-KC i changes the distribution
for product-KC j as well.

5. Scrapping a part and reworking a feature changes the variation distribution in differsnt ways.

6. After a feature fails an inspection test, rework will reduce variation for individual features, but
scrapping impacts all features contained in the scrapped part. While rework can be focused on

individual features, scrapping cant.

Because of the complexity, a general model which captures both the product assembly sequence and the
variation propagation and implements a simulation-based analysis for inspection and corrective action
was developed. For the above reasons, the KCTool software modeling backbone is used as the basis for
modeling both the product assembly sequence and the KC flowdown of different products. The general

KCTool model is shown in Figure 17.
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Figure 17: Modeling Product Decompesition and KC Flowdown in KCTool

The KCTool mode! contains two superimposed models: a product assembly model and a KC flowdown
model. Section 3.2 describes the product model and Section 3.3 describes the KC variation propagation
model, Section 3.4 describes the process for deriving the transfer coefticients, and Section 3.5 describes

the software modeling features.

3.2 Assembly Plan Model

For a complex product, individual components are manufactured and then assembled into subassemblies;
subassemblies are then assembled into subsystems and then the final product. The product assembly

sequence varies depending on the product.

The product assembly model captures the order in which physical components, subassemblies, and
subsystems are assembled. Figure 18 shows the assembly process for a four-part product. First, Part 1 and
2 are assembled into Subsystem 1 and Part 3 and 4 are assembled into Subsystem 2. Then, Subsystem 1
and Subsystem 2 are assembled into the final product. The software allows multiple assembly layers to be
captured with no limitation on the number of layers and the number of parts. In addition, variation
induced by manufacturing or assembly process that introduces variation can also be modeled as another
component going into an assembly. This modeling scheme can also model secondary operations
performed after assembly by adding another layer and treating the secondary operations as components

going into the added assembly layer.
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Figure 18: Product Assembly Plan

The individual parts and assembly processes are each assigned a unit cost. The software automatically
calculates the total costs in each assembly step by summing the component costs and adding an assembly
cost. During simulation, when a part is scrapped, its cost is added to the iotal cost. When a sub-assembly

is scrapped, the par costs and the assembly cost are added to the total cost.

3.3 KC Variation Propagation Model

The KC relationships are maintained in a tree shown in Figure 19 where the individual nodes may point

up to more than one parent KC and each parent KC may have more than one child. This many-to-many

relationship is essential to capture the complexity of most systems.
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Figure 19: Tracing though the KC Variation Propagation Model

Formulation of the variation propagation was done by Thornton [1998]. The following model calculates

the product-KC'’s standard deviation from the process-KC'’s standard deviation based on a linearized
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variation model. More detailed and computationally intense models such as Variation Systems Analysis

(VSA) can be used tc predict a more accurate capability.

Figure 20 is a gencralized version of the KC flowdown in Figure 19. The top layer of the flowdown has n,
product-KCs. Each has a nominal value f, a tolerance [LL;, UL}, a standard deviation, ¢;, a mean, 4;, and
a failure cost, C;. Product-KCs are created by ¢ layers of subsystem-, process-KCs, X (the }*h parameter in
the k" level). Each layer, k, has n;, KCs.

Product-KCs
ARE f f, et
[ | | { | |
{ | 1 ] I _]_ﬁ 1
X2 [*22 X2 ] Xn,
| | 1 1 |
1 | | i 1 1
] | | I T ] Subsystem-
[ T I ] I I T ] KCs
X1k Xok I Xik Xn
1 I I ] 1 I I I
[ T T T J I ] ]
[ : | l I ] | I ] | - I l ]
Part-KCs
Xe X2¢ X;¢ Xy, (k=0)

Figure 20: Generalized KC Flowdown

By Taylor expansions, the expression relating deviations in a product-KC, Af;” to the next KC layer, Ax,
is represented as a linear equation.
of;

Of, =——Ax;y +

alen +...+ale,,,2 (49)
axlz °

axzz ax,,l 2

&/dx;; captures the sensitivity of a product-KC, f;, to a change in subsystem-KC, 4x;, (termed variation-
sensitivity). The sensitivities can be derived using DOE [Phadke 1989], tolerance chains [Cunningham,
Mantripragada et al. 1996], or modeling {Frey, Otto et al. 1998]. The array subsystem-KC deviations, Ax;,

can be related to the product-KCs array, Af, through the matrix of partial derivatives, §; A matrix

* Af=Ax,, but we are using f to be consistent with other literature [Srinivasan 1998].
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approach to variation propagation and modeling has been used extensively by authors such as Homann
and Thornton [1998}, Slocum [1992], Suh [1990], Frey, et al. [1997] and Gao e? al. [1998].

[ T
axlz ax22 o axnzz
o o U
Af =3 ,Ax, where 8, =|ax, ox;,  ox,, (50)
by Yy Y
_axlz axzz aX"zz_

For each subsequent layer, 8, can be generalized to the matrix, & which relates Axy,, to Axy.

[_oxy x4 oy |
axl(m) OX 441 axn,,,(k+|)
X 0Xy Oxy
Axy =0,AX ., where 8y = OXy(ket)  OX2(ks1) OX, (ki) (C1))
OX, & aJr,,t B 0x,
_axl(k+l) Mty axn,,,(k.-l)_j

The correlation between variation in process-KCs (represented by array x() and product-KCs ¢~ be

expressed by:

Af=5,6,8,...0,_,Ax,whereD=58,6,...8,,_,, (52)

The analysis in Equations 49-52 models errors for a single product. In addition, the statistical behavior of
errors can be modeled using a similar analysis. The partial differentials are used to calculate standard

deviation, g for any KC, x.

2 2 2
ox; ox; ox;
2 _ jk 2 jk 2 Jjk 2
Ou = F N Ol t FR Ok oot FP N Ty (k4D (53)
X1 k+1) X2(k+1) Xngon (k+1)

Equations 53 can also be represented ir a matrix form but a second matris, Ty, is needed io calculate

standard deviations.
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([ oxy, Y (axu ’ [ oxyy Y
Sl o

axl(k+l)) \aIZ(kH)J X g oy (k+1)

2 2 2

Xy ) Oxy Xy ) 54
Tk = axl(k+l) ) kaxz(hn) ) axn,,,(kﬂ) ) (54)

H ) . ) H : 5
( axn‘k A axn,k ) axn,k )
_\axl(kﬂ) ) \aXZ(kH) ) axn,.,(kﬂ) )
When Equations 53 and 54 are combined, the product variation can be predicted.

0? =Td’% whereT=‘r,1’2'r3...1'(¢_|) (55)

where Gy is the array of product-KC standard deviation aad o is the array of the process- and part- KCs
standard deviations. In most cases D’;=T;; except when a part- or process-KC contributes multiple times

to the same product-KC.?

3.4 Derivation of Transfer Coefficients

The application of the variation propagation model is shown in the following industry case study (exact
component geometry are masked to protect proprietary information). High-speed air jet blows from
nozzle at point A to the angled plate at point B. The distance, AL, from the leading edge to air stream is a

key characteristics and is essential for the system performance.

5 This may happen, for example, if a single wom tool is used to make multiple parts for an assembly and, consequently, all parts in the assembly
are undersized.
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Figure 21: Geometry of Airjet Stream
Using geometry, the value of AL can be determined using

_F14-F7-(F4-F13)-tan 6,
sin 8, —cos @, —tan 6,

AL

(56)

By differentiating with respect to the individual variables and substituting the nominal values of 6,=28.5
degrees and &=3.60 degrees, the above equation can be converted to a transfer function of variation

propagation which the same format as Equation 49.

AL =0.043 A6, -0.0085-A6, —-0.8979-AF4+1.6539-AF7-0.8979- AF13+1.6538-AF14  (57)

3.5 KCTool Scftware Features

Using the KCTool software, the KC variation propagation hierarchy is superimposed on the product
decomposition to capture the relationship between the physical components and the multiple KCs on the

parts.

A user executes the KCTool software by running the kctool.exe file. The information for a KCTool model
is saved in an Access database file. The graphicai user interface (GUI) allows engineers to model both the

product decomposition and the KC variation propagation hierarchy. In the KCTool window environment,
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dividing the boxes horizontally creates parallel parts and dividing them vertically creates assembly stages.
Drawing a KC node inside any component box creates a KC. The software keeps track of which KCs
belong to which component or subsystem. The user is free to move KCs to different parts, and the
software updates the changes. By drawing a connection line between two KCs, the user can create many-
to-many variation propagation contributions. These contributions are essential during the simulation

process to model the variation propagation.

Clicking on the parts, the KCs, and the lines connecting the KCs can access additional information. When
the user clicks on a part, a new window pops up. The window contains information for part costs, and
contained KCs. When the user clicks on a KC, a different window pops up to provide access to the
information related to the KC, including relationships, process capability, inspection tolerance, corrective
action, and process improvement information. Likewise, when the user clicks on the lines connecting

between KCs, a window containing information for the variation propagation relationships appears.

The two-tree modeling methodology provides a way to analyze scenarios where KCs and the product
assembly architecture are coupled. When a component or subassembly is scrapped due to one KC not
meeting the specification, all KCs on the scrapped component or subassembly are scrapped. The

interconnectivity between KCs and components during simulation is further described in Section 4.5.

3.6 Summary

In this Section, we have described the model used by the KCTool software. Two model hierarchies are
superimposed on top of each other: the product assembly model and the KC variation propagation model.
Also, we have demonstrated the process used for deriving the variation propagation transfer coefficients

and how the two-hierarchy model is built using the KCTool software.

45



CHAPTER 4: INSFECTION SIMULATION

4.1 Introduction

Once the product assembly model and the KC variation propagation model is created, the cost and benefit
of any arbitrary inspection plan is calculated by running a Monte Carlo simulation. Section 4.2 describes
Monte Carlo simulations. Section 4.3 describes the random number generator for the normal distributions.
Section 4.4 describes the variation propagation and the inspection process. Section 4.6 covers the
modeling of rework and scrap. Section 4.7 details how the cost of inspection and the cost of variation are
used to calculate the objective cost function at the end of simulatior. The last section, Section 4.8

demonstrates the tools using the simple four-part stack-up model introduced in Chapter 2.

4.2 Monte Carlo Simulation

The procedure of generating sample points from the given probability distributions is known as sampling

from probability distributions, or random variate generation, or Monte Carlo sampling.

Simulation is a very powerful and widely used management science technique for the analysis and study
of complex systems. Simulation may be defired as a technique that imitates the operation of a real-world
system as it evolves over time. In contrast to the exact mathematical solutions available with most
analytical models, the simulation process involves executing or running the model through time, usually
on a computer, to generate representative samples of the performance measures. In this respect,
simulation may be seen as a sampling experiment on the real system, with the results being sample points.
For example, to obtain the best estimate of the mean of the measure of performance, we average the

sample results. Clearly, the more sample points we generate, the better our estimate will be.

As with most other techniques, simulation has its advantages and disadvantages. The major advantage of
simulation is that Monte Carlo simulation theory is relatively straightforward. In general, simulation
methods are easier to apply than analytical methods. Whereas analytical models may require us to make
many simplifying assumptions, simulation models have few such restrictions, thereby allowing much
greater flexibility in representing the real system. Once a model is vuilt, it can be used repeatedly to
analyze different policies, parameters, or designs. However, it must be emphasized that simulation is not
an optimizing technique. It is often used to analyze "what if" types of questions. Optimization with

simulation is possible, but it is usually a slow process.
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There are two types of simulation models, static and dynamic. A static simulation model is a
representation of a system at a particular point in time. We usually refer to a static simulation as a Monte
Carlo simulation. A dynamic simulation is a representation of a system as it evolves over time. Within
these two classifications, a simulation may be deterministic or stochastic. A deterministic simulation
model contains no random variables; a stochastic simulation contains one or more random variables. A
discrete simulation model has state variables changing at discrete or countable points, and a continuous
simulation model has state variables change continuously. For this research, we use a stochastic Monte

Carlo simulation with combinations of discrete and continuous variables.

Monte Carlo simulations provide a way to study processes affected by variation and uncertainty. The
sources of variation are modeled as random populations with specified probability distiibutions. The
value for each member of the population is generated randomly and independently according to the
specified probability density function. The model is executed with the randomness in the population. A
summary of the entire population provides a way to study the expected value of the process outcomes and

the amount of variation in the outcome.

Many software applications use Monte Carlo algorithms. An example of a generic system is Crystal Ball,
which is an add-on for the Excel software, and is often used for financial analysis. Instead of using a
distinct value as inputs for the Excel formulas, Crystal Ball allows users to study the affect of uncertainty
on the calculation. An example of a specific Monte Carlo application is the Variation Statistical Analysis
(VSA) software, which is often used by industry to model and analyze variation associated with

geometric configurations.

4.3 Random Number Generator for Normal Distribution

Each time the simulation process requests a sample point for a KC, a random value is generated according
the specified normal distribution. While Visual C++ has a built-in uniform distribution random number
generator, a satisfactory normal distribution generator was not found. Therefore, a normal distribution

generator algorithm was developed based on the Convolution Algorithm.

In the Convolution Algorithm, we make direct use of the Central Limit Theorem. The Central Limit
Theorem states that the sum Y of n independent and identically distributed random variables (Y,, Y,, ...,
Y,, each with mean 4 and finite variance ¢°) is approximately normally distributed with mean ny and
variance nd’. If we apply the Central Limit Theorem to uniform-distributed [0,1] random variables, R),

R,, ..., R,, which have mean £=0.5 and ’=1/12, it follows that
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i R; —-0.5n

B
12

Z is approximately normal with mean 0 and variance 1 (Figure 22). We can expect the approximation to
werk better as the value of n increases. However, most simulation literature suggests using a value of
n=12. Using 12 not only seems adequate but, more important, has the advantage that it simplifies the
computational procedure. If we now substitute n=12 into the preceding equation, the process generator

simplifies to

12
Z=)Y R -12 (59)

The above equation avoids a square root and a division, both of which are relatively time-consuming
routines on a computer. If we want to generate a normal variate X with mean £ and variance o, we first

generate Z using the above process and then transform it using the relation X=p+0Z.

s R s s PP s i R g LS

Figure 22: Generating a Gaussian Distribution using Central Limit Theorem

4.4 Variation Propagation and Inspection

In this research, the simulation calculates the cost of production and the quality of the end product for a
single product using a back-propagation algorithm. If inspection is specified on a KC, the value of each
sample point is inspected after the value is generated. During each sampling of the Monte Carlo
simulation, one value is generated for every KC in the flowdown following the four-step process shown

in Figure 23.
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Figure 23: The Inspection Simulation Flow Diagram

In step 1, the program checks if the KC receives variation propagation from other KCs in the KC
flowdown (if a value for the contributing KCs has not been generated, the program recursively generates
the value). If it does, the value is calculated using the variation propagation matrix described in Section
3.3. Otherwise, the value is randomly generated based on the given variation distribution. In step 2, the
program checks if the KC is marked for inspection. If it is, the program goes on to step 3 for inspection. If
it is not, the value is accepted. The inspection operation in step 3 checks if the value falls between the
specified inspection lower limit (LL) and upper limit (UL). If yes, the part is accepted. If ne, the part is
rejected and corrective actions are carried out in step 4. In step 4, either scrap or rework is carried out,
until a part is deemed accptable. The cost and consequences of scrap and rework are discussed in the
next section. When the value for every KC is generated, the associated cost is recorded and the process

starts over until the inspection simulation produces the number of sample points specified by the user.

4.5 Component-KC Interconnectivity

Since the KCs are features on physical components, the software cannot separate the component assembly
model and the KC variation propagation mode! when running simulations. When the software was
developed, extensive attention has been paid to the interconnectivity between the two hierarchy models.
Several objectives have to be achieved to accurately account for the way production and inspection is

carried out.
1. The product is built one at a time to simulate a pull manufacturing production.
2. Manufacturing starts when the top-level assembly receives a request to be built.

3. When a component is produced, the values for all KCs on the component are set.
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8.

When a KC request values from its source of variation propagation, it sends a request to all

contributing KCs so the components those KCs belong to are produced.
When inspection is carried out, any out-of-spec KC value causes the component to be rejected.

A rejected component goes through either scrapping the entire component or reworking only the

failed KCs to nominal.
Scrapping a componert causes all KCs in the component to be scrapped and regenerated.

When an assembly is scrapped, all components going into the assembly are also scrapped.

The following flowcharts represent the software algorithm used to accomplish the above objectives. Since

object oriented programming language C++ is used, each component and each KC is capable of carrying

out respective tasks. The component class is responsible for the GetProduct Module, MakeProduct
Module, InspectProduct Module, and ScrapProductModule. The KC class is responsible for the GetKC
Module, MakeKC Module, InspectKC Module, and ReworkKC Module. The GetContribution Module

belongs to the connection class, which is responsible for calculating the variation propagation. More

detail explanation of the different modules is in Appendix A.
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Figure 24: The Simulation Flowchart, the GetProduct Module, and the GetKC Module.
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Figure 25: The MakeProduct Module, the MakeKC Module, and the GetContribution Module.
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Figure 26: The InspectProduct Module, the InpsectKC Module, and the Rework Module.

4.6 Rework & Scrap Algorithm

When the inspection routine finds value of KC falling outside the inspection specification, two different
corrective actions can be taken: rework the failed KC or scrap the entire part. Different cost, benefit, and
consequences are associated with each strategy. Reworking a KC directly improves quality by shifting its
value closer to the nominal value, as shown in Figure 27. It is assumed that rework is localized and has no
effect on other KCs on the same part. The rework cost is specified for each individual KC. When a part or
subassembly is reworked, the cost of rework is added to the total cost. In this case, it is assumed that
rework brings the value back to nominal. Future extension of the rework function can model cases where
it is impossible to bring the out-of-spec values back to nominal since rework can only remove a
percentage of the variation. Or certain features can not be isolated for reworking. In this case, instead of

only one feature, rework would affect all of the coupled features.
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On the other hand, if a part or subassembly is scrapped, all other KC features on the part are also scrapped
even if they are within specification. The scrapped part or subassembly is replaced with a new part or new
subassembly and inspected again. The process is repeated until an acceptable part is generated (Figure

28). When a part is scraped the cost of the new part or new subassembly is added to the total cost.

Rework

Figure 27: Effect of Rework

Figure 28: Effect of Scrap

4.7 Cost Accounting Algorithm

Inspection Cost. Besides the cost associated with scrapping a part, Cicrap» and reworking a feature, Covork
inspection itself also has an associated cost. Implementing an inspection incurs both a fixed cost and
variable cost. The fixed cost is the cost of installing inspection stations and apparatus and the variable cost

is the recurring labor cost, C;.

Inspection Benefit. The goal of inspection is to improve product quality (reduce the number of parts
falling outside of specification) by inspecting and reworking or scrapping parts before assembly takes
place. To quantify the benefit, either a step function or the Taguchi Loss Function as shown in Figure 29

can be used to quantify the reduced quality associated with variation.
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Figure 29: Step Function and Taguchi Lost Function

While Taguchi Loss Function takes the form of Equations 53 and captures the cost of minor variation, the
step function captures the way costs are triggered in industry more accurately [Thornton 1997] and has
numerous industry cost data. Although Taguchi Lost Function is a widely accepted concept to measure

quality, the exact function is rarely used.
Clo:l = k(Ay)2 (60)

The simulation in this thesis utilizes the step function approach. Whenever a product-KC falls outside the
specification, the cost of reworking the product feature is added to the product failure cost, Cgirre. Due to
the zssumption that all product-KCs are inspected and reworked if unacceptable, the user is not able to
add extra inspection for all product-KCs. Besides the Taguchi Loss Function and the step function, a

modified Taguchi Loss Function can also be used. It is formulated as

2
Ay .
Cfailurz = crnmrk [m} lf 0 < Ay < UL:).'S (6])
A 2
y .
Cfailure = Crewont [LL—NW if LL:_\': <Ay<0 (62)
-/
C fuiture = Cromore if By <LL_ or Ay>UL (63)

The above equations describe the cost structure as shown in Figure 30. It captures both the step cost of
performing rework to eliminate variation outside of specification tolerance and the quality lost cost
associated with minor variation within the specification. Whether this is a valid cost accounting

methodology has not yet been determined.
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Figure 30: Modified Taguchi Cost Function

The total cost, Cr, is the sum of unit production cost, inspection cost, scrap cost, rework cost, and failure

cost. Cy forms the objective function for the simulation.

CT =Cpt Cin:peclion + Cscrap + Crowork + c failure (64)

4.8 Verification

While analysis for the simple assembly stack-up in Chapter 2 can be used to explicitly find the optimum

inspection tolerances, the model was tested in KCTool to confirm the two approaches.

[@'KCTooll - - o
Feature KC, x1 ;
v i
Part 1 3
|
Product KC, y————— Feature KC, x2
Part 2 E
Feature KC, x3
Par 3
Feature KC, x4
System Par 4

1

Figure 31: Product Decomposition and KC Flowdown for Simple Assembly Stack-Up

The simulation was run with the parameter values from Table 1. Figure 31 shows the flowdown model in

KCTool. 10,000 sample points were generated for each value of r,. Figure 32 shows the plot for both the
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analysis and the simulation. The two methods yield consistent results and have a variance of 0.0061. The
variance is caused by the random number generator not generating perfect normal distributions.

Increasing the number of simulation sample points alleviates the problem.
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Figure 32: Total Cost Calculations for Analysis and Simulation

4.9 Summary

Using the model described in Chapter 3, we have now demonstrated how Monte Carlo simulation can be
implemented to analyze an inspection problem. Running the simulations using different inspection
allocation, inspection tolerance settings, and corrective actions, allow us to compare the cost of inspection
and the cost saving from the quality improvement for the different inspection plans. Using the
simulations, engineers can test the different inspection plans during the design phase of the product

development, rather than later in the production phase.
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CHAPTER 5: INSPECTION OPTIMIZATION

5.1 Introduction

Chapter 4 demonstrated hew the cost and the benefit of an inspection plan can be calculated for a specific
inspection plan. As shown in the example, it is possible for a design team to test various scenarios and
select the best. However, in a complex system, testing different combinations of inspection locations,
inspection limits, and rework vs. scrap options is very time consuming. To help the design team identify
the optimal plan, an computer-based optimization method was applied. Section 5.2 describes the different
optimization methodologies, Section 5.3 details the algorithm used in this research, Section 5.4 introduces
a case study of the aircraft wing contour and the simulation results, and Section 5.5 discusses factors

affecting the optimization performance.

5.2 Optimization Methodologies

Traditional optimization problems often employ one of many stochastic optimization techniques. They
include conjugate gradient optimization, linear and integer programming, taboo search, genetic algorithm,

and simulated annealing.

5.2.1 Conjugate Gradient Optimization

The Conjugate Gradient Optimization is a minimization technique to find the lowest energy. What it does
is similar to a steepest descent minimization. The procedure is as follows: firstly the gradient is calculated
in all directions. The path of steepest descent is chosen. This is in the form of a straight line but making
measuremenis of the energy at small increments. When the energy stops decreasing the process is
repeated until the minimum energy is found. Conjugate Gradient minimization adopts the same
procedure, but also uses information from the previous iteration steps to select the optimal route.
Disadvantage of the Conjugate Gradient Optimization technique is that it can only be applied to

continuous solution space.
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5.2.2 Linear and Integer Programming

Linear and integer programming have proved valuable for modeling many and diverse types of problems
in planning, routing, scheduling, assignment, and design. Industries that make use of LP and its

extensions include transportation, energy, telecommunications, and manufacturing of many kinds.

A Linear Program (LP) is a problem that can be expressed as follows (the so-called Standard Form):

minimize cx

subject to Ax=L

x >= 0
where x is the vector of variables to be solved for, A is a matrix of known coefficients, and ¢ and b are
vectors of known coefficients. The expression "cx" is called the objective function, and the equations
“Ax=b" are called the constraints. All these entities must have consistent dimensions, of course, and you
can add "transpose” symbols to taste. The matrix A is generally not square, hence you dont solve an LP

by just inverting A. Usually A has more columns than rows, and Ax=b is therefore quite likely to be

under-determined, leaving great latitude in the choice of x with which to minimize cx.

Although all linear programs can be put into the Standard Form, in practice it may not be necessary to do
so. For example, although the Standard Form requires all variables to be non-negative, most good LP
software allows general bounds / <= x <= u, where 1 and u are vectors of known lower and upper bounds.
Individual elements of these bounds vectors can even be infinity and/or minus-infinity. This allows a
variable to be without an explicit upper or lower bound, although of course the constraints in the A-matrix
will nead to put implied limits on the variable or else the problem may have no finite solution. Similarly,
good software allows b] <= Ax <= b2 for arbitrary bl, b2; the user need not hide inequality constraints
by the inclusion of explicit "slack" variables, ncr write Ax >= bl and Ax <= b2 as two separate
constraints. Also, LP software can handle maximization problems just as easily as minimization (in effect,

the vector c is just multiplied by -1).

The importance of linear programming derives in part from its many applications and in part from the
existence of good general-purpose techniques for finding optimal solutions. These techniques take as
input only an LP in the above Standard Form, and determine a solution without reference to any
information concerning the LP’s origins or special structure. They are fast and reliable over a cubstantial

range of problem sizes and applications.

Two families of solution techniques are in wide use today. Both visit a progressively improving series of

trial sclutions, until a soiution is reached that satisfies the conditions for an optimum. Simplex methods
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visit "basic” solutions computed by fixing enough of the variables at their bounds to reduce the
constraints Ax = b to a square system, which can be solved for unique values of the remaining variables.
Basic solutions represent extreme boundary points of the feasible region defined by Ax = b, x >= 0, and
the simplex method can be viewed as moving from one such point to another along the edges of the
boundary. Barrier or interior-point methods, by contrast, visit points within the interior of the feasible
region. These methods derive from techniques for nonlinear programming that were developed and
popularized in the 1960s by Fiacco and McCormick, but their application to linear programming dates

back only to Karmarkar’s innovative analysis in 1984.

The related problem of integer programming (or integer linear programming, strictly speaking) requires
some or all of the variables to take integer (whole number) values. Integer programs (IPs) often have the
advantage of being more realistic than LPs, but the disadvantage of being much harder to solve. The most
widely used general-purpose techniques for solving IPs use the solutions to a series of LPs to manage the

search for integer solutions and to prove optimality.

5.2.3 Taboo Search

Taboo search is an iterative procedure for solving discrete combinatorial optimization problems. It was
first sugge ..ed by Glover [1977] and since then has become increasingly used. It has been successfully
applied to obtain optimal or sub-optimal solutions to such problems as scheduling, time-tabling, travelling
sales person, and iayout optimization. The method, described by Glover, Taillard and de Werra [1993], is
to explore the search space of all feasible solutions by a sequence of moves. A move from one solution to
another is the best available. However, to escape from locally optimal but not globally optimal solutions
and to prevent cycling, some moves, at one particular iteration, are classified as forbidden or raboo.
Taboo moves are based on the short-term and long-term history of the sequence of moves. A simple
implementation, for example, might classify a move is taboo if the reverse move has been made recently
or frequently. Sometimes, when it is deemed favorable, a taboo move can be overridden. Such aspiraticn
criteria might include the case which, by forgetting a move is taboo, leads to a solution which is the best

obtained so far.

5.2.4 Genetic Algorithm

Genetic algorithms were invented by Holland [1975] to mimic some of the processes of natural evolution
and selection. In nature, each species need to adapt to a complicated and changing environment in order

to maximize the likelihood of its survival. The knowledge gained by each specie is encoded in its
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chromosomes which undergo transformations when reproduction occurs. Over a period of time, these
changes to the chromosomes give rise to species that are more likely to survive, and so have a greater
chance of passing their improved characteristics on to future generations. Of course, not all changes will

be beneficial but those which are not tend to die out.

Holland’s genetic algorithm attempts to simulate aature’s genetic algorithm in the foliowing manner. The
first step is to represent the different components of a solution as different continuous or discrete
variables. Then an initial population of solutions is constructed at random. At each generation, the fitness
of each solution in the population is measured (a high fitness value would indicate a better solution than a
low fitness value). The better solutions are then selected to produce offspring for the next generation,
which inherit the best characteristics of both parents. After many generations of selection for the fitter
solutions, the result is hopefully a population that is substantially fitter than the original. The theoretical
basis for the genetic algorithm is the Schemata Theorem [Holland 1975], which states that the individual
solutions with good, short, low-order schemata or building blocks (i.e. beneficial parts of the solution)

receive an exponentially increasing number of trials in successive generations.

5.2.5 Simulated Annealing

Simulated annealing (SA) is a stochastic computational technique derived from statistical mechanics for
finding near globally-minimum-cost solutions to large optimization problems. In many instances, finding
the global minimum value of an objective function with many degrees of freedom subject to conﬂict.ing
constraints is a NP-complete problem, since the objective function will tend to have many local
minimums. A procedure for solving optimization problems of this type should sample the search space in
such a way that it has a high probability of finding the optimal or a near-optimal solution in a reasonable
time. Over the past decade or so, simulated annealing has shown itself to be a technique which meets

these criteria for a wide variety of applications.

Kirkpatrick ez al. [1983] were the first to propose and demonstrate the application of simulated annealing
techniques to problems of combinatorial optimization. The simulated annealing algorithm models after
the metal annealing process. It starts at high temperature, Ty.q, and is slowly cooled to the ending
temperature, T,,;. Besides keeping track the current settings and the current objective function result, the
process also keeps track the best objective function result and its input settings. During each increment of
the cooling process, one input variable randomly selected from all variables is changed, and this results in
a movement into a neighboring solution point. Since the variables are selected randomly, the process

works with combinations of discrete and continuous variables. Discrete variables would change to
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different discrete values, while continuous variables would change at random magnitudes. After a new
solution settings are set, a new objective function calculation is performed using the new settings. If the
new objective function is better than the previous, the best objective function and the best solution is
replaced by the new settings. From the new solution point, subsequent movement is generated. In addition
to replacing the best when a better solution is found, the simulated annealing also allows movement to a
worse solution point. Just like molecules having high kinetic energy at high temperature, the simulated
annealing process gave the transition process a high probability for moving toward an inferior position
initially, in hope of eventually moving past the inferior solutions and finding the global optimum. The
probability of accepting an inferior solution depends on both the temperature of the state, T, and the

difference in objective functions, 4Cr:

8¢
=e T (65)

paccrpl
Since T decreases overtime as Ti,,=aT; and « is generally between 0.8 to 0.99, the probability of
accepting an inferior solution decreases overtime. Also, large ACr makes the probability lower as well, as
the simulated annealing process allows small declines in optimality but discourage large declines. The

process repeats until 7,4 is reached.

5.2.6 Comparisons

For continuous functions, gradient decent algorithms can help find the maximum or minimum solutions in
the continuous solution space. For problems with linear objective functions and linear constraint
conditions, Linear programming can be used to find the optimal solution, which lies at one of the vertexes
of the boundary. For problems with discrete solution spaces, integer programming and dynamic

programming algorithms are often used.

Traditional optimization algorithms are not appropriate: for this optimization problem because the search
space contains a mix of discrete and continuous variables. Also, many local minimums exist in the search
space. In addition, the objective function for inspection is not linear. All these make it difficult for

traditional optimization algorithms to find a global minimum.

Stochastic search techniques, such as genetic algorithms or simulated annealing, can be applied in the
inspection problem because of their ability to robustly find the global minimum in mixed discrete and

continuous spaces with multiple local minimums. The optimization algorithm for this research was
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formulated using simulated annealing because of its simplicity and low computational overhead as

demonstrated by Thomton and Johnson [1996] and Szykman and Cagan [1997)].

5.3 Simulated Annealing Search Algorithm

The simulated annealing algorithm is applied to find the optimal inspection plan. The overall optimization
process is shown in Figure 33. The optimization routine performs many simulations with different
inspection settings selected by the simulated annealing process. Three arrays of size n (the total number of
KCs from every layer of KC flowdown) are used to store the inspection settings for the whole system.®
The first array is a binary valued vector S={s,, s;...s,} where s; is 1 if the particuiar KC is inspected
otherwise it is 0. The second array is a continuous valued vector T={1,, 1,..t,} where r; represents
inspection tolerance tightness. The third array is a binary valued vector A={a,, a,...a,} where a, is 0 if the
part containing the non-conforming feature is scrapped when it fails inspection otherwise q; is 1 if the

non-conforming feature is reworked. The value for the third array is only relevant when a feature is

inspected.
Change Set Perform Is Objective | yes Keep
—* Armay Simulation Inspection Function »  Setting
Settings Settings Simulation < Best As Optimal

L l |

Figure 33: Optimization Flow Diagram

At the beginning of the optimization process {Ty4n), the Simulated Annealing algorithm randomly sets the
three arrays. The transition between subsequent array configuration is done by randomly selecting a
feature, i, and changing s; to 1 if 5;=0 or randomly picking s, #;, or a;, to change if s;=1. After setting the
inspection specification, an inspection simulation is performed and total cost is calculated. If the cost of
the new plan is lower, the new configuration is accepted. However, if the new objective function is
higher, then the transition to the new configuration is accepted with a specified probability. The
probability is calculated using Equation 65. The process repeats until the stopping criterion 7,,; i

reached.

© The user has the option to tum off inspection of cenain KCs.
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5.4 Case Study: Aircraft Wing Contour

We will now use a case study from the aircraft industry to demonstrate the optimization function.

An aircraft wing has three main Sections (shown in Figure 34), the center box, leading edge, and trailing
edge. The center box, the focus of this case, provides most of the wing structural stiffness, surface area,
and attach point to the fuselage box. It has several variation sensitive requirements including the steps and

gaps between the skin panels, the orientation of the wing, and the contour of the upper and lower surfaces.

Fuselage

I

Figure 34: Wing Configuration.

The case study will focus on the contour of center box surface. The center box is comprised of three main
structures: spars, skins, and ribs. The assembly tree is shown in Figure 35. The spars are built up from two
T-shaped extrusions called cords and a web, usually a reinforced aluminum sheet. These are assembled
separately in their own fixtures and then the entire assembly is built in the wing fixture. The spars are
placed in the fixture first. The ribs are located relative to the spars using the locating holes in the web.

Finally, the skins are attached to the top and bottom surfaces defined by the ribs and spars.

Centerbox Assembly
) |

Skins

Spar Rib

Figure 35: Centerbox Assembly
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The case study focuses on two system-KCs for the wing: leading edge and middle contours. These
dimensions are the relative heights of the two contour points measured from aircraft coordinates. These

product-KCs are flowed down to the sub-assembly features by analyzing the tolerance stack-ups. The

tolerance paths are shown in Figure 36.

Skin_ vy .

> - Skin

Thicknessa Thickness &d Ar (':l'op %
ord 0
Rib Height s Front Height
ar
Middle  ytr Edge Web
Location Contour Contour Length
Holes
Botiom -1P_D—[']
Spar Y SparY Cord ] § I;
Location Location J Height
b/ '
%77, 777777

Figure 36: Tolerance Stack-Ups for Leading Edge and Middle Contour

The spar Y location is the error in the location fixture. The skin thickness and location holes are machined
features. The rib height and spar heights can be flowed down further based on their assembly process. The
ribs are assembled in a fixture: the parts are located relative to each other in a fixture and match drilled.
The spars are assembled using a determinate assembly process: the parts are located relative to each other
using precision location holes. The above KC flowdown information is converted to three variation

propagation equations:
Middle Contour = Spar Y Location + Location Holes + Rib Height + Skin Thickness(66)
Front Edge Contour = Spar Y Location + Spar Height + Skin Thickness 67)
Spar Height = Top Chord Height + Web Length + Bottom Chord Height (68)

Figure 37 shows a screen dump from the KCTool's model. It captures both the product decomposition and
the KC variation propagation. While most features contribute to variation at either the front edge contour
or the middle contour, the spar Y location of the centerbox subassembly and skin contribute to both. Also,
while most parts and subassemblies have only one KC per physical part in this example, both the

centerbox assembly and the spar have two KCs per assembly,
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Spar Height:

Front Edge Contour

! ocation Holes

Spar

Height

Top Chord
Length
Web
Height
Bottom Chord

Spar v Locabon

Middle Contour
Spar Fidure
Rib Height
Rib
Thickness
Centerbox Assembly Skin

Table 2 shows the process capability and cost information used for the analysis. The numbers have been
modified to mask any proprietary data. Scrap cost represents the cost of throwing away a part,
subassembly, or entire assembly. It includes the part costs and the assembly cost. The rework cost
represents the cost of reworking an out-of-spec feature to nominal. The table shows seven sources of
manufacturing and assembly variation: top chord height, web length, bottom chord height, rib height, spar
Y location, location holes, and skin thickness. The front edge contour and the middle contour of the

centerbox assembly are assumed to have UL and LL of ~0.02 and +0.02. All the features are assumed to

have Cinspeciion Of $20.
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Table 2: Costs and process capability of the center box assembly

Assembly Assembly | Scrap KCs Hemy i Rework
Cost Cost Cost
Centerbox $4500 $8000 Front Edge Contour | - - $3000
Assembly
Middle Contour - - $3000
Spar $800 $2000 Spar Height - - $700
Location Holes 0 0.005 $500
Top Chord | - $300 Height 0 0.008 $100
Web - $600 Length 0 0.005 $100
Bottom - $300 Height 0 0.008 $100
Chord
Spar - - Spar Y Location +0.003 0.002 -
Fixture’
Rib - $1000 Height -0.005 0.009 $200
Skins - $500 Thickness 0 0.005 $100

- => mean shift and o determined by propagation from its contributing sources of variation

From the simulation, when only the product-KCs are inspected and reworked (i.e., no inspection
throughout the assembly process), the total cost is $9301 per unit (i.e., extra $1301 is spent on reworking
out-of-spec product-KCs).

When running the optimization routine, each simulation was run for 1,000 sample points and the

simulated annealing parameters were set at Ty,,=1000, T,~=0. 1, and a=0. 99. The optimization took 3

7 The variation in the spar fixture is assumed (o be unmeasurable and therefore excluded from the inspection plan.
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hour and 36 minutes® on a Pentium 120MHz PC and the result is shown by the KCTool screen dump in
Figure 38. The shaded KCs indicate inspection. The inspection limits shown underneath are measured as
the number of standard deviation away from nominal, r,. Of those inspected KCs, the best corrective
actions, whether to scrap nonconforming parts or rework nonconforming features, are shown as well.
When the optimization was run with the same settings but doubling the number of simulations for each

value of T, the same inspection points were selected but the iimits on the points were different slightly.

Spar Height— i
Spar Heigh [+-0.56 Sigma], Rework
Top Chord
- ength
Front Edge Contourﬁ 1 ocation Holes Web
[+-0.38 Sigma), Rework
Spar Bottomn Chord

Middle Centour—

Sp?rY Locaton

Spar Fdure

el
[+-0.99 Sigma], Rework

Rib

[+-1.05 Sigma). Rework

Centerbox Assembly Skin

Figure 38: An Optimal Inspection Plan Selected by the Optimization Algorithm.

The solution shows a combination of reworking top chord height, bottom chord height, rib height and

skin thickness to be the best inspection plan. Performing inspection simulation with the given solution

8 The random number generator used n=1000 instead of n=12.
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yields a unit cost of $8874 ($874 in excess quality costs). This translates into a reduction of 32.8% in

extra cost.

The solution makes intuitive sense because the top chord and bottom chord of the spar and the height of
the rib contribute more variation than other parts and have a low cost of rework. The skin’s contribution

of variation is the same as the spar location holes and the web length, but it has a lower rework cost.

One issue should be noted in the optimization result. It shows different inspection tolerance for the
heights of the top and bottom chords even though they have the same process capability and contribute
the same variation to the front edge contour. Also, different number of sample points for each simulation
esults in same inspection plan but different inspection limits. The difference is caused by the simulated
annealing process, which has a hard time finding the absolute optimal in a continuous solution space, but

rather only finds within a range.

As a result, the following specifications are chosen:

Table 3: Final optimal inspection plan

KCs Inspection LL and UL | Corrective Action
Height of top chord [-0. 004, +0. 004] Rework
Height of bottom chord [-0. 004, +0. 004] Rework
Rib height [-0. 009, +0. 009] Rework
Skin thickness [-0. 005, +0. 005] Rework

Running a simulation with the above specification results in a unit cost of $8874 (same result as the
optimization solution). The result shows that the simulation is insensitive to minor changes in inspection

simulation.

5.5 Factors Affecting the Performance of Optimization

Due to the limited computational time, several factors affect the performance, accuracy, and efficiency of

the simulated annealing optimization.
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Production Lot Size. The more data points each simulation uses, the closer Monte Carlo simulation
reflect the process capability, and the more accurate the simulation is. However, there is a
proportional increase in running time. For the wing contour simulation, each zero-inspection
simulation with 1,000 data points takes an average of 6 seconds, and the variabiiity error is 1.2% (the
variance for 20 identical simalations). When the number of data points for each simulation is
increased 10-fold, the running time increases 10-fold to about 57 seconds, but the variability drops to
0.3%.

Simulated Annealing Parameters. The Ty, Tens» and o parameters influence the number cf
simulation runs and the minimum found. Using T,,,=1000, T,,~0.1, and a=0.9, the process runs 176
simulations, and the solution yields a reduction of 15.7% over the no-inspection baseline case.
Increasing a to 0.99 increases the number of simulations to 1834 but yields an inspection plan

resulting in a 32.8% reduction in extra cost.

Table 4: Result under different simulated annealing parameters

Reference Case 1 Case 2 Final Plan
a - 0.9 0.99 -
# of simulations | - 176 1834 -
Running Time - 21.5 runutes 216.0 minutes -
Excess costs $1301 $1100 $874 $874
Percent Saving - 15.7% 32.8% 32.8%

3. Array-Changing Algorithm. There are several methods to generate transitions between search points.

Selecting the best approach is difficult for two reasons. First, the model has a large number of
possible solutions (at least n’ if only choosing between no inspection, inspection then rework, and
inspection then scrap, which makes 177,147 combinations for the wing contour case). There is a
tradeoff hetween testing sufficiently diverse solutions and fine-tuning the solution. Second, the model
is formulated such that different values for array 7 and array A result in different inspection settings

only when the value for array S is 1. As a result, the algorithms for changing the three arrays need to
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be set in a fashion balancing the similarity of consecutive simulations and the elimination of identical

settings (not running simulations representing identical inspection plans).

4. Normal Distribution Algorithm. The current algorithm for the normal distribution random number
generator is based on the Central Limit Theorem. However, the current software was developed
summing 1000 uniform-distribuion random variables to build one value instead of 12 suggested by —

other literatures. Further improvement to the software can use the lesser number to generate the

normal distribution to make the simulation less computation-intensive without compromising the

integrity of the normal distributions.

5.6 Summary

The optimization process has shown to be an effective way of finding the optimal inspection settings for w—
the complex assembly and variation propagation problem. While many different optimization methods are

available, the simulated annealing optimization method is an appropriate method to perform optimization —
in a combination of discrete and continuous solution space. The aircraft wing contour example
demonstrate that the optimization process can be applied to find the optimal inspection plan for the wing

contour and achieve the highest quality improvement at the lowest cost.
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CHAPTER 6: CONCLUSIONS

In conclusion, this thesis has demonstrated that an optimal inspection plan can be quantitatively selected
using the KC flowdown model and Monte Carlo simulation. On one had, this research laid the foundation
for formulating analytical equations to evaluate inspection plans; on the other hand, the research has
provided a new methodology to help seject the optimal inspection plan based on modeling, simulation,
and optimization. While other researchers have explored various aspects of inspection optimization for
serial and non-serial multistage production process and multi-characteristic products, this is the first
research combining the two aspects and implementing the algorithms into a software tool. The KC
flowdown model provides a way to understand, visualize, and capture the way variation propagates from
feature-level KCs to system requirements through multiple-level cause-and-effect relationships. The
Monte Carlo simulation calculates the cost and benefit of an inspection plan. Runningz multiple

simulations in an optimization process provides a way to find an optimal inspection plan.

Several issues require further research. A better iransition strategy needs to be developed. In addition, the
possibility of mixing simulated annealing with gradient decent algorithms will be explored. To improve
the usabi: .y, additional methods to increase the efficiency of the software should also be implemented.
Possible future extensions include relaxing the bilateral tolerance assumption, modeling the uncertainty in
rework effectiveness, and testing non-unity transfer coefficients. While variation reduction optimization
has been an area already quantified by [Thomton 1998], other variation risk mitigation approaches, such
as process change and design change, will also be developed in the long term. Combining a variety of
optimization algorithms will allow companies to determine, quantitatively, the most cost-effective

approach for variation risk mitigation.
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APPENDIX A - KCTOOL SOFTWARE MODULES

The purpose of this Appendix is to explain the different subroutines and modules of the KCTool
inspection simulation. The inspection simulation utilizes the Object-Oriented programming
techniques. Each product node class and KC node class were given the algorithms to perform tasks of
its own and also capable of instructing other nodes to perform certain tasks. I will ncw describe the

various tasks performed by the different subroutines.

When an inspection simulation starts, an “Run” routine is performed. It does N iteration of the
product generation process. It requests a top-level product be built, and once it is built all the

contained KC values be checked with an inspection routine.

InspectionSimulation::Run
ForI=1toN
For All Product Nodes
If (NParent=0) GetProduct
For Ali KC Nodes
If (Nparent=0) Inspect
SetOne
ShowDataToUser

The Run routine first find the product node at the top of the flow down by finding the product that has
no parents from the list of products, and request a product be built. This request calls for the Product

Node to ask for a value for each KC node that’s contained within this product node, as shown below.

ProductNode::GetProduct
For All Contained KC Nodes
GetOne

When received the request for a value, the KC Nodes will first check if this KC has already been
generated. If the value has already been generated, as indicated by the bBuiltFlag being true, the KC
Node will just return the value it stores. If the value has not been generated, the KC Node will send a

message to the Product Node that it belongs to, and request a product be produced. The bBuiltFlag
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can also be turned to false by the inspection routine; in this case, the GetOne routine will generate a

new value for this KC Node.

KCNode:GetOne
If bBuiltFlag=false
While pass=false
pProductNode->MakeProduct
pass=pProductNode->InspectProduct

return value

When a ProductNode make a product in MakeProduct, it calls for all the KCNodes that this Product
Node contains to make (or generate) a value. This simulates the effect that when a product is made,

whether by manufacturing or assembly, all the values of its KC’s are defined at that point.

ProductNode::MakeProduct
For all contained KC Nodes
MakeOne

If the KC Node has no child KC contributing to it, this means that this KC is a feature-level KC that
gets generated from a manufacturing process. In this case, the KC Node MakeOne routine calls for a
random number to be generated according to the normal distribution specified by the KC Node data
sheet. If in the case of the KC Node being a node that has child KC’s and receives contribution from
them as described by the KC Connection equation (1), it requests the contributions from all its child

connections.

KCNode::MakeOne
If (NChildren=0)
GetRandom
Else For all contained KCConnections

Total+=GetContribution

bBuiltFlag=true;
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The GetContribution routine returns the value from the child KC Node multiplied by the contribution

coefficient.

KCConnection::GetContribution
Contnbution = C * childKCNode-

When a product is inspected, the inspection of KCs are done all at once. If any of the KC signal a
"fail” flag, the whole product is either scrapped or reworked depend on the inspection setting.

ProductNode::InspectProduct
For All Contained KC Node

InspectPart
If (fail)
If (Scrap=true) ScrapFlag=true
If (Rework1=true) ReworkPart
If (Rework2=true) ReworkPartToPercent

If (ScraoFlag=true) ScrapProduct
When a product is scrapped, all the KC nodes contained in this product node are scrapped. The KC

Node scrape the part by switching the bBuiltFlag to “false” and this will cause a new value to be
generated as requested by the KCNode::GetOne routine. In addition, scrapping a product requires that
all the subassembly products contained within this product to be scrapped as well. This allows new
values and contributions to be generated and results in a new value to be tested during next inspection.
The ScrapKC routine also keeps track of how many parts are scrapped so that the simulation can keep

track of the cost of scrapping.

ProductNode::ScrapProduct

For All Contained KC Node
ScrapKC

ScrapProductBelow

ProductNode::ScrapProductBelow
For All Child Product Node

ScrapProduct
KCNode::ScrapKC
bBulitFlag=false;
Nscrap+1
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APPENDIX B - SUMMER INTERNSHIP AT COMPANY A

A summer internship was carried out at Company A° as part of the research. Twelve weeks were spent
with one Division of the Company. Throughout the internship, I worked mainly with the supplier quality

engineers and the system engineers on a new product development project.

During the first half of the internship, I worked with the KCTool software and tried to load their critical
parameter mapping information into the software. The engineers on the project had done the identification
of KCs and the flow-down of KC from the system level KCs (System CFRs) to the subsystem level KCs
(Subsystem CFRs), but the flowdown from Subsystem KCs to the feature-level KCs (CTFs) has only
been completed for a few subsystems. The system engineers had just gathered the information from the
design engineers and collected it in a variety of spreadsheet and document formats. They were in the

process of building a Microsoft Access database to centralize the KC flow-down information.

The SQA engineers are responsible for validating and improving the quality of the parts purchased from
the suppliers. For all the parts, a one-piece-complete inspection is required to ensure all design
specifications on the drawings are met, validating the supplier’s ability to produce the part. In addition to
the one-piece-complete, the suppliers are required to provide statistical data with at least thirty data points
for all the CTFs. The purpose is to ensure the supplier’s process capability is not drifting out of
specification. The thirty-part-samples information is reported as Cp and Cpk values. If Cp is below 2.0 or
if Cpk is below 1.5, the SQA engineers are responsible for working with the supplier, the design engineer,
and the manufacturing engineer to formulate corrective actions to reduce the variation. Options of
corrective actions include supplier improving the manufacturing process, supplic  rting the parts, design
engineer loosening the specifications, or the Company accepting the parts as delivered with the

degradation in performance of the upper level KCs.

As I'tried to apply the KCTool application during my internship, the main problem I ran into is the lack of
coefficients for the variation propagation model. Company A's mapping process only identified the
existence of links between KCs but not the quantitative relation between different-level KCs. Without the
quantitative coefficients to describe how the lower-level KCs propagate variations to upper-level KCs, the
flow-down model is incomplete. As a result the Monte Carlo simulations and the optimization functions

of the KCTool software cannot be applied.

% Name disguised to protect proprietary information.
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Starting about halfway through the internship, I took on the task of upgrading the information system for
the SQA engineers. SQA engineers were using three separate MS Excel sheets (Open Log, Closed Log,
and the CTF Log) to track the quality of the CTFs or parts from suppliers. The MS Excel system meets
the SQA engineers’ need, but it is difficult to integrate the information with the mapping process, since
MS Excel is not capable of handling the many-to-many relationships of the mapping information. After
the discussion with the system engineers, it was agreed that the SQA database and the mapping
information could be integrated into one central database. Considering the needs of both the SQA
engineers and the system engineers, I constructed an integrated Critical Parameter Management Database,
which resides on the Division server. Using the client/server database model, both the SQA engineers and
the system engineers can access the same database simultaneously from the computers on their desks. The
system engineers are responsible for constructing the flow-down information from system CFRs
subsystem CFRs to CTFs, and the SQA engineers are responsible for updating the CTF quality
information. Since the both the flow-down mapping informaticn and the CTF quality information resides
in the same database on the server. Everyone, including the design engineers and the manufacturing
engineers, can look up the most up-to-date variation propagation contributions for one or all CFRs and
also the most up-to-date process capability from the suppliers. The user security was set up giving the
SQA engineers and the system engineers the permission to modify information that each is responsible
for, but everyone has the permission to view the flowdown and the process capability data. At the end of
the internship, a presentation was done to train all engineers on the project how to access information on
the database. Separate presentations were aiso given to senior managers. A user manual was developed to

help new users learn to use the database system.
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