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Abstract

In order to create truly autonomous mobile robots, the task of building an accurate
map of an a priori unknown environment and concurrerntly using that map to navigate
is a central problem. This thesis focuses on methods for performing concurrent map-
ping and localization using a feature-based approach. The concurrent mapping and
localization problem is cast as a stochastic estimation problem. Based on Kalman
filtering techniques, augmented stochastic mapping is introduced as a method for
performing concurrent mapping and localization in realistic scenario simulations and
experiments. The role of data association ambiguity, track initiation and track dele-
tion in the presence of uncertainty and non-linear system dynamics are addressed. A
novel approach is introduced to overcome the computational complexity inherent in
mapping large areas with many features. Adaptive concurrent mapping and local-
ization based on choosing the robot’s action so as to maximize the expected Fisher
information is introduced in order to achieve improved performance. Results from
simulations, land and underwater experiments, and post-processing of oceanic data
are presented to demonstrate the validity of the proposed approaches. Once a region
is mapped and localization information is available, planning collision free trajecto-
ries from the current position to the goal position is important for reliable mobile
robot operations. In this context, a novel path-planning algorithm based on har-
monic potentials is introduced for performing path-planning and obstacle avoidance
in dynamic environments.

Thesis Supervisor: John J. Leonard
Title: Assistant Professor of Ocean Engineering
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List of Notations

Below is a list of the symbols and notation used. Some additional notes may be of use
to the reader. Lowercase letters (Roman and Greek) are in general used to indicate
variables, functions, or indices. Uppercase letters are in general used for sets and
matrices, with the notable exception of X which is used to represent the f{rue state
(as opposed to the estimated state x). Time indexes and any conditioning factors are
set in subscripts. That is, the subscript k|k —1 in X ;_; indicates the estimated state
x of the true state X at time k conditioned on all information up to and including
time step k£ — 1. Superscripts A and B are used to refer to estimates in a submap A
and B respectively. Variables typeset in a sans serif font, for example, x, represents
the variable in normal font, x, at the same instance in time, but after a transition
between maps has occurred.

A list of common abbreviations have been included here as well.

F: A general dynamic model.
H: A general observation model.

N: A normal (Gaussian) distribution with the first argument being its mean and

the second argument being the variance.
M: Transformation relating the Fisher information between time steps recursively.

C: The covariance operator. For instance, C(x,x) = E(xxT).

15
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@

The cost function used in adaptive concurrent mapping and localization. It is

defined by C(P) = 7 [[; /Aj(Pyrr) + T, I1; V/Ai(Ps) and gives the total

area of all the error ellipses defined by the matrix P.

The event of something being detected (Appendix 2.B).

The expectation operator defined by E(x) = ff:o p(x)xdx, where p(x) is the

probability density of x.

Linear dynamic model matrix (Appendix 2.A.)

Jacobian of the dynamic model f with respect to X evaluated at Xk k-
The set of possible extraneous returns (Appeadix 2.B).

Process noise scaling matrix. Dependent on u.

Linear observation model matrix (Appendix 2.A).

: Jacobian of the observation model h with respect to X evaluated at Xk[k—1-

Fisher information matrix or the identity matrix.

Function taking the imaginary part of its argument.

Kalman filter gain matrix.

Jacobian of 1 with respect to x,, evaluated at Xry i -

Half length of panel j (path planning).

Number of elements in the state vector. Number of features in the map.
Probability of detection.

System (error) covariance matrix defined by P = E ((x — X)(x — X)7)
E(Z&T).
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P;;: Feature ¢’s (error) covariance, defined by P; = E(%;x7).

P;;: Feature-to-feature (error) covariance, defined by Py; = E([%7 ... x5 |T[xT ... x%)).
P,;: Vehicle-to-feature (error) covariance, defined by P,y = E ([X, %1 X,41 ... X.Zn X, 9n])-
P,,: Vehicle (error) covariance defined by P,, = F(X,XT).

P,;: Vehicle-to-feature ¢ (error) covariance, defined by P,; = E([X,%; X,3;])-

Pj,: Feature-to-vehicle (error) covariance. Py, = PT..

Q: Dead reckoning observation covariance matrix, Q = E(d,d%).

S:  Innovation covariance matrix, S = C(v,v7).

R: Observation covariance matrix, R = E(d.d,”).

R:  Function taking the real part of its argument.

T: Time period between each measurement, ¢ = kT.

T: Set of observable features (Appendix 2.B).

Us: Set of sonar scanning angles.

U: Velocity field (path planner).

V: Velocity of vehicle (path planner).

V: A volume.

Ve Nominal velocity of vehicle.

X: Actual (true) system state vector.

a:  An angle.

¢ The volume of the d dimensional unit sphere, i.e. 2, w, 47/3, etc.
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d:  Dimensionality number, i.e. a two dimensional space has d = 2 (Appendix 2.B).
dpm: Dead-reckoning measurement noise process. Assumed to be white and Gaussian.
dy: Process noise (assumed to be white and Gaussian).

d,:  Observation noise process (assumed to be white and Gaussian).

f:  Nonlinear dynamic model.

h:  Nonlinear observation model.

@2 Subscript index identifying a feature number; the imaginary number, 2 = —1.
J»k,n: Time indices (placed in subscripts).

I: Transformation used for adding a new element to the state vector.

m: Dead-reckoning measurement vector, defined by m = [p v|T.

p(-): A probability density function.

r: A radius.

u:  Actions, or system control input.

u:  Speed in z-direction for path planning.

dv: Change in velocity control input.

d¢: Change in heading control input.

n:  Normal vector to a surface.

t:  Continuous time variable.

v:  Vehicle'’s speed; speed in y-direction for path planner.

v: A small volume (Appendix 2.B).
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xk|j:

Xf:

Yi:

Yr:

’\N:

’\F:

Estimated system state vector.
Estimated state at time step k given all the information up to time step j.
Estimated state vector for all features, x; = [x] ...x%]T.
Estimated state vector for feature i given by [z; y;]7.

I

Vehicle state given by [z, yr ¢ v]" representing the vehicle’s east, north, heading

and velocity respectively.

East position of feature i.

Vehicle’s east position.

North position of feature i.

Vehicle’s north position.

Measurement vector (range and bearing measurements).

A complex potential (path planning).

The mean of the Poisson distribution of false returns (clutter points).

The j-th eigenvalue of its argument. Panel strength of the j-th panel (path

planning).

Mean of the Poisson distribution of true features (Appendix 2.B).
Same as A (Appendix 2.B).

Gating parameter.

Signifies the standard deviation number. For instance, when integrating a nor-

mal distribution over p = 2, yields the 95.5% confidence volume (Appendix 2.B).

Vehicles heading; a potential field (path planning).



¥:  Stream function.

©:  Heading measurement by on-board compass (used for dead-reckoning).

v:  Velocity measurement of vehicle relative to water column (used for dead-reckoning.)
v: The innovation, v = z — Hx.

o: A standard deviation.

o;:  The square root of the ’th eigenvalue of the innovation covariance matrix S

(Appendix 2.B).
6:  Angle of a panel (path planning).

The tilde character ‘ ~’ over a variable indicates the error vector between the

estimate and the true state. For instance, X = x — X.

~: The tilde character placed in front of a variabie signifying an event, yields the
negative of the event. For example, ~ D, reads not detected, as D signifies

detected (Appendix 2.B).

Common abbreviations

AUV: Autonomous underwater vehicle, see Figure 1-1.

ASM: Augmented stochastic mapping. An algorithm based on stochastic mapping
with the incorporation of a track initiator, track deleter and a data association

filter. See Section 2.4.
BLS: Bayes Least Square estimator.

CML: Concurrent mapping and localization. The problem for a robot of mapping
and unknown environment and concurrently using that map to localize. In
the context of a “CML algorithm” it is meant a stochastic mapping based

algorithm for performing CML.
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DNN:

EKF:

FLS:

IMAN:

GPS:

HRA:

MMSE:

NNSF:

RCD:

Delayed nearest neighbor. A logic based algorithm used to perform track

initiation. See Section 2.4.
Extended Kalman filter, see Appendix 2.A.

Forward look sonar. A sonar that is placed on the ship so that it looks

forwards.

Integrated mapping and navigation. A multiple-hypothesis approach to CML
(Chapter 1).

Inertial navigations system. A system based on the use of gyros whose accel-

eration readings are integrated twice to obtain position information.

Global Positioning System. A constellation of satellites that by use of a
GPS receiver allow for the determination of the receivers position to about
30 meters accuracy globally. A differential GPS (DGPS) uses a correction
signal from a transmitter or land to bring the accuracy to a couple of meters

globally.
An electronically scanned high resolution sonar.
Minimum mean square error.

Nearest neighbor standard filter. A gated nearest neighbor data association
technique. In its original definition of Bar-Shalom [4], the vehicle uncertainty
is not taken into account as is done in this thesis. However, we use the term
NNSF to refer to a gated nearest neighbor data association technique where

the vehicle uncertainty is taken into account.

Regions of constant depth. When using sonars, due to the width of a sonar
beam, a surface will be observed over a range of angles, causing distance

measurements to be close to horizontal over this range of angles in an angle



N
[SV]

ROV:

PDF:

SM:

TOF:

rms:

versus range plot. An RCD is also defined to be the range and angle of the

mode of the returns determined to form regions of constant depth.

Remotely operated vehicle. As opposed to AUV’s, ROV’s are operated by
humans typically through a cable link.

Probability distribution function.

Stochastic mapping. An extended Kalman filter arranged in such a way as

to perform CML (see Chapter 2).

Time-of-flight. Refers to the time it takes form a sonar signal is emitted
until its reflection of some surface is detected. Using this, the distance to the

reflecting surface can be determined (see Chapter 2).

Root mean square, i.e., the rms of a set of values, x = [z, ...zy] is given by



Chapter 1

Introduction

Navigating on the open seas was the gravest of scientific challenges in the 18th
century[112]. Lacking the ability to determine their position, sailors were literally
lost at sea as soon as they lost sight of land. Ships ran aground on rocky shores;
those traveling well-known routes were easy prey to pirates. As a single ship would
frequently carry merchandise across the oceans werth more than the English treasury,
the navigation problem posed a major national concern. Today, obtaining position
information is a simple task by use of the Global Positioning System. However, the
methods used by humans for navigating in large, unknown environments are in many
cases not available to the mobile robot, leaving them to navigate by the same basic
methods of the 18th century - integrating velocity and heading measurements. This
thesis is dedicated to the navigation problem of autonomous underwater vehicles, and
mobile robots in general. The navigation problem is viewed in a more general sense,
by requiring the concurrent mapping of the environment and localization using this
map. The problems encountered by the mobile robot of deciding where to move and
how to plan a path from the current position to the goal are viewed as part of the

general navigation problem.

23



24 CHAPTER 1. INTRODUCTION

1.1 Mobile robot navigation

Navigation is a fundamental requirement for obtaining truly autonomous mobile
robots. Due to its critical importance and theoretical challenges this problem has
been studied extensively in the robotics research community, however, many funda-
mental questions remain unanswered. A key challenge for mobile robots is coping

with uncertainty, a point stressed by Thomds Lozano-Pérez:

“The key scientific and technological issue in robotics is that of coping with
uncertainty ... In fact, the uncertainty is such that one of the most challenging

activities for a mobile robot is simply going from point A to point B.” [35]

The navigation problem, according to Leonard and Durrant-Whyte [69], can
broadly be stated as the problem of answering these questions: “where am 17" “where
am I going?” and “how do I get there?” However, in order to answer any of these
questions, one needs to know what environment and coordinate system these ques-
tions refer to. A coordinate system along with information about the location of
environmental features with respect to this coordinate system is called a map of the
environment. Thus, there is one important question that needs to be answered be-
fore any of the prior question can be addressed, namely “what is my map?” Knowing
that you are at position (264,424) or at point 4 gives no information unless you know
which map you are referring these coordinates to. Likewise, answering the second and
third questions by “I want to move to C through path P” is of little value unless you
can relate this to a specific map. Because of the necessity of being able to answer
the first and last question, that is, the question of localization and the question of
defining a map, in answering the two other questions, the problem of navigation is
often defined as that of localization and mapping. Most of the work in this thesis is
dedicated to the problem of navigation, that is, mapping and localization.

The question “where do I want to go?”, is a problem of defining a mission goal and
is most often defined a priori. Thus, this problem has not explicitly been addressed

in this thesis. However, a solution arises in the development of an algorithm that
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adaptively decides where to go in order to increase the navigation performance in

situations where the mission goal is not defined a priori.

Once a map of the environment is available from which accurate localization in-
formation can be derived, the problem of how to find a collision free path from the
current position to the goal position becomes imporiant, that is, the robot needs to
find a solution to the question “how do I get there?” The problem of path-planning
is a field that has been studied extensively in the literature. However, the prob-
lem of path-planning in dynamic environments still remains a difficult problem as
conventional methods would require the planned path to be recomputed every time
something in the environment changes. Thus, operating in environments with contin-
uously moving objects might cause the algorithm to get stuck, indefinitely computing
new paths. For this reason, the problem of path-planning in dynamic environments

is addressed and a solution is proposed.

Implementation of a navigation system that uses artificial beacons or a prior:
known maps of the environment, in addition to senor systems that can provide accu-
rate and reliable measurements of the beacons or map features, is straightforward for
today’s robots. Similarly, the task of building an accurate map of the environment
given the robot’s position is straightforward. However, the much harder problem of
solving the complete problem simultaneously, that is, the problem of concurrently
mapping an a priori unknown environment and using this map to precisely localize
the robot, still remains an open issue. We will refer to this problem as the concurrent
mapping and localization (CML) problem. The approaches to CML can roughly be
categorized into three main approaches: (1) “grid-based”, (2) “feature-based” and
(3) “topological”. The following section summarizes the state of the art of these

approaches to mobile robot navigation.
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1.2 Approaches to mobile robot navigation

The grid-based approach to the CML problem is the conceptually simplest approach.
The approach was first introduced by Moravec and Elfes [86] in 1985 and extended
and utilized by others [37, 85, 114, 127]. This approach is also referred to as a “metric”
approach to CML [119, 120]. In grid-based approaches, the environment is divided
into a grid of cell’s of some fixed physical size. Each cell is assigned a probability
for the existence of an object at the cells location. A cell that is completely filled
with an object would be assigned the value 1, while a cell that for sure is free of
any object will be assigned the value 0. This algorithm pixilates the environment
and, thereby, generates a map of the environment. Such a map is referred to as a
certainty grid. To localize a robot, the robot creates a new certainty grid of its local
environment. A search through a set of previously acquired global certainty grids
is performed to find the best match (correlation) between the new and old certainty
grids. The location of the robot that resuits in the highest correlation is defined as the
new estimate of the robot’s location. Once the vehicle’s location is determined, the
measurements that define the new certainty grid are merged with the old certainty
grid, thereby, presumably, increasing the accuracy of the old certainty grid. The major
advantages of grid-based approaches to CML are that they are intuitively simple,
easy to implement and naturally extend to higher dimensions [114]. The current
state-of-the-art is exemplified in the work of Thrun et al., who have successfully used
a grid-based approach to perform navigation in a museum [23].

While grid-based approaches are conceptually simple and relatively successful for
certain environments, differentiating similar environments is difficult, the computa-
tional cost of localization is high, and the high storage requirement all pose serious
problems [120]. Grid-based approaches have a weak theoretical foundation as data
are smeared, thereby at times removing critical information or coinpounding infor-
mation inconsistently. Their quality and robustness are critically dependent on the

sensor system used and how sensor information is interpreted and transfered into the
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uncertainty grid. Further, false alarms, data association ambiguities and no returns

are all difficult to incorporate.

Feature-based approaches to CML use easily identifiable attributes in the environ-
ment, such as planes, corners and edges in indoor environments, and build a metrically
accurate map of the location of these landmarks [17, 29, 40, 89, 111]. The pioneering
work in the field was done by Smith, Self and Cheeseman [111] with their introduction
of stochastic mapping. In stochastic mapping, the state of the vehicle and all the fea-
tures in the map are represented by a single estimated state vector and an estimated
covariance matrix. The system is based on an extended Kalman filter (EKF) [4, 46]
to build and update a feature map of the environment from the sensor measurements
(typically a sonar or a laser range finder) as well as a dead-reckoning model for the
vehicle. Localization is performed concurrently by updating of the vehicle’s position
through an EKF. That is, when features in the environment are re-observed, these
measurements are used to improve the position estimate of the robot and all the fea-
tures estimates (i.e. the map). This approach is based on the assumption that the
uncertainties have a Gaussian distribution. The main advantage of stochastic map-
ping is that it can provide metrically accurate navigation information robustly and
can incorporate false returns, drop-outs and data-association ambiguities. Stochastic
mapping does not per se address the data association problem, that is, how to resolve
uncertainties in the origins of measurements. Further, it does not incorporate chang-
ing environments. These are, naturally, critical for the implementation of any real
applications of stochastic mapping. Thus, extensions to stochastic mapping that, to
a varying degree of autonomy, incorporate track initiation, data association and track
deletion, have been implemented [30, 29, 17, 51, 40, 42]. The successful utilization of
stochastic mapping requires that features can be extracted from the environment, and
further that data association errors are few. Further, the computational complexity
of operating in large areas has been viewed as one of the most significant challenges to

performing feature-based CML. In most feature-based approaches, the computational
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complexity, also referred to as the map scaling problem, is due to the ever-growing
number of vehicle-to-feature and feature-to-feature correlations that must be main-

tained as the size of the operating environment increases.

A notable implementation of a feature-based approach to CML is that of Smith [105]
with the introduction of integrated mapping and navigation (IMAN). IMAN explic-
itly addresses the problem of data association. IMAN forms multiple hypotheses for
each measurement (similar to what is done in multiple hypotheses tracking [95]) but
in addition forms multiple hypotheses for the location of the robot. That is, if a mea-
surement of a feature in the environment is obtained, but it is ambiguous whether
feature A cr feature B was observed, two hypotheses are generated. As more mea-
sureraents are obtained, one of the hypotheses is likely to be eliminated as it becomes
inconsistent with the measurements. rurther, the estimated robot position would
differ depending on which of these hypotheses are chosen, thereby forming multi-
ple hypotheses for the vehicle’s state as well. For each set of consistent hypotheses,
stochastic mapping is performed. To eliminate tracking of an explosively increasing
number of hypotheses, different pruning and gating techniques are employed. This
method is the most general and theoretically consistent approach to the data associ-
ation problem. So far, the implementation of IMAN, even when utilizing aggressive

pruning strategies, has been computationally intractable for realistic scenarios [105].

Topological approaches to the CML problem do not attempt to build metrically
accurate maps of the environment. Instead, graph-like descriptions of the environ-
ment are generated, where nodes correspond to “significant places” in the environment
that are easy to distinguish, and arcs connecting these nodes correspond to actions
or action-sequences that connect neighboring places. Such an approach has been pro-
posed by Brooks [21], Mataric [76, 77, 78] and others [56, 101, 118]. It was believed
that humans and animals do not produce accurate metric maps of the environment
they operate in, thus motivating a topological approach in the artificial intelligence

(AI) community. These approaches utilize reactive rules and are behavior-based,
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thus the control and obstacle avoidance problems often become part of the naviga-
tion problem. For instance, in trying to navigate through a labyrinth, the solution
might very simply be stated as follows: move forward until you are about to hit some-
thing, turn left and move forward. This algorithm would, actually, be successful in
navigating in a labyrinth. These methods are appropriate for navigation and obstacle
avoidance in simple environments and might be useful for creating models of human
and animal cognition [118], however, they have not been applied successfully to large
environments. Furthermore, for many operations, metrically accurate maps that are

globally referenced are a necessity for achieving the goal of the mission.

In general, all approaches to concurrent mapping and localization exhibit rapidly
increasing computational complexity with the size of the area to be mapped. Further,
the problem of data association, that is, resolving ambiguities in the source of mea-
surements, still remains an open issue. A third problem that is particularly critical
for feature-based and topological approaches is the problem of identifying suitable
features or “significant places” from the environment to be used for localization and
map building purposes.

Having outlined the main approaches to mobile robot navigation, we now turn
to the particular challenges faced by autonomous underwater vehicles. Motivated by
the need for navigation systems for autonomous underwater vehicles, this study of

mobile robot navigation is set in the context of autonomous underwater vehicles.

1.3 Autonomous underwater vehicles and CML

The concurrent mapping and localization (CML) problem is particularly critical in
environments where no a priori map of the environment is readily available. Although
the capability of a robot to perform CML rather than just mapping or localization
alone is desirable, it is often not a critical requirement. Accurate external positioning

information or a priori maps suitable for navigation purposes can, if needed, often
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be supplied. For instance, prior maps of the floor plans of buildings can often be
obtained relatively easily. The challenge for the mobile robot then becomes one of
map maintenance, obstacle avoidance and path planning as the prior map might be
incomplete or the environment might change. Further, if needed, easily identifiable
artificial land-marks can be placed in the environment for accurate localization pur-
poses. Similarly, the Global Positioning System is readily available for most outdoor
mobile robots, or accurate maps of the environment can often be generated if nec-
essary. However, readily available positioning systems or accurate maps are not, in
general, available underwater for use by autonomous underwater vehicles (AUV’s) or
for autonomous mobile robot navigation underground. Thus, in our view, these are
two of the areas of mobile robot navigation where CML is truly a critical requirement,
and for this reason, the most important, useful and interesting context for the study

of CML.

The problem of CML becomes particularly challenging for autonomous underwa-
ter vehicles: electro-magnetic signals penetrate only a few meters in water, thereby
greatly limiting their applicability for sensing and communication. Acoustic signals,
on the other hand, can penetrate long distances underwater. However, sensor infor-
mation based on acoustics is generally low bandwidth and noisy. AUVs are often
required to be in constant motion in order to maintain controllability. Further, AUVs
operate in an “active” environment, with the presence of unknown currents, which
makes navigation more difficult. The power limitation of AUVs is often more severe
than for most land-based robots. Accurate navigation remains one of the primary
obstacles for having truly autonomous underwater vehicles. We believe, however,
that the potential for AUVs that perform concurrent mapping and localization with
consistent, bounded errors for long-term, large-scale missions are truly immense, both

for scientific, commercial and military applications.

Due to the frequent requirement of accurate, metric navigation during AUV mis-

sions, utilizing a topological approach to the CML problem of AUVs is not viable.
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Further, the underwater environment does not have a simple topological structure,
such as office environments, with doors and corridors. The primary sensor used for
making observations of the environment by AUVs is sonar, which exhibits frequent
drop-outs and false returns. Unlike grid-based approaches, feature-based approaches
can address the physics of the sonar, data association, and ambiguities in the sensor
readings explicitly. Further, feature-based approaches have a more solid theoretical
foundation based on optimal estimation theory [111] and, we believe, have a greater
potential for providing more accurate estimates as well as consistent, bounded errors.
This, we feel, makes a feature-based approach to CML for AUVs more desirable than
a grid-based approach. Thus, this thesis takes a feature-based approach to the CML
problem faced by AUVs.

The use of AUVs for scientific purposes have been advocated for some time [7, 9,
15] and many successful missions have been accomplished [8, 10, 13]. The Odyssey
IIB, depicted in Figure 1-1, is an example of an AUV primary designed for perform-
ing scientific missions. = Most AUVs designed for scientific purposes are relatively
inexpensive and small. They often can explore very deep oceans. For instance, the
Odyssey IIB is rated to 6000 meters. Further, their operational cost can be much
lower than that of remotely operated vehicles (ROVs) due to less requirements of the
host vessel. AUVs also have a advantage over ROVs in that AUVs can operate in
areas that are unreachable by ROVs, such as, under the polar ice cap. The potential
capabilities of AUVs that navigate accurately for surveying large areas, measuring
many quantities, more quickly, cheaply and accurately than any current technologies,
will give us access to tremendous amounts of oceanic data not presently available.
The impact this data can have on our understanding of the oceans, marine life and

the interaction between the ocean and atmosphere is truly great.

Commercially, there are many operations that could be performed more effec-
tively by accurately navigating AUVs. AUVs would also make viable commercial

applications that otherwise would be infeasible. Many of the missions that are now
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D

Figure 1-1: An Odyssey IIB class scientific autonomous underwater surface craft
(AUV) developed at MIT Sea Grant [11].

performed by ROVs could potentially be performed at a much lower cost using AUVs.
For example, inspections of underwater oil pipelines, moorings etc. could potentially
be done more cost effective by utilizing specialized AUVs. A limited number of ATTV’s
designed for commercial applications do exist. For example, the Hugin unmanned un-
derwater vehicle [115], performs accurate, cost-effective, bathymetric mapping up to
600 meters depth. However, navigation information is provided through an acoustic

modem link from a survey vessel.

The potential application of AUVs for military purposes are only limited by the
imagination. The most obvious uses are for covert operations, surveillance and mine-
countermeasures in shallow and very shallow water. The goal of mine-countermeasures
is to detect, localize and neutralize mines, often for the purpose of providing a safe

path for amphibious invasion [22, 92]. During mine-countermeasures complete cov-
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Figure 1-2: Two of the Naval Underwater Warfare Center’'s AUVs. The LDUUV is
shown on the top left, while the 21UUYV is shown its side to the right.

erage of the region is required, the region is likely to be a priori unknown. Further,
it is often important that the mission is covert. Another complication is that the
environmental forces in shallow water are often significant. Traditionally, divers or
trained marine mammals have been used for identifying mine-like objects. How-
ever, these operations are dangerous and alternative approaches that would reduce
or eliminate the need for direct involvement, while at the same time exhibiting a
high level of performance in mine clearing are desirable. In such regions, the use
of AUVs can be an attractive alternative. One or more AUVs, equipped with com-
mercially available sonar transducers and instruments, can provide a solution to the
mine-countermeasures problem in shallow water, provided that accurate navigation
can be performed. Navigation is a key requirement as complete coverage must be
accomplished and accurate localization of the mines must be achieved in order to

neutralize the mines.

Figure 1-2 shows two US Navy AUVs developed at the Naval Underwater Warfare
Center in Newport, Rode Island [27]. The Large Diameter Unmanned Underwater
Vehicle (LDUUV) is a military research vehicle for evaluation of state-of-the-art AUV

technologies. It is 300 inches in length and 26.5 inches in diameter. It is equipped with
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a highly accurate laser gyro inertial navigation system (INS) and a high performance
Doppler velocity sonar to achieve dead-reckoning errors of less than 1% of distance
traveled. The 21UUV is a test-bed for performing advanced mine countermeasures.

The 21UUV is 250 inches long, with a displacement of approximately 2800 pounds.

1.4 AUV navigation techniques

Navigation is one of the key challenges that limits our capability to use AUVs to
address problems of critical importance to society. The three primary methods for
navigation of AUVs are (1) dead-reckoning and inertial navigation systems, (2) acous-
tic beacon navigation, and (3) map-based navigation techniques. These methods are

summarized in this section.

1.4.1 Dead reckoning and inertial navigation systems

The traditional and most obvious navigation technique is that of dead reckoning in
which the vehicle velocity is is integrated in time to obtain new position estimates [74].
Measurement of the velocity components of the vehicle is usually accomplished with
a compass and a log.! The principal problem is that the presence of an ocean current
will add a velocity component to the vehicle that is not detected by the log. In the
vicinity of the shore, ocean currents can exceed 2 knots. Consequently, dead reckoning
for power-limited AUVs, operating at low speeds (3-6 knots), involving water-relative
speed measurements can generate extremely poor position estimates.

In inertial navigation systems (INS), the accelerations of the vehicle are integrated
twice in time to derive the updated position [64]. Cost and power consumption have
historically made INS systems unattractive for small AUVs, however, this may change
as systems get smaller and cheaper in the future. For operations near the seabed,

Doppler Velocity Sonar (DVS) sensors can be used to measure the vehicle’s velocity

1A log measures the vehicle’s speed relative to the water column.
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relative to the ground. The integration of this information in a Kalman filter can
greatly improve performance of dead reckoning.

The problem with exclusive reliance on dead reckoning or inertial navigation is
that position error increases without bound as the distance traveled by the vehicle
increases. The rate of increase will be a function of ocean currents, the vehicle speed,

and the quality of dead reckoning sensors.

1.4.2 Beacon-based navigation

\coustic energy propagates well in the ocean, and hence acoustic transponders can
be -rd as “beacons” to guide the motion of an AUV without the need for resurfac-
ing. Primarily two types of system have been employed [52, 54, 81]: long baseline
(LBL) and ultra-short baseline (USBL). Both systems employ external transducers
or transducer arrays as aids to navigation. Position fixes are obtained by detecting
the outgoing pulse from the transducers together with the a priori knowledge to the
location of the beacons to infer the vehicies location.

Deploying a LBL or USBL system to provide accurate navigation for an AUV
requires careful calibration of the positions of the individual beacons. This is costly
and not viable for many situations, such as, under the polar cap or in deep ocean

environments.

1.4.3 Map-based navigation

For some applications of AUVs, the use of acoustic beacons is undesirable or imprac-
tical. If an accurate a priori map of the environment is available, one approach to
globally-referenced position estimation is to use measurcments of geophysical param-
eters, such as bathymetry, magnetic field, or gravitational anomaly [47, 79, 121, 122].
These approaches are based on matching sensor data with an a priori environment
map, under the assumption that there is sufficient spatial variation in the parame-

ter(s) being measured to permit accurate localization.
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The major disadvantage of using geophysical maps, is that accurate maps appro-
priate for navigation are simply not available for most areas. Further, accurate and

reliable matching of sensor readings to a priori maps poses a significant challenge.

As up-to-date, high-quality map may be unavailable in the operating area of inter-
est, thus motivating research into the problem of concurrent mapping and localization

(CML).

A basic problem with CML based AUV navigation systems, is the identification
and recognition of natural features in the environment. Sonar data can be notoriously
difficult to interpret. Spurious measurements due to muitiple reflections are common.
Considered in isolation, an individual sonar return yields insufficient information to
determine the shape of an object. The fundamental capability required is to combine
the information provided by multiple sonar returns obtained from different sensing
location. Approaches for obtaining reliable feature extraction in context of CML
have been successful for simple man-made features, while reliable feature extraction
for natural oceanic features have only recently been addressed [24]. However, moti-
vated by the abilities of bats [6, 61, 102] and dolphins [93] to navigate in cluttered
environment using sonar, new sonars and processing techniques have been developed
to mimic the performance of bat and dolphin sonar systems and object detection ca-
pabilities. The use of these systems for CML presents an interesting topic for future

research.

Another major challenge encountered by stochastic mapping is the fact that the
technique scales (at best) quadratically with the number of features present. The
drawback of increasing computational complexity with the number of features mapped
have been addressed by several authors [29, 51, 124]. However, these approaches have
either diverged, or failed to provide long-term, globally bounded errors. Chapter 3

introduces a promising new method for solving this problem.

AUVs have a limited range due to limited power consumption and tend to have

dynamical constraints, such as loss of controllability at low speeds, that require fast
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access to information about the environment for safe navigation. An interesting
research area is to adaptively choose a sensing and motion strategy to obtain the
most information about the environment. Such a strategy is introduced in Chapter 4.
Similar adaptive strategies are seen in the way dolphins use sonar to localize and
navigate by moving their heads from side to side. Bats adaptively increases the
number of sound pulses emitted as they approach a target. Further, due to the low

rate of information obtained from sonar, adaptive strategies are especially beneficial.

1.5 Thesis contributions

This thesis makes the following contributions:

e An analysis of the long-term performance of stochastic mapping for autonomous

underwater vehicle navigation.
e A solution to the problem of map scaling.
¢ A method for performing adaptive concurrent mapping and localization.

e A technique for performing path planning in dynamic environments.

1.6 Thesis overview

The overall structure for this thesis is one in which each chapter can, to a large extent,
be read independently of the other chapters. This structure will make reading easier
for those who are mainly interested in particular aspects of the work.

The structure of this thesis is as follows: Chapter 2 reviews stochastic mapping
as a kernel for performing concurrent mapping and localization (CML). Methods for
performing track initiation, track deletion and data association in combination with
stochastic mapping are introduced. These methods are integrated with stochastic

mapping, culminating in the Augmented Stochastic Mapping (ASM) algorithm for
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performing CML. The long-term performance of ASM is analyzed by extensive sim-
ulations, experiments and post-processing of oceanic data.

Chapter 3 presents Decoupled Stochastic Mapping (DSM) as a solution to the
map scaling problem of stochastic mapping. The map scaling problem refers to the
problem of maintaining an ever increasing number of vehicle-to-feature and feature-
to-feature correlations as the size of the operation environment increases. This, in
turn, causes the computational resources to be exhausted.

Chapter 4 introduces Adaptive Stochastic Mapping, as a method for performing
adaptive CML by maximizing the expected information from the next action of the
vehicle, thereby obtaining increased CML performance.

Chapter 5 presents a method for performing path-planning in dynamic environ-
ments based on fluid analogies. This approach enable real-time computation of paths
from local information among multiple dynamic objects.

Finally, Chapter 6 presents a summary of the thesis, the main contributions and
suggestions for future research. In addition, the nomenclature used in this thesis is

included before Chapter 1.

1.7 Summary

The basic questions for a mobile robot addressed in this thesis are the questions of
“what is my map?”, “where am I?”, “where am I going?”, and “how do I get there?”
The two first questions constitute the navigation problem. The third question is
one of defining a goal, and the last question is one of path-planning. The current
state-of-the-art in the three main approaches to mobile robot navigation, grid-based,
feature-based and topological, were summarized. The critical need for accurate navi-
gation of autonomous underwater vehicles (AUVs) was motivated and the particular
constraints of AUVs were presented. Finally, the main contributions of this thesis

were stated and an outline of the thesis was given.



Chapter 2

Navigating in the Unknown

The shortcomings of existing AUV navigation methods, outlined in Chapter 1, mo-
tivate the development of concurrent mapping and localization (CML) techniques.
The goal of CML is for an AUV to build a map of an @ priori unknown environment,
while concurrently using that map to navigate. Simply stated, CML addresses the
questions “what is my map?” and “where am I?” simultaneously. This chapter is
devoted to the development of a feature-based approach to CML and its performance

is analyzed via simulations, experiments and post-processing of oceanic data.

2.1 Introduction

While feature-based CML has been an important research topic in the robotics re-
search community, there are many open issues that remain unanswered. One of the
most important issues is to consider the long-term performance of feature-based CML.
The duration of missions which have been considered in the existing literature have
been surprisingly short — on the order of tens of meters in distance and/or a few tens
of minutes in time. To enable true long-term autonomy, a key question that emerges
is how does feature-based CML perform for missions over large areas with long time

durations? What levels of performance are possible? What failures can occur and

39
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what are the consequences of these failures?

To address these questions, the specific feature-based CML algorithm of aug-
mented stochastic mapping (ASM), used throughout this thesis, and the associated

modeling assumptions are presented.

It is highly unlikely that a general theoretical analysis of the asymptotic perfor-
mance of CML can be derived that would be applicable over a wide range of situations
and in the presence of nonlinearities and data association ambiguity. This is due to
complexity that arises from non-linear estimation problems. Most characterizations
of estimators only apply to linear cases, such as, the Cramér-Rao lower bound [5] and
the notion of an efficient estimator. Further, in order to obtain a tractable estima-
tor, simplifications are introduced (such as, linearization), thereby greatly reducing
the certainty or the extent to which anything can be proven. As an alternative, this
chapter presents a simulation study of ASM that analyzes the performance of the
technique for long duration AUV missions for several different AUV operating sce-
narios. The positioning errors of the algorithm are compared against the uncertainty
bounds for these estimates that are provided by the algorithm. A critical question
for the usefulness of ASM is its ability to perform highly accurate CML in real world
scenarios. For this reason, an experiment in a testing tank and post-processing of
oceanic data provided by the US Navy is presented, confirming the viability of the
approach. The types of failures that can occur during CML and their consequences

are also examined.

The ASM algorithm for performing CML is based on stochastic mapping (SM),
which was first introduced by Self, Smith and Cheeseman [111].

The structure of this chapter is as follows. Section 2.2 describes the AUV model
used throughout the thesis. Section 2.3 derives the stochastic mapping approach to
CML. Section 2.4 adds elements to stochastic mapping to make it viable for real
life experiments and missions, cumulating in the technique of augmented stochastic

mapping (ASM). Section 2.5 analyzes in simulation the performance of ASM for two
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representative long duration missions. Section 2.6 presents a comparison between
simulations and experiments performing ASM in a testing tank. Section 2.7 presents
results for the performance of ASM during real world missions by post-processing
oceanic data. Section 2.8 discusses some of the different failure modes that can occur
in ASM due to state estimation divergence and data association errors. Section 2.9
draws conclusions and discusses future research and Section 2.10 gives a brief sum-
mary of this chapter. Appendix 2.A discusses the Kalman filter and Appendix 2.B

analyses the performance of the gated nearest neighbor data association technique.

2.2 AUV modeling

In this section we develop a simplified model to capture the dynamics of an AUV,
present the sonar model, and state our assumptions. These models and assumptions
are, with some minor differences, used throughout this thesis.

In our work we have restricted our modeling to two dimensional space. This
is done for simplicity of the models. Extending the modeling to three dimensions
is a relatively straightforward task. While the challenges of representing complex
vehicle models and three dimensional objects can be great, the structure of the basic

uncertainty management problem encountered in CML remains the same.

2.2.1 Sonar model

In performing CML, observations of the environment useful for localization and map-
ping purposes must be available. In the marine environment, the seabed contains
information useful for navigation purposes as it is relatively static. However, long-
range remote observation of the seabed is only possible with sonar, as electro-magnetic
sensing devices have a limited operation range in water.

A simple, off-the-shelf sonar operates by sending out a directed sound pulse and

waiting for the return off a reflecting surface (feature) in the environment. By knowing
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the speed of sound in the environment (approximately 1500 m/s), the sonar measures
the time-of-flight (TOF) of the returning pulse to deduce the distance to the reflecting
surface. The measurements obtained from sonar are generally ambiguous and noisy.
First, due to the relatively slow speed of sound, measurements are obtained slowly
in comparison to electro-magnetic sensors used on land (such as radar or optical
sensors). For instance, getting a TOF reading in one direction of something 700
meters away takes almost a second. Second, the pulse has a beam-width, thus the
pulse propagates out in a range of directions. When the TOF is measured, there is
an uncertainty as to the exact direction to the reflecting surface. This makes the
angle measurement uncertain. Third, the temperature, flow, and composition of the
water column all affect the speed of sound, causing inaccurate TOF measurements.
Forth, drop-outs, false-returns and multiple reflections are all common when using
sonar, causing difficult data association problems, that is, determining the source of
the reflection. Drop-outs occur as the reflecting surface from the object might be too
poor to yield a strong enough return for the sonar to detect. False-returns occur as
the acoustic background noise in the ocean environment triggers a TOF measurement.
Multiple reflections occur when the pulse bounces off several surfaces, thereby giving

rise to invalid TOF measurements.

The many ambiguities of sonar measurements are a result of the complex physics
of sonar {20, 55, which are not fully understood. Increased knowledge of the physics
of sonar can reduce many of these ambiguities and result in greater utilizaticn of

sonars for remote sensing.

There are two basic types of sonars, mechanically scanned and electronically
scanned. When using a mechanically scanned sonar, the transducer is physically
turned to the desired direction and a TOF measurement is obtained. When using a
mechanically scanned sonar, a narrow beam is desired to achieve high accuracy for the
direction to the reflecting surface. Mechanically scanned sonars are simple to operate,

but slow. In the experiments in this thesis we use a mechanically scanned sonar. Due
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to the width of the sonar beam, multiple TOF recordings occur from a single object
during the scan. Such a set of TOF measurements is cailed a region of constant depth

(RCD) [69]. An example of this is given in Figure 2-1 where a Polaroid ultrasonic

y position (meters)
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Figure 2-1: The returns from a Polaroid ultrasonic sensor (dots) with a rough shaded
room model superimposed. The location of the senor is marked by a triangle.

sensor has taken a complete 360 degree scan of a room. In obtaining a single range
and bearing measurement to a reflecting surface, the TOF at the bearing mode of
the TOFs in a RCD is used as the range and bearing measurement. This method is
called RCD extraction, and works well for specular environments.

An electronically scanned sonars emits an acoustic pulse with a known beam
pattern covering a range of angles. The returning wave is detected by an array of
hydrophones. An image is created by time-delay-and-sum beam-forming [55]. Elec-
tronically scanned sonars can detect reflecting surfaces over a whole area from a single
emitted acoustic pulse. In our simulations, we assume that the velicle is equipped
with either a mechanically or electronically scanned sonar.

The attributes of a sonar sensor are taken into account by modeling the sonar
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returns as noisy (Gaussian in range and bearing). Drop-outs are modeled by a prob-
ability of detection, Pp. False-returns are incorporated by a Poisson distribution of
false returns with a mean of A over the viewing area of the sonar. Dealing with data
association ambiguities is discussed further in Section 2.4.1.

The viewing area of the sonar is the sector defined by the maximum range and
angle coverage by the sonar and explicitly modeled.

In order to use sonar returns to estimate the location of features and of the vehicle,
a mathematical model for the measurements is required. We assume the sonar emits
an acoustic pulse (a “ping”) every ¢t = kT seconds, where T is a constant period
and k is a discrete time index. The estimated vehicle states and estimated feature
states are modeled by a single state vector x; and the true state vector by X;. The
mathematical model for a RCD recording from an environmental feature (reflecting

surface) is given by
zr = h(Xy) + d,, (2.1)

where z;, is the observation vector of range and bearing measurements relative to the
vehicle. The observation model, h, defines the nonlinear coordinate transformation
from state to observation coordinates. The stochastic process d,, is assumed to be
white, Gaussian, and independent of xy. The covariance of d, is given by R. The
Gaussian assumption is a simplification, but not significantly different from the true

stochastic process and thus a valid approximation.

2.2.2 Vehicle dynamic model

In our implementation, we denote the vehicle’s state estimate by x, = [z, y, ¢ v]T to
represent the vehicle’s east position, north position, heading and speed as shown in
Figure 2-2. The dynamic model imitates an AUV equipped with control surfaces and

a single aft thruster for propulsion, moving at a nominal forward speed of V.. The
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Xr East

Figure 2-2: Definitions of the AUV’s states used in the model.

control input u to the vehicle is given by a change in heading, ¢, and speed, év, of the

vehicle to model changes in rudder angle and forward thrust, that is, u = [6¢ dv]T.

A general dynamic model of a vehicle can be defined as
Xrp = £(Xr, 1) + G(ug)dy, (2.2)

where f is a nonlinear model taking the vehicle’s current (true) state, X, , and control
input, uy, as input variables. The noise process in heading and velocity, dx = [dy dy]7,
is scaled as a function of the control input by G(u;) to account for unmodeled dy-
namics and noise. As for the sonar model, & signifies a discrete time index and the

model is updated at times ¢t = kT for a constant period 7.

In this thesis we have used the following definitions for f and G

_0 T cos(¢)

X=X, + | 5@, (2.3)
10

0 1
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0 o0
0 0
G(u) = . (2.4)
Y% 0
0 y00

The scaling factor -, is typically orders of degrees squared while the magnitude of
Yy is typically order of percent squared. The two first zero rows of G are due to the
fact that there is no uncertainty as to the physical relationship between position and
velocity. That is, the position of the vehicle is, per definition of position and velocity,
the integral of velocity. The off-diagonal terms in the bottom two rows of G are
by assumption set to zero. Although a minor point, if a known correlation between
heading and speed existed it could easily be incorporated. However, we feel confident
that for many AUV models, the assumption that the cross-correlation between the
process noise in heading and speed is zero is reasonable. The stochastic process dy
is assumed to be Gaussian white noise and independent of d,. The covariance of
dy is for convenience set equal to the identity matrix, as any scaling is placed in G.
The Gaussian assumption is a simplification, however by appropriately choosing G,
a good approximation is achieved.

The vehicle dynamic model of Equation (2.3) does not take into account any of
the vehicle’s real dynamics. Thus the model is very general. Even if an accurate
dynamic model for a specific vehicle was generated, a control input designed to give
a specific response, such as, turn five degrees, would yield an inaccurate response by
the vehicle (i.e. it might turn only four degrees). This is because there will always
be unmodeled dynamics and uncertainties involved. That is, a control input of u
applied to the real vehicle would have the same effect as a control input of u + du
applied to the model of Equation (2.2). The unknown perturbation éu is modeled by
the stochastic process G(uy)dy.

We assume that the AUV is equipped with a log to measure its speed relative to

the water column and an on board compass to yield a measurement of the heading.
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Letting m = [ v|T be the vector of speed and heading measurement, the measure-

ment model is given by
m= +dm, (2.5)

where dy, is a Gaussian stochastic process with covariance given by Q. The output,

m, from these instruments is integrated over time to yield a dead-reckoning model.
Having outlined the vehicle model, the next section describes stochastic map-

ping, which is a feature-based approach to navigation for mobile robots operating in

unknown environments.

2.3 Stochastic mapping

The two seminal research efforts in feature-based concurrent mapping and localiza-
tion were performed by Smith, Self, and Cheeseman [111], who first published the
stochastic mapping algorithm, and Moutarlier and Chatila [88], who provided the
first implementation of this type of approach with real data. Other notable imple-
mentations of variations of stochastic mapping include Rencken [96], Castellanos et
al. [26], and Chong and Kleeman ([30].

Stochastic mapping is simply a special way of organizing the states in an ex-
tended Kalman filter for the purpose of feature relative navigation. The much cel-
ebrated Kalman filter is an computationally efficient minimum mean square error
estimator with a dynamic system describing variations in the unknown parameters.
The extended Kalman filter (EKF) is the technique of linearizing a non-linear dy-
namic system for use in a Kalman filter and is the technique employed by stochastic
mapping. A description of Kalman filtering is included in Appendix 2.A.

In the implementation of stochastic mapping, the observation and dynamic models

for the AUV given in Section 2.2 are used. The measurements are used to create a
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map of the environment, which, in turn, is used to localize the vehicle. We use

Xklk = X + Xg (2.6)

to represent the estimated system state vector x = [xT xT

...x%]T, where x, and
X;...Xn are the estimated AUV and feature states, respectively, X is the true state
vector, and X is the error of the estimate. k is a time index as defined in Section 2.2.
The subscript in xgx—; will be used to signify the state estimate at time k given all
information up to time step k¥ — 1. The estimated error covariance, P = E{x¢X]},

of the system takes the form

r -

Prr Prl o PrN
P, P -+ Py
L R (2.7)
|Pyr Pyi oo+ Pan| "

The sub-matrices, P,,, P,; and P;; are the vehicle-to-vehicle, vehicle-to-feature, and

feature-to-feature covariances, respectively.

Thus, the vehicle and the map are represented by a single state vector, x, with
an associated estimate error covariance P at each time step. The state estimate of
feature ¢ is represented by x; = [z; y;]T. Given the definition of x and P, an extended
Kalman filter (EKF) is employed to estimate the state x and covariance P given the
measurements z. As with the Kalman filter, the estimation occurs through a Kalman
update step which occurs when features are re-observed and a prediction step caused
by the movement of the vehicle. However, as new features are observed new feature
estimates, called tracks, must be added to the state vector and covariance. Thus, the
evolution of stochastic mapping is divided into re-observation of features, new feature

integration and vehicle movement. These steps are described next.
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2.3.1 Re-observation of features

When a feature i is re-observed, we use the update step of the extended Kalman filter!

to update the vehicle’s state and the map. By introducing the following definitions:

Ti = Tigpor ~ Trige-1s

yi = yi,,l,‘_,k - yf)‘lk_1$

the observation model h of Equation (2.1) for feature i takes the form

Ti \% "Ez2 + 3712
Z2; = = ) +da;
6; tan™"(3;/Z;) — o

= h,' (Xk) + dz,‘.

The noise process d; is assumed to be white and Gaussian with covariance R, in
accordance with the assumptions for Equation (2.1). If the N features i,...iy are

re-observed, the observation model becomes

2, hil R'iN .- 0
zZ, = : ’hz )R= : 3

by 0 - R,

with the Jacobian of h given by Hy = Hx(Xk-1) = dh(X)/dX|x=xk|k_l. These

matrices are used in the update step of the extended Kalman filter, to yield

Xk = Xk—1 + Ki (26 — h(Xgp-1)) 5
Py = (I - KieHy)Pyjg—1,

where K is the extended Kalman filter gain given by

K = Py HE (H, Py H +R,) .

1See Appendix 2.A.
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2.3.2 New feature integration

If the vehicle observes a new feature z,e,w = [ 6] with respect to the vehicle’s reference

frame, a new feature state xy.1, called a track, is estimated and incorporated by

Zy + rcos(¢ + 6)
XN41 = l(xklk’ zrlew) = .
Yr + rsin(¢ + 6)
The new feature is integrated into the map by adding this new state to x and P.
That is

Xk|k
Xk )

XN+1

PN+1N+1 = Lx,PrrLI, + LzRLZ,

T
PN+1i = Pi N+1 — Lx,-Pri-

Where Ly, and L, are the Jacobian of 1 with respect to the robot state x, evaluated
at Xr,,, and to Zpew evaluated at zZnew. The covariance of the state of the new
features is given a priori by R in the case that the new track is initiated from a
single measurement. In practice, initiation of a new feature track is based on several
measurements due to the imperfection of sensor measurements. In such a case, the
covariance for each measurement, R, should be compounded for all the measurements
that are used to initiate the new feature track. This will result in a smaller covariance

for the initiated track than R.
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2.3.3 Vehicle movement

When the vehicle moves, the resulting vehicle state estimate at time step k + 1 is
given by taking the expectation of the state transition model in Equation (2.2), that
is,

= E[f(Xk, uk)] ~ f(xfklk’ uk)‘

x"k+1|k

Since the stochastic process dy has zero mean, the term G(uy)dx becomes zero when

computing the expected value over Equation (2.2) to determine x,, -

The covariance, Py, is propagated through the linearized state transition model

(see Appendix 2.A.2) to yield Py given by
Pirijk = FxPipFy + G(up) G (ug).

Here Fy is the Jacobian of f with respect to X evaluated at xj.

Figure 2-3 illustrates the process of stochastic mapping. In Figure 2-3a, it is
assumed that the initial state of the vehicle, x,, is known accurately, resulting in a
small initial P,,. The initial system state vector is given by the vehicle’s state and
covariance, that is, x = x, and P = P,,. The vehicle senses a feature to its left
through a sonar reading and initializes the estimate x; of this feature and adds it to
the system state estimate as described in Section 2.3.2. This results in an expansion
of the state vector to x = [x x¥]7 and the covariance to

Prr Prl
P =

Plr Pll
The covariance P;; defines how confident we are in our estimate of the feature's
position and is represented by a solid ellipse in Figure 2-3a. This ellipse, which

is centered around the estimated position of the feature, signifies that with some
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Figure 2-3: Tllustration of stochastic mapping in the presence of two features. a)
New feature integration and vehicle motion. The solid ellipse represents a confidence
area for the observed feature. b) New feature integration and re-observation of fea-
ture. The vehicle’s position becomes uncertain due to the movement of the vehicle,
represented by a solid ellipse around the vehicle’s position. Solid ellipses represent
the measurement confidence regions from the current (b) and previous (a) time steps.
c) The resulting feature and vehicle estimates and confidence regions (solid ellipse)
along with the measurement confidence ellipses from the previous time step due to
the re-observation of the first feature.

confidence (say 99%) the true feature position will be inside this area. Next, the
vehicle moves to a new position, arriving at the vehicle position of Figure 2-3b.
Since a vehicle movement is never precise, the position of the vehicle becomes more
uncertain due to the movement, that is, P,, grows as described in Section 2.3.3. This
vehicle uncertainty is represented by the solid ellipse around the vehicle’s position in

Figure 2-3b.
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In Figure 2-3b, the vehicle senses a second feature, feature 2. The state of feature 2,
X9, is estimated from the measurement and integrated into the system state vector

according to Section 2.3.2, that is

Xr P, P, Pp
X x|, P |Py, Py Py
X2 Py P Py

The vehicle also re-observes feature 1. Since the vehicle is observing feature 1 from
a different location than that of the first observation of feature 1 in Figure 2-3a, the
confidence ellipse for this measurement is now tilted with respect to the confidence

ellipse of this feature estimate in Figure 2-3a.

The feature re-observation step described in Section 2.3.1 is illustrated in Fig-
ure 2-3c. By combining the two observations of feature 1, the estimate of feature 1
is improved (i.e. Py; becomes smaller). This is represented by the smaller solid er-
ror ellipse for feature 1. This improved estimate of feature 1 is propagated to the
other states, thereby improving the estimates of the vehicle and feature 2. This im-
provement is shown by the solid ellipses, which are smaller than the dotted ellipses
that define the estimates before the re-observation step. Thus, through the feature
re-observation step, the entire P becomes smaller, meaning that all feature estimates

as well as the vehicle’s estimate have improved.

Since the measurement of feature 1 was used to improve the estimate of feature 2
and the vehicle, the states become more correlated. When the vehicle moves, the
vehicle and feature states become less correlated as the uncertainty introduced by
the vehicle motion only affects the vehicle’s estimate. As a result, in the limit as the
number of re-observation of features goes to infinity, the featu:re-to-feature correlations
approach unity, that is, perfect correlation. In the case of using point features as
described here, perfect correlation means that P,, = P;; = P;;. However, the vehicle-

to-feature correlations do not approach unity. This is a direct consequence of the
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convergence of the Kalman filter. That is, each measurement made will bring some
information to the system, causing the information of the system to increase. Thus, a
measurement can only result in one becoming more confident in the estimate, that is, a
smailer covariance. Since there is no process noise for features as they are assumed to
be stationary, taking an infinite number of measurements of a feature and taking the
average of these measurements, which is what the Kalman filter does, one will become
more and more confident about this average, that is, the feature states. Similarly, as
the feature states are correlated (that is, observing one feature gives some information
about the location of the other feature, as illustrated in Figure 2-3c), one will become
more confident in the location of all features. In particular, the relative position of all
feature will in the limit of infinite re-observations become completely known. That is,
the covariance of the relative position between all features will tend to zero. However,
the global covariance of the features will tend to the covariance of the feature that is
known most accurately globally, which will be the first feature observed, unless the
vehicle’s position gets reset at some time, say through a GPS reset. That is, since
the vehicles position was not precisely known during the initiation of the first feature,

this global uncertainty in all feature positions (the map) can never be recovered.

As a result of the map converging to a perfect local map, obtaining perfect global
knowledge of a feature’s location will result in that all features’ locations (the map)
will become known perfectly globally. More simply, you can create a perfect local
map of a region, but if you do not know whether the region you mapped is in Africa
or in Europe, you will never be able to reduce this initial global uncertainty without
some additional external information. However, if accurate global information was
provided stating that'one of the streets you mapped is a particular street in Paris,
you will know accurately where all the features in your map are globally. Dissanayake

et al. have provided a more mathematical description of these properties in [36].

These properties are dependent on that the underlying assumptions of the Kalman

filter hold. Due to the errors introduced by the linearization performed in stochastic
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mapping, it is difficult to prove that the location of all the features in the map actually

converge to the true location of features.

2.4 Augmented stochastic mapping

The previous section outlined the stochastic mapping approach to feature based nav-
igation. In order to employ stochastic mapping in a real world scenario, we have to
be abie to extract features from the environment. As noted in Section 2.2, sonars
are notorious for exhibiting drop-outs, false returns, no-returns and noise. Thus, ad-
dressing the problem of data association is critical for the validity of the observation
model (Equation (2.1)) and in employing a stochastic mapping based approach to
CML. For this purpose, data association strategies are explored next in the context
of a mobile robot using sonar as a means for observing features in the environment.
Combining these strategies with stochastic mapping culminates in the augmented

stochastic mapping (ASM) algorithm.

2.4.1 Track initiation, association, and deletion

Due to the presence of clutter and dropouts, data association, track initiation and
track deletion is performed. The objective of data association is to assign measure-
ments to the features in the environment from which they originate, while reject-
ing spurious measurements. In this thesis, measurement to feature association is
performed using a gated nearest neighbor approach in innovation space [4]. This ap-
proach incorporates sensor uncertainty as well as the uncertainty in the vehicle’s state.
In order to include the vehicle’s uncertainty in performing data association using a
nearest neighbor gating technique, we need to transform the vehicle’s uncertainty
into measurement space and add this uncertainty to the measurement uncertainty.
We assume that the true measurement of feature i at time & conditioned upon all

measurements up to time step k — 1 is normally distributed in measurement space.
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Further, it is assumed that the transformation from vehicle space to measurement
space retains the Gaussianity of the estimated state. Under these assumptions, one

may define the innovation matrix S; for feature i as

P,, P, ] ]
S; = Hy, " H; +R, with Hy, = 'd—hé[(—[}zf%z]_) ’
P, Py K[k [Xr Xil=[xry ey Xigp_s)

(2.8)

where h; is the observation model for feature ;. Hy, is the linearized transformation
from vehicle space to measurement space. The nearest neighbor gating is performed
in innovation space. That is, defining the innovation v; = z; — h;(X), the validation

region, or gate, is given by
vIS 1y, <. (2.9)

The value of the parameter 7 is obtained from the x? distribution. For a system with
2 degrees of freedom, a value of 7 = 9.0 yields the region of minimum volume that
contains the measurement with a probability of 98.9% [4]. This validation procedure
defines where a measurement is expected to be found. If a measurement is outside this
region, it is considered too unlikely to arise from feature i. If several measurements
gate with the same feature ¢, the closest (i.e. most probable) one is chosen. An
analysis of the performance of gated nearest neighbor data association is given in

Appendix 2.B.

The initiation of new feature tracks is performed using a delayed nearest neighbor
(DNN) initiator. The DNN initiator is similar in spirit to the logic-based multiple
target track initiator described by Bar-Shalom and Fortmann [4]. One important
difference in our method is that the vehicle’s position is uncertain, and this uncertainty
has to be included when performing gating and finding the nearest neighbor. It is

assumed that a sonar return originates frem not more than one feature. In performing
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track initiation, all measurements that have not been matched with any feature over
the last NV time steps are stored. That is, any measurement that was not matched to
a known feature is a potential new feature. At each time step a search for clusters
of more than M < N measurements over this set of unmatched measurements is
performed. For each of these clusters, a new feature track is initiated. A cluster
is defined as at most one measurement at each time step that gates according to
Equation (2.9) with all other measurements in the cluster. For our systems, where
the probability of false returns is relatively low (A of Section 2.2.1 being less than 10)
and the probability of detection is relatively high (say 80%-90%), values of M = 3 or 4
and N = M + 1 are sufficient.

A track deletion capability is also incorporated to provide a limited capability to
operate in dynamic environments. When a map feature is predicted to be visible but
is not observed for several time steps in a row, it is removed from the map [67]. This is
motivated by assuming a probability of detection Pp < 1. Thus, if the feature has not
been observed over the last 7 time steps during which an observation was expected of
the feature, the probability of the feature being at the expected location is (1 — Pp)7,
assuming that the observations are independent. Thus, setting a threshold on r is
equivalent to setting a threshold on the probability that the feature still exists at
the predicted location. This track deleter is only implemented when operating in

changing environments and should also be utilized in areas of high clutter.

We also utilized a simple track deletion strategy that checks for consistency of the
estimated features. That is, if the 95% error bounds for a feature estimate overlap
by more than a certain percentage, typically 30%, with another feature’s 95% error
bounds, the feature with the smallest error bound is deleted. This causes the system
to remove tracks for features that are physically too close to each other for reliable
data association. Track deletion must be performed with caution as good tracks may

be erroneously discarded.

We will refer to the implementation of the stochastic mapping algorithm with
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Figure 2-4: Structure of the augmented stochastic mapping algorithm.

the addition of logic-based track initiation and deletion and nearest-neighbor data
association as augmented stochastic mapping (ASM). Figure 2-4 shows a flow-chart
representation of the structure of the augmented stochastic mapping algorithm.

In the next section we will conduct a performance analysis of ASM in simulation.
In Section 2.6 we will show results from an experiment in a testing tank using ASM.
As a last performance evaluation, we will show results from the post-processing of

sonar data taken from the Narragansett Bay area, Rhode Island, in Section 2.7.
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2.5 Performance analysis: Simulations

To evaluate the long-term performance of ASM, a variety of AUV missions have
been simulated. Two different scenarios are reported in this section. In the first
scenario, the vehicle is required to repeatedly perform a “lawnmower” survey of a
region with point features randomly distributed over a 1.2 km by 1.2 km area. In the
second scenario, the vehicle is required to travel back-and-forth between two clusters
of point features that are approximately 15 km apart. The parameters used for these
simulations are summarized in Table 2.1. In each scenario, false measurements are
generated by assuming that the number of spurious returns has a Poisson distribution
with an expected value of A. The range and angle of the spurious returns are uniformly
distributed over the field of view of the sonar. The probability of detection of features
is set to Pp = 0.9. Sonar measurements are obtained at 1 Hz. The simulations have
been implemented using Matlab. The execution speed is faster than real time running

on a Pentium 233MHz processor.

Table 2.1: Augmented SM simulation parameters.

sampling period, T 1 sec.
maximum sonar range 300 m
sonar coverage angle +40°
range measurement standard deviation 0.5 m
bearing measurement standard deviation 5°
feature probability of detection 0.90
vehicle cruise speed, V, 2.5 m/s
speed process standard deviation 5% of év
heading process standard deviation 2.0°
dead reckoning speed standard deviation 0.4 m/s
dead reckoning heading standard deviation 3.0°
initial position uncertainty std. dev. 1.5 m
initial heading uncertainty std. dev. 5.0°
initial speed uncertainty std. dev. 0.2 m/s
gate parameter vy 9
clutter parameter A 2
track initiation parameters M=5N=4
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2.5.1 Survey in a current

In this simulation, the goal was for the AUV to perform a survey of an unknown
area of approximately 1.2 km by 1.2 km, in the presence of clutter, dropouts and an
unknown current of 7 cm/s in the north-east direction utilizing augmented stochastic
mapping (ASM). The area contained 50 features randomly distributed over the survey
area. The desired path of the vehicle along with the true position of the features are
shown in the top plot of Figure 2-5. The AUV starts at position (0,0) and follows a
grid survey until it reaches (0, 1000), when the AUV returns to its initial position and
repeats the survey. This process is performed approximately 5 times, and the total
mission duration is approximately 5.5 hours. In order to compensate for the presence
of the current, a process noise was modeled for the vehicle’s position with a standard
deviation of 0.85 meters.

The bottom plot of Figure 2-5 shows the actual path of the vehicle, the estimated
positions of the features, and all the sonar returns obtained during the mission. Fig-
ure 2-6 shows plots of the position, heading, and velocity errors of the vehicle versus
time, along with 30 (99% highest confidence region) bounds. As can be seen from
these figures, all estimates remain bounded. The vehicle’s mean absolute position
error is 2.5 meters, the mean absolute heading error is 1.4° and the mean absolute
speed error is 2 cm/s. The mean standard deviation in position is 4.3 meters, the
mean heading standard deviation is 1.8°, and the mean speed standard deviation is
2.5 cm/s.

The global map of the features is also accurate. Figure 2-7 show a histogram of
the distribution of the error in estimated feature locations. From this figure, we see
that the average error in the estimated feature location is less than 1.5 meters, and
the maximum error of any feature estimate is only 2.25 meters. Figure 2-8 shows the
error of the estimated position for all 50 features in the map along with the 3¢ error

bounds. This plot suggests that the error bounds are overly conservative.

Figure 2-9 compares the actual path for an AUV performing the mission using
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dead-reckoning alone with that of one using stochastic mapping. As can be seen from
this figure, the estimated vehicle position is off by more than 1.4 km when using
dead-reckoning.

Figure 2-10 compares the absolute position errors for dead-reckoning and aug-
mented SM. As expected, the dead-reckoning error grows linearly with time, while

the CML error estimate remains bounded.
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Figure 2-5: Top: The desired survey path of the vehicle (solid line) and the locations
of the 50 randomly distributed point features (plus signs). Bottom: The actual
and estimated paths of the vehicle (solid lines), the estimated feature locations (plus
signs), and error ellipses for the feature location estimates (30 confidence bounds).
Small dots indicate all the sonar measurements that were obtained during the entire
9.5 hour mission. The estimated and actual final positions of the AUV are marked
as triangles in the upper left portion of the figure.
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Figure 2-6: Errors and 3o bounds (99% highest confidence bounds) for the position,
heading and velocity estimates produced by the stochastic mapping algorithm.
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Figure 2-7: Histogram of errors in the location estimates for environmental features.
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Figure 2-9: Comparison of dead-reckoning and stochastic mapping. In this figure, the
actual path of the vehicle using only dead-reckoning (thin solid line) is superimposed
on the vehicle’s path when using ASM (thick solid line). At the end of the mission,
the dead-reckoning estimate is more than 1400 meters off, while the error in the
stochastic mapping estimate is less than 5 meters.
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Figure 2-10: Absolute position error in north and east directions for dead-reckoning
and stochastic mapping.



66 CHAPTER 2. NAVIGATING IN THE UNKNOWN

2.5.2 Back-and-forth transit mission

In this section, we examine the performance of the algorithm when there are few
features in the environment and large distances between groups of features. The
parameters used in this experiment are listed in Table 2.1. Unlike the previous section,
no current is present in this scenario, and thus no vehicle position process noise is
modeled. In these experiments, the vehicle is set to survey along a line about 15 km
long, with only 5 features at each end. A plot of the final position of the vehicle,
its path, all sonar returns and the actual feature locations is shown in Figure 2-11.
In Figure 2-12, the position error for this run and the 30 bounds are plotted. As
expected, as soon as the vehicle leaves the area with features, the error bounds grow
at the rate of dead-reckoning, and the actual error grows as well. However, when
the vehicle reaches the new unmapped area in the upper right of Figure 2-11 with
the second grouping of features, the AUV uses the information obtained from these
features to localize itself more accurately. This occurs approximately 1.5 hours into
the run. When the first grouping of features is re-observed about 3 hours into the run,
the vehicle is able to re-localize to less than 5 meters accuracy with 99% confidence.
As the vehicle moves back-and-forth between the group of features, more accurate

localization and mapping is achieved.
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Figure 2-11: Path of the vehicle (solid line), locations of the 10 environmental features
(crosses), and all the sonar returns (dots) obtained during the 5.5 hour back-and-forth
transit mission.
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Figure 2-12: Position error of the AUV during the back-and-forth transit mission and
the 3o error bounds.
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2.6 Performance analysis: Experiment

Simulation studies provide the flexibility of considering any event and scenario, how-
ever, the uncertainties and deviations between model and the real world are difficult
to replicate precisely. Thus, performing cont-slled laboratory experiments often gives
valuable insight to a method and its validity. In this section, the in-water experiment
of a modeled AUV conducting a “lawnmower” survey performing ASM in a 9.4 by
3.5 by 1.5 meter testing tank is presented. Section 2.6.1 describes the setup of the
experiment followed by the results in Section 2.6.2. For comparison purposes, the

same mission was also performed in simulation.

2.6.1 Setup

A planar robotic positioning system mounted on top of the tank was used to position
a sonar mounted on a vertical shaft submerged in the water. The system has three
degrees of freedom, x, y and shaft rotation. The robotic system is equipped with
encoders for accurate position reading and commanding. The positioning system was
controlled by a Compumotor AT6450 controller card. A C++ interface was developed
for commanding the system.

Twenty eight fishing bobbers were placed on the right side of the tank to act as
environmental features and submerged to approximately the same plane as the sonar.
The 1.25 cm radius of the Styrofoam bobbers was known to the ASM algorithm.

The sonar used in this experiment was a Panametrics V318-SU 500 kHz trans-
ducer with a +4.7° beam width. The sonar signal (waveform) was captured using
GageScope 1012 analog to digital converter boards on a PC sampling at 2 MHz. The
digital signal was passed into a Matlab script which performed match filtering of
the signal to detect the returning pulse. Once the return pulse was identified, the
TOF and the range to the target was computed. For each range measurement, five

waveforms were captured with the sonar pointing in the same direction before match
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filtering was performed. This was done as the electrical and acoustic noise levels were
high in our laboratory. The method of RCD extraction [69] was used to determine
the range and bearing to each feature. The transducer was fixed to the rotating shaft
of the positioning system. The shaft was rotated 0.6 degrees, on average, between
each TOF measurement. A 360 degree scan of the tank using this sonar is shown in

Figure 2-13. The tank walls were removed from the RCD extraction.

-1 0 1
East (m)

Figure 2-13: A 360° scan of the tank with the Panametrics sonar. The location of the
sonar is marked by a triangle, individual sonar returns are marked by a dot, the true
location of a feature (bobber) is marked by ‘x’, and the result of the RCD extractor
is marked by +. The tank walls are shaded.

The system operated on two computers, one dedicated to obtaining sonar mea-
surements and the other for operating the robotic positioning system and performing
ASM. The sonar measurements were passed to the C++ program controlling the po-
sitioning system for combining them with the current state of the positioning system.

Once a scan was obtained, it was passed to a Matlab script executing ASM and ex-
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tracting RCDs. As a time step was completed, the new (true) position of the vehicle
was passed back to the positioning system for execution of the AUV’s dynamics and
the initiation of a new scan. The integration of these programs resulted in a closed
loop system for performing CML in the testing tank.

The experiment was designed to simulate an AUV, however, due to the limited
size of the testing tank, the AUV’s parameters were scaled down by a factor of 100.
However, not all parameters could be scaled in such a way as to replicate the AUV of
Section 2.5. Thus, a simulation using the parameters of the experiment was conducted

for comparison with the experiment.

2.6.2 Experimental results

The parameters used in the experiment and simulation are shown in Table 2.2. Scaling
everything by 100 would yield the parameters of the AUV we were modeling. The
main difference between these parameters and those of Table 2.1, is the nominal
speed of the vehicle, V; = 0.1 m/s (i.e., 10 m/s for the vehicle modeled), the range
uncertainty in the sonar, and the survey path. Further, due to the time required to
make a scan with the mechanical sonar we employed, the time period T is during the
experiment longer than the 1 sec. that is assumed for the vehicle we are modeling.
Figure 2-14 shows the survey path of the vehicle along with the position of all the
bobbers. The initial position of the sonar is marked by an arrow. The end of the path
is marked by a square. Once one pass through the path was completed, another one
was initiated. This process was repeated until the termination of the experiment.
Figure 2-15 displays the actual and estimated path of the AUV along with the
estimated feature locations and their 30 bonds (99% highest confidence regions) for
the experiment (left) and in simulation (right). The overshooting of the corners
relative to the desired path of Figure 2-14 is due to the faster vehicle speed compared
to that of Section 2.5, causing the AUV to overshoot its mark. As can be seen from

these plots, the resulting path and feature estimates are similar for the experiment
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Table 2.2: Augmented SM experiment parameters.
sampling period, T 1 sec.
maximum sonar range 200 cm
sonar coverage angle +40°
range measurement standard deviation 2 cm
bearing measurement standard deviation 5°
feature probability of detection, Pp 0.90
vehicle cruise speed, V, 10 cm/T
speed process standard deviation 5% of v
heading process standard deviation 2.0°
dead reckoning speed standard deviation 4.5 cm/T
dead reckoning heading standard deviation 3.0°
initial position uncertainty std. dev. 1.0 cm
initial heading uncertainty std. dev. 5.0°
initial speed uncertainty std. dev. 0.1 cm/T
gate parameter vy 9
track initiation parameters M=3N=2

and the simulation. A couple of extra features were mapped during the experiment.
These were caused by unevenness in the tank bottom detected by the sonar and

mapped.

Figure 2-16 and Figure 2-17 shows the position, heading and speed error along
with the 30 error bounds (99% highest confidence region) for the experiment and
simulation. Comparing these plots, we notice an excellent agreement between exper-
iment and simulation. During the experiment, it took a slightly longer time before
a feature was initiated, thus causing a slightly higher error bound initially than in
the simulation. This might have been caused by a lower probability of detection in
the experiment than the Pp = 0.9 modeled in the simulation. As a consequence, the
simulated results are a little better than the experimental results. The mean distance
error for the experiment was 1.3 cm with a standard deviation of 2.2 cm. For the
simulation, the numbers were 1.2 cm and 2.0 cm, respectively. As can be observed
from comparing Figure 2-16 and Figure 2-17, it was during the first 500 seconds,

which is equivalent to one pass through the mission path, the simulations did a little
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Figure 2-14: The desired path of the AUV (solid line), along with the true feature
positions, marked by crosses. The initial position and direction of the AUV is marked
by an arrow. The end of the path before it is repeated is marked by a square.

better, while the steady state after 2000 seconds is very similar for the two plots.
Turning to Figure 2-18 we see that not only was accurate localization of the vehicle
achieved, but also the feature location estimates were accurate. The mean feature
distance error was 1 cm for the experiment and 0.7 cm for the simulation. The mean
distance standard deviation was 1.7 cm for both the experiment and the simulation.
Figure 2-19 shows the distance error of the first feature initiated for the experiment
(left) and the simulation (right) through time. As expected, the error bound is a

monotonically decreasing function of time.
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Figure 2-15: The estimated path (solid line), the actual path (dashed line), along
with the true feature location, ‘x’, the estimated feature location, ‘+’, and the 3o
error ellipse for the feature estimates. Left: Experimental result. Right: Simulated
result.
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Figure 2-16: Errors and 30 bounds (99% highest confidence bounds) for the position,
heading and velocity estimates produced by the ASM ezperiment in the testing tank.
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Figure 2-17: Errors and 30 bounds (99% highest confidence bounds) for the position,
heading and velocity estimates produced by simulation of ASM in the testing tank.
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Figure 2-18: Estimated feature error and 30 bounds. Left: Experimental result.
Right: Simulation result.
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Figure 2-19: Evolution of feature estimation error and 30 bounds versus time for

the first feature initialized (i.e., not the same physical feature). Left: Experimental
result. Right: Simulation result.
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2.7 Post-processing of oceanic data

The viability of ASM for performing concurrent mapping and localization was shown
by simulations and tank experiments in the previous sections. Although the resuits
of the previous sections are convincing, a real AUV mission performing ASM would
be the most convincing result. We have not had access to an AUV, but to the next
best alternative, that is, data collected from an ocean vessel. This data can be post-
processed in order to verify the validity of the algorithm. The data available to us
was taken using an electronically scanned, high resolution array (HRA) forward look
sonar (FLS) mounted on the side of a surface ship equipped with an INS system as
well as differential GPS performing a survey in Narragansett Bay, Rhode Island, for
the explicit purpose of assessing the navigation capabilities of AUVs. This data was
provided to us by Mr. Robert N. Carpenter of the Naval Undersea Warfare Center
(NUWC) [24].

As the dynamics and control input to the ship were not provided to us, a slightly
revised dynamic model and stochastic mapping algorithm was used and is described

next, followed by the results, in Section 2.7.2.

2.7.1 Stochastic mapping

The modeling assumption used in the post-processing of the data from NUWC is
outline in Section 2.2. Point features were extracted from the sonar returns based on
signal to noise ratios by NUWC as described in [25]. As no information was given

about the dynamic model for the vessel collecting data using the FLS, the following
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simple dynamic model was used

-xk + 0 T cos(oy)

+ v, T sin
Xisr = F(Xpyup) +de = | K7 O @) L a, (2.10)

Bk + S
v + 6vk

where dx is a white Gaussian noise process. The control input at time *, u;, =
[6¢ Ov]f, is represented by a change in heading, d¢, and a change in speed, dv, and
was backed out from the change in heading and velocity that had to occur in order for
a vehicle with the dynamic model f of Equation (2.10) to get from the integrated INS
position estimate at time k — 1 to the integrated INS estimated position at time step
k. The INS position estimates were used to model the unrecorded control input to the
vessel, rather than the more natural choice of using the INS readings as observations
in a dead reckoning model. This was done as no vessel dynamic model or control
input was recorded. In order to perform stochastic mapping on-board in real-time,
a dynamic model should be developed, the control input would be available and the
INS measurements would be used directly in a dead reckoning model. Such a system
would be more accurate and robust than the results obtained when post-processing
without the vehicle model nor control input available. We thus believe our result to
be a lower limit on the performance of the system.

Figure 2-20 shows a flow-chart representation of the structure of the stochastic
mapping algorithm utilized to perform concurrent mapping and localization given the

data from the on-board INS and FLS.

2.7.2 Post-processing results

The parameters used in the augmented stochastic mapping algorithm are shown in
Table 2.3.

The data set was collected from Narragansett Bay in Rhode Island in an area
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Figure 2-20: Structure of stochastic mapping algorithm utilized in the post-processing
of the INS and FLS data in order to perform concurrent mapping and localization.

Table 2.3: Parameters used for ASM post-processing.

sampling period, T 20 sec.
range measurement standard deviation 1m
bearing measurement standard deviation 0.6°
speed process standard deviation 4 cm/T
combined heading and INS process std. dev. 0.9°

INS speed measurements std. dev. 44 cm/T
gate parameter vy 10
track initiation parameters M=5N=4

,

known as Halfway Rock. Figure 2-21 depicts the Narragansett Bay area around
NUWC. An enlarged view of the Halfway Rock area is shown on the right in Figure 2-
21. The steep slope along the east of the Halfway-Fiske shoal gives way to a shipping
channel. The bathymetry in the test area varies from 15 to 0 meters deep (Halfway
Rock broaches the surface). Also, since the area is well inside Narragansett Bay it is
shielded from much of the ocean swell, thus allowing the ship’s dynamics to be similar

to that of an AUV.

Figure 2-22 shows all the returns obtained from the HRA sonar during the data
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Figure 2-21: Narragansett Bay area around NUWC (left), and the run area (right).
Courtesy of Carpenter [24]
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Figure 2-22: Result of post-processing of augmented stochastic mapping performed
from the data collected at Narragansett Bay leg A3 marked on the right figure of
Figure 2-21. Returns from the HRA sonar are shown by small dots, the DGPS
position fixes at each measurement point are shown by triangles, the CML result
is drawn as a solid line, the INS result is shown by small circles, the three known
features are represented by ‘x’ signs, and while estimated feature locations are shown
by ‘+’ signs. Left: The result for the entire mission. Right: A magnification of the
last 12 measurement points and estimates for the mission.
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collection at Narragansett Bay of leg marked A3 in Figure 2-21. There are three
known features, marked by ‘x’, located near the final position of the vehicle in addi-
tion to environmental features. Turning to the left plot of Figure 2-22 we see that the
sonar returns are disperse and it is hard to pick out single objects by eye. Further,
many environmental features have been initiated. Turning to the right of Figure 2-22
we see that quite good estimates of the know features were obtained. Also, the esti-
mated position of the vehicle performing CML is closer than that of INS to the “true”
DGPS position. Figure 2-23 displays the vehicle’s position as estimated from DGPS,
CML and INS, along with the 30 error ellipses for all the modeled environmental
features as well as two if the known features. The error ellipses are, however quite
large, and thus provide relatively poor positioning information. The reason for the
relatively large uncertainty in feature estimates is due to the very low re-observation

rate of features that occurred during this mission, as can be seen from Figure 2-24.
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Figure 2-23: The estimated features locations, marked by ‘+’, along with the 30 (99%
highest confidence region) ellipses for each of these estimates for post-processing of
the data from leg A3, shown in Figure 2-22.

The superiority of ASM over dead-reckoning is illustrated by Figure 2-25, where
the INS error grows linearly without bound, and the CML (that is, ASM) error
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Figure 2-24: The distribution of returns from the HRA used for track updating, track
initiation and the returns that were rejected as a function of sample number, that is,
20 seconds time increments a! which sonar returns were obtained. Notice how few of
the returns that were used for track updating and thus for improving mapping and
localization in the environment.

remains bounded. At ¢{ = 120 seconds, CML yields a worse estimate than the INS
due to a data association error. Figure 2-26 shows the errors and 3¢ errors bounds
for the position, heading and velocity estimates produced by post-processing of the
data through the ASM algorithm. The increase in uncertainty in position towards
the end of the run is due to the fact that no new features were observed during the

last part of the data collection.
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Figure 2-25: A comparison of root mean square error when relying on the inertial
navigation system (INS) versus the CML result produced by augmented stochastic
mapping as a function of time.
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Figure 2-26: Errors and 30 bounds (99% highest confidence bounds) for the position,
heading and velocity estimates produced by post-processing the data from leg A3
with the augmented stochastic mapping algorithm for performing CML.
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2.8 Failure modes

In this section, describe several different types of failures that have been encountered
in different CML missions that were performed under similar conditions. There are
three basic modes of failure for the system: divergence due to data association er-
rors, map slip (re-mapping), and mapping of ghost features (excess mapping). All
three of these failure modes are a consequence of giving a measurement the wrong
interpretation.

The most catastrophic failures of CML occur when measurements from one feature
are associated with the wrong feature for several consecutive time steps. The result
is that the system state vector is updated with erroneous data and the actual system
errors will move outside the error bounds specified by the system covariance matrix.
The system becomes overconfident and the estimate diverges. This type of failure is
most troublesome because the algorithm believes it is still providing accurate naviga-
tion information. This type of error will occur more frequently when multiple features
are close together and data association is more ambiguous. In addition, unmodeled
dynamics, currents and high clutter densities may lead the system to make this type
of error. As seen in Figure 2-27, when a data association error occurs, the vehicle’s
state estimate moves far outside the estimated error bounds. Thus, one promising
way of resolving data association errors on-the-fly is to compare the estimated vehi-
cle’s state after the incorporation of the last sonar measurements in the stochastic
mapping (SM) update step, to the estimate produced with dead-reckoning alone. If
the SM update predicts the state of the vehicle to be outside the dead-reckoning
error bounds, a data association fault may have occurred. This is the case since a
dead-reckoning estimate will always bound the true error and the SM update should
always produce an improvement over dead-reckoning, if there were no data associa-
tion errors. Thus, once a data association fault occurs, the track that was incorrectly
associated with the measurement can be identified and errors with association to this

track can be eliminated in the future. Knowing this, the SM update step can be
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redone without the incorrect data association, thereby maintaining consistency.

A second mode of failure that is encountered is “map-slip” as shown on the left
of Figure 2-28. This occurs if the vehicle’s position is close to the error bounds, and
due to the linearization of the non-linear measurement-to-vehicle coordinate transfor-
mation, all the features are re-mapped in new locations that are slightly shifted with
respect to the original map. A higher-level reasoning process may be able to detect
this type of failure during the mission and correct for it. Alternatively, this failure
could be corrected during post-processing. The danger of not resolving the failure
on-the-fly is that the algorithm is more prone to making incorrect data association
decisions which could lead to divergence.

The third type of failure is excess mapping illustrated on the right of Figure 2-28.
Due to multiple spurious measurements that by chance mutually support one another,
features that does not exist in reality are added to the map. This might occur if track
initiation is too aggressive, track deletion is too conservative, or if there is a very
high density of clutter. This type of failure does not usually have a catastrophic
effect on the accuracy of the AUV position estimate. The false features tend to be
randomly distributed and infrequently updated. Their presence, however, increases
the computational burden and increases the likelihood that measurements originating

from a nearby true feature will be incorrectly associated.
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Figure 2-27: Example of divergence due to data association error.
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2.9 Conclusions

In this chapter, we have presented an AUV model and developed augmented stochas-
tic mapping (ASM) for performing CML by an AUV. The issues of long-term per-
formance of ASM for an AUV equipped with a forward look sonar was investigated.
Sensor uncertainty, dropouts, false returns, vehicle dynamic model uncertainty, and
external current disturbances were incorporated. The results indicate that CML can
provide position estimation with long-term bounded error for navigation in unknown,
unmapped environments. With reasonable assumptions about sensor and vehicle
performance, positioning errors of a few meters were achieved for missions over five
hours in duration. The consistency of the error estimates produced by the algorithm
is maintained.

To further validate the method of ASM, an experiment in a testing tank modeling
an AUV and post-processing of oceanic data was performed. The experiment showed
excellent agreement with the simulation, thereby confirming the validity of the sim-
ulations. By post-processing oceanic data we obtained a significant improvement in
vehicle localization by performing CML in comparison to the localization achieved by
the inertial navigation system (INS).

Several of the failure modes for CML have been illustrated. These include esti-
mator divergence due to data association ambiguity, map slip, and initialization of
false targets that arise from spurious measurements. Surprisingly, acceptable CML
performance is maintained in many situations even when these errors occur. In gen-
eral, however, such errors increase the likelihood of data association mistakes which
may cause the CML process to fail catastrophically.

Future research is necessary in four important areas: 1.) mitigation of compu-
tation complexity, 2.) adaptive sensing and control, 3.) feature extraction, and 4.)
management of data association uncertainty. Computational complexity emerges as a
serious issue in the extension of CML to missions over very large areas with thousands

of features. As the size of the system covariance matrix increases, the computational
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burden of stochastic mapping increases as O(n?).

Adaptive sensing and motion strategies have the potential to improve state esti-
mation accuracy and robustness of CML [43].

The approach assumes that the environmernt contains salient features, and that
the vehicle’s sensors are capable of detecting them. There are many open issues for
research in feature extraction, such as the detection and representation of complex
natural terrain features. However, we find the feature extraction techniques utilized
by Carpenter et al. for the piccessing of data from the US Navy’s HRA forward look
imaging sonar [80, 24] and used in Section 2.7 promising.

Improved data association methods will be critical to enable operation in more
highly cluttered environments and to improve the robustness and reliability of CML.
Data association provides the means to initialize new features into the map, to as-
sociate measurements with map features, and to detect changes in the environment.
Improved decision making helps prevent failures and enables detection and recovery
when failures do occur. Hybrid estimation offers a theoretical framework for investi-

gation of more advanced data association decision making techniques [108, 105].

2.10 Summary

Extended missions in unknown regions present a significant navigational challenge for
autonomous underwater vehicles (AUVs). CML technology can provide a significant
improvement in the navigational capabilities of AUVs and can enable new missions in
unmapped regions without reliance on acoustic beacons or surfacing for GPS resets.
In this chapter, an AUV model was presented and augmented stochastic mapping
(ASM) was developed as a technique for performing concurrent mapping and local-
ization for mobile robots in general and for AUVs in particular. The validity of ASM
as a technique for performing long-term concurrent mapping and localization (CML)

was investigated for the scenario of an AUV making observations of point features
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in the environment with a forward look sonar. Simulation results demonstrated that
position estimates with long-term bounded errors of a few meters can be achieved un-
der realistic assumptions about the vehicle, its sensors, and the environment. Further
validation of ASM was demonstrated by the excellent agreement between simulation
and experiment in a testing tank, and by post-processing of oceanic data. Potential
failure modes of the algorithm, such as divergence and map slip, were discussed.
The necessity of future research in four important areas of 1.) computational
complexity, 2.) adaptive sensing and control, 3.) feature extraction, and 4.) data
association uncertainty was identified. In the next chapter, we will address the first of
these issues and present a new solution to the computational complexity encountered

by ASM. Chapter 4 will address the issue of adaptive sensing and control in CML.
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2.A Kalman filtering

In this section we will outline the Kalman filter and the extended Kalman filter. For

a full derivation we fefer the reader to [5, 46, 93].

A Kalman filter is an computationally efficient linear minimum mean square error
(MMSE) estimator for a dynamic system. We will limit ourselves to discrete time

systems, as the implementation is assumed to be performed using a digital computer.?

Next we will define a simple Kalman filter as a least squares estimator and subse-
quently extend this filter to a nonlinear system, known as the extended Kalman filter

(EKF). EKF is the core method used in stochastic mapping.

2.A.1 The Kalman filter

The Kalman filter is a linear MMSE estimator for a dynamic system. If the
dynamic model is linear and the noise processes are Gaussian, then the Kalman filter
is an optimal estimator. If the system is linear but the noise are non-Gaussian, the
Kalman filter is the best linear estimator. In this derivation we will assume a linear
dynamic system with Gaussian noise processes. A state-space representation of a

discrete-time stochastic system can be written in vector discrete form as
Xi+1 = FXy + dy,. (2.11)

Here Xy is the system’s (true) state vector at time step k. The matrix F is the

discrete time dynamic system model, and dy, is the discrete time noise process.

In addition some physical quantities, z;, of the system are observed and modeled

2Continuous time Kalman filters also exist, but will not be discussed here. See |46] for a derivation.
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by a linear observation model, H, given by
z;, = HX, + dzk, (212)

where d,, is the measurement noise process. The time index k in dy, and d,, will
often be dropped to simplify notation.

The stochastic noise processes dy and d, are assumed to be white, uncorrelated
Gauss-Markov processes [93] with covariance G and R, respectively. That is, the

system covariance G and the observation covariance R are given by

E(dxkdz,.) = oG
E(dzkdfn) = &R

and
E(dy,dl ) =0. (2.13)
where
1if k=n,
6Im =
0 if kK #n.

Further, without loss of generality it can be assumed that the noise processes are
zero-mean [46, 3).

To clarify notation, let X denote the true state at time step k and Xk|k—1 be the
estimmated state at time step k given all information up to time step £ — 1. The error

state is defined by

Xklk = Xelk — Xk- (2.14)

Using these definitions the Kalman filter can be derived as a linear MMSE estimator
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for the dynamic system given by Equations (2.11) through 2.13. The condition of
linearity and MMSE can be separated and stated as

Xpe = Xppp—1 + Ki(zp — Hxppp—y) @

. -~ def
Xpk = I)_{lm {E(xk“clek) = Pk]k} @
klk

(2.15)

where the condition @ imposes the linear constraint for some gain K to be determined.
The expectation operator is defined by E and the condition @ is the MMSE problem,
which is solved for the optimal gain K given ®. Combining Equations (2.12) and
(2.15) ® we have

Xk = Xpk—1 + KeH(X — Xge-1) + Kid,, .

Subtracting X, from both sides of the above equation and utilizing the definition of

Xkjk—1 = Xgjk—1 — Xk, We get

Xpe = Xip—1 — KeHXppp-1 + Kid,,

(2.16)
= (I-KiH)Xy-1 + Kidy,,
using this result in Equation (2.15) @ results in
Py = (I-K¢H)Pyy (I - KeH)T + KRK]
+(I - K H)E (- d,, T )KT
( k ) ( kjk—1Uz, ) k (217)

VKL E(dy K, ) (I - K(H)T
= (I - KkH)PHk..l(I - KkH)T + KkRKZ

where the two last terms are dropped out since E(X;x—1dz,) = 0 by Equation (2.13),
that is, measurement errors are uncorrelated. The optimal gain K, is chosen by

minimizing the length of the estimation error vector. This is equivalent to minimizing
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the trace of Py, thus?

—a—tra,ce(PMk) =0= —2(1 - Kk)Pklk_lHT + 2KkR,
OK

and solving for K, yields
K, = Pk|k_.1HT(HPk|k_1HT + R)_l. (2.18)

Substituting Equation (2.18) into Equation (2.17) and (2.15) ® yields the optimal
estimate X and associated covariance of the estimate Py; given the previous es-
timates Xgx_1, Pgx—1 and the measurement z;. This is summarized in the Kalman

updale as

Xee = Xgpp—1 + Ki(zp — Hxppp—)

(2.19)
Pur = (I- KiH)Pyp (I - KyH)T + K,RKT

Now that the optimal estimate given a measurement is obtained, we need to

propagate the estimate according to the dynamic model of Equation (2.11). That is,
d
Xk+1]k L E(Xg+1) = FXgjk,

since the noise process dy is assumed to be zero mean. The propagated covariance is

obtained by first noting the relation

Xetilk = Xk+ik — Xk

= FXg — dy,,

3We here make use of the relation for the partial derivative of the trace of the product of two
matrices A and B with B symmetric, %trace(ABAT) = 2AB [46].
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and then using the definition of Py = E(ikﬂlkif_'_l'k) to achieve
Piop = FPyFT + G

The two prediction steps are summarized in the Kalman prediction step as

Xi+1k = FXge

(2.20)
Prie = FPHkFT +G.

Given an initial state estimate Xg_; and covariance Pg_, the Kalman filter algo-

rithm is summarized in Figure 2-29.

1. Initialization:  xq_; = FE(X)
Py, = E ((xo1-1 — Xo)(Xo}-1 — X0)7)
2. Compute gain: Ky = Py HT (HPyHT +R)™'
3. Update: Xklk = Xglk-1T K, (zk — ka|k—1)
Py = (I - KiH)Pg—1(I - KiH)T + K, RK]
4. Prediction: Xkt 1)k = Fxpp
Pk+1|k = FPk‘kFT +G

5. Increment k.  Goto step 2.

Figure 2-29: The Kalman filter algorithm for the system of Equation (2.11) and
(2.12).

In brief, the Kalman filter estimates the state xx—; at time step k and summarizes
the information up to time step ¥ — 1. From this it produces an updated state
estimate Xy by linearly combining x;x_; with the observation z;. A predicted state
is obtained from the system model to produce x4k, thus completing the recursion.
A known control input, Bu, can be added to the system model of Equation (2.11),

which will result in an addition of this term to the prediction step. Further, the
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Kalman filter can be modified to handle colored noise and time dependent F, H, G

and R.

Next we will derive the extended Kalman filter from the Kalman filter.

2.A.2 The extended Kaiman filter

The key feature of the Kalman filter is that it uses a system and observation model,
Equations (2.11) and (2.12), to transform means and covariances. In the Kalman filter
approach, the system and observation model are linear and the transforms become
linear. However, in general the models are not linear but take on the more general

nonlinear form

Xir1 = £(Xg,up) +dy,
Zj = h(X;) +d,,,

(2.21)

where f and h are the nonlinear system and observation models and uy is a known
control input. The other variables are the same as in Equations (2.11) and (2.12).
However, propagating a covariance function through a nonlinear system does not
guarantee that the statistics are conserved. Thus, in order to circumvent the prob-
lem of transformation of nonlinearities, the nonlinear models of Equation (2.21) are
approximated through a Taylor series expansion, keeping only the first two terms.?
This approximation is equivalent to the assumption that the estimated mean at the
previous time step, X, is approximately equal to the true system state, Xy, at the
previous time step. Once these linearizations have been performed and assuming that
the approximation error is small, the filter is derived in the same manner as for the

Kalman filter. That is, using the MMSE problem formulation of Equation (2.15), the

4 Although not utilized in this thesis, the second order term may be included in the Taylor series
expansion to improve the estimate. However, this comes at a computational cost [46].
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linearity condition becomes

Xpe = Xpp—1 + Ke(ze — E[h(X)])

(2.22)
= Xgg-1+ Kk(h(X) - E[h(Xk)]) + K,d,,

where the second step was obtained by substituting in from Equation (2.21). How-
ever, computing the expectation in Equation (2.22) requires the knowledge of the
underlying probability distribution of X, which is not known. Thus, the nonlinear
observation model is linearized through a Taylor series expansion. Keeping the first

two terms of the Taylor series expansion of h about the mean xy_; yields
h(X;) ~ h(xgp-1) + HaXgp—1, (2.23)

where Hy = dh(X)/dX|x=x,,_, is the Jacobian of h with respect to X evaluated at
Xg|k-1- Combining Equation (2.23) with Equation (2.21), the expectation in Equa-

tion (2.22) can be computed as
E[h(Xk)] = h(xklk—l) + on + 0. (224)

The second term is zero as the estimator is required to be non-biased. The third term

is zero by the assumption that the observation noise process, d, is zero mean.

Combining equations (2.22), (2.23) and (2.24) and subtracting the true state X

we arrive at the equivalent form of Equation (2.16)
Xk = (T + KeHy)Xg -1 + Kid,,

and the extended Kalman filter gain K; and update step become identical to Equa-

tion (2.18) and Equation (2.19), respectively, with Hy substituted for H.

In order to arrive at the EKF prediction step, the nonlinear dynamic model, f, is

linearized through a Taylor series expansion about X as the probability distribution
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of X is not available. Keeping only the first two terms of the expansion yields
£(Xe) = £(Xkpe, we) + FxXppe, (2.25)

where Fy = df (X, uy) /dX|x=x,€| . is the Jacobian of f with respect to X, evaluated at

Xk|k-

Taking the expectation of the dynamic model in Equation (2.21) and utilizing

Equation (2.25), the predicted state in the EKF becomes
Xk+1lk = f(xklk, uk). (226)

The predicted covariance is found by subtracting Xy, from the left side and f(Xg, uz) + dy
from the right side of Equation (2.26), and using Equation (2.25) to approximate f

and computing the error covariance. That is,

Xi+1)k — Xk+1 = (ke wp) — £(Xp, i) — d,

Xp 1]k ~  F(Xkk, we) — F(Xpik, k) — FuXppe — dy,
= _inklk - dxk .
Pk+1|k = E[ik+1|ki{+l|k] = Fka“cF: + Gy.

Combining these results, the extended Kalman filter (EKF) is summarized in Figure 2-
30. The form of the EKF is chosen to resemble that of the conventional Kalman filter,
which is optimal for linear systems. However, the EKF is in general suboptimal due
to the approximations of Equation (2.23) and Equation (2.25). The statc estimate
and the covariances are all based on the assumption that the approximation error is

small. If this is not the case, the filter might diverge.
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1. Initialization:  xg—, = FE(Xy)
Poj-1 = E ((%o]-1 — Xo)(%o|-1 — Xo)”)
2. Compute gain: K, = Py HL (HuPip—HL + R,;)_1
3. Update: Xklk = Xglk-1t+ K, (Z,c - h(xk|k__1))
Pk|k = (I - Kka)Pk]k—l(I - Kka)T + KkRK',I;
4. Prediction: Xkt 1]k = (X, ur)
Prig = FyPFl + Gy

5. Increment k:  Goto step 2.

Figure 2-30: The extended Kalman filter (EKF) for the nonlinear system of Equa-
tion (2.21).

2.A.3 Computational issues

Kalman filters are recursive estimators and thus computationally efficient. As can be
noted from Figure 2-29 the covariance P and the Kalman gain K are independent of
the observation, and thus can be pre-computed off-line. Thus, for linear systems a
very large state vector can be estimated in real time. In the extended Kalman filter,
the covariance and Kalman gain are dependent on the observations, thus P, K and
the Jacobians of the system and observation models must be computed on-line for
each new observation. Thus, the non-linear filter is computationally expensive for
large state vectors x, and is proportional to the cube of the number of states. Thus,
real-time computations are very challenging for systems with hundreds of states and
more.

In much of the literature on Kalman filtering, the covariance update step is sim-

plified further to
P = (I — KHy)Pgji-1, (2.27)

which is computationally more efficient than the Joseph form covariance update of
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Equation (2.19). However, to prevent numerical instability in the computation of
the Kalman filter due to round off errors, it is advised that the square-root filter
or the Joseph form covariance update [5] be employed. These methods guarantee
the positive definiteness of the covariance. Equation (2.27) on the other hand, is
susceptible to round-off errors and will not guarantee positive definiteness. In this

thesis the Joseph form is used.

2.B Performance of gated nearest-neighbor data

association

The method in which data association is performed, that is, how the origins of mea-
surements are determined, is one of the major factors affecting the performance of
CML. Several methods for resolving the data association problem have been proposed
in the literature, such as, the nearest neighbor standard filter (NNSF) [4], the prob-
abilistic data association filter (PDAF) [4], and integrated mapping and navigation
(IMAN) [108]. The NNSF is the simplest method to implement and is a gated nearest
neighbor data association technique similar to the one used in this thesis. That is,
the “nearest” return (measurement) to an estimated feature falling inside a validation
gate is used for updating the state of the feature. The problem with choosing a near-
est neighbor approach is that, with some probability, the associated measurement is
not the correct one. This probability will be derived next.

The factors that affect the performance of the data association filter used in this
thesis are environmental variables, such as the density Ay of new (actual) features,
the density Ar of false features (clutter), and the validation gate size, v. From the
point of view of a given feature, extraneous measurements arise either from clutter

or from new true features and have a spatial density at any given sampling time of

A= Ap+ Pply, (2.28)
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where Pp, is defined as the probability of detection. Assuming a uniform distribution
of the extraneous features with density A and a Gaussian distribution for the mea-
surement of the actual feature, the probability that a return (measurement) from the
extraneous features will be closer to the estimated state than one from the actual
feature will give the probability for an incorrect data association when using NNSF.

This probability will now be derived in the general d dimensional space.

Consider an d dimensional volume V where N extraneous features are placed

randomly and independently. The density of points is given by

A=

<|=

(2.29)

The probability that an extraneous feature lands in a small volume v is v/V. There-
fore, the probability for not having an extraneous feature in v is (1 — v/V). The
probability, Fy, for having no extraneous feature within the volume v after having
placed N extraneous features independently into the container volume V is given by
[(V=v)/V]YN =[1 - (M)/N]N. As N and V are increased, holding A and v fixed, we
find

Py= lim (1- )" =e™™. (2.30)

Now, the probability distribution for the observation of an actual feature, T, given
that it was detected, D, is assumed from the Kalman filter to be normally distributed

over the innovation, v = z — h(x), with the associated covariance matrix S. That is,

1 1, T
-3 TS 1y

p(T|D) =N(v,8) = WC’

: (2.31)

where o; are the square roots of the i'th eigenvalue of S. The probability that an

observation of an actual feature is in the d dimensional shell, dv, surrounding the
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volume v, given that the feature was detected is given by
P(T|D) =N (v,S)dv (2.32)

CPF where N (v, S) is a normal distribution with mean v and covariance S.

Assuming independence of the actual features observations and the extranecus
features, the probability distribution of there being an extraneous return, F, origi-
nating inside the volume v, and an actual return in the shell surrounding v is given

by
p(F|D) = N(v,8) - (1 — e™) - dv. (2.33)

From this equation we can find the probability that a return from an extraneous
feature was closer to the estimated feature than the true return, inside the volume v

by integrating Equation (2.33) over the volume v, i.e.

1 1

P(F|D,v) = | —————¢73¥"87'7(1 _ ¢~ ). 2.34
(FID,v) /v(%)dﬁ,moie (1 e)do (2.34)

In the NNSF, gating is performed on the measurements before the nearest neighbor
is chosen. Typically v standard deviations are chosen, thus defining the volume v.

More precisely, a p-standard deviation volume v in d dimensional space is given by

d
v = cp? H i, (2.35)

where the constant ¢ is the volume factor of the d dimensional unit sphere (2, 7, 47/3,

etc.) Therefore, the d — 1 dimensional shell surrounding this volume is given by

d
dv = dcp®! Ha,-dp . (2.36)
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Further, notice that ¥7S~'v < p? defines the volume v. Thus by changing the
coordinate system: and combining equations (2.34), (2.35) and (2.36) we arrive at the
general form for the probability of a false association given that the actual feature

was detected and a validation gate of v standard deviations was used as

v 1
PFID) = [ et ie P (1- e Mogap, a>0. (237

In order to find the probability of false association given the gate v we need to
include the probability of detection, Pp, of an actual feature. This is done by use of

Bayes rule,
P(Fl|y) = P(F|D,~)Pp + P(F| ~ D,v)(1 - Pp). (2.38)

We notice that the probability of making a false association given that no actual

feature was observed, ~ D, within the validation gate v is given by
P(F|~ D,y) =1 — e ie, (2.39)

That is, the probability that an extraneous return falls within the validation gate
7. Combining equations (2.37), (2.38) and (2.39) we arrive at the general form in d

dimensions for an incorrect association to take place when using the NNSF:

P(F|D) = Po/ (er )d/zpdl"’(l e o )dp 4 (1 — e Ty (1 — Pp).

(2.40)

This integral can be solved analytically with the inclusion of the error function for

certain dimensions, in particular d = 1,2 and d = 3. For the NNSF in two dimensions
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integrating out Equation (2.40) yields
P(Fl7) = (Pb/8) [(1 —eF)p-(- e-’zfﬂ)] L (1= THey(1 — ppy), (241)

with 3 =1+ 270109, and X > 0.

The left figure in Figure 2-31 shows the probability of incorrect data association
for different values of Pp, with v = oco. The right figure shows the change in the
portability of incorrect data association for different gate values, 7. In these plots,

the probability of detection is set to Pp = 0.9.

g1 8! -

= 8

205 808!

< <

50.6' P.=1.0] §0.6

§ P,=0.9 §

04 P08l 204

: ol 2

202 61 =92

€ L oooe P:=0.5 )

8 ; 8

& 0 1—2 | o° 10° =0 107 o’ 10°
2mio 3, 2mio d]

Figure 2-31: Left: Probability of incorrect data association for v = oo for different
probability of detections, Pp. Right: Probability of incorrect data association for
Pp = 0.9 for different gate parameters +.

Figure 2-31 makes explicit the performance of the data association technique em-
ployed in this thesis as a function of gate size, -y, probability of detection, Pp, and the
expected number of extraneous feature measurements falling within a standard de-
viation ellipse of the measurement uncertainty in two dimensions, 2w \o09. Clearly,
choosing a small gate size, decreases the probability of incorrect associations. This,
however, comes at the expense of decreasing the probability of making correct associ-

ations as well. Thus, one should choose 7 as large as possible in order to increase the
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probability of correct associations. However, if 2r\o10, = 1, a gate size much greater
than 1 would for most systems cause too many incorrect associations to take place.
Further, the advantage of higher probability of detection is most prominent for smail
values of 27 Ao 0,. This suggesting that efforts concentrated on reducing 27 Ao, 05 is

more fruitful than one focused on increasing Pp.
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Chapter 3

Decoupled Stochastic Mapping

This chapter focuses on the map scaling problem, presenting new, computationally
efficient solutions to the map-scaling problem that combine a decoupled map repre-
sentation with consistent methods for transferring vehicle location information from

one submap to another.

3.1 Introduction

A key stumbling block in the development and implementation of new methods for
CML has been the issue of computational complexity, both in CPU time and memory
requirements. Current state-of-the-art approaches for CML incur a high computa-
tional peralty as the size or complexity of the operating environment is increased.
In the case of a stochastic mapping approach to CML, map scaling is the primary
cause of complexity. Map scaling refers to the problems encountered in maintaining
an ever-growing number of vehicle-to-feature and feature-to-feature correlations as
the size of the operating environment increases [68].

The optimal algorithm that retains all correlations [110] encounters an O(n?)

computational burden, where n is proportional' to the number of features, which

'If n, is the number of states used to describe a feature and N is the number of features, then

107
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becomes intractable as the size of the operating environment is increased. The cor-
relations arise because the locations of neither the vehicle nor the features are ever
known precisely. If a mobile robot uses an observation of an imprecisely known target
to update its position, the resulting vehicle position estimate becomes correlated with
the feature location estimate. Likewise, correlations are introduced if an observation
taken from an imprecisely known position is used to update the location estimate of
a feature in the map. In fact, it can be shown that the correlation coefficient between
features will approach unity, that is, perfect correlation, in the limit as the number of
observations goes to infinity. Thus, methods which neglect these correlations miss one
of the central properties of the map, and will result in failure of the algorithm in the
long-term. The failure of simple strategies that ignore the correlations (such as [68])
has been demonstrated in simulations by Uhlmann et al. [124] and in experiments by
Castellanos et al. [26].

An alternative is to attempt to bound the correlations. Uhlmann and colleagues
introduced a tool for CML state estimation called covariance intersection (CI) that
produces consistent erry, estimates in situations where correlation information be-
tween states is unknown [124]. The methods for CML implemented with CI maintain
conservative estimates, but are too conservative because they always ignore the corre-
lations, thus causing an unbounded growth of uncertainty for large-scale long-duration
missions [123]. The idea behind our work is to develop a strategy that can maintain
correlations in submap regions, but ignore correlations across submaps in a “safe”
way such that consistent error bounds are maintained.

The objective of decoupled stochastic mapping (DSM) is to circumvent the O(n?)
computational burden and the O(n?) memory requirement of conventional stochas-
tic mapping [111] while providing consistent, globally-referenced error bourds and
achieving performance that is comparable to full covariance stochastic mapping. The

key ideas behind DSM are to use a decoupled map representation, consisting of multi-

n=nyN.
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ple globally-referenced submaps, and to employ consistent methods for transitioning
vehicle position information between submaps. The DSM approach results in a con-
stant upper bound for the computational requirements, both in CPU time and in
memory requirements, while the storage requirements grow with the number of fea-

tures mapped.

Several previous researchers have used muitiple local maps in a CML aigorithm.
Betgé-Brezetz et al. [17] used multiple local maps to isolate odometry errors. This was
an extension of “relocation-fusion”, which is a suboptimal stochastic mapping method
introduced by Moutarlier and Chatila to reduce susceptibility to odometric errors for
land robots [90]. Chong and Kleeman used multiple local maps to address the issue
of map scaling for indoor mobile robots using a novel sonar array that can identify
plane and corner features from a single vantage point [29]. When the vehicle enters a
new map region, relocation of the vehicle between maps is accomplished by building
a new map and matching that map to a previously stored sub-map, using a matching
technique developed exclusively for the advanced sonar sensor employed [29]. Our
work is different because all the submaps in our DSM approach are globally-referenced.
Consistent, globally-referenced error bounds are maintained by carefully managing
the transitions between submaps. This enables global reduction of uncertainty in a
submap upon re-entry to the map, which is fundamentally different from the work of
Chong and Kleeman in which the global error of a submap can never decrease below
its initial global uncertainty. Further comments regarding what we believe are the
important differences between our work and Chong and Kleeman'’s work are provided

in Section 3.6.

As discussed in Chapter 2, the stochastic mapping approach assumes that distinc-
tive features of the environment can be extracted from sensor data and represented as
points in an appropriate parameter space. Other types of representations are possible
and have been employed with success in land and marine robot systems. For example,

Thrun [119] has demonstrated highly successful navigation of indoor mobile robots
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using a combination of grid-based [37] and topological [62] modeling. Stewart [113]
and Singh [103, 104] have successfully employed grid-based modeling techniques for
marine sensor data fusion. Our hypothesis is that in many marine environments,
salient features can be found and reliably extracted using state-of-the-art processing
techniques [24, 80], enabling a feature-based approach to CML [109]. Feature extrac-
tion is not addressed in this chapter; our simulations assume that measurements of

point features are provided and that clutter and drop-outs are present.

The structure of this chapter is as follows. Section 3.2 summarizes the theory
of augmented stochastic mapping (ASM) developed in Chapter 2. ASM is a full
covariance stochastic mapping algorithm which incorporates nearest-neighbor data
association and logic-based initiation and deletion of features and is performed in
each submap. Section 3.3 describes decoupied stochastic mapping, in which the en-
vironment is represented in terms of multiple overlapping submaps. Section 3.3.1 de-
scribes the cross-map vehicle relocation strategy for transitioning between submaps,
and Section 3.3.2 describes the cross-map vehicle updating map transition technique.
These two methods transfer vehicle position estimate information across submaps
while maintaining consistent error bounds. Section 3.3.3 uses the cross-map vehicie
relocation method to describe single-pass DSM, which is a constant-time algorithm
for large-scale CML. Single-pass DSM exhibits small, linearly growing errors with
distance from the starting point. Section 3.3.4 describes multi-pass DSM, which uses
a combination of the two map transition strategies to enable robust and consistent
reductions of global errors between submaps to achieve a performance bound that
is comparable to the result obtained using full covariance stochastic mapping. Sec-
tion 3.4 presents simulation results of full covariance stochastic mapping, single-pass
DSM and multi-pass DSM, as well as a comparison of the two new approaches for
large-scale, long-duration missions. Section 3.6 summarizes our results, and discusses
open issues for future research. Section 3.7 gives a brief chapter summary. Ap-

pendix 3.A provides a mathematical justification of the consistency of the Cross-map
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updating submap transition technique.

3.2 Augmented stochastic mapping

The kernel used for performing CML is the technique of augmented stochastic map-
ping (ASM) developed in Chapter 2. ASM is a feature-based approach to CML based
on stochastic mapping. Stochastic mapping is a particular way of organizing the
states in an extended Kalman filter in order to perform CML (see Appendix 2.A) and
is described in detail in Section 2.3.
In ASM, as detailed in Chapter 2, a single estimated state vector xg); = [x] X ... xy[{);

is use to represent the robot’s state, x,, and all the feature states, x;...xy at time
index k, given all information up to time index j. The estimated error covariance

takes the form

Prr Prl T PrN -
P, Pu --- Py P, P
Pue=| " . = lp P'f : (3.1)
Soos e o P ] e
_PNr Pyp --- PNN_ K|k

The vehicle’s estimated state x, = [z, y, @ v]T represents the vehicle’s east
position, north position, heading, and speed, respectively. The estimated state of
feature i is represented by x; = [; y,r]T. The dynamic model used in the algorithm
for modeling an AUV is described in Section 2.2. In short, the dynamic model for

the AUV is given by
Xi1 = £( Xy, ug) + G(ug)dy, (3.2)

where, f and G are defined by Equation (2.3) and (2.4), respectively, and X is the

true state. The control input u to the vehicle is given by a change in heading, d¢, and
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speed, 6v, of the vehicle to model changes in rudder angle and forward thrust, that
is, ux = [6¢ dv]T. The stochastic process dy is white and Gaussian and independent

of Xgp-

Observations are made by range and bearing measurements of features relative to

the vehicle’s state described by the observation model h (see Section 2.2), that is
zr = h(X;) + d,, (3.3)

where d; is a white, Gaussian, and independent of x¢ and d,.

Given the dynamic model, f, and observation model, h, stochastic mapping is
employed to estimate the state x and covariance P given the measurements. Track?
initiation and data association are performed by use of a delayed nearest neighbor
track initiator and a gated nearest neighbor data association filter as described in
Section 2.4. In this chapter, we only utilize a track deleter that checks for consistency

among tracks, as described in Section 2.4.

In Chapter 2 we showed that the ASM algorithm produces consistent, long-term
bounded error for navigation in unknown, unmapped environments. With reasonable
modeling assumptions about sensor and vehicle performance, including, false returns,
drop-outs and the presence of an unknown current, positioning errors of a few meters
were continuously achieved during missions extending over five hours in duration.
However. in Chapter 2, only 50 features were present in the 1.2 km by 1.2 km sur-
vey area, so that the computations could be performed with Matlab on a 233 MHz
Pentium processor faster than real time. If the number of features is increased to
more than about 100 features, the real-time performance criteria cannot be met by
any currently off-the-shelf personal computer. This computational difficulty is the

primary motivation for the development of a decoupled approach to CML.

2A track is a a feature estimate.
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3.3 Decoupled mapping

In decoupled stochastic mapping, we break the global map into muitiple, globally-
referenced submaps. Each submap has its own vehicle position estimate, a set of
feature estimates and a corresponding estimated covariance matrix produced by ASM.
In this chapter, the physical size of all submaps are the same, and their physical
location is implicitly determined a priori. More advanced, adaptive strategies for
map location and sizing could be utilized. In the strategy employed here, a new
submap is created and initialized when the vehicle moves out of the current submap.
The submaps overlap slightly in order to not cause excessive map switching. It should
be noted that a submap will only be dependent on the maps created before it and
not on the ones created after it.

The idea of creating a new, globally referenced submap when the computational
cost of the current map has become sufficiently high is a simple one. The first challenge
is how to be able to reuse old submaps and thus be able to move between maps in
a consistent manner. The greater challenge is how to used the information gained
from mapping one submap when re-entering an old submap in a consistent manner
in which some of the new information is passed on and exploited. This is a subtle
but extremely important point. If submap A has been generated and it is decided
that one needs to generate a new submap B, the states of the vehicle as well as all
the features being mapped in B will be dependent on the state of the vehicle when
submap B was created, and thus, in turn, dependent on submap A and the vehicle
state in submap A. Thus, submaps A and B become dependent. Thus, any attempt
to move between the two maps and use the information gained by being in one
submap to increase the certainty of the other submap must be made with caution so
that already existing (dependent) information is not reused, thus making the system
over confident. We have developed two methods for moving between maps. Cross-
map vehicle relocation is used for consistently utilizing an old map, and bears some

similarity to the submap relocation strategy of Chong and Kleeman [29]. The second
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method, cross-map vehicle updating, can use the information gained in one submap
to improve the state estimates in the second submap.

Next, the ideas and development of cross-map vehicle relocation and cross map
vehicle updating are presented. Then, the use of these techniques in order to perform

single-pass and multi-pass DSM is described.

3.3.1 Cross-map vehicle reiocation

The purpose of cross-map vehicle relocation is to enable a vehicle to retrieve a submap
of an already mapped region. In this step, there is only the requirement that this is
done conservatively, and not that information for improving the accuracy of the vehi-
cle estimate is passed between the submaps. To make the discussion more concrete, let
us assume that the vehicle is currently in submap A and is entering submap B, which
already exists. The state estimate of the vehicle and all the features of submap A are

described by x* and covariance by P4, in analogy with Equation (3.1):

P, P - Pl
PA Pf‘r Pfl PfN _ Pfl‘:‘ Pff 3.4
ke = | . _ _ = : (3.4)
P4 P4
fr ff klk
PA, Ph - PR,

Similarly, let xZ and P? define submap B. In performing relocation upon entry
into submap B, the vehicle state estimate from submap B, x2, is the estimate at
the time the vehicle left submap B during the last visit to this submap. Thus, this
vehicle state estimate is not of interest as it no longer estimates the physical location
of the vehicle. Further, the feature states of submap A, x?, are not of interest when
operating in submap B as these estimates are per definition not maintained in submap
B. The estimates that do describe the physical quantities of interest upon re-entry

into submap B are the vehicle’s state estimate of submap A, x, and the feature
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estimates of submap B, xZ. Thus, our new state estimate upon re-entering submap

B from submap A is given by

xB = . (3.5)

The san serif font, x, is deliberately used to distinguish the state of submap B before
relocation, xZ, and the state of submap B, xB, after the relocation. The same font
selection will be used to distinguish the covariances, P, before a relocation or update
step and the covariance, P, after a relocation or update step. This notation is chosen
as the estimates both exist at the same point in mission time.

In order to ensure the consistency upon re-entry into submap B, our estimate
of the covariance after the relocation step, P2, must be greater or equal to the true

covariance of the state, x2, of submap B after relocation. That is® |

(
PE > C(xP,xP) ®
PP > C(x",x%) = { PE, > C(xZ,x5) @ (3.6)
-1

where C' defines the covariance operator defined by
C(x,%) = E[(x - X)(x - X)7], (3.7)

where E is the expectation operator. The (7, j) element of this matrix is defined by

oo

E[(z; - Xi)(z; — X;)] = / p(Xi, X;)(z; — Xi)(z; — X;)dX;dX;, (3.8)

where p(X;, X;) is the joint probability of states X; and X; and where, as in Equa-

3By > for matrixes we mean in the positive definite sense. That is, for any matrixes A and B,
if A > B then xTAx — xTBx > 0,V x.
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tion (2.6), capital letters define true states and small letters represents estimated

states.

Returning to Equation (3.6), from the properties of stochastic mapping and submap A
we know that constraint @ is met if

PE > P2 since P2 > C(x4,x2) = C(xB,x5). (3.9)

rIor

From submap B we know that constraint @ is met if
PY > P7; since P7; > C(x7,x7) = C(xF,x§). (3.10)

However, we have not gained or lossed any information about the features, thus the

inequality in Equation (3.10) must be an equality, that is

P =P} (3.11)

The last constraint, @, from Equation (3.6) places a constraint on the relative

values of P2,

P)‘?f and Pff. We know from the properties of Kalman filtering, and

from stochastic mapping in particular, that
PZ - PZPET'PE >0, (3.12)

is assured as required by @. From a geometric point of view, we do not have the
freedom to change Pff in Equation (3.12) as this will “squeeze” the total error ellipse
formed by P? along the hyper planes formed by the vectors x? and x§, which will
cause non-conservative estimates. Thus, we do not have the freedom to change Pf’}

and

PP « PE. (3.13)
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Further, given Equation (3.11), the only freedom we are left with in constraint @ of
Equation (3.6) is in the choice of PZ. We note that the matrix on the left side of

constraint @,
P2, —PEPET'PE, (3.14)

has a physical interpretation — it is the residual error in the location of the features
if a perfect measurement of the vehicle location became available.* As the vehicle and
feature locations become more correlated, the size of this matrix decreases. In the
limit as the vehicle and feature locations become completely correlated, the matrix of
Equation (3.14) decreases to zero.® Since the time when the vehicle left submap B,
the degree of correlation between the vehicle and the features of submap B cannot
increase. New process noise affecting the vehicle will decrease the extent to which
improved knowledge of the vehicle location can imply improved knowledge of the
feature locations. Hence, when the vehicle re-enters submap B, the size of the matrix

in Equation (3.14) must be increased, that is
-1 -1
P —PLPL T PE > P —PIPL P) (3.15)
Using Equation (3.11) and Equation (3.13), Equation (3.15) becomes

B-lpB B-1
Pj}'grPrr Prf < P?rprr PrBj

(3.16)
PE > PB.

We note that if we add any positive definite matrix to P2 in Equation (3.12), the

greater or equal sign will become a greater than sign. Thus, all constraints are met

4This can be seen by applying the Kalman filter equations with a measurement of vehicle location
with Rx,; = 0 from the notation of Appendix 3.A.
5 Perfect knowledge of the vehicle location would imply perfect knowledge of the feature locations.
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if we let
PE + P2 +PA. (3.17)

The cross-map relocation step for moving from submap A to submap B can be

summarized as

3.3.2 Cross-map vehicle updating

The goal of cross-map updating is to obtain an improved vehicle state estimate using
vehicle state information from a neighboring submap, while maintaining a conserva-
tive error covariance for the submap. Given a more accurate vehicle location estimate,
x4, from a neighboring submap that was created earlier than submap B, the question
is, how can we safely transfer the vehicle location information into submap B? To ex-
plain our strategy. it is useful to first consider several strategies which are unsuccessful
for one reason or another.

The first idea one might consider is to simply replace the vehicle state estimate
for submap B with the state estimate from submap A, xZ < x4, and to replace
the corresponding vehicle covariance submatrix, P2 « PA. The problem with this
approach is that the submap B covariance matrix, P?, can no longer be guaranteed to
be positive definite; such a replacement violates the physical meaning of a covariance
matrix and thus violates the consistency of the submap.

A second idea that overcomes this would be to use the machinery of the Kalman
filter to perform the update — that is, to use the vehicle location estimate from

submap A as a measurement of the vehicle location in a Kalman filter that uses
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the vehicle covariance in submap A, P2, as the assumed measurement noise in the
Kalman filter update equations for submap B. While this strategy maintains posi-
tive semi-definiteness, it violates the independence assumptions of the Kalman filter
and produces overconfident estimates of both the vehicle locations and the features.
Because the vehicle location estimates x2 and xZ are not independent, using x2 as a
measurement of the vehicle position results in some information being used twice. In
addition, due to the correlations between the vehicle and the features in submap B,
performing a vehicle update measurement in this way also updates the locations of
the feature states in submap B, and greatly reduces their error covariances, even
though no new information about the locations of these features has been obtained.
In effect, a “mistaken update” is made to the feature locations. Hence consistency is

lost for both the vehicle location estimate and the feature location estimates.

To amend this, two additional steps are taken. We can negate the effect of using
vehicle location information twice by “throwing away” the old vehicle estimate before
the update. This is done by setting xZ to a completely random position within the
submap, and inflating the vehicle covariance PZ by a vast amount, equivalent to the
vehicle being anywhere in the entire global map. After the Kalman update, the re-
sulting vehicle state estimate is effectively replaced by x2, its covariance becomes PZ
and the correlation terms P,‘:%r between the vehicle and features are greatly reduced.
In effect, the great inflation of the vehicle state estimate before the update serves to

“de-correlate” the vehicle estimate in submap B from its feature location estimates.

We are still left, however, with the fact that the map B feature states have been
updated and the corresponding features covariances greatly reduced, despite the ad-
dition of no new information about their locations. To rectify this, we simply add
the a priori map B feature covariance P?f to the a posteriori feature covariance
after the Kalman update. We know that the resulting covariance must be positive
semi-definite, because the Kalman filter always yields a positive definite matrix, and

adding a positive semi-definite matrix to any submatrix of a positive semi-definite
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matrix always yields a positive semi-definite matrix. In addition, we know that the
resulting feature covariance matrix must be consistent, that is, it must bound the
actual feature location estimates. We know this because the residual covariance after
the cross-map Kalman update bounds the amount of the “mistaken update” of the
feature locations that occurs during the Kalman update, and the @ priori feature
covariance bounded the feature location estimates before the update. Appendix 3.A
provides a more detailed mathematical justification. Because the Kalman gain is in-
dependent of Pf;, it is equivalent to multiply P£; by two before the Kalman update.

This approach is similar to what occurs during cross-map vehicle relocation: op-
timality is sacrificed, but consistency is maintained. In this way, improved vehicle
location information is transferred from submap A to submap B, and subsequent
measurements of the features in submap B allow the accuracy of submap B to be
improved. The cross-map vehicle update step is summarized in Figure 3-1.

Having two tools for passing between submaps, cross-map vehicle relocation and
cross-map vehicle updating, we now move on to define two concurrent mapping and
localization algorithms that utilize these methods. The first one is single-pass decou-
pled stochastic mapping, which is suitable for missions in which maximum accuracy
is desired after only a single transit through the environment. The second method
is labeled multi-pass decoupled stochastic mapping. Multi-pass DSM is more suit-
able when the vehicle will be able te make repeated passes through its environment,

improving the accuracy of its map with each pass.
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Figure 3-1: Summary of cross-map updating for a vehicle moving from submap A to
submap B. Submap A was created before submap B. An EKF update of the vehicle
position in submap B using the vehicle location from submap A as a measurement
is performed in the last three equations. By “random(mapg)”, we mean a random
value from all possible values the vehicle can take in submap B. By “size(mapg)”
we mean the square of the maximum value that any of the vehicle states can have in

submap B.
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3.3.3 Single-pass DSM aigorithm

The purpose of single-pass decoupled stochastic mapping (DSM) is to perform con-
current mapping and localization as accurately as possible the first pass through the
region. For this reason, we utilize and create dependencies between features in ad-
jacent maps. This causes a slower growth in the uncertainties, but prevents us from
doing a cross-map vehicle update and all traverses between submaps are done through
cross-map vehicle relocation. Thus, we are unable to reduce the uncertainties of a

submap below the uncertainty that it had when it was created.

The important difference between single-pass DSM and multiple-pass DSM lies
in the way submaps are created. In both methods, a new map is created when the
vehicle leaves the region of a submap and moves into unexplored territory. However,
in single-pass DSM, the vehicle state as well as a set of features, called correspondence
features, are used to initialize the new map. These features are chosen because they
have a very high likelihood of being re-observed at some time during the vehicle’s
time spent in the new map. Thus, because these features are known more accurately,
the vehicle is able to produce a more accurate map than without the existence of
these features. As a result, the uncertainty grows more slowly than if these features

were not included when creating a submap.

To be more precise, let us assume that we are moving out of submap A and are
about to create submap B. From submap A we have P4 and x*# which, for clarity,
can be separated into the states and estimate for the vehicle, denoted by subscript r,
correspondence features, denoted by subscript F', and the remaining features, denoted

by subscript f. That is,

P/ P} P} x

Pi=|Ps PA, P, x*=[xp]. (3.18)
A A A A
Pr. Pip Pj Xf
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Figure 3-2: Structure of the single-pass decoupled stochastic mapping algorithm. The
augmented stochastic mapping (ASM) algorithm structure is outlined in Figure 2-4.

Then submap B is created from P# and x* in the following way:

PA PA x
F R
P |7 1, x

(3.19)
Pé‘r P?‘F‘ X

o

A block diagram of the single-pass decoupled stochastic mapping algorithm is shown
in Figure 3-2.

Notice that cross-map vehicle updating is not utilized in this algorithm. If it
was, the algorithm would become overconfident because of the dependent information
between maps caused by the correspondence feature estimates, that is, xp, Ppp,
Pr, and P,r. Notice, that there might be features that are mapped in adjacent
submaps that are not correspondence features, and there might well be correspondence
features that are never observed from the new submaps. However, the more a prior:

information one has about the environment and the properties of the sensor being
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employed, the more these inefficiencies can be reduced.

3.3.4 Multi-pass DSM algorithm

The purpose of multi-pass decoupled stochastic mapping is to have a method where
the global error of a submap can be reduced by revisiting the submap. For this
reason, multi-pass DSM is suitable for areas that will be revisited. The reduction of
global uncertainty of a submap is obtained by utilizing cross-map vehicle updating.
Further, it should be noted that this can only be performed to a submap that was
created later in time due to the dependence between the submaps. For the instances
when the vehicle travels back to a submap that was created earlier in time, cross-map
vehicle relocation is employed just as in single-pass DSM.

In order for cross-map vehicle updating to be applicable, correspondence features
are not initialized. Thus, if the vehicle is moving out of submap A to create sibmap B,
submap B is only created from the vehicle state estimate of submap 4. That is, using

the same notation as in Equation (3.18),
PE « P2, xB x4 (3.20)

As there are no correspondence features used in multi-pass DSM, the feature
states between submaps are independent in the sense that their estimates do not
share any measurements. However, there will likely be features in adjacent maps that
are represented in both submaps. It should Le noticed that the feature states of a
map will be (weakly) dependent on all earlier maps because a map is always initiated
with the vehicle estimate and state from the earlier map upon creation of the later
map. For this reason, cross-map vehicle updating can only be performed to a later
map, and not the reverse.

It should also be noted that the multi-pass and single-pass algorithms can be used

interchangeably. That is, if during a mission, one expect to revisit some areas but
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Figure 3-3: Algorithm structure for the multi-pass DSM method. In contrast with
single-pass DSM, two different map transition strategies are used. Cross-map vehicle
relocation is used when transitioning from higher to lower maps, and cross-map vehicle
updating is used when transitioning from lower to higher maps. Also, in multi-pass
DSM, the submap regions do not overlap, although different submaps can possess
estimates of the same environmental features that are independent (in the sense that
they do not share any measurements.) The augmented stochastic mapping (ASM)
algorithm structure is outlined in Figure 2-4.

not others, the multi-pass algorithm should be used in the areas one expect to revisit

while the single-pass algorithm for the areas one will not revisit.
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3.4 Simulation results

To evaluate the performance of decoupled stochastic mapping for performing concur-
rent mapping and localization, a number of long-term, large-scale AUV missions have
been simulated. In this chapter we first present a detailed analysis and comparison of
single-pass and multi-pass DSM with the optimal (single map) augmented stochastic
mapping (ASM) algorithm®. The survey area and number of features were chosen so
that an ASM result could be obtained. Secondly, results are presented for the per-
formance of decoupled stochastic mapping for very long-term missions with a large
number of features. The comparison tc ASM can not be made, as the computational

complexity would become intractable for any of the computers we have available.

The parameters used for these simulations are summarized in Table 3.4 and are
based on the characterization of an AUV such as the Odyssey II [12] equipped with
a forward looking electronically scanned sonar [97]. The AUV is assumed to be given
a differential GPS reset at the start of the mission, thus providing an initial position
uncertainty of less than one meter. The power consumption of the AUV is not taken
into consideration.

In these simulations, false measurements are generated by assuming that the num-
ber of spurious returns has a Poisson distribution with an expected value of A\. The
range and angle of the spurious returns are uniformly distributed over the field of
view of the sonar. The probability of detection of features is set to Pp = 0.9. Sonar
measurements and dead reckoning measurements are obtained at 1 Hz. In these sim-
ulations, the physical boundaries of the submaps were set to be 525 by 525 meter
squares. This size was chosen so that, given the feature density, the number of fea-
tures in each submap would generally be less than 50. Further, they are placed so

that the boundaries overlap by 25 meters. This was done to prevent excess transitions

6The reader is reminded that using DSM with only one map for the entire region is identical to
using the ASM algorithm alone. Utilizing ASM for the entire area, is the optimal estimation solution
as all cross-correlations are maintained.
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Table 3.1: Decoupled SM simulation parameters.

sampling period, T 1 sec.
maximum sonar range 200 m
sonar coverage angle +40°
range measurement standard deviation 0.5 m
bearing measurement standard deviation 5°
feature probability of detection 0.90
vehicle cruise speed 2.5m/s
speed process standard deviation 5% of ov
heading process standard deviation 2.0°
dead reckoning speed standard deviation 0.4 m/s
dead reckoning heading standard deviation 3.0°
initial position uncertainty std. dev. 0.7m
initial heading uncertainty std. dev. 5.0°
initial speed uncertainty std. dev. 0.2m/s
gate parameter 7y 9
clutter parameter A 1
track initiation parameters M=5N=4

between submaps when the vehicle moves along the boundary between two submaps.
This also prevents the generation of excess submaps for missions in which the vehicle
travels close to the boundaries of the survey area.

The performance improvement of these algorithms in comparison to navigation
based on dead-reckoning information alone is not included in this chapter. The sig-
nificant superiority of stochastic mapping in the presence of unknown currents was
documented in Chapter 2.

These simulations have been implemented using Matlab. The execution speed is
about three times faster than real time for the two DSM methods and about ten
times slower than real time for the optimal ASM simulation running on a Pentium

333 MHz processor.

3.4.1 DSM versus ASM

First, we consider the comparison of the two DSM algorithms with the full covariance
“optimal” ASM algorithm. The goal was for the AUV to perform a survey of an

unknown area of approximately 1 km by 1 km, in the presence of clutter and dropouts.
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The area contained 110 features, randomly distributed over the survey area. The
number of features in this survey was limited in order to obtain results from the ASM
algorithm for comparison. The placement of the features and the desired path of
the vehicle were the same for all three scenarios to facilitate easy comparison of the
results. The desired path of the AUV and the true feature locations are shown in

Figure 3-4.
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Figure 3-4: The desired survey path of the vehicle (solid line) and the location of the
110 randomly distributed point features (crosses). The vehicle starts at (0,0) meters
and follows the path of the arrows.

The vehicle starts at position (0,0) meters and follows the desired path in the
direction of the arrows. Thus it will first map the lower half of the area and then map
the upper half. Upon completion, it returns to (0,0) and repeats the survey. A little
more than four complete cycles are performed, resulting in a total mission duration
of just over eight hours.

We will first present the result of this survey using the full-covariance ASM algo-
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rithm, followed by the results for single-pass DSM, and finally the results for multi-
pass DSM will be presented.
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Figure 3-5: The true feature positions (marked by ‘x’) along with the estimated
feature positions (marked by ‘+’) at the termination of the 8 hour mission using
ASM.

Figure 3-5 shows the true feature positions along with the estimated feature po-
sitions at the termination of the survey using ASM. The 30 (99% highest confidence
region) for the feature initial estimates are also plotted, but are too small to show up
on the plot. Figure 3-6 shows plots of the position, heading, and velocity errors of the
vehicle versus time, along with the 30 (99% highest confidence region) bounds. As
the vehicle travels further from its start position, the uncertainty grows and comes
to a peak at a time when just under one hour of the mission time has elapsed. This
is because very few features are re-observed during this period in reaching the upper
right corner of the survey area. However, as the vehicle moves from right to left in the

upper half of the survey area, its uncertainty decreases as features are re-observed.
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Figure 3-6: Errors and 30 bounds (99% highest confidence bounds) for the position,
heading and velocity estimates produced by performing the survey using augmented
stochastic mapping (ASM) aigorithm.

By the time the vehicle has completed one lap of the survey area, its uncertainty has
been reduced to a “steady state” level. This occurs a little before two hours into the
mission. In continuing the mission, the vehicle is, by utilizing the cross-correlations,
able to obtain 30 bounds for both its north and east coordinates of less than four me-
ters for all later times. As the mission is continued, the slightly higher uncertainties
in the north position when far from the origin will be reduced.

The 30 bounds for the heading and speed of the AUV are bounded by 6 degrees

and about 10 cm/s for all times. This results from the fact that these quantities
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Figure 3-7: The submap partition of the survey area (shown in Figure 3-4) as gener-
ated by the two DSM algorithms. The numbers signify the order in which the maps
were created.

are measured directly (and used in the dead-reckoning update), and they can be

determined independently of the uncertainty of the vehicle’s position.

In performing DSM, the survey area is automatically partitioned into submaps.
As mentioned before, each submap bounds a 525 m by 525 m square region. After

one pass of the survey path, four maps have been initialized.

Figure 3-7 shows the location of the submaps as generated by the DSM algorithm.
The numbers signify the order in which submaps were created. That is, submap 1

was created before submap 2, and so on.

Figure 3-8 shows a snapshot at which the AUV is in the process of mapping
submap 3. The submap boundaries, true feature locations, estimated feature loca-
tions, estimated vehicle position, and the estimated position of the correspendence

features are marked. In addition, the vehicle state estimates corresponding to the
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Figure 3-8: Left: The plot shows the true position of all features (marked by ‘x’)
along with all feature estimates (marked by ‘+’) and 3o error ellipses that exist at
the current time (too small to be seen). The vehicle is marked as a triangle and the
sonar coverage is shown by a dashed dotted line. Three submaps have been created,
and the AUV is in the process of mapping submap 3. Right: This plot shows the
correspondence features of the submaps used in the creation of submaps in single-pass
DSM. Correspondence features are marked 1n both the original submap and in the
submap that was generated from them. The correspondence features are marked by
plus signs, stars and diamonds for submaps 1, 2 and 3, respectively. The triangles
in submaps 1 and 2 show the estimated state of the vehicle when it exited these
submaps.

locations where the vehicle exited submaps 1 and 2 are shown. Note that since
no information is passed between submaps regarding correspondence features after
the creation of a submap, each submap will get slightly different estimates for the
correspondence features. As the correspondence features between two submaps are
known to model the same physical objects, they can potentially be used to reduce the
global uncertainty of submaps. At this time, we have not attempted to utilize this

information.

Figure 3-9 shows plots of the position, heading, and velocity errors of the vehicle

versus time, along with the 30 (99% highest confidence region) bounds for single-
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Figure 3-9: Errors and 30 bounds (99% highest confidence bounds) for the position,
heading and velocity estimates produced by single-pass DSM.

pass DSM. These plots should be compared to the equivalent plots of Figure 3-6.
As in Figure 3-6, the position uncertainty of the AUV grows as the distance from
the starting point increases. Further, after the first pass through the survey path,
the ASM and the single-pass DSM results look very similar and achieve close to
the same error bounds. The crucial difference between the methods is that ASM
estimates the correlations between all features, while single-pass DSM only estimates
the correlations within submaps. ASM is able to exploit all the correlations and thus

reduce the global error at all locations. Single-pass DSM is unable to reduce the global
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uncertainty of submaps below the uncertainty upon creation of the submap. This can
be seen from the “steps” in the north and east 3o bounds after the completion of the

first pass through the survey area (that is, after the first 2 hours of the mission).

—
(=]

Lh

East position error (m) (30)
=)

North position error (m) (30)
=)

-5 -5
~1% i 1% 4

2 2
Time (hrs.) Time (hrs.)

Figure 3-10: Expanded view of the north and east AUV position errors and the 30
bounds for single-pass DSM, for the same run as shown in Figure 3-9. The verti-
cal lines mark the transition times at which the AUV moved from one submap to
another. The numbers identify the active submap during the period between the
submap transitions.

Figure 3-10 shows a magnified version of the first two plots of Figure 3-9. In
addition, vertical lines are drawn at the times when transitions between the submaps
occur, and between the vertical lines, a number is shown to designate which submap is
currently active. This clarifies the independence of the uncertainties in the submaps
and emphasize the “steps” of the bounds. In the limit as time goes to infinity, each
submap’s error bounds converge to the smallest value within each submap. However,
this minimum error cannot be reduced from the value that is obtained from the first
pass through the current submap. For example, the 30 bounds of submap 2 will
always be about 0.5 meters larger than that of submap 1.

When the vehicle exits submap 3, it moves into an area that is shared by submaps
1 and 4. Since submap 1 was created before submap 4, the estimates in this submap

are more accurate. Thus, the single-pass DSM algorithm performs a cross-map vehicle
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relocation from submap 3 to submap 1, then spends a small time in submap 1 before

creation or relocation to submap 4. This is the reason why submap 4 has smaller

error bounds than submaps 2 and 3.

Having shown the results for ASM and single-pass DSM for the mission depicted

in Figure 3-4, we now turn to the results for multi-pass DSM. The location and order

of submap creation for multi-pass DSM are identical to that of single-pass DSM, as

shown in Figure 3-7.
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Figure 3-11: Errors and 30 bounds (99% highest confidence bounds) for the position,
heading and velocity estimates produced by multi-pass DSM.

Figure 3-11 shows the position, heading and velocity errors of the vehicle versus
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time along with the 30 bounds for the survey performed by multi-pass DSM. These
results should be compared to the results fron utilizing ASM (Figure 3-6) and single-
pass DSM (Figure 3-9). By considering the top two plots of Figure 3-11, we see
that they resemble the optimal result of ASM (Figure 3-6) more than the results
from single-pass DSM. Clearly, the vehicle does better after the first pass through
the survey area (that is, after about 2 hours) than before. Thus, the algorithm is
capable of reducing the global error everywhere and not only locally in the submaps,
as for single-pass DSM. However, one can see that the error bounds are a little more
uneven than that of ASM, and reducing the uncertainties takes a little more time.
However, as time goes to infinity, the two solutions should be identical. Another
thing to note from these plots is that the position error bounds are actually smaller
for this particular multi-pass DSM survey than for the particular ASM run shown in
Figure 3-6. This is due to the fact that, by coincidence, multi-pass DSM was more
“lucky” in the sonar returns it got at the start of the mission. Thereby, the vehicle
was able to localize itself more accurately in the initial phase of multi-pass DSM. This
better localization early on propagates through the whole system for the rest of the
mission. This highlights a very critical point for all stochastic mapping approaches:
the initial phase of mapping is crucial as it defines a lower limit for the error bounds.
As Figure 3-11 and Figure 3-9 show, the initial phase is more crucial to the error
bounds achieved than whether or not the ASM or the multi-pass DSM approach to
CML is utilized. Thus we believe that the results from multi-pass DSM are close to

the optimal solution.

Figure 3-12 shows a magnified version of the first two plots of Figure 3-11. It is
useful to compare this to the equivalent plot for single-pass DSM shown in Figure 3-
10. Again, the numbers between vertical lines signify the currently active submap
at different times during the mission. As in the results for single-pass DSM, the
AUV passes through submap 1 before entering submap 4. Thus, the error bounds in

submap 4 are decreased. It should be noticed that the error bounds do not increase
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Figure 3-12: Expanded view of north and east AUV position errors and the 30 bounds
for multi-pass DSM, for the same run as shown in Figure 3-11.

in “steps” as a function of submap number, as is the result when using single-pass

DSM.

As a final comparison between single-pass and multi-pass DSM, we focus our
attention on a single feature at the termination of the mission that was estimated
in both methods in all submaps. The true feature locaticn along with the estimates
and corresponding 3o error ellipses are shown in Figure 3-13. As can be seen from
these plots, the error ellipses are smaller in multi-pass DSM than in single-pass DSM.
This is expected, as we know that the multi-pass DSM algorithm reduces the global
errors and thus, when performing a mission where regions are revisited, is superior to
single-pass DSM. In fact, the feature that is known most accurately (that is, it has the
smallest error ellipse) in single-pass DSM (generated from submap 1) is approximately
the same as the largest error ellipse when using multi-pass DSM (which was generated

by submap 3.)
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Figure 3-13: The true feature location (marked by ‘x’) along with the estimated
feature positions (marked by ‘+’) and associated 3¢ error ellipses as estimated in the
four different submaps. The left figure is the result from single-pass DSM and the
right figure is the result from multi-pass DSM. Moving from the true feature position
to the right, the error ellipses correspond to submaps 1, 4, 3, and 2 for single-pass
DSM, and to submaps 1, 2, 4, and 3 for multi-pass DSM.

3.4.2 Large-scale, long-term DSM

In this section we will demonstrate the usefulness of single-pass DSM and multi-pass
DSM in surveying large-scale environments with 1200 environmental features for a
mission duration of over 120 hours sampling at a rate of 1 Hz. The parameters for
these mission are given in Table 1. As the spatial density of features is about 20%
higher in these runs than in the previous runs, each submap will contain approxi-
mately 20% more features than in the previous runs. This causes the computation
time to increase to be just a little faster than real time on a 333MHz Pentium pro-
cessor. It is impossible to obtain results for these large size systems without using
DSM on a conventional computer, thus no results for the the full covariance ASM

algorithm for these runs can be obtained for comparison.

Figure 3-14 shows the desired path of the AUV through the 3 km by 3 km survey
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Figure 3-14: The desired survey path of the vehicle (solid line) in the 3 km by 3 km
survey area with 1200 features. The arrows indicate the direction of movement of
the robot initially and upon a single completion of the mission path. The right plot
shows a magnification of the starting area for the mission. The time indices signify
the starting point, ¢y, and points on the path later on, ¢, to ¢;. tx signifies a point
towards the end of completion of the mission path.

area. The vehicle starts at (0, 100) meters and follows the desired path in the direction
of the arrows. Only arrows for the initial stage and the final stage of the path have
been included for clarity. Figure 3-15 shows the partition of the survey area into
submaps as performed by the two DSM methods. The numbers signify the order
in which the submaps were created. To illustrate the complexity of the problem,
Figure 3-16 shows the returns of the sonar for the first 30 hours of the mission as welil
as the true position and estimated position of the 1200 environmental features in the

survey area during multi-pass DSM.

Figure 3-17 shows plots of the position, heading, and velocity errors of the vehicle
versus time, along with the 30 bounds when using single-pass DSM for the survey
area of Figure 3-14. In this simulation, the vehicle completed 11 laps of the survey

path. The characteristic of single-pass DSM of a position uncertainty growing with
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Figure 3-15: The partition of the survey area into 36 submaps performed by the two
DSM methods for the long simulation run with 1200 features.

the vehicle’s distance from its initial position is clear from these plots. It is apparent
that information is not passed between submaps to enable the global reduction of
uncertainties across maps, as occurs in multi-pass DSM, but as will be shown, the
estimates during the first pass through the survey are more certain for single-pass
DSM than for multi-pass DSM. The sharp spikes on the 3o error bounds for the
position estimates are artifacts of the cross-map vehicle relocaticn of Equation (3.17),

where the covariance of the vehicle is increased upon re-entry into a submap.
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Figure 3-16: Left: The sonar returns for the first 30 hours of the mission (marked by
small dots). Right: The true feature positions (marked by ‘x’) and the estimated
feature positions (marked by ‘+’) and 3o error ellipses for the long duration multi-pass
DSM run.
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Figure 3-17: Errors and 30 bounds (99% highest confidence bounds) for the position,
heading and velocity estimates produced by single-pass DSM in surveying the area

given in Figure 3-14.
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Figure 3-18: Errors and 30 bounds (99% highest confidence bounds) for the position,
heading and velocity estimates produced by multi-pass DSM.



144 CHAPTER 3. DECOUPLED STOCHASTIC MAPPING

Figure 3-18 shows the position, heading and velocity errors of the vehicle versus
time, along with the 3o error bounds when using multi-pass DSM for the survey area
of Figure 3-15. In this 120 hour mission time simulation, the vehicle performed a
little more than 13 laps of the mission path. As with Figure 3-17, occasional spikes
in the position error bounds show up during cross-map vehicle relocation, which
is performed when moving to a submap that was created earlier than the current
submap. As can be seen from Figure 3-14 and Figure 3-15, this occurs when the
vehicle travels from submap 36 to submap 1 at the completion of each cycle of the
survey. From Figure 3-18 we can clearly see that information is passed between
submaps in such a way that the global uncertainty of submaps is reduced. In the
second pass through the desired path, the maximum position uncertainty is more
than halved. Already, after three or four passes through the survey area, the system
has reached a certainty close to the steady state, with a 99% position uncertainty for
the vehicle of less than four meters. This implies that with relatively off the shelf
equipment of moderate cost, and the ability to relatively reliably extract features
from the environment, accuracy comparable to GPS for navigation of AUVs can be

achieved. We see this as a considerable contribution.

Figure 3-19 and 3-20 show the north and east position error and bounds for mission
times 98.4 to 100 hours for the single-pass DSM and the multi-pass DSM simulations
of Figure 3-17 and 3-18, respectively. Figure 3-21 shows the errors in estimated feature
locations along with the 30 bounds for these estimates for the single-pass DSM and
multi-pass DSM missions, respectively. The mean error achieved is 4.3 meters for

single-pass DSM and 2.6 meters for multi-pass DSM, respectively.

Multi-pass DSM shows a considerable improvement over single-pass DSM in the
long run as the survey area is revisited. However, during the first pass through the
survey area, the maximum uncertainty when using multi-pass DSM is more than 30%
higher than the result when using single-pass DSM. This provides the justification

for utilizing single-pass DSM when the survey area is assumed to be traversed only
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Figure 3-19: Magnification of the north and east AUV position estimates along with
the 3o bounds for the last 1.6 hours of the single-pass DSM survey shown in Figure 3-
17. The vertical lines mark the transition times at which the AUV moved from
one submap to another. The numbers identify the active submap during the period
between the submap transitions. As can be seen, the error bounds are nearly constant
within each submap, suggesting that the system has reached a steady state.

once. Multi-pass DSM, however, should be used if one anticipates multiple traversals

of the environment.
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Figure 3-20: Magnification of the north and east AUV position estimates along with
the 30 bounds for a 1.6 hours segment near the end of the multi-pass DSM survey
shown in Figure 3-18. The vertical lines mark the transition times at which the AUV
moved from one submap to another. The numbers identify the submap number during
the period between the submap transitions. The error bounds drop when cross-map
vehicle updating is performed because submaps that are created later can draw upon
more information than submaps that were created earlier.
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Figure 3-21: The distance in meters between the actual feature location (solid black)
and the estimated feature location along with the 3¢ bound (shaded red) for this
distance. The errors and bounds have been plotted for each feature estimated, starting
with the first estimated feature in submap 1 (which is given a feature number of 1), to
the last feature estimated in submap 36 (which has a feature number close to 2000).
Left: Single-pass DSM — the error bound grows slowly with the submap number,
that is, with distance traveled from the vehicle’s initial position when the submap
was created. Right: Multi-pass DSM — the feature uncertainty and accuracy is
relatively independent of the submap in which it exists.
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Table 3.2: Decoupled SM experiment parameters.

sampling period, T 1 sec.
maximum sonar range 250 cm
sonar coverage angle +40°
range measurement standard deviation 2 cm
bearing measurement standard deviation 5°
feature probability of detection 0.90
vehicle cruise speed 10 cm/s
speed process standard deviation 5% of dv
heading process standard deviation 2.0°
dead reckoning speed standard deviation 0.45 cm/s
dead reckoning heading standard deviation 3.0°
initial position ancertainty std. dev. 0.7 cm
initial heading uncertainty std. dev. 5.0°
initial speed uncertainty std. dev. 0.2 cm/s
gate parameter 7y 9
clutter parameter A 1
track initiation parameters M=5N=4

3.5 Experimental results

In the previous section, extensive simulations were performed in order to validate the
decoupled stochastic mapping approach to the map scaling problem. In this section,
we present a simple multi-pass DSM experiment for further validation of the approach.
The experiment was performed in the testing tank at MIT using the same setup as
for the augmented stochastic mapping exoeriment of Section 2.6. As in Section 2.6,
the parameters for the mission was chosen so as to simulate an AUV scaled down by a
factor of 100 and it was assumed that the AUV would be able to obtain sonar readings
over the +40° viewing area of the sonar every 7' = 1 second using an electronically
scanned sonar. In the experiment, however, we used the Panametrics sonar that was
mechanicaliy scanned using the robotic positioning system. This caused the scan over
the £40° viewing are of the to take approximately 2 minutes. As in Section 2.6 the
experiment was also simulated in order to determine the quality of the simulations.

Table 3.5 summarizes the parameters used in the experiment.

In the experiment, 90 fishing bobbers was used as features and was randomly

placed in the testing tank as shown by the crosses in Figure 3-22. The sonar returns
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from the tank walls were discarded. The sonar trajectory was set to perform a lawn-
mower path starting at the lower right corner of the tank and moving towards the

left (see Figure 3-22). The submap size was set to 4 by 4 meters and two submaps

Figure 3-22: The desired path (solid line) along with the 90 fishing bobbers used as
“environmental features” in the experiment. The small arrows indicate the starting
path of the lawn-mower survey over the tank.

were used to perform concurrent mapping and localization during the experiment.
Estimated result from the DSM algorithm was compared to the true position of the
sonar as obtained from positioning decoders on the robotic positioning system. The
entire mission lasted about 1250 time steps, allowing for two visits to both submaps.

The superposition of all sonar returns during the mission is shown in Figure 3-23.

As can be seen from comparing this figure to Figure 3-16, the experiment actually

Figure 3-23: All the sonar returns obtained during the tank experiment.

have less false returns than was used in the simulations in the previous section. The



150 CHAPTER 3. DECOUPLED STOCHASTIC MAPPING

resulting position estimate error and 99% confidence bound for the experiment is
shown in Figure 3-24 and for the simulation in Figure 3-25. The vertical lines identifies
times when the vehicle estimate moved between submaps and the numbers in the
plot identifies the submap number. As can be seen from these plots, there is excellent
agreement between the simulation and the experiment. The bounds are virtually the
same. The actual estimation error is, naturally, not identical as the estimates are

stochastic processes. However, we see that they have the same structure.
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Figure 3-24: Errors and 30 bounds (99% highest confidence bounds) for the position
estimates from the ezperiment performing multi-pass DSM in the testing tank.

3.6 Discussion and conclusions

A computationally efficient method for large-scale CML has been an important but
elusive goal in mobile robotics research. The methods presented here offer attractive
solutions to the map scaling issue. The CPU and memory requirements are indepen-
dent of the size of the map. The hard disk storage requirements of the method scale
as O(mn) where m is the number of features states per submap and n is the total

number of features.

The key innovation of our work is to maintain multiple globally-referenced submaps,
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Figure 3-25: Errors and 30 bounds (99% highest confidence bounds) for the position
estimates from the simulation of the multi-pass DSM experiment of Figure 3-24.

each associated with a given map region, and to employ safe, consistent update
methods for transferring vehicle location information between submaps as the ve-
hicle crosses between regions. Extensive simulation results demonstrate successful
CML for missions that are several orders of magnitude longer in duration and larger

in scale than any work previously published in the literature.

Single-pass DSM, in which cross-map vehicle relocation is used to transition be-
tween submaps, is most suitable for a mission in which a vchicle is to traverse a
region only once, building the best map it can while concurrently localizing itself.
The method incurs a slowly growing error bound that is a linear function of the
distance traveled from the origin of the mission. Subsequent traversals of the envi-
ronment do not result in an improvement in map accuracy, but consistency of error

estimates is maintained.

Multi-pass DSM combines two different methods for transitioning betwecn map
regions. When transitioning from later to earlier maps, the cross-map vehicle relo-
cation strategy used in single-pass DSM is employed. However, when transitioning
from a submap that was created before the submap that is being re-entered, the im-

proved vehicle state estimate from the earlier submap is used as a state measurement
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in the later submap. The old inaccurate vehicle state estimate from the later submap
is discounted by greatly inflating its covariance before the update occurs, thereby
de-correlating it from the earlier submap’s vehicle state estimate. To counteract the
violation of the independence assumptions of the Kalman filter that this process en-
tails, the feature covariance matrix of the higher map is multiplied by two before the
update. The resulting feature map covariance is demonstrated to bound the original
feature covariance, thus providing a consistent update strategy.

The simulation results presented in this chapter demonstrate that both methods
provide accurate vehicle and feature location estimates, maintain consistent error
bounds, and do not diverge. In Section 3.5 we show excellent agreement between
a multi-pass DSM simulations and real data experiments for the scenario of AUV
navigation using a forward looking sonar in a priori unknown environments. In the
experiment, 90 fishing bobbers and two submaps where used to perform concurrent
mapping and localization.

Our method is perhaps closest in spirit to Chong and Kleeman'’s sirategy for
large-scale mapping in indoor environments using multiple local maps [29]. There are

important differences, however. Chong and Kieeman wrote:

“As a simple example, consider the scenario in which the robot creates a local
map B after leaving a local map A. If the robot happens to re-enter local map
A again and performs more sensing to obtain a better estimatg of its position
relative to local map A, this information is completely discarded if the robot
enters local map B again. In other words, the improved estimate of position is
not used to update the relative spatial position of local map B relative to local

map A.” [29]

With multi-pass DSM, we have realized an effective strategy for safely transferring
vehicle position estimates between submaps, leading to incremental reduction of er-
rors in feature location estimates throughout the environment, in a manner that is

comparable to full covariance stochastic mapping. By revisiting one submap (say,



3.6 DISCUSSION AND CONCLUSIONS 153

submap B) with an improved position estimate for the vehicle that was obtained in
another submap (submap A), subsequent observations of the features in submap B,
obtained from more accurately known vehicle positions, yield improved location esti-

mates for submap B’s features, with consistent error bounds.

An additional distinction of single-pass DSM from the work of Chong and Klee-
man [29] is that, by using multiple, globally-referenced submaps, we eliminate the
potential problem of the proliferation of duplicate local maps that cover the same
area of the environment. By using cross-map vehicle relocation, we eliminate the
need for local map construction and matching to relocate the vehicle when it enters
a new submap. Thus continuous localization can be performed without interruption

as the vehicle travels across map regions.

The methods presented here are attractive because they provide powerful tools
to address more complex issues of the concurrent mapping and localization prob-
lem, such as map maintenance in dynamic environments [67], improved resolution
of data association ambiguity [34], relocation, recovery from errors, and cooperative
mapping and navigation by teams of mobile robots. For example, the hybrid esti-
mation approach to CML of Integrated Mapping And Navigation (IMAN), described
in Chapter 1, encountered extreme computational issues, because of the interactions
between different vehicle and feature tracks [105, 106, 107]. The new methods pre-
sented here suggest a strategy for decoupling the interaction between data association
hypotheses for different parts of an environment. Cluster partitioning may become a

possibility despite the presence of navigation error [63, 34].

The problem of reliably extracting features from sensor data remains an important
outstanding issue for the realization of CML in more complex and natural environ-
ments. As pointed out by Lozano-Pérez, “the performance of any sensing system is
largely determined after the feature detectors have finished their work [72]". The
implementation of CML for underwater vehicles operating in dynamic undersea envi-

ronments will require advances in our ability to extract features from natural terrain
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and to represent and manipulate them appropriately in the map representation. For
point-like features, initial results in the post-processing of real data from a forward
looking sonar presented in Section 2.7 are encouraging.

Another important issue for further research is the use of adaptive motion and
sensing strategies for AUVs in order to perform CML faster, more accurately and

with less energy than the conventional non-adaptive CML strategy.

3.7 Summary

This chapter presented decoupled stochastic mapping (DSM), a new computationally
efficient method for large-scale concurrent mapping and localization (CML) that re-
solves the map scaling problem. DSM circumvents the O(n®) computational burden
of conventional stochastic mapping (where n is proportional the number of features),
while providing consistent, globally-referenced error bounds.

In DSM, the global map is split into multiple globally-referenced submaps, each
with its own vehicle track. Two new methods, referred to as (1) cross-map vehicle
relocation and (2) cross-map vehicle updating, were developed for safely transfer-
ring vehicle state estimate information from one submap to another as the vehicle
transitions between map regions.

Two variations of DSM were presented. Single-pass DSM uses cross-map vehi-
cle relocation for all submap-to-submap transitions, achieving a small linear error
growth. Multi-pass DSM uses a combination of both new vehicle transition strategies
to achieve navigation and feature localization errors that improve with time, yielding
results comparable to full covariance stochastic mapping. Experiment using real data
showed excellent agreement between experiment and simulation of DSM.

The approach of DSM provides a starting point for solutions of other long-standing
challenges in CML, such as incorporation of more powerful data association strate-

gies, maintenance of maps in dynamic environments, and cooperative mapping and
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navigation by multiple vehicles.
Another issue for future research is to improve CML performance through adaptive

CML strategies. This interesting field of study is the focus of Chapter 4.
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3.A Consistency of cross-map vehicle updating

The goal of this appendix is to demonstrate that consistent estimates of feature
locations are maintained by the cross-map vehicle updating procedure described in
Section 3.3.2. As described above in Section 3.2, in each submap four states are used
to represent the vehicle and two states are used to represent each of the n features.
Hence, the state vector for a submap is (2n + 4) x 1 and the covariance matrix is
(2n + 4) x (2n + 4). The predicted state vector for the vehicle and map features for

submap B is:

B
B _ | %
xk+1|lc - B )
Xy
and the predicted state covariance is
k+1lk — B B 3
Ps Py

where P§, = [P5]". The cross-map updating procedure applies x#, the vehicle
estimate from submap A, as a measurement of vehicle position in submap B using a

Kalman filter, after first randomizing x2 and greatly inflating PZ.

To apply this measurement of the vehicle location, the H matrix is:
I-]:k+1 = [ I 0 ] )

where I is the 4 x 4 identity matrix and 0 is a 4 x 2N matrix of zeros. The vehicle
position covariance in map A, P2, is used as the measurement noise covariance Ry

associated with this measurement.

— DA
Rk+1 - Prr .
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In the sequel, the superscript to designate submap B will be dropped for visual clarity.

The innovation covariance Si4; is:

Sk+1 = HinPrappHey, + Reg

_ [I ] P.. P, I
- ° Psp Py | [ O

= P+ Rk+1-

+ Ry

Next, we calculate the Kalman gain Kj:

Kir1i = PrayeHE S0
P, P I
_ rf (Prr + Rpyr) ™"
| Psr Py | | O

Prr(Prr + R-I;:+1)_1
I Pfr(Prr + l:"Ic+1)_1

The updated state covariance is:

Pk+l|k+l

_ T
= Pryip — Ke1Se1Ki 4

P, P, P,.(P,, + Rey1)~!
rr 1| r ( rr k+1) 1 [ P, +R;c+1 ] x
| Py Py P (Prr + Ryy1)”

[ [(Prr +Ris) [Py [(Prr + Rest) TP,y |

P, P, J ) ! Prr[(Pr + Rist) ['Pyr Prl(Pyr + Riss) 7Py }
| Py Py Pr[(Prr + Res1) Py Pp[(Prr + Riy1) 1 Py

[ P, — P[P,y + Ris)) TP, Py — P, [(Prr + Reyr) TP, }

| Psr — Pp[(Prr + Res)7'"Prr Pyp = Ppr[(Prr + Rit) 7] Pry

The result of the Kalman update is that the new feature covariance submatrix is
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reduced to become Ps; — Py, [(P,, + Riy1)"']"P,;, even though we have obtained
no new information about the features. We know from the behavior of the Kalman

filter that
Ps; — Ps[(Prr + Riyr) TP,

must be positive definite. In the limit as the feature locations and vehicle location
become completely correlated and the measurement noise covariance, Ry, goes to
zero, the a posterior: feature covariance goes to zero, e.g. Py [(P,, + Rk+1)“1]TP,.f
becomes Py;.

No information is gained for the features during this update, and via the Kalman

gain the feature locations are slightly changed. The quantity
Pir = Pp[(Prr + Reyt) '] Py

bounds the change in the feature locations caused by the update. We can obtain a
conservative, globally-referenced bound for the features simply by adding the a priori

feature covariance Py to the a posteriori feature covariance:

P, — P,-,-P;I.;.(Pr,- + Rk.H)—l P,.f - P,.,-Pfr(P,-,- + Rk+1)—l

Piiijk+1 = T " o
P —PLPrs(Prr + Ret1)™ Py — Pp[(Prr + Riyt) 7'TPys + Py

Exactly the same result is obtained if, instead of adding Py after the update step, we
add Py to the feature covariance before the update, or equivalently, P;; is replaced
by 2Py as illustrated in Section 3.3.2. This is the case because the Kalman gain
depends only on P, and Py,, and does not depend on Pyy.



Chapter 4

Adaptive stochastic mapping

The previous chapters have assessed the potential of stochastic mapping and presented
a new method for performing stochastic mapping in large-scale environments. This
chapter presents a technique for adaptive concurrent mapping and localization based
on optimizing the expected Fisher information due to an action. The validity of the

approach is demonstrated in simulations and experiments.

4.1 Introduction

Adaptive sensing strategies have the potential to save time and maximize the efficiency
of the concurrent mapping and localization process for an AUV and for mobile robots
in general. Energy efficiency is one of the most challenging issues in the design of
underwater vehicle systems [14]. Techniques for building a map of sufficient resolution
as quickly as possible would be highly beneficial. Survey class AUVs must maintain
forward motion for controllability [12], hence the ability to adaptively choose a sensing
and motion strategy that obtains the most information about the environment is
especially important.

Sonar is the principal sensor for AUV navigation. Possible sonar systems in-

clude mechanically and electronically scanned sonars, side-scan sonar and multi-beam

159
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bathymetric mapping sonars {125]. The rate of information obtained from a mechani-
cally scanned sonar is low, making adaptive strategies especially beneficial. Electron-
ically scanned sonars can provide information at very high data rates, but enormous
processing loads make real-time implementations difficult. Adaptive techniques can
be used to limit sensing to selected regions of interest, dramatically reducing compu-

tational requirements.

In this chapter, adaptive sensing is formulated as the evaluation of different actions
that the robot can take and the selection of the action that maximizes the amount
of information acquired. This general problem has been considered in a variety of
contexts [75, 99] but not specifically for concurrent mapping and localization. CML
provides an interesting context within which to address adaptive sensing because of
the trade-off between dead-reckoning error and sensor data acquisition. The infor-
mation gained by observing an environmental feature from multiple vantage points

must counteract the rise in uncertainty that results from the motion of the vehicle.

Our experiments use two different robot systems. One is an inexpensive wheeled
land robot equipped with a single rotating sonar. Observations are made of several
cylindrical targets whose location is initially unknown to the robot. Although this is
a simplified scenario, these experiments provide a useful illustration of the adaptive
CML process and confirm behavior seen in simulation. The second system is a planar
robotic positioning system which moves a sonar within a 9.4 meter by 3.5 meter
by 1.5 meter testing tank. The sonar is a mechanically scanned 675 kHz Imagenex
model 881 sonar with a 2 degree beam. These characteristics are similar to alternative
models used in the marine industry. Testing tank experimentation provides a bridge
between simulation and field AUV systems. Repear -ble experiments can be performed

under identical conditions; ground truth can be determined to high accuracy.

Section 4.2 reviews previous research in concurrent mapping and localization and
adaptive sensing. Section 4.3 develops the theory of adaptive stochastic mapping.

Sections 4.4, 4.5.1, and 4.5.2 describe testing of the method using simulations, air
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sonar experiments, and underwater sonar experiments. Section 4.6 provides conclud-
ing remarks and suggestions for future research. Finally, Section 4.7 provides a short

summary of the chapter.

4.2 Previous work

Adaptive sensing has been a popular research topic in many different areas of robotics.
Synonymous terms that have been used for these investigations include active per-
ception [2], active vision [18], directed sensing [69], active information gathering [50],
adaptive sampling [14], sensor management [75] and limited rationality [100]. A com-
mon theme that emerges is that adaptive sensing should be formulated as the process
of evaluating different sensing actions that the robot can take and choosing the action
that maximizes the information acquired by the robot. The challenge in implement-
ing this concept in practice is to develop a methodology for quantifying the expected
information for different sensing actions and evaluating them in a computationally
feasible manner given limited a priori information.

Our approach is closest to Manyika [75], who formulated a normative approach
to multi-sensor data fusion management based on Bayesian decision theory [16]. A
utility structure for different sensing actions was defined using entropy (Shannon
information) as a metric for maximizing the information in decentralized multi-sensor
data fusion. The method was implemented for model-based localization of a mobile
robot operating indoors using multiple scanning sonars and an a priori map. Feature
location uncertainty and the loss of information due to vehicle motion error, which
are encountered in CML, were not explicitly addressed.

Examples of the application of adaptive sensing in marine robotics include Singh [104,
103] and Bellingham and Willcox [14, 126]. Singh formulated an entropic measure
of adaptive sensing and implemented it on the Autonomous Benthic Explorer. The

implementation was performed using stochastic back-projection, a grid-based model-
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ing technique developed by Stewart for marine sensor data fusion [113]. Bellingham
and Willcox have investigated optimal survey design for AUVs making observations
of dynamic oceanographic phenomena [14, 126]. Decreased vehicle speeds save power
due to the quadratic dependence of drag on velocity, but susceptibility to space-time

aliasing is increased.

An interesting motivation for adaptive sonar sensing is provided by the behavior
of bats and dolphins performing echo-location. For example, dolphins are observed
to move their heads from side to side as they discriminate objects [1]. Our hypothesis
for this behavior is that sonar is more like touch than vision. A useful analogy may
be the manner in which a person navigates through an unknown room in the dark.
By reaching out for and establishing contact with walls, tables, and chairs, transi-
tions from one object to the another can be managed as one moves across the room.
Whereas man-made sonars tend to use narrow-band waveforms and narrow beam
patterns, bat and dolphin sonar systems use broad-band waveforms and relatively
wide beam patterns. A broad beam pattern can be beneficial because it provides a
greater range of angles over which a sonar can establish and maintain “contact” by
receiving echoes from an environmental feature. The task for concurrent mapping
and localization is to integrate the information obtained from sonar returns obtained
from different features as the sensor moves through the environment to estimate both

the geometry of the scene and the trajectory of the sensor.

4.3 Adaptive augmented stochastic mapping

This section reviews the theory of augmented stochastic mapping and derives a metric

for performing augmented stochastic mapping adaptively.
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4.3.1 Augmented stochastic mapping

Stochastic mapping is a technique for performing CML that was introduced by Smith,
Self, and Cheeseman [111] and is described in detail in Chapter 2. As mentioned
in Chapter 2, stochastic mapping is simply a special way of organizing the states
in an extended Kalman filter (EKF) for the purpose of feature relative navigation.
An EKF (see Section 2.A) is a computationally efficient estimator for the states
of a given nonlinear dynamic system. The assumptions are made that the noise
processes are well modeled by Gaussian noise and the errors due to linearizations
of the nonlinear system are small. The EKF for a system provides an estimate, X,
of both the (true) state of the system, X, as well as an estimate, P, of the (error)
covariance. The covariance provides an estimate of the confidence in the estimate x.
A dynamic system is described by a dynamic model, F, which defines the evolution
of the system state X through time, and an observation model, H, which relates
observations (measurements) to the system’s state X.

By adding track! initiation, data associaiion and track deletion to stochastic map-
ping, the technique of augmented stochastic (ASM) is obtained. We will here give a
brief outline of ASM and the interested reader is referred to Chapter 2 for details.
A somewhat different view on stochastic mapping than was presented in Chapter 2
is included to emphasize the information content of stochastic mapping for a more
natural development of adaptive stochastic mapping. The vehicle model used in this
chapter is slightly different from the one presented in Chapter 2 and is thus included
below.

In stochastic mapping, the estimate of the robot’s state, x,, and the features
in the environment, x; to Xy, are represented by a single state vector, Xy =
[xT xT...x%]kk, with an associated estimated error covariance Py, at each time
step k. A subscript k|j signifies an estimate at time step k given all information up

to and including time step j. Time indexes are omitted where not crucial for clarity.

YA track is a feature estimate
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As new features are added, x and P increase in size. The estimated error covariance,
Pyr = E{(Xkx — Xi)(xke — Xk)T}, of the system, where X, is the true state at time
step k, takes the form

Prr Prl e PrN
P, P, --- P
Pye=| " 0 T (4.1)

_PNr Py oo PNN_ He

The sub-matrices, P,,, P,; and P;; are the vehicle-to-vehicle, vehicle-to-feature, and
feature-to-feature covariances respectively. This form is significant as it allows us to
separate the uncertainty associated with the robot, P,,, as well as the individual fea-
tures, P;;, and this separation will be used in obtaining a measure of the information
in our system.

Observations of features in the environment are related to the state by a state-to-
observation transform z, = #H(X,,d,), where d, is the measurement noise process.
The a posteriori PDF of Xy, given a set of measurements Z; = {zk,...,21}, can be

found from Bayes rule as

P(Zklxk)P(kuZk—l).

P(2k|Zg—1) (42)

p(X|Z;) =

The distribution p(z;|Xy) is defined as the likelihood function using the Likelihood
Principle [16]. By knowing p(Xx|Z;) we can form an estimate x;, of the state Xj.

In order to perform CML, the state transition (dynamic model)
xI&:-{—l = f(xlnukadx)a

in addition to the observation transformation #, must be known. Here d, is the
process noise. If the stochastic processes d, and d, are assumed to be independent,

white and Gaussian, and the state dynamic model F and observation model H are



4.3 ADAPTIVE AUGMENTED STOCHASTIC MAPPING 165

both linear, the Bayes Least Square (BLS) estimator, xxi1x = F(E{X;|Z¢}, u), will
be an efficient estimator of X. However, in the general problem of CML, neither the
dynamic model nor the observation model will be linear. Thus, an efficient estimator
cannot be obtained. Further, propagating the system’s covariance through nonlinear
equations does not guarantee that the statistics will be conserved. Thus, in order to
circumvent the problem of transformation of nonlinearities, the nonlinear models of
F and H are approximated through a Taylor series expansion, keeping only the first

two terms. That is,

F(xXp,up,dx) = F(Xgjp, Ug, dx) + FoXpp

(4.3)
= Xk+1|k ~ E{F(x,u,dy)|Zs},

where Fy = dF(x,ux)/dX|x=x,, is the Jacobian of dynamic model F with respect

to x, evaluated at x4x. Similarly, the observation model is approximated by
H(xk, dz) =~ H(Xkjk—1,dz) + HeXgjp—1, (4.4)

where H, = dH(x)/dx|x=x,,_, is the Jacobian of the observation model # with
respect to x evaluated at X;t—;. These approximations are equivalent to the assump-
tion that the estimated state at the previous time step, Xk, is approximately equal
to the true state, X;, at the previous time step. Once these linearizations have been
performed and assuming that the approximation errors are small, we can now find
the BLS estimator for this linearized system. The resulting procedure is that of the

extended Kalman filter, described in detail in Appendix 2.A.

In the implementation in this chapter, we denote the vehicle’s estimated state by

X, = [z, yr #]T and the control input to the vehicle is given by u = [u; uy ug). For
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the dynamic model, F, we use

X =f(xln uk) + G(uk)dx

Tk+1

(4.5)
=x"k <+ T¢k'IJk + G(Uk)dx,

where G(u;) scales the noise process dy as a function of the distance traveled, that

is
'yz,/uzk + uyik 0 0
G(u) = 0 YUz, +u;, 0 (4.6)
0 0 Ve
and

cos(de) — sin(ex) 0]
Ty, = |sin(¢e) cos(¢x) O] - (4.7)
0 0 1

The ¢ in this expression comes from the robot’s estimated state x,,. The covari-
ance of dy is for convenience set equal to the identity matrix, as any scaling is placed
in G. The matrix G is diagonal by assumption. If the correlations between the noise
processes in the z, y, and ¢ direction were known, it should be included. However,

this is a minor point and this form has has shown to work well for our systems.

Equation (4.5) does not take into account any of the vehicle’s real dynamics. Thus
the model is very general. However, if the vehicle’s dynamics were known, they could
be used to ensure that the vehicle movements remain realistic. In our experiments
and simulations, we will constrain the robot to move only a certain distance each

time step, thus making u, and u, dependent.
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For the observation model we use
Zp = H(xk, dz) = h(xk) +d;, (48)

where z; is the observation vector of range and bearing measurements. The observa-
tion model, h, defines the nonlinear coordinate transformation from state to observa-
tion coordinates. The stochastic process d,, is assumed to be white, Gaussian, and
independent of xy and dy, and has covariance R.

In our experiments, a sector including an object is scanned over multiple adjacent
angles to yield multiple sonar returns that originate from the object. That is, isolated
features and smooth surfaces appear as circular arcs (regions of constant depth [69])
in sonar scans. For the specular returns, an improved estimate of the range and
bearing to the object is obtaining by grouping sets of adjacent returns with nearly
the same range and taking the mode of this set of angles as the bearing measure-
ment, and the range associated with this bearing as the range measurement to the
object [83]. Rough surfaces [19] yield additional returns at high angles of incidence.
These occur frequently in the data from our underwater sonar, but are not processed
in the experiments reported in this chapter.

Implementing stochastic mapping with real data requires methods for data asso-
ciation and track initiation. For this reason, a logic based delayed nearest neighbor
track initiator, a gated nearest neighbor data association filter and a logic based
and consistency based track deleter were included. These are described in detail in

Chapter 2 (Section 2.4).

4.3.2 Adaptation step

The goal of adaptive CML is to determine the optimal action given the current knowl-
edge of the environment, sensors, and robot dynamics in a CML framework. To

provide an intuitive understanding of this goal, imagine an underwater vehicles with
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Figure 4-1: An autonomous underwater vehicle with no navigational uncertainty
estimating the position of an environmental feature. The ellipses denotes the certainty
(error ellipse) to which the feature position is known. a) The initial estimate of the
feature. b) Given two possible new locations, ® and @, to make the next observation
from, position ® allows for a more accurate estimate of the feature’s position, as the
measurement of the feature is taken from a new angle, resulting in the tilted error
ellipse associated with this measurement. Combining this (tilted error ellipse) with
the error ellipse from a), the small dotted circular error ellipse is achieved. Taking
the next observation from location @ only yields a slightly smaller error ellipse than
that of the previous time step in a), shown by the dotted ellipse.

no navigational uncertainty estimating the position of a feature as depicted in Fig-
ure 4-1. As can be seen from this simple example of figure, it is clearly advantageous
for the vehicle to take the next measurement from a new direction. By doing so,
more information about the feature is extracted, and thus a better estimate can be

obtained.

The essence of our model is to determine the action that maximizes the total
knowledge (that is, the information) about the system in the presence of measurement
and navigational uncertainty. By adaptively choosing actions, we mean that the next
action of the robot is chosen so as to maximize the robot’s information about its

location and all the features’ locations (the map).
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The “amount” of information contained in Equation (4.2) can be quantified in
various ways. Fisher information is of particular interest and is related to the esti-
mate of the state X given the observations. The Fisher information for a random

parameter? is defined [4] as the covariance of the gradient of the total log-probability,

that is,
Lk = E{(VxInp(X, Z)) (V< Inp(X, Z:))T} (49)
= — E{V Vi Inp(Xy, Zy)}.
Where Vy = [£ --- E";]T is the gradient operator with respect to X = [z; ---zn],

thus V4VT is the Hessian matrix. Applying Bayes rule to Equation (4.9), that is,
(X, Zy) = p(Xk,2,Z;1) = p(Xy, Zg-;) - p(2|X}), and noting the linearity of the

gradient and expectation operators we obtain a Fisher information update:

E{V,VIiinp(X,Z)} =E{VxVinp(Xs,Zi1)} + E {V,‘VI In p(z«|Xk) } (
& ILgp=lip-1—FE {VxVIlnp(zkIXk)} .

4.10)

The first term on the right represents the Fisher information, I;_,, before the last
measurement, while the second term corresponds to the additional information gained
by measurement z.

If we obtain an efficient estimator for X, the Fisher information will simply be
given by the inverse of the error covariance of the state. Thus, under the assumption
that Equations (4.3) and (4.4) hold, the inverse of the error covariance P will be
an estimate for the Fisher information of the system. Under this assumption, and

using Equation (4.5), the transformation M relating Ixx to Ir,1x can be found. By

2Strictly speaking, the Fisher information is only defined in the non-Bayesian view of estimation
(4], that is, in the estimation of a non-random parameter. In the Bayesian approach to estimation,
the parameter is random with a (prior) probability density function. However, as in the non-Bayesian
definition of the Fisher information, the inverse of the the Fisher information for random parameter
estimation is the Cramér-Rao lower bound for the mean square error.
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combining this with Equation (4.10) we have a recursive Fisher information update,
which depends on the actions u (inputs). M will generally depend on the state X,
as well, which is not available. By invoking the assumption of Equation (4.3), Xy4, is
replaced by the estimate X x. Thus, M can be used to give us the optimal® action
uy to take given our model and assumptions.

At each time step the algorithm seeks to determine the transformation M and,
from this, infer the optimal action uz. Combining the vehicle prediction and EKF

update step of stochastic mapping, M is
Livije1 = (F,J;l}cFI + G(u)G(w)") ™t + HIR'H,, (4.11)

where Fx and Hy are the Jacobians of f and h with respect to X evaluated at Xk
and x| respectively. The first term on the right of Equation (4.11) represents the
previous information of the system, as well as the loss of information that occurs due
to the action uz. The second term represents the additional information gained by
the system due to observations after the action u;. As this quantity is a function
of X¢41, which is unknown, we approximate X, by Xxi1x by the assumption of

Equation (4.3). The action that maximizes the information can be expressed as
uy = maxarg Iryik41 = minarg Pryjjeq1. (4.12)
u u

The information is a matrix and we require a metric to quantify the information.
Further, it is desired that this metric have a simple physical interpretation and that
the metrics make intuitive sense. For example, using one of the standard measures of
matrices, such as the determinant, trace or a standard matrix norm (1-norm, 2-norm,

oo-norm), makes little intuitive sense, as such a measure is a measure in the space of

3By optimal, we here mean that, under the assumption that the EKF is the best estimator for
our state, the action u that maximizes the knowledge (information) of the system given the current
knowledge of the system can be determined. This is not necessarily the optimal action for the actual
system.
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the dimension of the information matrix, while the actual CML problem in our case
is a two dimensional problem. For instance, as a result of using the determinant as
a measure, obtaining absolute knowledge of any state will result in the notation that
the system has infinite information (exact knowledge), even though we might be very

uncertain about the location of all of the features and the vehicle.

For concurrent mapping and localization, it is desirable to use a metric that makes
explicit the tradeoff between uncertainty in feature locations and uncertainty in the
vehicle position estimate. To accomplish this, we define the metric by a cost function
C(P), which gives the total area of all the error ellipses, (i.e., highest probability
density regions) and is thus a measure of our confidence in our map and robot position.

That is,

C®) = [[y/}(Pr) +7 ST/

i=l j

(4.13)

N
=my/det(P,,) + 7 Z vdet(Py) ,
i=1

where A;(-) is the j-th eigenvalue of its argument. Even though Equation (4.13)
is necessarily the “best” measure, it is a measure that is simple and fulfills all the

requirements given above.

The action to take is obtained by evaluating Equation (4.12) over the action
space of the robot using the metric in Equation (4.13). This yields an adaptive
stochastic mapping algorithm. This procedure optimizes the information locally at
each time step, thus the adaptation step performs a local optimization. Notice that
the action space of the robot is not limited to motion control inputs. Other actions and
constraints can be readily included in the control input u, such as, what measurements
should be taken by the sonar. For this, we control the set of angles Uy which are

scanned by the sonar.
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In principle Equation (4.12) can be solved in symbolic form using Lagrange mul-
tipliers. However, the symbolic matrix inversion required in Equation (4.11) is very
tedious and results in a very large number of terms. Further, as more features are
added, the inversion scales exponentially in the number of calculations. Numerical
methods, however, can be used to evaluate Equation (4.12) quite efficiently. The
experiments below do not use a numerical technique such as the simplex method to
perform this optimization, however this could be readily incorporated in the future.

With the incorporation of the adaptive step, the adaptive augmented stochastic

mapping algorithm is summarized as follows:

1. state projection: the system state (vehicle and features) is projected to the
next time step using the state transition model F, along with the control input
Ug;

2. gating: the closest feature to each new measurement is determined and gated
with the feature and non-matching measurements are stored (Section 2.4);

3. state update: the EKF is used to update the estimated state vector, x, when
features are re-observed (Section 2.3.1);

4. new feature generation: new features are initialized using a delayed nearest
neighbor data association strategy (Section 2.4);

5. old feature removal: out-of-date features are deleted by a logic based track
deleter (Section 2.4); and

6. adaptation step: the next action, uy, to take is determined by optimizing
Equation (4.13).

An outline of the algorithm for performing adaptive augmented stochastic map-

ping is shown in Figure 4-2.

4.4 Simulation results

The algorithm described above has been extensively tested in simulation. In these
simulations, as well as in the experiments to follow, a numerical approximation was

performed by evaluating Equation (4.13) at a fixed number of points in the action
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Figure 4-2: Structure of the adaptive augmented stochastic mapping (adaptive ASM)
algorithm.

space. The robot was constrained to move a distance of 0, 10 or 20 cm at each time
step, and could only turn in increments of 22.5°. Further, the vehicle was constrained
to not get closer than 40 cm to the features (PVC tubes) as the sonar signal in this
range becomes unreliable. In all these simulations, range error was assumed to have
a standard deviation of 2 cm while the standard deviation for the bearing was 10°.
Further, the sonar could move in increments of 0.9° between each measurement. Thus,
a complete scan of 360° consisted of 400 sonar returns. The standard deviation for
the vehicle odometry was set to 5% of the distance traveled. The angle uncertainty
was set to 1°. These parameters were chosen as they resemble the situation for the air

sonar experiments in Section 4.5.1. Two different types of simulation are described.

4.4.1 Adaptive vehicle motion

In these simulations, it was assumed that the robot stopped and took a complete 360°
scan of the environment before continuing. The algorithm chose where to move adap-
tively. The algorithm took advantage of the fact that the measurements have different

certainty in range and bearing, thus forming an error ellipse. Notice, however, that
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if the observations of a target have nearly equal standard deviation in all directions,
the robot will not move, as the loss of information from odometric error is larger than

the information gained by taking a measurement from a different location.

Figure 4-3 shows the three typical paths of the robot in the presence of two features
(8.4 cm radius PVC tubes) as a result of adaptation. The robot started at (0,0) and
the paths (solid, dashed, and dashed-dotted lines) occurred with approximately equal
frequency. The dotted lines around the PVC tubes denote the constraints placed on
the robot for how close it could come to the PVC tubes while still obtaining valid
sonar returns. (This is a limitation of the standard Polaroid sonar driver circuit).
The resulting 95% confidence ellipses are drawn for the middle path, for the estimated
position of the center of the features and for the robot’s position. The robot’s true
position is indicated by a ‘+’ while the estimated position is shown by a ‘x’. The
robot stopped moving after about 15 time steps, as more information would be lost
than gained by moving. Also notice that the robot moved larger distances in the
beginning before taking the next scan than at the end of the run; more information
was gained by moving and taking a measurement from a different location in the

beginning than towards the end of a run.

Figure 4-4 shows the average, over 2000 runs, of the total cost (as defined by
Equation (4.13)) of the system under adaptation as a percentage of the total cost of
the system when moving randomly (solid line), or moving along the negative x-axis
(dashed line) without adaptation. Moving along the negative x-axis is a worst case
scenario and provides a lower bound on the performance of straight line movement.
Moving in a straight line from the initial position between the two features would
practically be identical to the adaptive solution, thus presenting an upper bound for
straight line motion. In all the runs without adaptation, the robot moved a distance
of 10 cm at each time step. As can be seen, the adaptation procedure obtains a
cost of about 60% of the non-adaptive strategies after about 8 time steps. The lower

cost signifies that the adaptive strategy has obtained more information about the
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environment and have thus produced a more accurate estimate of the robot’s position
as well as the features’ position. The random motion slowly started catching up after
the 8th time step and by the 50th time step, it has achieved a cost of about 15%
higher than that of the adaptive strategy. When moving along the negative x-axis,
the cost actually starts increasing after about the 15th time step, as the robot was so
far away from the features that it lost more information by moving than it gained by

sensing at each time step. This is due to the poor angular resolution of the sonar.
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Figure 4-3: Three typical paths taken by the robot in simulations of adaptive ASM in
the presence of two PVC tubes (filled circles) of radius 8.4 cm. Out of 1000 simulated
runs, the robot chose to go to the left, to the right and through the middle with about
equal frequency. The 95% confidence level of the map for the middle path is shown
by the ellipses. (See text for symbols.)
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Figure 4-4: Simulation result showing the cost function C(P) when performing adap-
tation divided by the cost function when not performing adaptation. Two cases in
which no adaptation was performed are shown: the solid line denotes the case when

the robot moved randomly, while the dashed line denotes the case when the robot
moved along the negative x-axis.
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4.4.2 Adaptive scanning and motion

In using sonar for mapping an environment, one is limited by the relatively slow
speed with which measurements can be acquired. Thus, we imposed the additional
constraint that the sonar could only scan an angle of 15° (that is, 50% more than
the measurement bearing standard deviation) at each time step. The algorithm was
required to decide where to direct the attention of the robot. The algorithm thereby
adaptively decided where to look as well as where to move. This was implemented in
the framework outlined above by adding an additional action uy to be controlled and

solving Equation (4.13) given the constraints of the scan angle.

To compare the simulation results to the experiments and the previous simulations,
the simulations were, as before, conducted over 50 time steps. However, under the
adaptive strategy, only a 15° scanning angle was chosen at each time step. This
is equivalent to obtaining 17 sonar returns. Without adaptation, a complete scan
was taken at every time step, generating 400 sonar returns. Figure 4-5 shows the
relative cost of adaptive sensing and motion with and without adaptation. The solid
line denotes the case when the robot moved randomly without adaptation, while the
dashed line denotes the case when the robot moved along the negative x-axis without
adaptation as a function of sonar returns. The dotted vertical line indicates the
point where the adaptive case was terminated as 50 time steps was reached. As can
be seen from Figure 4-5, the adaptive method obtained a map with high confidence
after relatively few sonar returns. After obtaining a total of 20000 returns, moving
randomly and moving along the negative x-axis only achieved 93% and 33% of the
confidence level that the adaptive method obtained with 850 sonar returns. Thus,
the adaptive strategy required fewer measurements, and achieved a higher confidence
level than any of the strategies without adaptation. The actual vehicle’s motion was

very similar to that shown in Figure 4-3.

Table 4.1 compares all the strategies on the basis of how many sonar returns and

how many time steps are required before the map reached a specified confidence level.
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Figure 4-5: Advantage of adaptive sensing and motion control. The cost function
when performing adaptation divided by the cost function when not performing adap-
tation is plotted. Two cases in which no adaptation was performed is shown: the solid
line denotes the case when the robot moved randomly, while the dashed line denotes
the case when the robot moved along the negative x-axis. The vertical dotted line
indicates the point at which the adaptive method had completed its 50 time steps
and terminated.

C=C. C=¢C,
Strategy Returns | Steps | Returns | Steps
Adaptive sensing and motion: 100 6 300 18
Adaptive motion: 1600 4 5200 13
No adaptation, random motion: 3200 8 20000 50
No adaptation, line motion: 3600 9 00 00

Table 4.1: Resources needed to achieve a given cost C in simulation. C. = 0.038m? is
the minimum cost achieved when moving in one direction during the experiment. C, =
0.0019m? is the minimum cost achieved in the simulations when moving randomly.

As expected, the adaptive sensing and motion strategy required the fewest number

of sonar returns to reach a given confidence level. However, it used more time steps
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than the adaptive motion strategy alone, as under the adaptive motion and sensing
strategy only one feature was measured at each time step, while under the adaptive
motion strategy, both features were measured at each time step.

Figure 4-6 shows the sensor trajectory for a simulation involving eight objects. Fig-
ure 4-7 shows the east and north vehicle location errors and associated error bounds
as a function of time during the simulation. After an initial loop around four of the
objects is executed, the error bounds converge and the sensor wanders back-and-forth

over a small area.

24 =2 0 2 4
East (m)

Figure 4-6: Path of vehicle performing adaptive motion among multiple objects.

4.5 Experimental results

Simulations provides an excellent tool for developing and testing of new algorithms

as well as a good indication for the performance of a method in the real world. How-
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Figure 4-7: Position estimate and 30 bounds for adaptive motion among multiple
features. As can be seen, a steady state is reached after about 500 seconds.
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ever, when operating in the real world there many events are difficult or impossible
to incorporate in simulations. Thus, performing laboratory experiments gives valu-
able insight to a method and its validity. In the next two subsections, the adaptive
augmented stochastic mapping developed in Section 4.3 is implemented on two exper-
imental platforms: (1) a Nomad land robot, and (2) in a underwater testing tank. The
experiments use the vehicle dynamic model of Equation (4.5) through Equation (4.7)

and the adaption step is performed according to Equation (4.13).

4.5.1 Air sonar experimental results

The algorithm was implemented on a Nomad Scout robot [117] equipped with a
50 kHz Polaroid 6500 series ultrasonic sensor mounted on a stepping motor that
rotated the sensor in 0.9 degree increments, as pictured in Figure 4-8. The error in
the sensor and the vehicle odometry was assumed to be the same as that used in the
simulations. The same constraints were employed as well. The sonar returns were
assumed to be mainly specular, therefore regions of constant depth were extracted
from the scans [69]. In these experiments, tracks were initiated from the first scan

only, rather than using the DNN track initiator. Figure 4-9 shows a rough model
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of the room and the configuration of the robot and features (PVC tubes of known
radius) in the experimental setup. The dots indicate individual sonar returns of the
Polaroid sensor from a complete scan of the environment. Each complete scan of the
environment consisted of 400 sonar returns. In these experiments 15 motion steps

were performed in each run.

Figure 4-8: The Nomad Scout robot with the Polaroid ultrasonic sensor mounted on
top.

Figure 4-10 shows the advantage of adaptation for a representative Nomad run,
similar to the simulation of Figure 4-4. As can be seen from this figure, the advantage
of performing adaptation is clear. Further, the experimental result was well within
the one standard deviation bound of the simulated predicted result over 2000 runs.

Figure 4-11 shows the advantage of performing adaptive motion and sensing over
moving in a straight line along the negative x-axis for the Nomad Scout robot (solid
line). The simulated result is shown by a dashed line along with the one standard
deviation bounds for 2000 simulated runs. As can be seen, the experimental cost ratio

was within the one standard deviation of the simulated value. The adaptive strategy
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X position (meters)

Figure 4-9: The returns from the Polaroid sensor (dots) with a rough room model
superimposed. The robot is drawn as a triangle, the PVC tubes are indicated by
small filled circles.

Strategy, C = C, Returns | Steps
Adaptive sensing and motion: 100 6
Adaptive motion: 2000 )
No adaptation, line motion: 6000 15

Table 4.2: Number of scans and time steps required to achieve a cost of C, = 0.038m?
or less for a representative experiment. The cost C, was chosen to be the minimum cost
achieved during the no adaptation strategy.

produced a high confidence map after relatively few measurements, consistent with the
simulations in Figure 4-5. The non-adaptive method only reached a confidence level
of 50% of the adaptive level, even after more than 20 times as many measurements

were taken.

Table 4.2 shows the number of time steps and number of sonar returns required

under each strategy to reach a map with some maximum specified cost C. As ex-



4.5 EXPERIMENTAL RESULTS 183

100

no-adaption (%)
<23 0 8
(=} (=]

/C

adaption
=
[=)

C

W
S

40 . —-
0 5 10 15

Time Step #

Figure 4-10: Comparison of cost function C(P) with and without adaptation for
a representative Nomad experiment. The solid line is the ratio of the cost when
performing adaptation divided by the cost of moving in a straight line along the
negative x-axis. The dashed line is the average simulation result over 2000 runs, with
the dotted line denoting the one standard deviation bounds.

pected, the adaptive sensing and motion strategy required orders of magnitude less
sonar returns than any of the other strategies. However, the adaptive motion strategy
also used fewer time steps to reach a specified confidence level. Comparing this table
for the experimental results to that of the simulation results of Table 4.1, we see that

they are consistent.
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Figure 4-11: Advantage of adaptive sensing and motion in a representative Nomad
experiment. The solid line is the cost of adaptive sensing and motion divided by the
cost of moving in a straight line along the negative x-axis. The dashed line is the
average of 2000 simulated runs and the dotted lines show the one standard deviation

bound. The dotted vertical line indicates the time where the adaptive case terminated
as 15 time steps were completed.
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4.5.2 Underwater sonar experimental results

The second type of experiments conducted to test the adaptive stochastic mapping
algorithm used a narrow-beam 675 kHz sector scan sonar mounted on a planar robotic
positioning system, as shown in Figure 4-12. The positioning system was controlled
by a Compumotor AT6450 controller card. The system was mounted on a 3.5 by
9.4 by 1.5 meter testing tank. The system executed on a PC running Matlab and
C--+ under WindowsNT. The C++ routines performed the interface to the sonar and
the AT6450. The stochastic mapping algorithm was implemented in Matlab, which
was also used for the the graphical user interface. The Matlab and C++ programs
were integrated, resulting in a closed loop system for performing CML. At each time
step, Fquation (4.13) was minimized over the action space of the robot to choose the

motion and scanning angles of the sensor.

The experiments were designed to simulate an underwater vehicle equipped with
a sonar that can scan at any direction relative to the vehicle at each time step.
Conducting complete 360° scans of the environment at every time step is slow with
a mechanically scanned sonar and computationally expensive with an electronically
scanned sonar. For these experiments, we envisioned a vehicle mounted with two
sonars, one forward looking for obstacle avoidance, and one that can scan at any
angle for localization purposes. The forward looking sonar was assumed to scan an
angle of £30°. The scanning sonar was limited to scan over Uy = [-15°15°], at
each time step. The scanning was performed in intervals of 0.15°. The sonars were
modeled to have a standard deviation in bearing of 10.0° and 2.0 centimeters in
range. Between each scan by the sonar, the vehicle could move between 15 cm and
30 cm. The lower limit signifies a minimum speed that the vehicle could move at
before loosing controllability, while the upper limit signifies the maximum speed of
the vehicle. The vehicle was constrained to only turn in increments of 22.5°. Further,
we assumed that the vehicle was equipped with a dead-reckoning system with an

accuracy of 10% of distance traveled and an accuracy of 1.0° in heading.
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Figure 4-12: The planar robotic positioning system and sector-scan sonar used in the
underwater sonar experiments. The water in the tank is approximately 1 meter deep.
The transducer was translated and rotated in a horizontal plane mid-way through
the water column.

Figure 4-13 shows a typical scan taken by the sonar from the origin. The crosses
show individual sonar returns. The circles show the features (PVC tubes). The
dotted circles around the features signify the minimum allowable distance between
the vehicle and the features. The triangle shows the position of the sensor. Circular

arc features were extracted from the sonar scans using the technique described in [83].

Figure 4-14 shows the sensor trajectory for a representative underwater sonar ex-
periment with the complete algorithm. The sensor started at the origin and moved
around the tank using the adaptive stochastic mapping algorithm to decide where
to move and where to scan. Based on minimization of the cost function in Equa-
tion (4.13), the vehicle selected one target to scan to provide localization information.
In addition, at each time step, the sonar was also scanned in front of the vehicle for
obstacle avoidance. Figure 4-15 shows the z and y errors for the experiment and asso-
ciated error bounds. No sonar measurements were obtained from approximately time
step 75 to time step 85 due to a communication error between the sonar head and

the host PC. Figure 4-16 shows the cost as a function of time. Solid vertical lines in
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Figure 4-13: The returns from the underwater sonar for a 360° scan of the tank
from the origin. The crosses shows individual returns. The small circles identify the
position of the features (PVC tubes), with a dotted 5 cm outside circle drawn around
them to signify the minimum allowable distance between the sonar and the features.
The sonar was mounted on the carriage of the positioning system, which served as a
“simulated AUV”. The location of the sonar is shown by a triangle. The outline of
the tank is shown in gray.

Figures 4-15 and 4-16 indicate the time steps when features of the environment were
removed. Figure 4-17 plots the vehicle position error versus time for the stochastic
mapping algorithm in comparison to dead-reckoning.

Figures 4-18 through 4-20 show the results of a non-adaptive experiment in which
the vehicle moved in a straight line in the negative z direction with the two objects
present throughout the experiment. Without adaptive motion, the observability of
the features was degraded and the y estimate seems to diverge. Comparing Figure 4-
19 with Figure 4-15 we observe that the non-adaptive strategy had a maximum 3¢
confidence level of about 0.8 m and 0.2 m in the x and y positions respectively, while
the maximum 3¢ confidence level under adaption was about 0.17 m and 0.15 m in the
y and x position respectively. A further indication of the advantage of the adaptive

approach can be seen by comparing Figure 4-20 with Figure 4-17.
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Figure 4-14: Time evolution of the sensor trajectory for an adaptive stochastic map-
ping experiment with the underwater sonar. The feature on the right was added
at the 40th time step and the two left features were removed towards the end of the
experiment. The vehicle started at the origin and moved adaptively through the envi-
ronment to investigate different features in turn, maximizing Equation (4.13) at each
time step. The filled circles designate the feature locations, and are surrounded by
dotted circles which designate the “stand off” distance used by an obstacle avoidance
routine. Similarly, the dashed-dotted rectangle designate the “stand off” distance to
the tank walls. The dashed-dotted line represents the scanning region seiected by
the vehicle at the last time step. The large triangle designates the vehicle’s posi-
tion. The vehicle was constrained from moving outside the dashed-dotted lines to
avoid collisions with the walls of the tank. Sonar returns originating from outside the
dashed-dotted lines were rejected.
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Figure 4-15: Position errors in the z and y directions and 3-0 confidence bounds for

adaptive underwater experiment.
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Figure 4-16: Cost as a function of time for adaptive underwater experiment. The cost
increased at approximately the 40th time step when the third object was inserted into
the tank and was observed for the first time. During the time interval between the
two dashed vertical lines, no sonar data was obtained due to a serial communications
problem between the PC and the sonar head. The two solid vertical lines designate
the time steps during which features were removed from the tank, to simulate a

dynamic environment.
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Figure 4-17: Vehicle position error versus time for dead-reckoning (dashed line) and
the adaptive ASM algorithm (solid line). During the time interval between the two
dashed vertical lines, no sonar data was obtained due to a serial communications
problem between the PC and the sonar head. The two solid vertical lines designate
the time steps when features were removed from the tank, to simulate a dynamic
environment.
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Figure 4-18: Sensor trajectory for a non-adaptive experiment in which the vehicle
moved in a straight line. While accurate location information was obtained in the x
direction, the CML process diverged in the y direction. The dashed-dotted rectangle
indicates the “stand off” distance from the tank walls used by an obstacle avoidance
routine.
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Figure 4-19: Position errors in the z and y directions and 3-0 confidence bounds for

non-adaptive underwater experiment.
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Figure 4-20: Vehicle error as a function of time for non-adaptive underwater experi-
ment.
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4.6 Conclusions

This chapter has considered the problem of adaptive action selection for feature-based
concurrent mapping and localization for mobile robots. An adaptive action metric
was incorporated within a stochastic mapping framework and used for adaptive action
selection. The validity of the approach was tested via air and underwater experiments.

The proposed method enables adaptive concurrent mapping and localization (CML)
in a priort unknown environments for any number of features. The adaptive method
was based on choosing actions that, given the current knowledge, would maximize
the information gained in the next measurement. This approach can easily be im-
plemented as an extra step in a stochastic mapping algorithm for CML. The validity
and usefulness of the approach were verified both in simulation and in experiments
with air and underwater sonar data. Over a range of different operating conditions,
the system exhibits a behavior in which it selectively explores different objects in the
environment. This behavior is exhibited in Figure 4-21, which shows the sensor path
for two different underwater sonar experiments under similar conditions.

Based on the air sonar experiments, we feel confident in the accuracy of the
simulation in predicting experimental outcomes. For example, the three typical paths
for the robot shown in Figure 4-3 are representative of both adaptive simulations and
real data experiments, and the plots comparing the performance with and without
adaptation are similar. The advantage of performing adaptive CML is notable when
only adapting the motion of the vehicle (Figures 4-4 and 4-10). However, more
substantial gains are obtained when performing adaptive motion and sensing. This
is apparent from Figures 4-5 and 4-11, where the number of sonar returns required
to obtain a given confidence level is an order of magnitude fewer than when not
performing adaptation.

The adaptive sensing technique employed here is a local method. At each cycle,
only the next action of the robot is considered. By predicting over an expanded time

horizon, one can formulate global adaptive mapping and navigation. For example,
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Figure 4-21: Two representative stochastic mapping experiments that exhibited adap-
tive behavior. In each figure, the solid line shows the estimated path of the sensor
and the dashed line shows the actual path. The triangle indicates the final position
of the sensor. The filled disks indicate the locations of the features (PVC tubes).
The ellipses around the features and the sensor are the 3 o contours, that is, the 9%
highest confidence regions. The sonar view is indicated by the dashed-dotted line.
In the left figure, the sensor had a scanning angle of [—30°,30°]. The sensor started
at (0,0) and then adaptively determined the path to take as well as the direction to
scan, resulting in “exploratory” behavior. The sensor first moves over to one of the
objects, turns, and moves around the second. The experiment illustrated in the right
figure was similar, with the exception that the sonar was only able to scan n area of
[—7.5°,7.5°] each time step. Again, we can see that exploratory behavior emerged as
the sensor attempted to maximize the information it obtained about the environment.
In these experiments, tracks were initiated from the first scan only, rather than using
the DNN track initiator. In addition, the robot was constrained to turn a maximum
of 30° at each time step in 15° increments.

one can consider how to determine the best path between the robot’s current position
and a desired goal position. Such methods, however, tends to cause the space of
possible actions to become extremely large, and a computationally efficient method
for searching the action space will be essential. Using the method proposed here will
clearly rapidly become intractable. For example, if 20 possible actions are considered
at each time step, 20* actions must be considered at the k-th time step. Thus,

a combination of the current method with a form of cost function related to the
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distance to the goal might well be appropriate. For instance, one could perform
adaptation only if the adaptation step causes at least a p-percentage improvement
over moving towards the goal. One could also imagine a strategy for identifying the
steady state of the system (which occurred after about 500 seconds in Figure 4-7), in
which adaptation halted and the robot concentrated on reaching the goal position.
While this chapter has focused on an adaptive sensing metric for improved state
estimation performance in CML, we believe that other types of adaptive strategies
can help answer many of the important problems in mobile robot navigation. Some
open issues are the development of adaptive strategies to identify environmental fea-
tures useful as navigational landmarks, operation in dynamic environments and the

integration of CML with a path-planner.

In conclusion, adaptive sensing can save time and energy, reduce the amount
of data that needs to be acquired, improve state estimation robustness, ease data

association ambiguity, prevent divergence, and facilitate recovery from errors.

4.7 Summary

This chapter has addressed the problem of how to perform concurrent mapping and
localization (CML) adaptively using sonar. A metric for adaptive sensing which is
defined in terms of Fisher information and represents the sum of the areas of the error
ellipses of the vehicle and feature estimates in the map was introduced. Predicted
sensor readings and expected dead-reckoning errors are used to estimate the metric
for each potential action of the robot, and the action which yields the lowest cost
(i.e., the maximum information) is selected. This technique has been demonstrated
via simulaticns, in-air sonar experiments, and underwater sonar experiments. The
vehicle tends to explore selectively different objects in the environment.

The technique of adaptive CML is a promising venue for increased CML perfor-

mance. Through adaptive CML, the vehicle autonomously decides where to move.
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However, moving in a straight line to the goal position might cause coilisions with
other objects in the envircnment. The question of path-planning is thus addressed in

the next chapter.
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Chapter 5

Path planning in dynamic

environments

Path planning is a key technology for the safe autonomous operation of mobile robots.
Motivated by fluid analogies, artificial harmonic potentials can eliminate local minima
problems in planar path planning. In this chapter, simple analytical solutions to
harmonic potentials are derived using tools from fluid mechanics, and are applied
to planning among multiple objects in dynamic environments. These closed-form

solutions enable real-time computation of paths from local information.

5.1 Introduction

The previous chapters have addressed navigation techniques for mobile robots. In
particular, the focus has been on feature based approaches to mapping an a priori
unknown environment while concurrently using that map to localize the robot. The
success of these approaches enables the robot tc answer the questions “what is my
map?”’ and “where am I?”. However, once answers to these questions are found,
the next challenging problem for the robot is to find a collision free path to its goal.

The field of mobile robot path planning addresses this problem, thereby providing

197
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the robot with answers to the question “how do I get there?”. The path planning
problem becomes particularly challenging in dynamic environments. Mobile robot

path planning in dynamic environments is the focus of this chapter.

The problem of path planning for a robot that avoids collision with objects in a
known environment has been studied extensively. Such a map can be obtained by the
CML techniques described in earlier chapters. In path planning, the task is to find
a trajectory which will bring a mobile robot from an initial position x;, to the final
position xy, while avoiding obstacles. In this chapter we will limit ourself to path

planning in two-dimensions.

Approaches to the path planning problem can be divided into global and local
algorithms. Several methods using a combination of both have also been suggested.
In such methods, either a local method is assisted by a global planner when needed
(that is, when the robot gets stuck) as in [94], or paths from all points in space
to the goal are defined by some potential field method [59]. In the potential field
methods, the position and shape of all obstacles in a given region are assumed to be
known, for example through CML, and the potential function is constructed using
this information. Thus, only local calculations at each point in space are required for
the robot to find the direction it should move. Initially, potential field methods had
the drawback that a robot could get stuck in local minima [59, 91, 28]. This problem
has in recent, years been solved by using potentials that have their local extrema
on the boundaries of obstacles by the use of harmonic potentials, that is, functions
satisfying Laplace’s equation, V2¢ = 0, often motivated by a fluid or electrostatic
analog [57, 116, 33, 32]. The disadvantage of these methods is that the Laplacian has
to be solved over the whole state space, and the convergence when solved numerically
is very slow. On an L x L grid the computation time scales as L*, thus making it

difficult to find solutions in real-time for dynamic environments.

Two notable exceptions to the use of numerical solutions of harmonic potentials

are described in references [49, 60]. Guldner and Utkin [49] use analytical solutions
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for objects having a simple shape, making it computationally inexpensive. However,
they only consider static environments and only the object closest to the robot. This
has the drawback that the robot is 10t influenced by any other objects in space. Kim
and Khosla [60] use the panel method from computational hydrodynamics. This gives
an approximate closed-form solution over the entire space given an arbitrarily shaped
polygon, however, they restrict themselves to static environments.

In this chapter, we extend the potential field method to dynamic environments
for real-time path planning in two dimensions. We also introduce analytical solutions
for multiple objects in dynamic environments.

In the Section 5.2 we draw the analog between fluid flow and path planning in two
dimensions. We also introduce several methods for defining objects in an analytical
form, and a new method for defining the goal position of the robot. Section 5.3
extends the method to dynamic environments, while Section 5.4 presents concluding

remarks.

5.2 The fluid analogy

Harmonic potentials have the great advantage that they achieve their extremum only
on the boundary of objects. Thus no local minima will occur in the admissible
configuration space, and a path generated by following a steepest gradient descent is
guaranteed to reach the goal without hitting any objects in the domain, if the goal is
reachable. This property of harmonic potentials is the extremum property [82]. Such a
path is in fluid mechanics termed a streamline, and defines the path of a fluid particle.
(There is one streamline for every object in a flow where the velocity vanishes, termed
the stagnation line and the velocity vanishes at the stagnation point on the boundary
of the object. However, this line has zero measure, and the stagnation point is a saddle
point, so these points, in the absence of large friction, do not cause a problem when

using streamlines as robot paths.) In using harmonic potentials in two-dimensional
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path planning it is useful to draw the analog to invicid incompressible irrotational fluid
flow, termed potential flow, and thereby use different powerful tools and properties
from hydrodynamics [57, 60, 82, 58] and intuition. Let the fluid velocity at x be
U(x). The assumption that the flow is irrotational states that the vorticity vanishes,

that is:

VxU=0 & U=Véx), (5.1)

where ¢(x) is a velocity potential. Since the fluid is assumed to be incompressible,

the continuity equation can be written:

V-U=0. (5.2)

Combining Equation (5.1) and (5.2) we arrive at the Laplace equation for the velocity

potential:

V2 =0. (5.3)

On obstacle boundaries, the boundary condition of Laplace’s equation is given by the
impenetrability of obstacle boundaries, called von Neumann boundary conditions,

which can be expressed as

n-U=n-V¢=0, (5.4)

where n is the unit normal vector on the boundary. In addition, there are different
flows describing potential flows, such as, sources, sinks, and uniform flows. Potential
flow represents an ideal fluid flow, where viscosity is ignored.

In Section 5.2.1 we describe several basic methods for defining objects in an an-
alytical form. In Section 5.2.2 we describe our methods and approximations made

for using closed form solutions of Laplace’s equation to handle multiple objects. Sec-
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tion 5.2.3 introduces a new method for defining the initial position and the goal

position of the robot.

5.2.1 Modeling of objects

In this section we outline the different methods used for modeling of objects in po-
tential flows.

From standard fluid texts on potential flows, such as the book by Milne-Thomson
[82], solutions for various shaped objects can be found in closed form. In fluid dy-
namics, it is convenient to work with complez potentials, rather than just the velocity
potential in order to utilize the properties of conformal mapping of complex variables
for two-dimensional problems. The complex potential consists of the velocity poten-
tial ¢(x), as defined above, and a function called the stream function ¥(x), which is
constant on a path of a fluid particle, that is, on a streamline. The complex potential

is defined as
w=¢+iwp=f(z), z=zx+iy; (5.5)

where 72 = —1.

The velocity field, U = [u v] can be found from either ¢, ¥ or w by

Lo B ()

az dy dz
(5.6)
y = 9 _ % _ g d_"’)
8y ~ o0r dz ]

We here outline the four major methods to define various potential lows: simple
flows, use of specific theorems, conformal mapping and a panel method. We here use

U to represent a velocity and r to represent a length.

1. SiMPLE FLOWS: The potential for some simple flows can be found by trial and
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error, such as that of a uniform flow
w=—-Uze™™. (5.7)

Using Equation (5.6) we find u = Ucose, v = Usinea, which we see is the

uniform flow of magnitude U making an angle a with the positive x-axis.

SpPeCIFIC THEOREMS: Laplace’s equation has been studied extensively, as it
appears in many physical problems. Thus, many special theorems for modeling

of objects apply. For example, the complex potential

2 1
w=-U (ze"i"‘ + L ) . (5.8)

represent the flow past a circular cylinder centered at zo = xg + iy, with radius
r in a uniform stream with velocity U inclined at an angle a with the positive
x-direction. This result follows directly from the circle theorem described in

[82].

CONFORMAL MAPPING: A powerful technique for obtaining flows around ob-
jects of more complex shape in two dimension, is by the use of conformal map-
pings [82, 87, 48]. One of the most useful mappings is the Joukowski transfor-

mation:

r2 -
z=&+ E ) (5.9)
by which we can map the &-plane to the z-plane and vice versa. If we take a
circle of radius 7 = 3(a + b) in the &-plane, this transformation will map the

circle into an ellipse with major axis a and minor axis b in the z-plane. That
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is, the circle in the £-plane is given by Equation (5.8) as:

w=-U (ﬁe"i" + (_aifé&’_) , (5.10)

and solving Equation (5.9) for £ we get
5:%(75:&\/22—7‘2), r2=a? -9 (5.11)

From these twc equations we can find dw/dz and thus the velocity field around

an ellipse.

4. PANEL METHOD: In panel methods [60, 31, 84] a body of unspecified shape may
be generated by adding to a uniform flow a linear combination of singularities
including sources, sinks, doublets, and vortices. This is done by approximating
the shape of the object by a finite number of line segments in two-dimensions
(three dimensional panel methods also exist), called panels, each of which con-
sists of a uniform distribution of singularities of a certain kind. We here only
outline the panel method based on a uniform distribution of sources, first in-
troduced by Hess and Smith [53], and refer the reader to the cited books and

articles for derivations of other panel methods.

In this method, the potential ¢; of panel j is given by its midpoint (a;, b;), the
angle 6; it makes with the oncoming uniform stream, the panel length 2L; and

the panel strength A; by:
At 2 212
e =3 [ wlle =+ ()P (5.12)

where x; = a; + ljcos6; and y; = b; + [;sin 6.
The N panels constituting a polygon are numbered in a clockwise direction.

Each of the sides of the polygon is made up of one or more panels. In practice,

the largest panel has the length of the minimum thickness of the polygon. Each
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panel has a common end point with each of its two neighboring panels. Thus,

the potential for the polygon in the uniform flow, ¢,, at point (z,y) is:

N
BT y) =dut ) 0. (5.13)
j=1
The task is to determine A;,...,Ax. This is done by solving N linearly inde-
pendent equations given by the requirement that the outward normal velocity
is zero (i.e. Equation (5.4)) on the midpoint, (a;,b;), of each of the N panels.
Hence, the N equations are given by

9

an¢(x’y)l(“i"’f’ =0, for j=1,..,N, (5.14)

We also find that the method introduced by [60] of having n- U > 0 on the
boundaries instead of Equation (5.4) to be appropriate. Notice that the von
Neumann boundary condition is only satisfied at the midpoint of each panel,
thus the method is only approximate. When all \’s have been determined, the

velocity field (without the uniform flow) is given by:

u(z,y) 9/0r | & 5
U(x7 y) a/ay Jj=1
N Mo 2tan‘1(——1y':rb) - 2tan_1(‘"—"‘yr;,b)
ZER"J In ( x§+(yr+Lz-)2) ’
Jj=1 z2+(yr—L,;)?

where

z, T — ay R sin@; — cos @;

= Ry, , Ry, = ]
Yr y—b; cos¢; sing;

For not very complex shapes, less than N = 20 panels gives a very good ap-
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proximation and keeps the computational cost low.

5.2.2 Multiple objects

All the methods for modeling of objects outlined in section 5.2.1, with some excep-
tions, only give the analytical solution for one object in a uniform flow. Due to the
linearity of Laplace’s equation, the superposition of several different solutions will
also be a solution. However, the superposition of solutions to Laplace’s equation for
objects in a flow will deform the contour where Equation (5.4) is satisfied from the
actual boundaries of the objects, which again may cause intersection of robot path
(that is, streamlines) and the objects. Thus, modifications have to be performed in
order to use the methods of section 5.2.1 for robot path planning. We here present
a new method for path planning in an environment with several objects where the
path is influenced by all known objects in the environment, and allows for moving
obstacles and obstacles that change size.

This problem can be solved as follows: If the robot is very close to an object the
robot must first of all avoid that object. This can be achieved by considering the flow
field near an object as the resulting flow around the object in a fictitious uniform flow,
for which the solution is known exactly. When the robot is far away from any objects,
the superposition of solutions is close to the exact solution, while superposition and
the extremum property ensures that Laplace’s equation is satisfied and that the robot
will not get stuck in a local minimum. In between these two regions, a transition from
the field close to the object and far from the object is used. Thus, by this method, a
harmonic potential is obtained that satisfies the boundary conditions. However, this
potential is an approximate solution to the potential flow. This approximation does
not cause a problem as the analog to potential flow is merely a tool for intuition, and
gives us tools from fluid mechanics for solving Laplace’s equation.

More explicitly, let ¢;_;, = ¢, + E;‘l ¢,, define the velocity potential before the

introduction of object :. This potential is composed of ¢, which is the “external”
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field which will define the goal position, and Ei—l ¢, which defines the potential
for all the ¢ — 1 objects that already exist. Let ¢,, be the potential of a uniform
flow, and let ¢, be the potential which defines the flow exactly around the object
in the uniform flow ¢,,. Then @,, = @, — ¢4, is the potential associated with the
object in the absence of the uniform flow. We first place a region around the object
where we impose that the potential is @y, (region A). In implementation, this region
is typically chosen to be of width equal to the distance a robot can move in a little
more than one time step around the objects’ boundary. Thus, once inside this region,
the solution is exact for the given object geometry, that is, Equation (5.4) is satisfied
on the object boundary, and there are no local extrema by the extremum property.
Outside this region, we design an outer region where we make a continuous linear
transition, with continuous first order derivatives, from the exact potential of the
object in the uniform flow, ¢,,;, to the sum of the potential prior to the introduction
of object 7 and the potential of the object without the uniform flow, ¢;_, + ¢, (region
B). In implementation, region B is typically chosen to be of width of the length a
robot can move in a couple of time steps. Outside this transition region, the potential
is then ¢; = ¢;_1 + @,, (region C). By superposition, since ¢;_1, ¢,, and ¢,; are all
solutions to Laplace’s equation, any linear combination of them is also a solution.
Thus, the potential is a harmonic potential in all three regions, and by the extremum

property there are no local extrema other than on the boundary of the object.

The potential in region C is an approximation of the potential of a fluid. Since, by
definition, a robot in region C is at a safe distance from any object, the approximated
solution for the fluid flow is appropriate for a robot’s path. The sectioning of the

regions around an object is depicted in Figure 5-1.

If two objects are so close that their B-regions overlap, one can let the path be
determined by the mean of the field from both objects. This will work since the
objects are far enough away so that the robot can navigate robustly in this region,

which by definition is a B-region. If two objects are so close together that their A-
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Region B Region A

Region C

Figure 5-1: An object modeled with a harmonic potential and the different zones
defined around it in order to enable path-planning among multiple objects.

regions overlap, it is not safe for a robot to operate in this area, since it is less than
the distance the robot can move in one time step from the objects, thus making it
liable to collide with one of the objects. In such cases, to make the planner more
robust, we view all objects that are so close that their A regions overlap as a single
object.

In Figure 5-2 we show several paths for a robot whose goal is just to move from the
left to the right given different initial vertical position. These paths are analogous to
the stream lines for an ideal fluid. The dotted lines shows the outer border of region
B, while the dashed-dotted region shows the outer border of region A. Figure 5-2(a)
shows the paths when the two objects are so far away from each other that they do
not have overlapping B regions. (b) shows the robot paths if the B regions (but not A
regions) overlap. (c) shows the paths when the objects are so close that they can be

considered as a single object (that is, their A regions overlap or the objects touch).

5.2.3 Defining the external field

Traditionally, a point source has been placed at the robot’s initial position while a
point sink has been place at the robot’s goal position in order to make the goal the
global minimum and the initial position the global maximum of the operating space

[57, 116, 33]. However, this method has the disadvantage that the field can become
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Figure 5-2: Robot paths, from left to right, past objects for different initial positions.

arbitrary small when the robot is far away from its goal and initial position, while
the field tends to infinity at the goal and initial position, thus, making the method
vulnerable to numerical noise. Kim and Khosla [60] used a uniform field directed
from the initial point to the goal sink, avoiding a point source at the initial position.
This eliminates the near zero field in between goal and robot, but not the singularity
of the goal position.

We approach this problem by the use of a uniform field always directed from the
robot’s current position to the goal position with magnitude U. More precisely, we

use the complex potential

w=-Uze ™, o=tan™' (i’f — Z) ) (5.15)
-
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as the underlying external potential (that is, ¢, = R(w)). Here (z,y) is the robot’s
current position and (zy,yy) its goal position. Thus ¢,, = ¢, for all i by definition.
Notice that w has no extrema. The advantage of this method is that the external field
will always have magnitude U and that ¢,, = ¢, for all times. The uniform field used,
is rotated with time, however, it is always directed parallel to a straight line from
the robot to its goal. This type of motion is analog to the Dog curve problem [73],
thus the time variation of the field and robot paths will be continuous, and allows for
implementation of moving goals in a natural manner.

A disadvantage of this method is that the solution for a uniform flow from any
direction around any object in the enviromment must be known. Thus, objects for
which the panel method is used should have the panel strengths precomputed for any

direction uniform flow.

5.3 Dynamic systems

In this section, path planning in static environments is generalized to path planning
in dynamic environments. The same general methods for defining objects in space as
outlined previously will be used, but with some simple changes in order to incorporate
translation (section 5.3.1), expansion and contraction (section 5.3.2), and rotation of
objects (section 5.3.3). Section 5.3.4 describes a method for dealing with objects that

come in contact and thereby closes existing paths.

5.3.1 Translation of objects

In this section we show how to find the velocity field of an object meving with a
velocity V in a uniform flow U. We first define an inertial reference frame X-Y.
Second, we define a coordinate system x-y which is fixed on the moving object, and
moves with a velocity V = [Vx V4| with respect to the reference frame X-Y. Since

the object is moving we need to ensure that the von Neumann boundary condition is
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satisfied on the surface of the object in the z-y coordinate system in order to ensure
that a path does not pass through the object. When this is achieved, we can transform
the field back to the X-Y system. The uniform flow past the object, as seen in the

x-y coordinate system is:

U,=U-V. (5.16)

Notice that U, is also a uniform field, but has different magnitude and direction
than U. Thus we can find the velocity field around this object using any of the
methods outlined in section 5.2.1. In particular, assume that the velocity at time
t at a point (z(t),y(t)) is v = [v; v,] in the x-y coordinate system. In the X-Y

coordinate system, this point’s coordinates are given by:

X(t) = X(0)+z(t) + Vxt,
Y() = Y(0)+y(t)+ Wt,

(5.17)

where X(0),Y(0) is the coordinates in the X-Y coordinate system of the origin of the

x-y coordinate system. The velocity u at this point in the X-Y system is then simply

u=v+V. (5.18)

As a simple example, we can find the velocity field when a circular cylinder with

velocity V moves in a fluid with velocity U. Using Equation (5.8) we find

) 2 i
v — vy = |[U = V| (e""‘— re ) , (5.19)

2 =2

where 7 is the radius of the cylinder, a is the angle that U — V makes with respect
to the X-axis, and 2p = X + 7Y} is the center of the cylinder. The velocity field is
then simply found by combining equations (5.18) and (5.19).

Figure 5-3 shows a circular robot starting at the left whose goal is marked by
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Figure 5-3: Robot avoiding moving circular cylinders and static walls.
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Figure 5-4: Robot avoiding circular cylinder crossing the robot’s goal *.

a ‘*’. A moving circular cylinder starts at the bottom left, and moves to the left
and up, and another moving cylinder starts at the upper middle and moves straight
down. The two L-shaped objects are static and were defined using the panel method
with 18 panels each. The line in the drawing represents the robot’s path. As can be
seen from these figures, the robot manages to maneuver in the dynamic environment

without hitting the moving objects or the static walls, while still reaching its goal. For
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this particular plot, each computatien took about 0.05 seconds using non-optimized
matlab code on a Sparc 5. It is expected that the algorithm can be speeded up
considerably, as only about 10? operations are required for each of the circles, and
only about 10* operation for each of the L-shaped objects, due to the simple analytical
forms, to obtain the velocity field at the robot’s current position.

Figure 5-4 shows how a robot that initially is at rest at its goal, marked by a ‘*’
(Figure 5-4(a)), while a larger circular moving object moves from left to right. As the
circular object is approaching, the robot starts to move away from its goal in order
to avoid the moving object, part (b) and (c). When the object has moved away from

the robot’s goal, the robot can again reach its goal position, as shown in part (d).

5.3.2 Expanding objects

Objects that expand or contract are simple to model. The only requirement is that the
von Neumann boundary condition is satisfied on the dynamically changing boundary.
Thus, if a boundary expands/contracts with a velocity V' the normal velocity of the
boundary must be V. The magnitude of the normal vector is then V' on the boundary
and is made to drop off with the inverse of the distance to the boundary, as potentials
obeying Laplace’s equation drops off with the inverse of the distance. Such objects
might be useful in situations where, for example, one needs to avoid liquids that are
dripping on a surface, or to incorporate time-varying safety zones.

Figure 5-5 shows how the robot navigates around an expanding object using this

method.

5.3.3 Rotating objects

Determining the velocity potential for a rotating object is more complicated. It
can, however, be shown that the stream function on the boundary of an object ro-

tating with an angular velocity w around the origin, and a translational velocity
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Figure 5-5: Robot moving over an expanding object.

U = [U, iU, = Ue™™ in a static fluid, is given by (see [82] for a proof):
2y = —Uze™ + Uze™ + iwzZ , (5.20)
where Z is the complex conjugate of z.

Now, if we let the domain outside a contour C in the z-plane be mapped con-
formally on to the outside of the unit circle |£| = 1 in a complex £-plane, by the

relation

z=f(§), (5.21)

the points at infinity in the z-plane and &-plane correspond. Therefore, for the liquid
to be at rest at infinity, the complex potential w cannot contain positive powers of z
(or &) when expanded in a power series in z (or £). Now, we define a general point
on the unit circle boundary by o = €, where the stream function in Equation (5.20)

must apply. Thus, by equations (5.20) and (5.21), the stream function 3 on the
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boundary C becomes

2ty = B(o)
= -Uf(o)e ™ +Uf(1/o)e+ (5.22)
iwf(0)f(1/0) .

The function B(o) is called the boundary function and can be expanded in negative
powers of g, grouped in B;(c), and in positive powers of o, grouped in By(o). That
is, B(0) = Bi(0) + By(0). It can further be shown that, if the fluid is moving with
velocity —U and the object is rotating with angular velocity w about the point z,

the complex potential that satisfies the boundary condition (Equation (5.20)) is then

(see [82] for proof):
w = By (§) + Uf(€)e™ — iwZpz . (5.23)

To get the velocity field for the contour C rotating about the point 2 in a fluid flowing

uniformly with velocity Ue™* we use Equation (5.6).
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Figure 5-6: The robot navigates to its goal at ‘*’, avoiding the rotating ellipse. The
robot’s goal is so high that the robot is forced to go above the rotating ellipse.
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Figure 5-7: The robot navigates to its goal at ‘*’, avoiding the rotating ellipse. The
robot at first tries to go above the ellipse, but is forced to go below the ellipse.

The effect of a rotating object can be illustrated by two simple examples where
we let a robot navigate to its goal in the presence of a rotating ellipse. Figures 5-6
and 5-7 illustrate how a circular robot navigates around a rotating ellipse, depending
on its goal position. The initial position of the robot is to the left, and is the same
for both cases. The initial position and the angular velocity of the ellipse is also the
same in both figures. In Figure 5-6 the robot moves in the correct general directicn
initially and passes above the rotating ellipse. In Figure 5-7, however, the robot is
initially on a path to pass above the ellipse (part (b)), but it is unable to, and is

forced to move below the ellipse (part (c) ) and to its goal in part (d).

5.3.4 Interaction among obstacles

The main problem left to solve is how to deal with situations where objects move
in such a manner as to close an existing path. A solution to this prcblem is to add
circulation around the objects. By changing the tangential velocity on the boundary,

we are able to move the streamlines around the object. In particular we are able to
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move the stagnation lines. As mentioned, all objects have one and only one stagnation
line. The problem is, therefore, to make a smooth transition from two stagnation lines
to one when two objects come in contact and cut a path. This is achieved by making
the surface of the objects “rotate” (that is, add circulation) in opposite directions
as the two objects approach each other. More quantitatively, one rotates the surface
of the object by a speed V; such that the tangential velocity at the point of contact
vanishes. That is, if the tangential velocity at the point of contact prior to the rotation
of the surface is V;, the condition of vanishing tangential velocity is achieved by letting
Vs = —V;. Thus, when two objects, A and B, come in contact one lets V;, = —V,,
and V;, = —V;,. This, in conjunction with the method of defining multiple objects,
as defined in section 5.2.2, will conserve the validity of Equation (5.4) on the objects
boundaries. When two objects are separated by a distance § we want a smailer
circulation on the objects to enable a point robot to move between the two objects.

Thus, the speed of the object’s surface is given by:

Vo= —(1- 2V, (5.24)

where A is a free parameter that determines how far away two objects can be before
rotations of the surfaces are introduced. In general the relative distance between every
object in the environment is needed, which is computationally expensive. However,
by introducing another region D outside region B, (see Figure 5-1) to each object,
the computaticnal cost becomes small. If a robot is outside all D regions or inside
the D region of just one object, it is at a safe distance from any interacting objects,
thus no rotation of object surfaces is needed. If, however, the robot is inside region
D of two objects, Equation (5.24) must be employed. Here, A should be chosen large
enough so that no discontinuities arises. If the robot is in the D region of more than
two objects, where Equation (5.24) might lead to a contradiction, Equation (5.24)
should be applied to the two objects closest to the robot.

An example of using this method is given in Figure 5-8, where a point robot starts



5.4 CONCLUDING REMARKS 217

(@)} (b)} (©!

QO . Q. ,.E
O o

Figure 5-8: A point robot moves from left to its goal at ‘*’.

at the left, and the goal position is at the right marked by a ‘*’. The two circles move
against each other. Initially the robot believes it can take the shortest path between
the two objects (Figure 5-8 (a)-(b)). However, as the robot moves closer to the
two objects and the two objects are approaching each other, the circulation around
each object is increased and the stagnation lines of both are moved to the center
line between the two objects. At the instant when the two objects touch, the two
stagnation lines merge into one. At (b) the robot feels this effect and realizes it can
not pass between the two objects, and takes the shorter path around the smaller circle

to its goal in part (c).

5.4 Concluding remarks

In this chapter we described a new method based on the use of harmonic functions
for real-time path planning in dynamic environments. This is possible through the
use of analytical solutions to Laplace’s equation in dynamic environments, making
real-time path planning possible, and through the use of special modifications that
allows for several objects to be modeled analytically in a dynamic environment.

In static cases, a harmonic potential will have no local minima, a path wiil not
intersect with any object and a convergence to the goal position is guaranteed if the
goal position is reachable. The same features of harmonic potentials carry over to

the dynamic case at every instant. That is, if there exists a path at the current time
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leading to the goal that does not intersect with any obstacle, the robot will move along
this path. In dynamic environments it is not possible to guarantee convergence to
the goal position or collision avoidance for all dynamic environments over some time
t. This path planner only considers the possible paths at each instant, thus making
it possible to trap it by alternately opening and closing existing paths, making it
confused as to which path to take. Further, if the goal is within a semi-closed region,
such as inside a U-shape, the goal cannot be reached. This is a property of an ideal
fluid. Since fluid does not flow through the U-shape, the flow will go around it, thus
separating the flows inside and outside the U.

Several extensions to this work are possible, and experimental evaluation should
also be performed. The utilization of harmonic potentials for control of robots with
multiple degrees of freedom should be developed. Further, taking the curvature of
the streamlines into account, and moving away from streamlines with high curvature
is an attractive approach. This can be seen as locally applying elastic bands on the

path, similarly to [94]. Extensions to n-dimensions should also be studied.

5.5 Summary

This chapter has presented a potential field based approach to path planning in
dynamic environments based on fluid analogies. Harmonic potentials have the prop-
erties that they have no local minima and that a path will be guaranteed to converge
to the goal position in the static case. The same property of harmonic potentials
hold in dynamic environments, however obstacle avoidance and convergence to the
goal can not be guaranteed for all possible situations. For instance, the robot could
be trapped in a closed room.

The technique developed here presents an attractive solution the problem faced

by a robot performing path planning in a dynamic environment.



Chapter 6

Conclusions and future research

This chapter gives a summary of the thesis, reviews the contributions and presents

suggestions for future research.

6.1 Thesis summary

This thesis has investigated new methods for mobile robot navigation. The naviga-
tion problem is for a mobile robot to determine the structure of an a priori unknown
environment and use this knowledge to localize globally. This problem is that of
concurrent mapping and localization (CML), which simultaneously poses the ques-
tions “what is my map?” and “where am I?” to the robot. These questions are
particularly crucial for autonomous underwater vehicles (AUVs), as a priori maps or
external localization systems are rarely available to aid in the navigation process.

Through the extension of state-of-the-art techniques of feature-based CML, the
theory and method of augmented stochastic mapping was developed in Chapter 2,
and its long-term performance was assessed in simulations. The ability of ASM to
perform CML was shown in simulations, experiments and post-processing of oceanic
data.

A solution to the long standing issue of computational complexity of feature-
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based CML was developed in Chapter 3, and verified by simulations and experiments.
The method reduces the O(n®) computational complexity of conventional (optimal)
methods to one that is constant in computational requirements, while achieving a
CML accuracy close to the optimal solution.

Increasing the performance of feature-based CML through adaptive strategies was
investigated in Chapter 4, and resulted in the development of adaptive augmented
stochastic mapping. In this technique, the vehicle performs CML and decides where
to move and where to direct its attention in order to increase the robustness, speed
and energy efficiency of CML. The validity of the approach was shown through theory,
simulations and experiments.

The techniques of Chapter 2, 3 and Chapter 4 provides solutions to the questions
“what is my map?” and “where am I?”. The question of “where am I going?”, which
is part of the broader problem of autonomous mobile robot operations, was implicitly
addressed in Chapter 4. In addition to these three questions, there is one important
remaining question to be addressed for the mobile robot — the question of “how
do I get there?”. This is the topic of Chapter 5, where path-planning in dynamic
environments was addressed through theoretical developments and simulations.

The truly autonomous operation of mobile robots is crucial for the utility that
society can achieve from robotic technologies and new technology in general. As we see
it, the current bottleneck in achieving this goal is the limit of navigational techniques.
We believe that the contributions of this thesis have advanced this technology and
brought us closer to that goal.

Having given a brief summary of the thesis, we will now turn to the contributions.
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6.2 Contributions

The main contributions of this thesis are

e An analysis of the long-term performance of a stochastic mapping based algo-

rithm for performing concurrent mapping and localization.

e A solution to the problem of map scaling encountered by stochastic mapping
based on the use of a decoupled map representation, consisting of multiple
globally-referenced submaps, and the use of consistent methods for transitioning

vehicle position information between submaps.

e A methed for performing adaptive concurrent mapping and localization based

on maximizing the Fisher information gained from the next action of the robot.

e A technique for performing path planning in dynamic environments based on
fluid analogies enabling real-time computation of collision free paths to the goal

from local information.

The following sections gives a summary of each and its importance in advancing

mobile robot navigation.

6.2.1 Long-term performance analysis of CML

Before the presentation of the work in Chapter 2, two important questions had not

been addressed in the existing literature, namely

1. What is the long-term behavior of feature-based concurrent mapping and local-

ization?
2. Is stochastic mapping a viable technique for AUV navigation?

Stochastic mapping does not present the means of performing track initiation, data

association and track deletion, which are all paramount for the successful operation
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of CML in experiments and in the field. Through the development of the delayed
nearest neighbor track initiator, a gated nearest neighbor data association filter and
a logic based track deleter, these issues were addressed and integrated with stochastic
mapping, culminating in the technique of augmented stochastic mapping (ASM).
Tank experiments and post-processing of oceanic data verified the validity of ASM in
providing a CML algorithm powerful enough to conduct CML in experiments and in
the field.

Non-linear estimation algorithms might well provide seemingly consistent, bounded
error in the short run. Thus, previous published results in the literature did not pro-
vide a convincing result of the long-term behavior of CML. We presented mission runs
that are much longer in duration than any previously published. The ASM algorithm
showed consistent, bounded estimates, thereby establishing its performance for long

term missions.

6.2.2 Map scaling

One of the major obstacles to CML is the rapidly increasing computational com-
plexity required to map an increasing number of features. Current techniques can
only track about one hundred features in real time, using any commercial personal
computer. Chapter 3 provides a solution to this long-standing issue in mobile robot
navigation by the introduction of decoupled stochastic mapping (DSM). Consistent,
globally bounded errors are achieved by DSM for any number of features in constant
computation time and memory requirements. DSM was shown to provide faster than
real-time CML in environments that were orders of magnitude larger than any pre-
viously reported in the literature.

The key ideas behind DSM are the use of a decoupled map representation, con-
sisting of multiple globally-referenced submaps, and to employ consisterit methods
for transitioning vehicle position information between submaps.

Two DSM methods were introduced: multi-pass DSM and single-pass DSM.
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Multi-pass DSM enables the robust and consistent reduction of global errors be-
tween submaps to achieve a performance bound that is comparable to the result
obtained using full covariance stochastic mapping. The method of single-pass DSM
is suitable for missions in which only a single pass through the survey area is antic-
ipated. Single-pass DSM results in slow, linearly growing errors with distance from
the starting point. For a single pass through the survey region, single-pass DSM
achieves smaller error bounds than multi-pass DSM. However, continued surveying of

the region does not reduce the global error of the submaps as in multi-pass DSM.

6.2.3 Adaptive concurrent mapping and localization

A information based framework for performing adaptive concurrent mapping and lo-
calization was developed, resulting in the technique of adaptive augmented stochastic
mapping (adaptive ASM). The increased performance, speed and energy efficiency of
adaptive ASM was confirmed by simulations and experiments. Further, an interesting

exploratory behavior of the robot emerged during adaptive ASM.

6.2.4 Path planning in dynamic environments

Dynamic environments pose a particularly difficult problem for the autonomous mo-
bile robot. Conventional approaches may cause the robot to get stuck, infinitely
computing new collision free paths from the current position to the goal as the envi-
ronment changes continuously. We introduced a novel harmonic potential based path

planner for operating among multiple cbjects in dyramic environments.

6.3 Future research

During this investigation of mobile robot navigation, we have gained significant in-
sight into the challenges as well as the opportunities available through these new

techniques. Below we provide suggestions for future research that we believe are of
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great importance for mobile robot navigation and indicate, where appropriate, pos-

sible solutions.

6.3.1 Data association

The problem of associating measurements with features in cluttered environments re-
mains a challenging and important problem for any estimation problem that faces data
association ambiguities. The hybrid estimation approach to CML of Integrated map-
ping and navigation (IMAN) [105], provides one venue for addressing this problem.
In IMAN, multiple hypotheses are generated for each measurement, and a stochas-
tic mapping algorithm is employed for each consistent set of hypotheses causing an
enormous computational burden. However, there might well be simpler and more
robust techniques available. On interesting technique arises from closer examination
of Equation (3.14). This quantity is the uncertainty of the map (all the features)
if a perfect vehicle estimate was provided. Thus, data association can be achieved
with the removal of the uncertainty of the vehicle that existed in the initiation of
the feature estimate. The uncertainty accumulated during the initiation phase can
be eliminated by re-passing the returns used for the initiation process through the
stochastic mapping algorithm. This approach, we believe, provides a theoretically
simpler, and computationally less complex approach to data association than IMAN.
One of the central causes of the extreme complexity of IMAN was the complexity aris-
ing from vehicle uncertainty. Thus, the method outline here might provide a more

viable approach.

6.3.2 Feature extraction

Any feature-based approach to navigation is crucially dependent on being able to
identify features in the environment. This remains an extremely important area of
research. Adaptive strategies for improving feature identification can be advanta-

geous. For instance, if trying to identify whether an object is a wall or a corner,
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moving parallel to the whole rather than perpendicular to the wall would make the
identification easier. The development of improved sonar technologies and the study
of bats and dolphins may greatly increase the ability to extract environmental features

from the seabed.

6.3.3 Cooperative mapping and navigation

Cooperative mapping has the potential to greatly increase and simplify error identi-
fication, error recovery, and state estimation and opens up a whole new and exciting
field of AUV research. Using a team of AUVs to to conduct surveys of an area can
provide more robustness than using a single vehicle as the success of the mission is
not critically dependent on a single vehicle.

The decoupled stochastic mapping method developed in Chapter 3, provides a
natural way of achieving this. Each time a vehicle is about to create a new submap,
it queries all the other vehicles in the area to determine if any of them have previously
mapped the area. If none have, it creates a new submap, otherwise it retrieves the
appropriate submap for another vehicle and performs a cross-map vehicle update into
this map if the two vehicles have not exchanged submaps earlier, otherwise it performs
a cross-map vehicle relocation intc this map. This is possible as DSM provides globally
referenced maps, thus enabling submap usage between multiple vehicles. This is not
possible through other techniques presented in the literature.

In addition to traditional means of detecting errors, cooperative mapping and
navigation provides another potent modality. Vehicles can periodically communicate
their position and error bounds to each other, then estimate their distances with
respect to each other through the time of flight of the communication signals between
them. If an inconsistency arises, one or more vehicles has an erroneous estimate. The
vehicle(s) with an erroneous estimate can be identified through consistency checks.

A vehicle that knows it has a faulty estimate can relocate itself globally using

the other vehicles and their error bounds to triangulate its own position and error
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bound. If available, a submap for the area that the faulted vehicle is operating in
can be provided by one of the other vehicles, thereby providing the faulted vehicle
with a consistent map, while only locally losing information by the removal of the old
submap.

State estimation can be improved by letting each vehicle communicate their cur-
rent estimate and covariance to all other vehicles. Once this information is obtained,
each vehicle can estimate its relative distance to the other vehicles and combine this
estimate with the estimate provided by the other vehicles, thereby improving the
estimate of its own position. DSM provides a framework of reasoning about how to

achieve this, as care must be taken not to reuse information.

6.3.4 Field experiments

The end goal of mobile robot navigation research, and AUV navigation research in
particular, is to achieve accurate navigation in the real world with actual AUVs. Thus
experimental verifications and testing using AUVs are of great importance. In addi-
tion to dealing with all the technical issues involved in operating an AUV, extension
of the models presented here to three dimensions, improved feature extraction and
data association might be necessary.

With the introduction of DSM, autonomous large scale indoor navigation by a
mobile robot, such as the Nomad mobile robot used in Chapter 4, can be achieved
with the techniques presented here and the use of standard techniques for identifying

indoor features, such as walls, corners and edges [69).

6.4 Summary

This chapter has provided a brief summary of the thesis and restated its main contri-
butions of providing: (1) a long-term performance analysis of the stochastic mapping

approach to concurrent mapping and localization, (2) a solution to the map scaling
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problem, (3) a method for performing adaptive concurrent mapping and localization,
and (4) a technique for performing path planning in dynamic environments. Issues
for future research have been suggested.

Through the contributions of this thesis, the mobile robot, and autonomous un-
derwater vehicles in particular, are not left at the mercy of the navigational techniques
of the 18th century — integration of velocity and heading measurements. Although
there are still important issues to be resoived, the navigational techniques presented
here provide a basis for performing accurate, consistent and safe navigation for the

mobile robot operating in large-scale, a priori unknown environments.
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