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Lower hybrid (LH) waves (Ωci � ω � Ωce, where Ωi,e ≡ Zi,eeB/mi,ec) have the attractive prop-
erty of damping strongly via electron Landau resonance on relatively fast tail electrons and conse-
quently are well-suited to driving current. Established modeling techniques use WKB expansions
with self-consistent non-Maxwellian distributions. Higher order WKB expansions have shown some
effects on the parallel wavenumber evolution and consequently on the damping due to diffraction
[G. Pereverzev, Nucl. Fusion 32, 1091 (1991)] . A massively parallel version of the TORIC full wave
electromagnetic field solver valid in the LH range of frequencies has been developed [J. C. Wright,
et al., Comm. in Comput. Physics 4, 545 (2008)] and coupled to an electron Fokker–Planck solver
CQL3D [ R. W. Harvey and M. G. McCoy, in Proc. of the IAEA Tech. Committee Meeting (Mon-
treal,1992), IAEA Institute of Physics Publishing; USDOC/NTIS Doc. DE93002962, Vienna, 1993 ,
pp. 489-526.] in order to self-consistently evolve non-thermal electron distributions characteristic of
LH current drive experiments in devices such as Alcator C-Mod and ITER (B0 ≈5 T, ne0 ≈ 1×1020

m−3). These simulations represent the first ever self-consistent simulations of LHCD utilizing both
a full wave and Fokker–Planck calculation in toroidal geometry.

I. INTRODUCTION

Lower hybrid (LH) waves have the attractive property of damping strongly via electron Landau resonance on relatively
fast tail electrons at 2.5 vte, where vte = (2Te/me)1/2 is the electron thermal speed. Consequently these waves are
well-suited to off-axis (r/a>0.60) current profile control in reactor grade plasmas with high electron temperature.
It is therefore important to develop a predictive capability in this area. Advanced LH simulation codes treat wave
propagation in the geometrical optics limit using toroidal ray tracing which is known to neglect important effects
on the wave spectrum due to focusing and diffraction1. There are additional difficulties in uniquely determining the
initial conditions of the rays by matching to the boundary values at an antenna or waveguide. In order to accurately
assess these effects we have developed a parallel version of the TORIC full wave electromagnetic field solver valid in
the LH range of frequencies with a non-Maxwellian electron dielectric response2,3. We observe diffractional broadening
of the waves resulting in broader power deposition as compared to ray tracing. The full wave treatment described in
this paper calculates the electric field amplitudes and phases directly, permitting direct application of the boundary
fields from launchers in the simulation and avoids the asymptotic approximations employed in paraxial beam tracing
algorithms4 or approximations in size or geometry, or expansions in small parameters5–7.

We find that retaining full wave effects due to diffraction and focusing has an effect on the spectral and spatial
width of wave absorption. Diffraction occurs at caustic surfaces and in resonance cones resulting in an upshift of the
parallel wavenumber which in turn affects the location of power deposition. By incorporating a Fokker–Planck code
for self-consistent treatment of the electron distribution we account for the non-Maxwellian electron distribution that
develops during LH current drive. We will compare full wave and ray tracing predictions for low and high single pass
damping regimes.

In the LH range of frequencies, defined by Ωci � ω � Ωce, where Ωi,e ≡ qB/mi,ec are the electron and ion cyclotron
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gyration frequencies in a magnetic field of strength B, plasma waves are nearly electrostatic and have very short
wavelengths relative to equilibrium scale lengths. The waves are thus good candidates for a WKB approach such as
ray tracing which has been the solution method of choice. However there are several known deficiencies with this
approach. Lower hybrid waves are weakly damped and undergo multiple reflections from the low density cutoff at
the edge of the plasma. The rays also propagate along characteristics of the electrostatic wave equation known as
resonance cones that tend to become narrow and even singular at turning points forming caustics when they encircle
the axis. Extended ray tracing techniques such as the Maslov method popular in seismology8 and the wave-kinetic
method9 are valid at the caustic surfaces; but because the LH cutoffs in tokamak plasmas occur in the plasma edge
where the gradients are very large, they violate the WKB approximation where the plasma is changing on the same
scale as the wavelength10.

A full wave approach that solves the Maxwell-Vlasov system directly will not be subject to these restrictions, and
it will retain other physical processes that may be important to the propagation and damping of the waves. In this
paper we investigate the importance of full wave effects in lower hybrid propagation using an adapted version of
the TORIC code11. The TORIC-LH3 version has been modified to solve for the fast and slow branches of the lower
hybrid wave at frequencies above the lower hybrid frequency. We believe these results demonstrate the first combined
full wave - Fokker–Planck calculations of LH waves in toroidal geometry of a full scale tokamak without the above
approximations.

II. LOWER HYBRID PHYSICS REVIEW

Lower hybrid current drive experiments typically operate above 2×ωLH to avoid parametric decay instabilities12,13. In
the lower hybrid frequency range which we take to be defined as Ωci � ωLH � Ωce and ωLH ≡ 1/

√
1/ω2

pi + 1/|ΩciΩce|,
the ions are unmagnetized, that is their gyration frequency is slow compared to the wave frequency while the electrons
remain strongly magnetized and the finite Larmor radius (ρe) approximation ((k⊥ρe)2 � 1) holds because the electron
Larmor radius is much smaller that the perpendicular wavelength.

Three branches of waves are supported at this frequency: the ion plasma wave which propagates only near ωLH

through mode conversion, the electromagnetic fast wave branch and the electrostatic branch with a slow phase velocity.
The two propagating modes are described by a bi-quadratic dispersion relation14 that determines a perpendicular
wavelength and an accessibility criterion on the parallel index of refraction, nacc ≡ ωpe/Ωce + S, where S is the
perpendicular plasma dielectric15 and is approximately unity in LHRF. It is the last of these that is typically referred
to when speaking of lower hybrid waves in experiments. For typical Alcator C-Mod parameters of central magnetic
field strength, B0 ≈ 5T , central electron number density, ne0 ≈ 7 × 1019m−3, and wave frequency of 4.6 GHz, the
perpendicular wavelength is about 1mm compared to ρe ≈ 0.1mm and nacc ≈ 1.2.

Quasilinear calculations have shown14 that damping of the LH waves begins at a phase velocity of ω/k‖vte = 2.5
where vte =

√
2Te/me which can be restated as n‖ = 5.7/

√
Te[keV ]. Current drive efficiency scales16 as ne/n2

‖
thus the accessibility limit sets the maximum current drive efficiency. Therefore, if the electron temperature is not
sufficiency high (Te[keV ] > 30/n2

‖), the most efficient current drive scenarios will be in a weak single pass absorption
regime. The difference between the launched n‖ which tends to be just above the accessibility limit, and the slower
wave velocity (higher n‖) at which damping occurs is known as the spectral gap17. The full wave approach suggests a
new mechanism for bridging this gap, especially in devices where toroidicity is insufficient to provide geometric upshift
of n‖.

III. THE RAY TRACING APPROACH

Because of the short wavelength of LH waves relative to the system size and equilibrium gradients, an asymptotic
approach to the problem is possible. In the frequency domain, the Maxwell-Boltzmann system can be expressed as a
Helmholtz equation as in Eq. (1)

∇×∇×E =
ω2

c2

{
E +

4πi
ω

J
}
. (1)

Codes such as GENRAY18 and ACCOME20 have implemented this WKB approach. Equation 2 shows the Hamiltonian ray
tracing system14 that results from the first order WKB expansion in kL of Eq. (1), where L is the scale length of the
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plasma and k is the wavenumber.. The system

dx
dt

= −∂D/∂k
∂D/∂ω

(2)

dk
dt

= +
∂D/∂x
∂D/∂ω

(3)

dP

dt
= −2γP (4)

determines the evolution of the wavenumber and its trajectory in configuration space. These characteristics of the
Hamiltonian, D, which is the dispersion function of the waves, produce rays that display certain features as shown
in Fig. 1. In Equation 4, the power on each ray is represented by P and γ is the damping rate determined by the
imaginary part of D. We have omitted terms representing convergence and divergence of rays (see e.g. Eqns.(6,B3) in
Ram21) in the power evolution equation. They are formally part of the amplitude evolution, but in practice are not
used both because these effects are believed to be small and because of the difficulty in initializing the second order
derivatives involved.

Ray trajectories tend to display a confluence known as a caustic where individual rays converge [see Fig. 1 ]. At
these points, a component of the wavenumber vanishes, violating the conditions for the WKB expansion. This problem
can be resolved by suitable rotation in the six dimensional space of the ray equations8, but diffraction effects that
become important there are not resolved22. Modified WKB techniques that still follow ray trajectories but account
for diffractional spreading can capture this effect4,23. Higher order WKB techniques that include the evolution of
the amplitude can be used to calculate the electric field directly and avoid the ambiguity of which ray damps first
and account for enhanced damping in caustic regions. Reflections at the cutoffs at the plasma edge where ω = ωpe

cannot be properly treated by WKB techniques because of the sharp gradients in the dielectric there although the
rapid variation in the radial wavenumber through zero may again be treated by the Maslov technique as at caustics.
Ray tracing solutions also show a high sensitivity to the plasma profiles in the edge region. This can only be avoided
in high single pass absorption cases where the rays do not return to the plasma edge.

FIG. 1: (Color online) Ray tracing shows evidence of focusing at caustic surfaces shown where the three rays converge on the
left part of the figure that can be treated using full wave or advanced ray tracing methods. Reflections at the cutoffs near the
boundary are not properly treated by WKB techniques.

The treatment of reflections and scattering from the plasma edge is a primary concern. In reflectometry, effects
from reflections off curved cutoffs were found to play an important role in the measured spectrum24. When waves
of finite extent reflect from a curved boundary or cutoff, side bands are generated which generate new wavelengths.
This scattering can then affect where the LH waves are absorbed because of the relation between absorbed n‖ and
the local electron temperature.
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IV. THE FULL WAVE APPROACH

Instead of an asymptotic approach to Eq. (1), we can solve the system in Eq. (5) directly. The full wave equation is
given by

∇×∇×E =
ω2

c2

{
E +

4πi
ω

(
JP + JA

)}
(5a)

E(x) =
∑
m

Em(r) exp (imθ + inφ) (5b)

k‖ = (mB · ∇θ + nφB · ∇φ)/B (5c)

JP
m(r) =

∑
m

↔
σc

(
km‖ , r

)
·Em(r) (5d)

where Eq. (5a) is solved by a variational technique25 that results in a block tri-diagonal stiffness matrix. The electric
field as expressed in the basis given in Eq. (5b) has the advantage of providing an algebraic expression for the parallel
wavenumber in Eq. (5c) and of the plasma dielectric,

↔
σc needed to determine the plasma current response to the radio

frequency waves as given in Eq. 5d. The radial dependence is represented by finite elements using cubic Hermite
polynomials as basis functions. The plasma dielectric is a function of the magnetic equilibrium and the electron and
ion distribution functions. TORIC-LH uses a non-Maxwellian electron distribution26 that is analytically specified or is
calculated by the Fokker–Planck code, CQL3D19.

FIG. 2: Demonstration of numerical mode caused by electron FLR terms. Full wave calculation of lower hybrid waves in Alcator
C-Mod at electron density of 7 × 1019m−3 using a Maxwellian dielectric response. The field at the waveguide mouth is set at
1 V/m. A single 5cm waveguide on the right side midplane is used. The electric field component parallel to the equilibrium
magnetic field is plotted. Parameters used are: f=4.6 GHz, n‖0=-1.55, Nm=1023, Nr=680, Te(0)=2.3 keV, B(0)=5.4 T.

The dielectric expression used in Eq. (5d) has special considerations in the LHRF. The finite Larmor radius (FLR)
contributions to

↔
σ c are very small in this frequency range. In particular in the LHRF, the electron FLR term, J(2)

e

in Eq. (6), is proportional to the electron plasma beta, βe, and the ion FLR term, σ, is proportional to the total
plasma beta, β. Complete expressions are given in work by Brambilla11. In previous work3, we discussed the need to
eliminate σ, which not only is very small, but is also responsible for coupling to the evanescent (for ω > 2ωLH) ion
plasma mode. In this paper we show in Fig. 2, that the electron FLR terms can cause a numerical mode to dominate
the solution. If we include these terms in the dielectric tensor,

↔
σ c, we get the expression:

↔
σ c ·E = S E⊥ + iD (b×E⊥) + P E‖b +∇⊥(σ∇⊥ ·E) +

4πi
ω

J(2)
e . (6)
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The terms in J(2)
e are those responsible for transit time magnetic pumping (TTMP) and the cross term between TTMP

and Landau damping (LD). They are proportional to k2
⊥ and k⊥ respectively, or in the full wave formulation, ∇⊥.

Though these terms are negligibly small compared to the cold plasma and zero electron FLR terms, they were kept
because they contribute to the electron dielectric to the zeroth order in Ωce along with the Stix parallel dielectric term,
P . Careful parameter scans in density and resolution indicated that the terms in J(2)

e introduce spurious numerical
modes. In the case of Fig. 2 the fields are restricted to an outer region (r/a > 0.7) and have an amplitude many orders
of magnitude larger than the imposed field. This was thought to be caused by diffraction from the many reflections in
this multi-pass low absorption scenario but in fact is entirely a consequence of how the FLR expansion is truncated.
Similar effects have been observed in the ion cyclotron region27,28, where it was noted that care must be taken to
ensure terms in k⊥ in different dielectric coefficients are kept consistently for certain cancellations that preserve the
positive definite nature of the RF power absorption to occur.

In Fig. 3 the result of a full wave calculation in a weak single pass regime is shown with the omission of J(2)
e . In this

figure, and the cases that follow, the LH antenna is represented by four 5.5 cm high waveguides 0.5 cm apart on the
right side midplane with each guide launching a TE01 mode that couple only an electric field component parallel to
the equilibrium magnetic field. A single toroidal mode is used representing the peak of the launched spectrum, n‖0.
Throughout this paper, we use the convention that the sign of the parallel index is with respect to the direction of the
equilibrium magnetic field. Current has the opposite direction as the driven electron motion because of their negative
charge and electrons are driven in the same direction as the sign of n‖0. Simulations use parameters from Alcator
C-Mod which is generally operated in a co-current configuration, and so current drive phasing of the waveguides has
a negative value for n‖0. The spectral width of the waveguide spectrum is determined by the poloidal spectrum from
the finite height of the guides. This provides a realistic representation of the waveguide geometry and its poloidal
spectrum. The contrast with Fig. 2 is clear: the wave fields now penetrate to the core and fill the volume of the torus
as a consequence of the weak single pass damping. In the succeeding sections we will consider questions of spectral
convergence, power deposition, and the effect of non-thermal features in the multi-pass case.

FIG. 3: Full wave calculation of lower hybrid waves in Alcator C-Mod at electron density of 7× 1019m−3 using a Maxwellian
dielectric response. The magnitude of the complex electric field component parallel to the equilibrium magnetic field is plotted
on a logarithmic scale. The field at the waveguide mouth is set at 1 V/m. Parameters used are: f=4.6 GHz, n‖0=-1.55,
Nm=1023, Nr=980, Te(0)=2.3 keV, B(0)=5.4 T.

V. FULL WAVE EFFECTS AND NON-THERMAL ELECTRONS

Calculation of propagation with the full wave approach shows striking similarities and some differences from the ray
tracing approach. The wave fields reveal beam like patterns such as in Fig. 3 that follow the classic resonance cone
trajectories29 and are also seen in the paths of rays from WKB codes. Figure 4 compares the radial power deposition
in the two approaches. Despite the difference in the approaches, nearly identical power deposition profiles are found.
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FIG. 4: (Color online) Comparison of radial location of power deposition profiles between ray tracing and full wave calculations
for the Alcator C-Mod case at a density of ne(0) = 7×1019m−3, n‖ = −1.55, Nm = 1023, Nr = 980, Te(0) = 2.3keV,B(0) = 5.4T .
Power deposition profiles for the ray tracing were interpolated onto 23 flux surfaces.

We expect some enhanced spectral broadening and acceleration of the filling of the spectral gap in the presence of
diffraction in the full wave solver. The primary sources of this diffraction are caustic surfaces and scattering during
reflections from the plasma cutoff. However, in the case of damping on a Maxwellian, we see no indication of this in
the power deposition. That is, the damping profiles from the full wave do not show a significant difference from those
of ray tracing which lacks these effects.

We can isolate any effect of reflections by adjusting the parameters to create a single pass absorption case. Increasing
the magnitude n‖0 to -3.6 while keeping all other parameters constant achieves this. In Fig. 5, the fields are no longer
space filling. The short paths no longer return to the launcher interfering and obscuring the four launched waves
which are now clearly visible. The wave trajectories focus as they approach the center of the plasma and spread again
via diffraction and refraction as they leave and undergo a radial reflection from the cut off at the plasma edge, before
damping. The contours of the parallel electric field for the full wave solutions show the formation of a caustic surface
near the center and have lower amplitude fields throughout. This is to be contrasted with Fig. 3, where the field
amplitude is over an order of magnitude larger in weak absorption because of the cavity effect, in which the source
amplitude is magnified if damping is weak in the cavity. This effect does not normally manifest in experiment, rather,
the electron distribution function evolves to provide significant damping. We have also shown in Fig. 5 a comparison
of the full-wave radial deposition profiles for the strong absorption case with the ray tracing prediction. Note the
profiles agree qualitatively in shape from 0.35 < r/a < 0.8.

To self-consistently determine the electron distribution and the damping, we iterate between the full wave TORIC
code and the Fokker–Planck CQL3D code. The coupling between the two codes takes place through the RF induced
quasilinear diffusion,Dql, in velocity space in CQL3D and the use of a non-Maxwellian parallel dielectric in TORIC.
The formulation of the parallel diffusion coefficient, D‖, from Eqns. (37-39) in work by Harvey and McCoy19 which
is a relativistic generalization of the Kennel and Engelmann30 derivation is given by

D‖ =
q2

2m2
πδ
(
ω − k‖v‖

) ∣∣u‖E‖∣∣2( k‖
ωγ

)2

, (7)

in which we have kept only the zeroth order electron FLR terms and γ is the relativistic Lorentz factor, δ is the
usual delta function resonance, and u = p/m is the relativistic particle momentum per rest mass. This expression
is evaluated and bounce averaged assuming zero banana width electrons in a post-processing mode of TORIC. It is
then mapped onto the polar velocity space mesh and stored in a format used by CQL3D. CQL3D uses this diffusion
coefficient scaled to couple the desired amount of power. This is necessary because the full wave code is linear and
the amount of power coupled by the waveguide depends on the plasma loading as well as the electric field specified
at the guide. The scale factor needs only to be adjusted at the beginning of the iteration. The loop is closed by the
use of the CQL3D generated electron distribution function,fe(v), in the next run TORIC. Because LH interacts with
electrons at parallel speeds greater the 2.5 times the thermal velocity, only the anti-Hermitian part of the parallel
dielectric is affected. Therefore, in Eq. (6) only damping in P is modified and it is proportional to the parallel velocity
space derivative of fe(v)15. The two codes are iterated in this coupled fashion until the power deposition no longer
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FIG. 5: Strong absorption case. Full wave calculation of lower hybrid waves in Alcator C-Mod at electron density of 7×1019m−3

using a Maxwellian dielectric response. n‖0 = −3.6, Nm = 1023, Nr = 980, Te(0) = 2.3keV,B(0) = 5.4T
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FIG. 6: (Color online) Strong absorption. Comparison of radial location of power deposition profiles between ray tracing and
full wave calculations for the Alcator C-Mod case at a density of ne(0) = 7×1019m−3, n‖ = −3.6, Nm = 1023, Nr = 980, Te(0) =
2.3keV,B(0) = 5.4T

changes and agrees between the two codes.
By observing the evolution of non-Maxwellian features in the electron distribution we can see direct evidence of the

spectral broadening. For the low single pass absorption case, we have used the electric fields from the full wave solution
shown in Fig. 7 to formulate the RF quasilinear diffusion coefficient. This was then employed in the Fokker–Planck
code CQL3D to evolve the electron distribution function. Compared to Fig. 3, the electric fields are less intense and
have penetrated further into the plasma. In Fig. 8, we see the formation of a quasilinear plateau clearly at a pitch
angle of θ = 0 at a flux surface of r/a ∼ 0.5 located in the region of power absorption in the weak single pass case.
The plateau extends in a range of parallel velocities corresponding to n‖ = [1.4, 5]([1.1,0.2] on the relativistic velocity
scale in the plot) demonstrating clear evidence of downshift of the phase velocity. from the launched n‖ of -1.55 to
fill the spectral gap. Up-shifting is also apparent as the injected phase velocity in the figure corresponds to a value of
γv/c = 0.71.

The damping from the quasilinear modifications of fe(v) have a strong effect on the convergence of the spectral
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FIG. 7: Full wave calculation of lower hybrid waves in Alcator C-Mod at electron density of 7× 1019m−3 using a self-consistent
non-Maxwellian dielectric response achieved after four iterations. The electric field component parallel to the equilibrium
magnetic field is shown. Parameters used are n‖ = −1.55, Nm = 1023, Nr = 980, Te(0) = 2.3keV,B(0) = 5.4T .

expansion. In Fig. 9, we show the power spectrum of the solution from Fig. 7. The power spectrum demonstrates
strong convergence even at outer flux surfaces. The energy in the largest magnitude poloidal modes is orders of
magnitude lower than the peaks in the spectrum at each flux surface. We also observe the asymmetric nature of
the spectrum. For the value of n‖0, positive poloidal mode numbers decrease the magnitude of the local value of n‖
bring the value closer to the accessibility limit. Once reached, we see the sharp and continuous exponential drop in
amplitude. For negative poloidal modes, the phase velocity is shifted towards the bulk electrons where damping is
strong and we see the more structured decrease in the spectrum. The power spectrum for the first field solution with
Maxwellian damping (Fig. 3) is only converged to about a radius of r/a ≈ 0.6 as the damping reduces with temperature
at outer flux surfaces and the contribution of the poloidal mode number to n‖ is reduced by the safety factor at larger
radii limiting the amount of downshift in the phase velocity possible. Larger numbers of modes Nm = 2047 will
converge the Maxwellian case and result in more growth of the fields in the plasma due to the previously discussed
cavity effect. The meaning of such convergence is questionable as well since the distribution function does not remain
Maxwellian and after even the first iteration, the established quasilinear plateau is sufficient to converge the spectrum
at Nm = 1023 modes. In general, the stronger the damping, the faster the convergence and the fewer modes required
for convergence, subject to resolving the scale lengths of the launch modes in the given geometry.

VI. CONCLUSIONS

We have shown calculations for the first time of LH waves in toroidal geometry in a present day sized tokamak. Real-
istic general geometry and non-Maxwellian electrons were used. These simulations predict similar power absorption
locations for the waves as traditional ray tracing approaches. Scattering at cutoffs in the edge of the plasma has been
identified as an important mechanism in lower hybrid wave diffraction and was shown to affect the power deposition
location. Scattering manifests itself in low single pass absorption regimes that are common in present day tokamaks
with modest electron temperature where LH RF power is used with low parallel index of refraction to maximize the
driven current. Full wave simulations are necessary to accurately predict the location of the current driven in these
devices. In higher temperature (Te[keV ] > 30/n2

‖) devices such as ITER there is high single pass absorption and
scattering effects may play a minimal role. In the future we plan to compare the predicted hard x-ray signals based
on the full wave-Fokker Planck calculation with the hard x-ray spectra measured in the Alcator C-Mod experiment
and with spectra simulated based on a ray tracing - Fokker Planck treatment31. These types of comparisons should
help to validate the ray tracing and full-wave approaches as well as providing insights into how important full-wave
effects are for understanding the experiment.
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Plots of the distribution function versus relativistic velocity measure for several different pitch angles, θ, at a flux surface of
r/a ∼ 0.50 in the multi-pass case. Parameters are the same as listed in Fig. 7. γ is the relativistic Lorentz factor. 650 kW of
power were coupled in this case.
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