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1. Introduction

The evolution of the long wavelength electric field on transport time scales depends

exclusively on the transport of momentum from one flux surface to the next [1, 2, 3,

4, 5, 6, 7]. For electrostatic turbulence in statistical steady state, the transport of

momentum is expected to be slow, on the order of the gyroBohm estimate. This simple

estimate gives the momentum flux

Π ∼ DgB ×∇(niMVi) ∼ δ2
i (Vi/vi)pi, (1)

with DgB = δiρivi the gyroBohm diffusion coefficient, δi = ρi/L � 1 the ratio between

the ion gyroradius and a macroscopic scale length L, vi =
√

2Ti/M and ρi = Mcvi/ZeB

the ion thermal velocity and gyroradius, and ni, Ti, pi = niTi and Vi the ion density,

temperature, pressure and average velocity. Here, M and Ze are the ion mass and

charge, B is the magnetic field strength, and e and c are the electron charge magnitude

and the speed of light. The size of the momentum flux depends on the ordering of the

average velocity Vi. In the high flow ordering, the ion velocity is assumed to be sonic,

making the E×B drift dominate over any other contribution to the ion flow and giving

a momentum flux of order Πhf ∼ δ2
i pi. In the low flow or drift ordering, the E × B

drift competes with the magnetic drifts and the diamagnetic flow, giving Vi ∼ δivi and

Πlf ∼ δ3
i pi. Employing these estimates, we can obtain to which order in δi the ion

distribution function is needed to determine the correct transport of momentum and

hence the correct long wavelength electric field. In this article we will restrict ourselves

to the low flow limit that we consider more relevant to the core, and only comment

briefly on the high flow limit.

The requirements on the distribution function imposed by the self-consistent

calculation of the long wavelength electric field have become very important due to

recent developments in gyrokinetic simulations of turbulence. Generally, gyrokinetic

simulations are based on δf formulations [8, 9, 10, 11] in which the calculation of

turbulence saturation and the long time scale evolution of the radial profiles of density,

temperature and rotation are effectively separated. However, several groups have been

working on full f gyrokinetic simulations [12, 13, 14] that do not use an explicit equation

for the transport of momentum, but solve a quasineutrality equation to obtain the

electric field at all wavelengths. In reference [7], we showed that the lowest order

gyrokinetic Fokker-Planck and quasineutrality equations are insufficient to determine the

evolution of the long wavelength electric field. The argument is based on the vorticity or

current conservation equation, equivalent to quasineutrality. The perpendicular current

is obtained from the total momentum equation, giving

J⊥ =
c

B
b̂ ×∇p⊥ +

c

B
(p|| − p⊥)(b̂ × κ) − ∂

∂t

(
Zeni

Ωi
Vi × b̂

)
+

c

B
b̂ × (∇· ↔

πi), (2)

with p⊥ =
∫

d3v (Mfi +mfe)v
2
⊥/2 and p|| =

∫
d3v (Mfi +mfe)v

2
|| the total perpendicular

and parallel pressures, m the electron mass, κ = b̂ · ∇b̂ the curvature of the magnetic

field lines, Ωi = ZeB/Mc the ion gyrofrequency, and
↔
πi= M

∫
d3v fi[vv − (v2

⊥/2)(
↔
I
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−b̂b̂) − v2
||b̂b̂] the ion viscosity. The ion viscosity

↔
πi includes both the Reynolds stress

and the neoclassical perpendicular viscosity, and its off-diagonal components determine

the transport of momentum from one flux surface to the next. For this reason, the only

piece of the current density that contributes to the determination of the long wavelength

electric field is
c

B
b̂ × (∇· ↔

πi) ∼ δi(Π/pi)enevi ∼ δ3
i (Vi/vi)enevi. (3)

Thus, in the low flow ordering, the current density must be calculated to order δ4
i enevi

to determine the long wavelength electric field. Most gyrokinetic codes employ the first

order E×B and magnetic drifts that only give self-consistent current densities of order

δienevi, where the drifts are of order δivi. Some derivations, among them the work of

Dubin et al [15], are performed to higher order in δi, keeping corrections to the drifts

of order δ2
i vi, but they are often restricted to simplified magnetic geometry. In any

case, the highest order to which the current density can be found is δ2
i enevi; too low to

self-consistently determine the long wavelength electric field.

In this article, we use the simplified geometry employed in the pioneering work by

Dubin et al [15] to explicitly obtain the non-physical momentum sources introduced by

gyrokinetic Fokker-Planck and quasineutrality equations valid only to order δ2
i . This

exercise illustrates the problem pointed out in [6, 7, 16], and demonstrates that this

issue affects equally gyrokinetics based on recursive methods [16] and Lie transform

approaches [17]. The results in [15] can be obtained using both procedures [18], and

in this article we prove that even these higher order descriptions are unable to avoid

non-physical sources of momentum.

The rest of the article is organized as follows. In section 2, we derive a higher

order momentum conservation equation that determines the long wavelength electric

field in the low flow ordering by employing moments of the full Vlasov equation. The

resulting equation is the one against which the results of the approximate gyrokinetic

quasineutrality equation must be compared. In section 3, we describe the results of

[15] for completeness. Employing the time derivative of the gyrokinetic quasineutrality

equation, we find a vorticity equation equivalent to quasineutrality. In section 4, we

show that in the long wavelength limit the results obtained from the vorticity equation

introduce a non-physical source of momentum. Finally, in section 5, we discuss the

implications of this result for tokamak geometries.

2. Transport of momentum in a slab

In this section, we derive the transport of momentum in a slab. First, we present the

geometry and assumptions. Then, based on these assumptions we obtain a momentum

conservation equation in which the transport of momentum is of gyroBohm order. This

is the equation that any gyrokinetic formulation should satisfy. In the next sections we

will prove that modern formulations do not satisfy it even in the simple slab limit.

In accordance with [15], we assume a constant magnetic field B, with b̂ = B/B
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the unit vector parallel to the magnetic field. The plane perpendicular to b̂ is spanned

by two unit vectors x̂, ŷ such that x̂ × ŷ = b̂. The macroscopic gradients of density,

temperature and flow Vi ·ŷ are in the direction x̂. To ease the comparison with tokamak

physics, we assume that the total current in the x̂ direction 〈J · x̂〉x vanishes, with

〈. . .〉x = A−1
yz

∫
dy dz (. . .) the flux surface average and Ayz =

∫
dy dz the area of the flux

surface. Here x, y and z are the coordinates along x̂, ŷ and b̂.

The orderings are the same as those in [7, 16]. We allow perpendicular wavelengths

as short as the ion gyroradius. The short wavelength pieces of the distribution function

and the potential scale as

fi,k

fsi
∼ fe,k

fse
∼ eφk

Te
∼ 1

k⊥L
<∼1, (4)

with k⊥ρi <∼1. Here fsi and fse are the lowest order ion and electron distribution

functions with a slow variation in both r and v. These lowest order distribution

functions are not necessarily Maxwellians. According to the orderings in (4), pieces

of the distribution function and the potential with wavelengths on the order of the ion

gyroradius are small in the expansion parameter δi. The perpendicular gradients of

pieces with different wavelengths are comparable, i.e., ∇⊥fi,k ∼ k⊥fi,k ∼ fsi/L ∼ ∇⊥fsi

and ∇⊥φk ∼ k⊥φk ∼ Te/eL. With this ordering, the E × B drift is of order δivi. The

parallel wavelengths are assumed to be comparable to the macroscopic scale, k||L ∼ 1.

The transport of y-momentum in the x direction is given by

∂

∂t
〈niMVi · ŷ〉x = − ∂

∂x
〈x̂· ↔

πi ·ŷ〉x. (5)

For long wavelengths and the orderings in (4), it is possible to find a convenient

expression for 〈x̂· ↔
πi ·ŷ〉x employing the vv moment of the Vlasov equation. According

to the estimates in (1), 〈x̂· ↔
πi ·ŷ〉x must be calculated to order δ3

i pi. The vv moment

of the Vlasov equation is

Ωi(
↔
πi ×b̂ − b̂× ↔

πi) =
∂

↔
Pi

∂t
+ ∇ ·

(
M

∫
d3v fivvv

)
+ Zeni(Vi∇φ + ∇φVi), (6)

with
↔
Pi= M

∫
d3v fivv the stress tensor. The flux surface averaged yy component of

tensor equation (6) gives

〈x̂· ↔
πi ·ŷ〉x = − 1

2Ωi

∂

∂t
〈ŷ·

↔
Pi ·ŷ〉x −

1

2Ωi

∂

∂x

〈
M

∫
d3v fi(v · x̂)(v · ŷ)2

〉

x

−
〈

c

B

∂φ

∂y
niMVi · ŷ

〉

x

. (7)

Since we are interested in transport time scales, we consider only the fast time average

of the viscosity in (7), giving ∂〈ŷ·
↔
Pi ·ŷ〉x/∂t ' ∂pi⊥/∂t, with pi⊥ = M

∫
d3v fi(v

2
⊥/2).

Here, only the transport time scale variation of pi⊥, with ∂/∂t ∼ DgB/L2 ∼ δ2
i vi/L,

contributes to the final answer. The Reynolds stress 〈(c/B)(∂yφ)niMVi · ŷ〉x is formally

larger than δ3
i pi. However, its fast time average must give the gyroBohm contribution
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in (1), i.e., O(δ3
i pi). Finally, the term 〈M

∫
d3v fi(v · x̂)(v · ŷ)2〉x can be found using the

vvv moment of the Vlasov equation. Its flux surface averaged yyy component is〈
M

∫
d3v fi(v · x̂)(v · ŷ)2

〉

x

= −
〈

c

B

∂φ

∂y
ŷ·

↔
Pi ·ŷ

〉

x

− 1

3Ωi

∂

∂t

〈
M

∫
d3v fi(v · ŷ)3

〉

x

− 1

3Ωi

∂

∂x

〈
M

∫
d3v fi(v · x̂)(v · ŷ)3

〉

x

. (8)

In this equation, the fast time average makes the time derivative term negligible. The

integral
∫

d3v fi(v · x̂)(v · ŷ)3 is also negligible because to first order the gyrophase

dependent piece of the long wavelength component of fi is proportional to v⊥. Therefore,

the final result is〈
M

∫
d3v fi(v · x̂)(v · ŷ)2

〉

x

' −
〈

c

B

∂φ

∂y
ŷ·

↔
Pi ·ŷ

〉

x

. (9)

Substituting this result into equation (7) finally gives

〈x̂· ↔
πi ·ŷ〉x = − 1

2Ωi

∂pi⊥

∂t
+

1

2Ωi

∂

∂x

〈
c

B

∂φ

∂y
ŷ·

↔
Pi ·ŷ

〉

x

−
〈

c

B

∂φ

∂y
niMVi · ŷ

〉

x

. (10)

This result is correct to O(δ3
i pi) for long wavelengths and transport time scales. Any

model that attempts to obtain the self-consistent long wavelength electric field must

reproduce equation (10). We prove in the next sections that current formulations of

gyrokinetics, even in the simple slab limit, are unable to do so.

3. Gyrokinetics in a slab

In this section, we describe the collisionless gyrokinetic formulation in a slab formulated

by Dubin et al [15] and revisited in [18]. The gyrokinetic variables are the gyrocenter

position R = r + R1 + R2, the parallel velocity u = v|| + u2, the magnetic moment

µ = µ0 + µ1 + µ2 and the gyrophase ϕ = ϕ0 + ϕ1 + ϕ2. Here, µ0 = v2
⊥/2B is

the lowest order magnetic moment, and ϕ0 is the zeroth order gyrophase, defined by

v⊥ = v⊥(x̂ cos ϕ0 + ŷ sin ϕ0). The exact definitions of the higher order corrections to

the gyrokinetic variables do not concern us here. The important results are the Vlasov

equation for fi(R, u, µ, t) and the quasineutrality equation to determine φ(r, t). The

Dubin et al [15] gyrokinetic Vlasov equation is

∂fi

∂t
+
(
ub̂− c

B
∇RΨ × b̂

)
· ∇Rfi −

Ze

M
b̂ · ∇RΨ

∂fi

∂u
= 0, (11)

with

Ψ = Ψ(R, µ, t) ≡ φ + Ψ(2) (12)

and

Ψ(2) = − Ze

2MB

∂

∂µ
〈φ̃2〉 − c

2BΩi
〈(∇Rφ̃ × b̂) · ∇RΦ̃〉 ∼ δ2

i

Te

e
. (13)

Here, 〈. . .〉 is the gyroaverage holding R, u, µ and t fixed, and we use definitions for φ,

φ̃ and Φ̃ similar to those by Dubin et al [15], i.e.,

φ = φ(R, µ, t) ≡ 1

2π

∮
dϕ φ(R + ρ, t) ∼ 1

k⊥L

Te

e
, (14)
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φ̃ = φ̃(R, µ, ϕ, t) ≡ φ(R + ρ, t) − φ ∼ δi
Te

e
(15)

and

Φ̃ = Φ̃(R, µ, ϕ, t) ≡
∫ ϕ

dϕ′ φ̃(R, µ, ϕ′, t) ∼ δi
Te

e
(16)

such that 〈Φ̃〉 = 0. The gyroradius vector ρ is

ρ = ρ(R, µ, ϕ) ≡ −
√

2µB

Ωi

(x̂ sin ϕ − ŷ cos ϕ) 6= − 1

Ωi

v × b̂. (17)

The difference between −Ω−1
i v× b̂ and ρ is due to the differences between R, µ and ϕ,

and r, µ0 and ϕ0. Notice that our definition of Φ̃ differs from Dubin’s definition [15, 18]

in the sign because Dubin’s gyrophase θ is related to ours by θ = −ϕ−π/2. The sizes of

the functions φ, φ̃ and Φ̃ are related to the orderings in (4). The function φ scales as the

potential itself, i.e., eφ/Te ∼ (k⊥L)−1. The functions φ̃ and Φ̃ are always small in δi. For

wavelengths on the order of the ion gyroradius this is obvious because eφk/Te ∼ δi. For

longer wavelengths, even though the amplitude of the potential fluctuations is large, the

ion gyroradius is small compared to the wavelength and the difference between φ(R)

and φ(R + ρ) is small in δi, giving eφ̃/Te ∼ eΦ̃/Te ∼ δi. These order of magnitude

estimates lead to Ψ(2) ∼ δ2
i Te/e, with Ψ(2) given in (13).

The quasineutrality condition is given by

Zenip = ene − ZeN̂i, (18)

with ne =
∫

d3v fe the electron density, N̂i =
∫

d3v fig the ion gyrocenter density and

nip =
∫

d3v fip the ion polarization density. The only pieces of the ion distribution

function that contribute to the ion density and hence the quasineutrality equation are

fig and fip [15, 18], where

fig ≡ fi(Rg, v||, µ0, t) (19)

is found by replacing R, u and µ in fi(R, u, µ, t) by Rg = r+ Ω−1
i v× b̂, v|| and µ0, and

fip = f
(1)
ip + f

(2)
ip is composed of

f
(1)
ip =

Zeφ̃g

MB

∂fig

∂µ0

∼ δifsi (20)

and

f
(2)
ip =

Z2e2φ̃2
g

2M2B2

∂2fig

∂µ2
0

+
Ze

MB

[
− Zeφ̃g

MB

∂φg

∂µ0

+
c

BΩi

(∇RgΦ̃g × b̂) · ∇Rgφg +
Ze

2MB

∂

∂µ0

〈φ̃2
g〉

+
c

2BΩi

〈(∇Rg φ̃g × b̂) · ∇RgΦ̃g〉
]
∂fig

∂µ0

− c

BΩi

(∇RgΦ̃g × b̂) · ∇Rgfig ∼ δ2
i fsi. (21)

The functions φg ≡ φ(Rg, µ0, t), φ̃g ≡ φ̃(Rg, µ0, ϕ0, t) and Φ̃g ≡ Φ̃(Rg, µ0, ϕ0, t) are

found by replacing R, µ and ϕ by Rg = r + Ω−1
i v × b̂, µ0 and ϕ0 in the functions

φ(R, µ, t), φ̃(R, µ, ϕ, t) and Φ̃(R, µ, ϕ, t).

Importantly, in the quasineutrality equation (18), only the function fig ≡
fi(Rg, v||, µ0, t) enters. This function has the same functional dependence on Rg, v||
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and µ0 as the function fi on R, u and µ. To calculate fig simply replace R, u and µ by

Rg, v|| and µ0 in (11). Moreover, the gradient ∇Rg with respect to Rg holding v||, µ0,

ϕ0 and t fixed is equal to the gradient ∇ with respect to r holding v||, µ0, ϕ0 and t fixed

because R − r = Ω−1
i v × b̂ is independent of position in a slab. Using this property in

(11), the final equation for fig becomes

∂fig

∂t
+ ∇ ·

[
fig

(
v||b̂ − c

B
∇Ψg × b̂

)]
− ∂

∂v||

(
fig

Ze

M
b̂ · ∇Ψg

)
= 0, (22)

with Ψg ≡ Ψ(Rg, µ0, t). This result is useful to derive a vorticity equation from the

quasineutrality condition (18). The time derivative of equation (18) can be found by

employing (22) to obtain ∂N̂i/∂t, and a similar drift kinetic equation for ∂ne/∂t. The

final result is

Ze
∂nip

∂t
= ∇ ·

(
Jg||b̂ + J̃E

)
, (23)

with the parallel current

Jg|| = Ze

∫
d3v figv|| − e

∫
d3v fev|| (24)

and the polarization current

J̃E = −Zec

B

∫
d3v

[
fig(∇Ψg × b̂) − (fig + fip)(∇φ × b̂)

]
. (25)

The vorticity equation (23) is equivalent to the quasineutrality equation (18). However,

form (23) is advantageous because it allows us to study the transport of momentum that

results from retaining the long wavelength electric field in the gyrokinetic quasineutrality

equation. In the next section we prove that (23) and thereby (18) introduce non-physical

momentum sources.

4. Gyrokinetic transport of momentum

In this section, we derive the cross field transport of y-momentum from vorticity equation

(23). We do so by flux surface averaging its long wavelength piece. The contribution

of the turbulence enters in the nonlinear beating of short wavelengths to give long

wavelength results. We might expect to find equation (5) with the viscosity of (10), but

the final result will have a non-physical source of momentum due to the higher order

terms neglected in the gyrokinetic equation.

First, the long wavelength limit of nip =
∫

d3v fip is obtained to order δ2
i ne. Using

this result, we show that vorticity equation (23) gives the evolution in time of the y

component of the E× B flow as a function of the polarization current J̃E · x̂. Next, by

taking the long wavelength limit of the polarization current we prove that the cross field

transport of y-momentum differs from the result in (5) by a non-physical momentum

source.
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4.1. Polarization density at k⊥L ∼ 1

In this subsection, we find the long wavelength limit of nip =
∫

d3v (f
(1)
ip + f

(2)
ip ) to

order δ2
i ne. To order δine, only f

(1)
ip from (20) contributes to nip. In this term there

is nonlinear beating between φ̃g and fig and the short wavelength components must

be kept. This beating gives a long wavelength result that we can evaluate by Taylor

expanding f
(1)
ip (Rg, v||, µ0, ϕ0, t) around r to O(δ2

i fsi) to find

f
(1)
ip (Rg, v||, µ0, ϕ0) ' f

(1)
ip (r, v||, µ0, ϕ0) +

1

Ωi
(v × b̂) · ∇f

(1)
ip =

Zeφ̃0

MB

∂fi0

∂µ0
+ ∇ ·

[
c

B2
(v × b̂)φ̃g

∂fig

∂µ0

]
, (26)

where φ̃0 ≡ φ̃(r, µ0, ϕ0, t) and fi0 ≡ fi(r, v||, µ0, t) are obtained by replacing R, u, µ and

ϕ by r, v||, µ0 and ϕ0 in φ̃(R, µ, ϕ, t) and fi(R, u, µ, t). The integral over velocity of

φ̃0∂µ0fi0 vanishes because this term has vanishing gyroaverage. Then, the only term left

is ∫
d3v f

(1)
ip ' ∇ ·

[
c

B2

∫
d3v (v × b̂)φ̃g

∂fig

∂µ0

]
. (27)

This result is of order δ2
i ne, so only the lowest order pieces of φ̃g and fig must be kept.

According to (4), the lowest order piece of fig has wavelengths on the order of the

macroscopic length L. Consequently, to obtain a long wavelength contribution, only the

long wavelength result φ̃g ' −Ω−1
i (v×b̂)·∇φ is needed, giving

∫
d3v (v×b̂)φ̃g(∂µ0fig) '

−
∫

d3v (v2
⊥/2Ωi)∇⊥φ(∂µ0fig). Finally, integrating by parts in µ0 leads to

∫
d3v f

(1)
ip ' ∇ ·

(
cni

BΩi
∇⊥φ

)
. (28)

The contribution of
∫

d3v f
(2)
ip , formally of order δ2

i ne, is in reality negligible. Since

we are only interested in long wavelength pieces, we can expand around r and replace

φg, φ̃g, Φ̃g and fig by φ0 ≡ φ(r, µ0, t), φ̃0 ≡ φ̃(r, µ0, ϕ0, t), Φ̃0 ≡ Φ̃(r, µ0, ϕ0, t) and

fi0 ≡ fi(r, v||, µ0, t). As a result, many terms gyroaverage to zero. Moreover, one of

the terms that does not vanish, (Zec/2MB2Ωi)(∇φ̃0 × b̂) · ∇Φ̃0(∂µ0fi0), is negligible.

The vector product (∇φ̃0 × b̂) · ∇Φ̃0 can be written as ∇ · [Φ̃0(∇φ̃0 × b̂)]. Then,

using that Φ̃0(c/B)(∇φ̃0 × b̂) ∼ δ2
i viTe/e and its divergence at long wavelengths is of

order δ2
i viTe/eL, we find that (Zec/2MB2Ωi)(∇φ̃0 × b̂) · ∇Φ̃0(∂µ0fi0) ∼ δ3

i fsi and thus

negligible. The remaining terms give
∫

d3v f
(2)
ip ' Z2e2

2M2B2

∫
d3v

(
φ̃2

0

∂2fi0

∂µ2
0

+
∂φ̃2

0

∂µ0

∂fi0

∂µ0

)
=

Z2e2

2M2B2

∫
d3v

∂

∂µ0

(
φ̃2

0

∂fi0

∂µ0

)

= 0. (29)

Finally, combining (28) and (29), the long wavelength piece of nip is

nip ' ∇ ·
(

cni

BΩi
∇⊥φ

)
, (30)
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and at long wavelengths the flux surface average of vorticity equation (23) can be written

as

∂

∂t

〈
Mcni

B

∂φ

∂x

〉

x

=
B

c
〈J̃E · x̂〉x. (31)

This equation gives the evolution of the y-momentum of the E × B flow. According

to the estimate in (1), this equation must be found to order δ3
i pi/L, since we would

need (B/c)〈J̃E · x̂〉x to correspond to ∂Π/∂x. In the next subsection we take the long

wavelength limit of (B/c)〈J̃E · x̂〉x to order δ3
i pi/L and show that equation (31) differs

from (5) by a non-physical momentum source.

4.2. Polarization current at k⊥L ∼ 1

In this subsection, we obtain the long wavelength limit of (B/c)〈J̃E · x̂〉x to prove that

vorticity equation (23) and hence quasineutrality equation (18) introduce non-physical

sources of momentum. From (25), we obtain

B

c
〈J̃E · x̂〉x = Ze

〈∫
d3v (f

(1)
ip + f

(2)
ip )

∂φ

∂y

〉

x

+ Ze

〈∫
d3v fig

(
∂φ̃g

∂y
− ∂Ψ

(2)
g

∂y

)〉

x

. (32)

Here, the terms Ze〈
∫

d3v f
(1)
ip ∂yφ〉x and Ze〈

∫
d3v fig∂yφ̃g〉x are formally of order δipi/L,

while Ze〈
∫

d3v f
(2)
ip ∂yφ〉x and Ze〈

∫
d3v fig∂yΨ

(2)
g 〉x are formally of order δ2

i pi/L. In the

following paragraphs, we obtain the long wavelength limit of all these terms to order

δ3
i pi/L.

Term Ze〈
∫

d3v f
(1)
ip ∂yφ〉x. Since we are only interested in the long wavelength limit of

this term, we can Taylor expand around r to write

Ze

〈∫
d3v f

(1)
ip

∂φ

∂y

〉

x

' Z2e2

MB

〈∫
d3v

∂fi0

∂µ0

φ̃0
∂φ̃0

∂y

〉

x

+Ze

〈∫
d3v

1

Ωi
(v × b̂) · ∇

(
f

(1)
ip

∂φ

∂y

)〉

x

−Ze

〈∫
d3v

1

2Ω2
i

(v × b̂)(v × b̂) : ∇∇
(

f
(1)
ip

∂φ

∂y

)〉

x

. (33)

The reason for the sign in the last, higher order term is that we perform a second

expansion in the middle term about Rg using (v × b̂) · ∇f
(1)
ip (r, v||, µ0, ϕ0, t) ' (v × b̂) ·

[∇f
(1)
ip (Rg, v||, µ0, ϕ0, t)−Ω−1

i (v× b̂) · ∇∇f
(1)
ip ]. This subtlety is important for the final

result. In the first term, we integrate by parts in µ0 to finally obtain

Ze

〈∫
d3v f

(1)
ip

∂φ

∂y

〉

x

' − Z2e2

2MB

〈∫
d3v fi0

∂2φ̃2
0

∂y∂µ0

〉

x

+
∂

∂x

〈∫
d3v f

(1)
ip M(v · ŷ)

c

B

∂φ

∂y

〉

x

− 1

2Ωi

∂2

∂x2

〈∫
d3v f

(1)
ip M(v · ŷ)2 c

B

∂φ

∂y

〉

x

. (34)
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Term Ze〈
∫

d3v fig∂yφ̃g〉x. Employing the same procedure as for Ze〈
∫

d3v f
(1)
ip ∂yφ〉x, we

find

Ze

〈∫
d3v fig

∂φ̃g

∂y

〉

x

' ∂

∂x

〈∫
d3v figM(v · ŷ)

c

B

∂φ̃g

∂y

〉

x

− 1

2Ωi

∂2

∂x2

〈∫
d3v figM(v · ŷ)2 c

B

∂φ̃g

∂y

〉

x

. (35)

Here, the integral over velocity of fi0∂yφ̃0 vanishes because its gyroaverage is zero.

Term Ze〈
∫

d3v f
(2)
ip ∂yφ〉x. In this higher order term, of order δ2

i pi/L, the Taylor

expansion around r is only carried out to first order. Discarding terms that gyroaverage

to zero leaves

Ze

〈∫
d3v f

(2)
ip

∂φ

∂y

〉

x

' Z3e3

M2B2

〈∫
d3v

[
∂2fi0

∂µ2
0

1

2
φ̃2

0

(
∂φ0

∂y
+

∂φ̃0

∂y

)

+
∂fi0

∂µ0

(
−φ̃0

∂φ0

∂µ0

∂φ̃0

∂y
+

1

2

∂φ̃2
0

∂µ0

∂φ0

∂y

)]〉

x

+
Z2e2c

MB2Ωi

〈∫
d3v

∂fi0

∂µ0

[
(∇Φ̃0 × b̂) · ∇φ0

∂φ̃0

∂y

+
1

2
(∇φ̃0 × b̂) · ∇Φ̃0

∂φ0

∂y

]〉

x

−Zec

BΩi

〈∫
d3v (∇Φ̃0 × b̂) · ∇fi0

∂φ̃0

∂y

〉

x

+
∂

∂x

〈∫
d3v f

(2)
ip M(v · ŷ)

c

B

∂φ

∂y

〉

x

. (36)

Integrating the term (∂2
µ0

fi0)φ̃
2
0(∂yφ0) by parts once in µ0, the first integral in (36)

can be written as
〈∫

d3v

[
∂2fi0

∂µ2
0

1

2
φ̃2

0

(
∂φ0

∂y
+

∂φ̃0

∂y

)
+

∂fi0

∂µ0

(
−φ̃0

∂φ0

∂µ0

∂φ̃0

∂y
+

1

2

∂φ̃2
0

∂µ0

∂φ0

∂y

)]〉

x

=

〈∫
d3v

[
∂2fi0

∂µ2
0

1

6

∂φ̃3
0

∂y
− 1

2

∂fi0

∂µ0

∂

∂y

(
φ̃2

0

∂φ0

∂µ0

)]〉

x

. (37)

The second term in (36) vanishes. To see this, we write it as
〈∫

d3v
∂fi0

∂µ0

[
(∇Φ̃0 × b̂) · ∇φ0

∂φ̃0

∂y
+

1

2
(∇φ̃0 × b̂) · ∇Φ̃0

∂φ0

∂y

]〉

x

=

〈∫
d3v

∂fi0

∂µ0

[
∂Φ̃0

∂y

∂φ̃0

∂y

∂φ0

∂x
− 1

2

∂φ0

∂y

(
∂Φ̃0

∂x

∂φ̃0

∂y
+

∂φ̃0

∂x

∂Φ̃0

∂y

)]〉

x

=

1

2

〈∫
d3v

∂fi0

∂µ0

[
∂φ0

∂x

∂

∂ϕ0

(
∂Φ̃0

∂y

)2

− ∂φ0

∂y

∂

∂ϕ0

(
∂Φ̃0

∂x

∂Φ̃0

∂y

)]〉

x

= 0. (38)
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The integrand gyroaverage vanishes because fi0 and φ0 do not depend on ϕ0.

Finally, the third term in (36) can be simplified by employing (∇Φ̃0 × b̂) · ∇fi0 =

∇ · [fi0(∇Φ̃0 × b̂)] to write
〈∫

d3v (∇Φ̃0 × b̂) · ∇fi0
∂φ̃0

∂y

〉

x

=
∂

∂x

〈∫
d3v fi0

∂Φ̃0

∂y

∂φ̃0

∂y

〉

x

−

〈∫
d3v fi0(∇Φ̃0 × b̂) · ∇

(
∂φ̃0

∂y

)〉

x

. (39)

Here, the integral of fi0(∂yΦ̃0)(∂yφ̃0) = (1/2)∂ϕ0[fi0(∂yΦ̃0)
2] vanishes because its

gyroaverage vanishes. The integral of fi0(∇Φ̃0 × b̂) · ∇(∂yφ̃0) is simplified by realizing

that integration by parts in ϕ0 gives
∫

d3v fi0(∇Φ̃0 × b̂) · ∇
(

∂φ̃0

∂y

)
= −

∫
d3v fi0(∇φ̃0 × b̂) · ∇

(
∂Φ̃0

∂y

)
=

−
∫

d3v fi0
∂

∂y
[(∇φ̃0 × b̂) · ∇Φ̃0] −

∫
d3v fi0(∇Φ̃0 × b̂) · ∇

(
∂φ̃0

∂y

)
. (40)

From this equation, we find
∫

d3v fi0(∇Φ̃0 × b̂) · ∇(∂yφ̃0) = −(1/2)
∫

d3v fi0∂y[(∇φ̃0 ×
b̂) · ∇Φ̃0]. Using this result, equation (39) becomes
〈∫

d3v (∇Φ̃0 × b̂) · ∇fi0
∂φ̃0

∂y

〉

x

=
1

2

〈∫
d3v fi0

∂

∂y
[(∇φ̃0 × b̂) · ∇Φ̃0]

〉

x

. (41)

Substituting the results in (37), (38) and (41) into equation (36) and integrating

by parts in µ0 gives

Ze

〈∫
d3v f

(2)
ip

∂φ

∂y

〉

x

' − Zec

2BΩi

〈∫
d3v fi0

∂

∂y
[(∇φ̃0 × b̂) · ∇Φ̃0]

〉

x

+Ze

〈∫
d3v fi0

∂Ψ
(3)
0

∂y

〉

x

+
∂

∂x

〈∫
d3v f

(2)
ip M(v · ŷ)

c

B

∂φ

∂y

〉

x

, (42)

where we define the new quantity

Ψ
(3)
0 =

Z2e2

6M2B2

∂2

∂µ2
0

〈φ̃3
0〉0 +

Z2e2

2M2B2

∂

∂µ0

(
〈φ̃2

0〉0
∂φ0

∂µ0

)
∼ δ3

i

Te

e
. (43)

Here, 〈. . .〉0 is the gyroaverage holding r, v||, µ0 and t fixed.

Term −Ze〈
∫

d3v fig∂yΨ
(2)
g 〉x. This term is higher order, and has to be expanded only

to first order in δi, giving

−Ze

〈∫
d3v fig

∂Ψ
(2)
g

∂y

〉

x

'
〈∫

d3v fi0

{
Z2e2

2MB

∂2φ̃2
0

∂y∂µ0

+
Zec

2BΩi

∂

∂y
[(∇φ̃0 × b̂) · ∇Φ̃0]

}〉

x

− ∂

∂x

〈∫
d3v figM(v · ŷ)

c

B

∂Ψ
(2)
g

∂y

〉

x

. (44)
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Substituting the results in (34), (35), (42) and (44) into equation (32) for the x

component of the polarization current, we find

B

c
〈J̃E · x̂〉x =

∂

∂x

〈∫
d3v fiM(v · ŷ)

c

B

∂φ

∂y
−
∫

d3v figM(v · ŷ)
c

B

∂Ψg

∂y

〉

x

− 1

2Ωi

∂2

∂x2

〈∫
d3v fiM(v · ŷ)2 c

B

∂φ

∂y
−
∫

d3v figM(v · ŷ)2 c

B

∂φg

∂y

〉

x

+Ze

〈∫
d3v fi0

∂Ψ
(3)
0

∂y

〉

x

. (45)

Employing the moments (v · ŷ) and (v · ŷ)2 of gyrokinetic equation (22), we find

∂x〈
∫

d3v figM(v · ŷ)(c/B)∂yΨg〉x = ∂t〈
∫

d3v figM(v · ŷ)〉x and ∂x〈
∫

d3v figM(v ·
ŷ)2(c/B)∂yφg〉x ' ∂t〈

∫
d3v figM(v · ŷ)2〉x to the order of interest. Then, after fast

time averaging, equation (45) becomes

B

c
〈J̃E · x̂〉x =

∂

∂x

〈
niM(Vi · ŷ)

c

B

∂φ

∂y

〉

x

− 1

2Ωi

∂2

∂x2

〈
ŷ·

↔
Pi ·ŷ

c

B

∂φ

∂y

〉

x

− 1

2Ωi

∂2pi⊥

∂t∂x
+ Ze

〈∫
d3v fi0

∂Ψ
(3)
0

∂y

〉

x

, (46)

where we have used that the long wavelength contributions to
∫

d3v figM(v · ŷ) and∫
d3v figM(v · ŷ)2 are Ω−1

i ∂xpi⊥ and pi⊥ to lowest order.

4.3. Transport of y-momentum

Comparing the preceding results to the more accurate results of equation (5) and (10),

we see that equations (31) and (46) give an incorrect transport of momentum equation

for long wavelengths and long time scales, namely

∂

∂t
〈niMVi · ŷ〉x = − ∂

∂x
〈x̂· ↔

πi ·ŷ〉x + Ze

〈∫
d3v fi0

∂Ψ
(3)
0

∂y

〉

x

, (47)

where 〈x̂· ↔
πi ·ŷ〉x is as given in (10), and we have used that at long wavelengths

Vi · ŷ ' (c/B)∂xφ+(niMΩi)
−1∂xpi⊥. Notice that the momentum equation (47) derived

from the Dubin et al [15] gyrokinetic equation has resulted in an unphysical source term

Ze〈
∫

d3v fi0∂yΨ
(3)
0 〉x ∼ δ3

i pi/L that does not appear in the correct momentum equation

(5). This extra third order source is equivalent to the Lorentz force due to a current

density Jx = 〈
∫

d3v fi0(c/B)∂yΨ
(3)
0 〉x ∼ δ4

i enevi. Such a small current density might

seem negligible, but its effect is as large as any other term in (47). As a result, it leads

to incorrect predictions for the y component of the velocity and, thereby, for the long

wavelength electric field.

This non-physical source of momentum would have vanished if the third order

correction to Ψ had been kept. More importantly, if we had neglected the second order

correction Ψ(2) in (11), the source of momentum would have been much larger, i.e.,

Ze〈
∫

d3v fi0∂yΨ
(2)
0 〉x ∼ δ2

i pi/L. In this case, after a period of time of the order of the
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transport time scale tE ∼ L2/DgB ∼ δ−2
i L/vi, the plasma would tend to acquire velocity

on the order of the thermal velocity when trying to respond to the unphysical source of

momentum!

5. Discussion

We have shown that the Hamiltonian gyrokinetic formulation of Dubin et al [15] results

in a non-physical velocity profile in the low flow ordering unless a proper momentum

description is employed. If quasineutrality or vorticity are used, it is necessary to keep

some third order corrections to Ψ in (12) to recover the correct transport of momentum.

Employing the lowest order version of the same procedure, as is done in full f gyrokinetic

codes [12, 13, 14], it is easy to derive that for Ψ ' φ the non-physical source of

momentum becomes large enough to drive the velocity to the high flow ordering.

Notice that in a slab, it is necessary to calculate the gyrokinetic drifts up to O(δ3
i vi)

to recover the correct momentum equation in the low flow ordering, while O(δ2
i vi) is

sufficient for the high flow ordering. It might be surprising that the drifts are only

needed up to order δ3
i vi in the drift ordering whereas in section 1 we argued that δ4

i vi

terms were required. This simplification is a result of the special geometry of the slab.

In a collisionless slab, the flux surface averaged current density due to the O(δ4
i vi) drift

is to O(δ4
i enevi)

Ze

〈∫
d3v f

(0)
i0

c

B

∂Ψ
(4)
0

∂y

〉

x

= 0, (48)

since the lowest order piece of the distribution function f
(0)
i0 is independent of y. In a

tokamak, on the other hand, there are magnetic geometry effects that may prevent such

a cancellation from happening.

In conclusion, solving the quasineutrality equation for all the pieces of the electric

field, including the long wavelength pieces, in a tokamak requires a gyrokinetic

formulation that keeps the corrections to the drifts up to order δ4
i vi in the low flow

ordering, and to order δ3
i vi in the high flow ordering. Lagrangian formulations keep drifts

to order δ2
i vi at most. We have shown for a slab that next order corrections are required.

This is not surprising since Lagrangian perturbation theory ensures conservation of an

approximate form of the energy, but does not necessarily guarantee the correct transport

of momentum. The slab case shows how the electric field obtained from quasineutrality

introduces an artificial momentum source that will accelerate the plasma in the y

direction. The higher order corrections to the drifts studied in this article appear in

general geometries, but in addition there are magnetic geometry effects that make the

equations almost intractable to order δ2
i vi, and hopelessly complicated to order δ3

i vi and

δ4
i vi. Therefore, trying to calculate all the contributions to the electric field employing a

gyrokinetic quasineutrality equation is impractical. Instead, the momentum transport

equation should be explicitly solved to determine the long wavelength velocity profile.
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