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Abstract 

In magnetic fusion devices, radio frequency waves in the electron cyclotron (EC) and lower 

hybrid (LH) range of frequencies are being commonly used to modify the plasma current 

profile. In ITER, EC waves are expected to stabilize the neoclassical tearing mode (NTM) by 

providing current in the island region [R. Aymar, V.A. Chuyanov, M. Huguet, Y. Shimomura, 

ITER Joint Central Team and ITER Home Teams, Nucl. Fusion 41, 1301 (2001)]. The 

appearance of NTMs severely limits the plasma pressure and leads to a degradation of 

plasma confinement.  LH waves could be used in ITER to modify the current profile closer to 

the edge of the plasma. These RF waves propagate from the excitation structures to the 

core of the plasma through an edge region which is characterized by turbulence – in 

particular, density fluctuations. These fluctuations, in the form of blobs, can modify the 

propagation properties of the waves by refraction. In this paper the effect on RF due to 

randomly distributed blobs in the edge region is studied. The waves are represented as 

geometric optics rays and the refractive scattering from a distribution of blobs is formulated 

as a Fokker-Planck equation. The scattering can have two diffusive effects – one in real 

space and the other in wave vector space. The scattering can modify the trajectory of rays 

into the plasma and it can affect the wave vector spectrum. The refraction of EC waves, for 

example, could make them miss the intended target region where the NTMs occur.  The 
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broadening of the wave vector spectrum could broaden the wave generated current profile. 

The Fokker-Planck formalism for diffusion in real space and wave vector space is used to 

study the effect of density blobs on EC and LH waves in an ITER-type of plasma 

environment. For EC waves the refractive effects become important since the distance of 

propagation from the edge to the core in ITER is of the order of a meter. The diffusion in 

wave vector space is small. For LH waves the refractive effects are insignificant but the 

diffusion in wave vector space is important. The theoretical model is general enough to 

study the effect of density blobs on all propagating cold plasma waves. 

PACS: 52.25.Gj, 52.35.Hr, 42.25.Gy 
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I. INTRODUCTION 

In a variety of magnetically confined plasmas, radio frequency (rf) waves in the electron 

cyclotron (EC) and lower hybrid (LH) range of frequencies have been, and are being, used 

to generate localized current. EC waves are used to modify the current profile and control 

the growth of the neoclassical tearing mode (NTM) instability1. The NTM instability leads to 

severe degradation of confinement and can be stabilized by driving current in the island 

region2-6. In ITER, the primary scheme for modifying the current density profile in the core 

in order to control NTMs, will be by ECRF waves7,8,9. LH waves have also been used to 

successfully generate plasma current and modify the current profile10. In ITER, LH waves 

will not be able to access the core of the high temperature plasma but could be used to 

modify the current profile in the edge region and help improve the overall confinement. The 

EC and LH rf waves are coupled into the plasma from an external excitation structure and 

have to propagate through the turbulent edge region of any tokamak where the waves can 

get scattered.  

The scattering of LH and EC waves by fluctuations has been studied in ASDEX11, 

JET12 and FTU13. The interaction of RF waves with density fluctuations in the edge region can 

change the characteristics of waves propagating into the core of the plasma. In ITER, the EC 

wave beam is expected to propagate over a large distance, of the order of the minor radius, 

before it interacts with electrons in the vicinity of the electron cyclotron resonance. Even 

small changes in the properties of the launched wave at the edge could influence 

significantly the behavior of the wave in the core of the plasma. For example, refraction of 

an EC beam at the edge could modify the trajectory of the beam so that it misses its 

intended target – NTM islands. An understanding of the scattering of an EC beam will 

provide the necessary adjustments needed in the control design of the automatic alignment 

system steering a wave beam. In this paper we study the modification to RF waves that can 

occur due to random density fluctuations in the edge region. 
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 The density fluctuations in the edge plasma can affect the wave beam through two 

physically distinct mechanisms – refraction and diffraction. The former is qualitatively 

different from normal refraction due to changes in the refractive index as waves propagate 

in an inhomogeneous plasma – the gradual changes occurring on a scale length comparable 

to the minor radius. The edge is characterized by strong and intermittent turbulence 

dominated by convective motion of strongly nonlinear structures that are formed during the 

nonlinear saturation of plasma instabilities6. The amplitude of these fluctuations, referred to 

as avaloids, streamers, or blobs14, 15, range from 5% to more than 20% of the background 

density. The associated scale lengths range from 10 to 30 times the local ion Larmor radius. 

The refractive effects on wave propagation due to these fluctuations can be quite significant 

if the scale length of the fluctuations is larger than the wavelength of the EC beams16. The 

diffractive effect of density fluctuations will not be considered as that analysis requires a 

completely different treatment. 

 In this paper we study the refractive effect of fluctuations, in the form of blobs, on 

EC and LH waves using geometric optics analysis17. Along its path of propagation a rf ray 

will encounter a number of blobs, each one of which refracts the ray. The cumulative effect 

of small changes in the propagation vector of a ray due to encounters with a randomly 

distributed set of blobs can eventually lead to two distinctly detrimental effects. First, 

changes in the transverse (to the confining magnetic field) component of the wave vector 

can lead to an effective deflection of the ray, thereby missing the intended target region 

where the wave is expected to deposit its energy or momentum. Second, changes in the 

parallel (to the magnetic field) component of the wave vector will, in general, modify the 

electron cyclotron resonance condition through resonance broadening, thereby affecting the 

spatial profile of the wave induced current.  

We start our analysis with the Hamilton-Jacobi equations for geometric optics and 

derive, using perturbation theory, the evolution equation for wave vectors as the rays 
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encounter density blobs. We derive a Fokker-Planck (F-P) equation for the evolution of the 

wave vectors when the rays encounter randomly distributed blobs of varying sizes. The 

diffusion tensor in the F-P equation is analytically derived and it describes the diffusive 

evolution of the ray wave vectors due to these encounters with blobs. We determine the 

Green’s function solution by solving the spatially averaged F-P equation for an initial 

distribution function of wave vectors that is a three-dimensional Dirac delta function. We 

analytically calculate the broadening of the wave vectors by taking the appropriate 

moments of the distribution function obtained from the F-P equation. The analysis is quite 

general and allows for arbitrary angles of propagation of the waves with respect to the 

confining magnetic field. It is valid for all propagating cold plasma waves and captures the 

basic physics of refractive scattering of RF waves by a distribution of density blobs. In order 

to illustrate some results from our model, we carry out an analysis for EC and LH waves in 

plasma conditions similar to those that will be encountered in ITER. 

The paper is divided as follows: In section II we introduce the Hamilton-Jacobi ray 

equations and the Hamiltonian perturbation approach. We determine the general form of 

the diffusion tensor. In Sec. III the diffusion tensor is explicitly evaluated for simple, but 

general, statistical assumptions. We determine the spatially averaged form of the diffusion 

tensor, and the corresponding F-P equation for rays distributed in wave vector space. In 

Sec. IV, we solve the F-P equation and determine the spreading of the propagation vectors 

due to the blobs. In Sec. V the consequences of scattering by blobs in the edge region are 

investigated for EC and LH waves in ITER-like plasma conditions. Finally, in Sec. VI the main 

results are summarized. 

II. THE MODEL 

The Hamilton-Jacobi ray equations for the independent quantities k and r are17,  

 



, ,d d d
dt dt dt t

ω ωω ω ∂= −∇ = ∇ =
∂r k

k r
      (1) 

where k is the wave vector, ω =ω(r,k,t) is the frequency of the RF-wave, r is the spatial 

location of the ray at time t, and the nabla operators indicate the appropriate partial 

derivatives with respect to the subscripted variables. Equation (1) can be re-written in 

terms of the refractive index η=ck/ω with k being the magnitude of k. Using the identities,  

0 ,
c c k c c
η ω ηω η ω= ∇ = ∇ + ∇ = ∇ = ∇ + ∇r r r k k

kk k ω ηk    (2) 

the first two expressions in Eq. (1) become, 

1 1,d dk
d d k

k
η η
⎛ ⎞ ⎛ ⎞= ∇ = + ∇⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠

r
k r k

k        (3) 

where ℓ=ct. In the edge region of the plasma we will assume that the temperature is low 

enough so that the cold plasma approximation for the waves is valid. This is a reasonable 

assumption since, even with thermal effects included, the EC and LH wave dispersion 

relations are well presented by the cold plasma approximation. Also, the damping of waves 

is assumed to occur away from the plasma edge, so we can neglect temperature effects in 

the edge region. We will assume that the radial size of the edge region is small compared to 

the plasma dimensions. This allows us to neglect any spatial variation of the confining 

magnetic field. Then η is a function of density alone18, 

( )( ){ }( ) ( )( ) ( )2
2 2 1
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, , , cos
q n

n n
m k

α α
α α α α

α

η η ω ϑ ω ϑ
ε

− ⋅⎛ ⎞= = ⎜ ⎟⎝ ⎠
zr k ir r =   (4) 

where θ is the angle of propagation of the plane wave with respect to the homogeneous 

magnetic field which is assumed to be along the z-direction (Fig. 1). The spatial dependence 

enters via the density fluctuations present in the region of propagation. Then Eq. (3) 

becomes, 
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where, 
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≡ − ≡T k k k
kI I i i i         (6) 

ik is the unit vector along k, iz is the unit vector along the z-directions, ikik is a dyadic of 

unit vectors in k-space, I is the unit dyadic, and the summation is over all species that 

constitute the plasma.  

As the ray propagates through the plasma edge it encounters a number of blobs. We 

express the plasma density as a sum of a constant background density and a small 

fluctuating part corresponding to the blobs. The refractive index is then expanded in a 

Taylor series with the expansion parameter being the magnitude of the fluctuating density. 

Then to first order, 
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The Hamilton-Jacobi ray equations become, 
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In the absence of any density blobs these equations become, 
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where 
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is the unit vector along the direction of the group velocity. 

For a statistical ensemble of blobs, the correlation functions along the path of a ray are 

given by  
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where <……..> is an ensemble average over the distribution of blobs. On the basis of these 

correlations, we define a 6X6 diffusion tensor19, 
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where X = (r,k) is a six-dimensional vector and Δs is an element of length along the ray 

over which the density fluctuations are correlated. The dot on top of X denotes 

differentiation with respect to ℓ.  The main contribution to the integrand in Eq.(15) is for σ's 

which are within Δs so that the approximate expression is valid. This approximation also 

implies that the distance over which the rays interact with blobs is smaller than Δs. The 

diffusion tensor describes the cumulative effect of the interaction of a ray with a randomly 

distributed collection of blobs. The primes refer to rates of change due to the fluctuations 

and are obtained from Eq. (8)   

( )
2 2

0 0
2 2 2
0 0 0 0 0 0

1 ,
sin

q d k qn n
m d m
α α

α α
α αα α α α

η ηδ δ
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⎛ ⎞⎛ ⎞ ⎛ ⎞∂ ∂′ = ⋅ − ∇⎜ ⎟⎜ ⎟ ⎜ ⎟∂ ∂⎝ ⎠ ⎝ ⎠⎝ ⎠

∑ ∑z T rX i I 2    (16) 

The evolution equation for a distribution of rays f(X,ℓ) is,  

( ) ( )0
2
0

1
sin

f d ff
d
η

η ϑ ϑ
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k z T ri i I D X
X X

∂
∂

     (17) 

where the differential operators on the left hand side are along the unperturbed ray.  

 

III THE FOKKER-PLANCK EQUATION IN k-SPACE 

The spatial average of Eq. (17) over a volume V0,  occupied by the blobs, leads to, 

( )( ) ( )( )div grad div gradf f f∂ = ⋅ ⋅ ⋅ ⋅
∂ k kk k k kk kD X D X   (18) 

where <<……..>> denotes the spatial average. Here we have replaced the spatially 

averaged inner product of the 3-dimensional tensor Dkk  with the k-space gradient of the 

distribution function by the inner product of the spatially averaged tensor << Dkk >> with 

the k-space gradient of the spatially averaged distribution function, 
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( ) ( ) (0
0

1, ,f f dV f
V

≡ ≡ ∫k X ),X    (19) 

Dkk is the sub-matrix of Eq. (15) associated only with the k-space. The assumption uset to 

obtain Eq. (18) is that the spatial scale length over the the diffusion tensor varies is much 

longer than the spatial scale length over which the distribution function varies. This 

assumption follows from our initial assumption that the only source of inhomogeneity is the 

density fluctuations.  Equation (18) is now a Fokker-Planck equation for the distribution 

function of rays distributed in the wave-vector subspace.  

Let us consider a Gaussian form for density fluctuations which is independent of the 

plasma species,  

( )
( )
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0 2; exp
2
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⎟
⎝ ⎠

r r
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where ν is a dimensionless random variable, r is the position vector, r0 denotes the position 

of the center of the blob, and Δr is the characteristic size of a blob. From quasi-neutrality,  

    
( )

2
0
2exp 0

2α a α a
α α

q δn ν q n
Δr

⎛ ⎞−
= −⎜ ⎟⎜ ⎟ =

⎝ ⎠
∑ r r ∑    (21) 

Equation (20) implies that the blobs are spherical and the underlying turbulence is isotropic. 

This is an approximation as it is known that the blobs are stretched out along the magnetic 

field lines due to the fast parallel particle conduction along the magnetic field20. However, 

data from the TJ-II stellarator and NSTX 21 shows that the percentage of elongated blobs, 

with aspect ratio greater than 2, is less than 35%. 

  Let us also assume a normal probability distribution function w(ν) for the 

dimensionless variable ν 
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where ν0, the mean value, and δ0, the standard deviation, are small nominal parameters 

that characterize the fluctuations. Assuming that the centers r0 are uniformly distributed 

over a volume V0, integrating over v yields the diffusion tensor in k-space, 
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Let i1 and i2 be two mutually orthogonal unit vectors that are perpendicular to is. Then the 

projection of this tensor along i1 and i2 is 
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where we have used the fact that 

( ) ( ) ( )22 2 1, , ,⋅ + ⋅ + ⋅ = =x a y a z ai i i i i i a 1 2 s    (25) 

If we define a Cartesian coordinate system by (iχ, iψ, iζ), as indicated in Fig. 1, such 

that is is along the ζ-direction, then the diffusion tensor in Eq. (23) is diagonalized and Eq. 

(18) takes on the form, 
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IV BROADENING OF THE PROPAGATION VECTOR  

Let us assume that a ray is initially launched with a specific wave vector (kχ, kψ, kζ) in the 

orthogonal system shown in Fig. 1. Then,  

( ) ( ) ( ) (0 0, 0 )0f k k k k k kζ ζ χ χ ψ ψδ δ δ= = − − −k     (28) 

Then the Green’s function solution to Eq. (27) is,  
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where, in accordance with Eq. (27), 
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   (30) 

is the scalar diffusion coefficient. The derivatives in Eq. (30) are given in the Appendix.  

Since k0, is,,  and the magnetic field are all in the same plane, the Jacobian of a 

transformation to any other orthogonal coordinate system, obtained by rotation around the 

x axis, is unity. In a frame in which the magnetic field is along the z-axis, Eq. (29) becomes, 
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where Δk=k-k0. The scattering of the ray by density blobs broadens the propagation vector 

so that it acquires components perpendicular to the (z-y) plane (Fig. 1). 

 Let φB be the azimuthal angle with respect to the magnetic field such that 

    cos , sinx B yk k k k Bϕ ϕ⊥Δ = Δ Δ = Δ ⊥    (32) 

with, 

    ( ) ( )22,z xk k k k k⊥Δ ≡ Δ Δ ≡ Δ + Δ y    (33) 

In this cylindrical coordinate system, 
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⎢ ⎥
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⎛ ⎞
⎜ ⎟⎝ ⎠

(34) 

where α is the angle between the group velocity and the z-axis. From Eqs. (4) and (9),  

    

2 0
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4 0
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ηη
ϑ

−

⎛ ⎞
⎜ ⎟+⎜= ⎜

⎛ ⎞⎜ ⎟+ ⎜ ⎟⎜ ⎟⎝ ⎠

⎟
⎟

⎝ ⎠

      (35) 

with dη0/dθ given in the Appendix. By taking moments of the distribution function in Eq. 

(34) along a ray path of distance L0 along which blobs exist, we obtain the RMS values of Δk 
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 (36) 

The magnitude of the RMS values of the three components are not equal so that the 

broadening of the wave vector does not possess spherical symmetry. From Eq.(36) we 

obtain, 

   ( ) ( )2 2 2
0

2 6 6 sin
9

RMS RMS RMS
x yk k k L D α⊥Δ = Δ + Δ = −   (37) 

Thus the spreading of the wave vector component transverse to the magnetic field is a 

maximum when α=0, i.e., when the ray is propagating along the magnetic field. The 

spreading of the wave vector component parallel to the magnetic field is a maximum for 

α=π/2, i.e., when the ray is propagating perpendicular to the magnetic field. Furthermore, 

the locus of Δk is the surface of an oblate ellipsoid with its center at the tip of the 

propagation vector k and its axis along the z-axis. The RMS broadening of the wave vector 

in the (y-z) plane, 

    ( ) ( ) ( )2 2

0,
2 30
9

RMS RMS RMS
y zy zk k kΔ = Δ + Δ = L D   (38) 

is independent of α. From Eq. (30), the broadening in the transverse and parallel directions 

is, 
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 (38) 

where, 

    ( )
2

2 2 0
0 0 0 0 0

0

, r Lb g g
V

πν δ Δ≡ + ≡     (39) 

The parameter g0<1 is a measure of the number of blobs encountered by a ray in a volume 

V0. 

The effect of the transverse broadening of the wave vector leads to an effective 

angular deflection of the ray by a small angle Δα with respect to the path of the 

unperturbed ray. From Eq.(35),  

    

22
0 0

0 2

0 2
4 0
0

2
1

η ηη
ϑ ϑα η

ηη
ϑ

∂ ∂⎛ ⎞− ⎜ ⎟∂ ∂⎝ ⎠Δ = + Δ
∂⎛ ⎞+ ⎜ ⎟∂⎝ ⎠

ϑ     (40) 

where,  

1sin
RMSk
k

ϑ − ⊥⎛ ⎞ΔΔ = ⎜
⎝ ⎠

⎟       (41) 

is of the same order as g. 

  Let us consider the principal cold plasma modes propagating across the magnetic 

field, i.e., θ=π/2. Using the Stix notation18 (see the Appendix), for the extraordinary X mode 

with η2=RL/S, 
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   ( )
1/22

1
16X

D P S
S RL PS RL

α
ϑ

Δ ⎛ ⎞= − ⎜ ⎟Δ − ⎝ ⎠
     (42) 

where S=(R+L)/2 and D=(R-L)/2. For the ordinary O mode with η2=P, we obtain, 

   
( )( )

( )
1

O

P R P L
P RL PS

α
ϑ

− −Δ = −
Δ −

      (43) 

Let us next consider the principal cold plasma modes propagating along the magnetic field, 

i.e., θ=0. For  the right-hand circularly polarized mode given by η2=R, we obtain, 

   1
R

P R
P R

α
ϑ

Δ −= −
Δ

       (44) 

while for the left-hand circularly polarized mode given by η2=L, we get, 

   1
L

P L
P L

α
ϑ

Δ −= −
Δ

       (45) 

The broadening of the wave vector along the direction of the magnetic field results in a 

broadening of the parallel refractive index, 

   
RMS RMS

RMS c k k
k

η η
ω

Δ Δ
Δ = =       (46) 

Any cold plasma wave, propagating at an arbitrary angle to the magnetic field, is described 

by a linear combination of the principal modes. The effect of scattering by density blobs can 

be determined for any frequency wave using the above formalism.  

V. NUMERICAL RESULTS  

The analytical results from the model developed above are used to illustrate the diffusive 

effect of blob scattering on rf waves in ITER-like plasmas. For an electron-deuterium plasma 

we assume an edge magnetic field of 4.13 T, an edge electron density ne=1019 m-3, and a 
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wave frequency of 170 GHz for EC waves. The wave frequency is resonant at a magnetic 

field of 5.51 T in the core when the relativistic shift due to 10 keV  electrons is included. 

From present experiments, the relative amplitude of edge fluctuations is within the range 

ν0≈10-50%20. We will assume that in ITER ν0=δ0=0.2, i.e., the relative density increment is 

20%. For an edge plasma temperature of 200 eV22 the ion Larmor radius is about 0.5 mm. 

Experimental evidence20 suggests that the fluctuation spectrum peaks around Δr/ρs≈15-30, 

so that, at the edge, Δr can be as large as 1.5cm. The number of blobs along the polodial 

direction in a flux surface is Nb=Lp/(2Δr) where Lp is the poloidal arc length. In the radial 

direction the number of blobs is Nr=Δb/(2Δr) where Δb is a measure of the radial distance 

travelled by the blobs.  Estimates based on experimental data from DIII-D and Alcator C-

Mod14 suggest that Δb is between 3cm and 15cm. Thus, in a poloidal plane, there are 

roughly Np=Nb×Nr blobs with a total occupied volume of V0=4π(Δr)3Np/3=πΔrLpΔb/3. 

Assuming L0≈0.2m-0.3m and Lp≈0.6m, the ray-blob encounter ratio g0=π(Δr)2L0/V0=3Δr 

L0/(LpΔb) is between 0.15 and 0.7. We will assume that g0=0.6. From Eq. (39) it is evident 

that both the ray deflection and the broadening of the parallel refractive index scale in 

proportion to the blob size and the relative density increment in the blob. 

 In Fig. 2 we display results for the O mode (top row) and the X mode (bottom row) 

for parameters indicated above. In the first column the refractive index is plotted as a 

function of θ. In the second column, we plot the RMS angular deflection of the ray in the (y-

z) plane as a function of the parallel refractive index η||. In the third column we plot the 

RMS broadening of η|| as a function of η|| . It is evident that the fluctuations affect the X 

mode more than the O mode. The X mode undergoes three times as much ray deflections 

and broadening as the O mode. For the O mode the maximum deflection and broadening 

occur at η||=0 (|Δα|≈0.30, Δη||
RMS≈40%) while for the X mode the maximum occurs at 

η||=1 (|Δα|≈1.10, Δη||
RMS≈110%). If we assume that 20-30% of the radial propagation 

distance in the ITER plasma is populated by blobs, then these results imply that an O mode 



beam will be deflected by about 5mm while an X mode beam will be deflected by about 2cm 

per meter of ray propagation. Since the effect on the parallel refractive index for each wave 

is small the main effect of the blobs is to deflect the EC beams. 
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In toroidal plasmas the launched ECRF waves are a linear combination of modes 

propagating across the magnetic field and those propagating along the magnetic field. We 

are better able to illustrate the ray deflection and the broadening of the parallel refractive 

index by looking at the principal modes propagating strictly across or along the magnetic 

field. In Fig. 3 the behavior of the rays for the associated four fundamental modes is 

illustrated. In the figures, the light grey shaded area corresponds to a region where both 

and are greater than 0.1 – this is just to illustrate that our results are 

within the approximations we have made in our analytical model. In Figs. 3 (a) and (b) we 

plot, for the L mode propagating along the magnetic field, the deflection of the ray and the 

broadening of the parallel refractive index, respectively, as a function of the normalized 

edge ion density ni/ni0 where ni0=1019 m-3. In Figs. 3 (c) and (d) we plot the same for the R 

mode. In Figs. 3(e) and 3(f) we plot the deflection and broadening, respectively, for the O 

mode propagating across the magnetic field. Figures 3(g) and 3(h) are for the X mode. We 

note that the X mode is more affected by the scattering process than the other EC modes. It 

undergoes a larger ray deflection than other modes and the broadening of its parallel 

refractive index is comparable to the other modes. These effects increase as the density at 

the edge increases. The deflection for all modes ranges from 10 to 40 for edge densities 

ranging from 1.5×1019 m-3 to 3×1019 m-3. These angles correspond to a deflection of the ray 

between 1.5 cm and 7 cm per meter of propagation. For the transverse modes, the 

deflection of the ray is marginally beyond the average dimensions of an NTM island. The 

associated broadening of the parallel refractive index is rather small and limited to a few per 

cent.  

/RMSk k⊥Δ /RMSkΔ
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 In Fig. 4 the effect of fluctuations for all the modes is illustrated. In Figs. 4(a) and 

4(b) we plot contours for the angular deflection of the O and X modes, respectively, as a 

function of η|| and ni/ni0. Figures 4(c) and 4(d) are the contour plots for the associated 

broadening of η|| for the O and X modes, respectively. The small shaded areas at the right 

edge of Fig. 4(b) and 4 (d) are where and are greater than 0.15. The 

effect of density fluctuations is, in general, more pronounced for the X modes than the O 

modes. The ray deflections are significant for the entire range of η|| while the associated 

broadening of η|| is rather small.  

/RMSk k⊥Δ /RMSkΔ

 In Figs. 5 we plot results for the slow lower hybrid waves. Figures 5(a), 5(b) and 

5(c) are for η||, the deflection angle, and the broadening of η||, respectively, as a function of 

θ. We primarily consider results in the vicinity of θ=π/2, i.e., nearly perpendicular 

propagation. The horizontal axis is the ratio ω/ωLH of the wave frequency to the lower hybrid 

frequency in the plasma core where the ion plasma density is 1020 m-3 and the magnetic 

field is 5.51T (fLH≈1.28GHz). Usually in experiments the wave frequency is chosen 

somewhere in the range of 3ωLH to 4ωLH. The dark grey area corresponds to the evanescent 

region of the wave, while in the light grey region, adjacent to the evanescent region, 

and are greater than 0.015. The density fluctuations can lead to 

deflections as large as 80 to 100. The associated broadening of the parallel refractive index 

is more than 20%, which is significantly larger than for the EC waves. As the edge plasma 

density increases, the effect of fluctuations becomes very significant. In Fig 6(a), 6(b). and 

6(c) contour plots of η||, the deflection angle , and the broadening of η||, respectively, are 

plotted as functions of θ and ni/ni0. Again, the dark grey area corresponds to the evanescent 

region of the wave, while in the light grey regions both and are greater 

than 0.015. For η||=2 and an edge density of ni=2×1019 m-3, the deflection can be as large 

as 200 while the broadening of the parallel refractive index can be as large as 50%. For such 

/RMSk k⊥Δ /RMSkΔ

/RMSk k⊥Δ /RMSkΔ
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a large broadening of the parallel refractive index, the lower hybrid waves will lead to a 

broader current profile – the larger parallel wave numbers damping closer to the edge of the 

plasma while the smaller wave numbers propagating farther into the plasma away from the 

edge region. 

 

VI. CONCLUSIONS 

We have derived a Fokker-Planck diffusion equation for the scattering of rays by density 

fluctuations in the form of blobs. We have assumed spherical blobs, distributed randomly, in 

the edge region of a tokamak plasma. The propagation of the rays is given by geometric 

optics equations for a cold plasma. In the edge region of the plasma where the fluctuations 

persist, we assume that the temperature is low and that the waves are not damped. Then 

the propagation of EC and LH waves is well approximated by the cold plasma model. We can 

then evaluate the diffusion coefficients analytically and the resulting Fokker-Planck equation 

is solved in the absence of magnetic shear and background density gradients. These effects 

are not amenable to analytical manipulations. However, they can be included in a 

straightforward fashion in a numerical code. The assumption that the blobs are spherical is 

for analytical tractability which can also be generalized in numerical simulations. The model 

presented in this paper is capable of revealing the basic scaling laws and dependencies of 

the deflection of a wave beam as a function of the angle of propagation, the frequency of 

the wave, the amplitude of the density fluctuations, and the density of the blobs.  

We have shown that the effect of edge turbulence on the propagation of RF waves in 

the EC range of frequencies can be sizable. For a perpendicularly propagating X mode both 

the deflection of the ray and the broadening of the parallel wave spectrum can be quite 

significant. For the O mode the effects due to turbulence are less severe. In ITER the EC 

beam will propagate at an angle to the magnetic field so that the wave is a linear 

combination of the X and O modes propagating normal to the magnetic field. Thus, the 
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deflection could be large enough that the beam is deflected away from a NTM island. From 

our numerical results we find that the deflection can be between 2 cm and 7 cm when the 

EC rays reach the core of an ITER plasma. The deflection increases as the density in the 

blobs increases. Associated with the deflection of a EC ray is a broadening of the parallel 

wave number. This broadening can be a few percent of the initial wave number of the ray 

near the edge of the plasma. The broadening of the parallel wave number spectrum can 

reduce the efficiency of current drive by EC waves. The larger parallel wave numbers damp 

farther away from a NTM island than the smaller ones. The broadening of the parallel 

spectrum of the waves increases as the blob density increases. 

Finally, for the case of RF waves in the LH range of frequencies, the effect of density 

fluctuations can be quite important. While the ray deflection for ITER-type parameters is 

around 200, it is important to note that the LH waves, in contrast to EC waves, will damp 

nearer the edge of the plasma. The deflection of the LH ray will strongly modify the spatial 

structure of the region where the LH waves deposit their momentum and drive plasma 

current. The broadening of the wave numbers can be as large as 50%. This broadening will, 

in turn, broaden the current profile and affect the current drive efficiency. 



APPENDIX: COLD PLASMA REFRACTIVE INDEX 

The Åström and Allis18 expression for the angle of propagation of a wave is 
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where θ is the angle between k and the magnetic field,  
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ωpα and ωcα are the plasma frequency and the cyclotron frequency, respectively, for the 

species α, and S=(R+L)/2. Upon differentiating with respect ωpα
2 we obtain, 
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where prime denotes differentiation with respect to ωpα
2. Differentiating (A1) with respect to 

θ, we get, 
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This expression can be differentiated once more with respect to θ to provide the second 

derivative in Eq.(40). 
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FIGURE CAPTIONS 

Figure 1.  The coordinate system used in the model: the ζ-axis is along the group 

velocity of the ray, the z-axis is along magnetic field B0 direction, and k0 is the propagation 

vector for the unperturbed ray. 

Figure 2.  Plots (a), (b), and (c) are for the X mode and (d), (e), and (f) are for the O 

mode. (a) and (d) are plots of the parallel refractive index as a function of the propagation 

angle θ. (b) and (e) are plots for the angle of deflection while (c) and (f) are for the 

broadening of the parallel refractive index plotted as function of the parallel refractive index. 

The electron density at the edge is 10-19 m-3, the wave frequency is 170 GHz, and g0=0.6. 
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k

k

Figure 3. (a) and (b) are plots of the ray deflection angle (in degrees) and the 

broadening in the parallel refractive index, respectively, as a function of the normalized 

edge ion density ni/ni0 (ni0=1019 m-3 is the reference deuterium ion density) for the L mode 

propagating along B0. (c) and (d) are the corresponding plots for the R mode. (e) and (f) 

are the corresponding plots for the O mode across B0, while (g) and (h) are for the X mode. 

In the shaded regions and are greater than 0.1.  /RMSk k⊥Δ /RMSkΔ

Figure 4.  (a) and (b) are contour plots for the angular deflection (in degrees) as a 

function of the parallel refractive index and ni/ni0 for the O and X modes, respectively. (c) 

and (d) are contour plots of the associated broadening of the parallel refractive index for the 

O and X modes, respectively. In the shaded regions on the right edges of (b) and (d) 

and are greater than 0.15. The wave frequency is 170 GHz and g0=0.6. /RMSk k⊥Δ /RMSkΔ

Figure 5.  (a), (b) and (c) are contour plots of the parallel refractive index, the 

deflection angle (in degrees) and the broadening of the parallel refractive index, 

respectively, as functions of θ≈π/2 and ω/ωLH. ωLH is the lower hybrid frequency in the core 

of the plasma where the deuterium density is ni=1020 m-3 and the magnetic field is 5.51T. In 

the dark grey region the lower hybrid wave is evanescent, while in the light grey regions 
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k/RMSk k⊥Δ and are greater than 0.015. The density at the edge is 10-19 m-3 and 

g0=0.6. 

/RMSkΔ

Figure 6.  (a), (b) and (c) are contour plots of the parallel refractive index, the 

deflection angle (in degrees) and the broadening of the parallel refractive index, 

respectively, as functions of θ≈π/2 and ni/ni0. The parameters are the same as in Fig. 5.  
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