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The strong radial electric field in a subsonic tokamak pedestal modifies the neoclassical ion parallel flow 

velocity, as well as the radial ion heat flux. Existing experimental evidence of the resulting alteration in 

the poloidal flow of a trace impurity is discussed. We then demonstrate that the modified parallel ion 

flow can substantially enhance the pedestal bootstrap current when the background ions are in the 

banana regime. Only the coefficient of the ion temperature gradient drive term is affected. The revised 

expression for the pedestal bootstrap current is presented. The prescription for inserting the modification 

into any existing banana regime bootstrap current expression is given.  

 

The bootstrap current [1,2] due to the diamagnetism associated with trapped and barely passing 

particles is a key feature of advanced tokamak operating regimes since it can dramatically reduce the need 

to drive current [3]. Moreover, the stability of tokamaks is sensitive to the details of the bootstrap as well 

as driven current profiles, especially for the density and temperature pedestal just inside the last closed 

flux surface [4-7].   

Recent impurity flow measurements in the pedestal of Alcator C-Mod indicate that the poloidal 

flow of the background banana regime ions can be in the direction opposite to the one predicted by 

conventional neoclassical theory [8,9]. Any sign change in the poloidal ion flow has important 

implications for the bootstrap current since it is sensitive to the parallel background ion flow due to 

momentum exchange between electrons and ions.  

However, experimental studies of the pedestal bootstrap current [5-7] measure currents large 

enough to impact edge stability and claim qualitative agreement with the Sauter, Angioni and Lin-Liu 

model [10] based on the conventional neoclassical bootstrap expression [11-13] derived by assuming the 

poloidal ion gyroradius is small compared to the shortest pedestal scale length. Here we reconcile these 



seemingly contradictory experimental results for the bootstrap current and ion flow by first demonstrating 

that the change in the sign of the background poloidal ion flow is due to the strong radial electric in the 

pedestal [14] enhancing the pedestal bootstrap current. We then show that no contradiction arises because 

the new formula for the bootstrap current continues to be of the conventional form and therefore of the 

general form of Sauter, Angioni, and Lin-Liu [10] provided the ion temperature gradient coefficient is 

allowed to depend on the radial electric field in the pedestal. 

The bootstrap current is normally regarded as the most important prediction of neoclassical theory, 

and is enhanced by strong density and pressure gradients because of its diamagnetic nature. Conventional 

tokamaks have 1pB B qR a∼ � , where B  is the total magnetic field, pB  is the poloidal magnetic 

field, q  is the safety factor, and R a  is the aspect ratio. As a result, the diamagnetism associated with the 

trapped and barely passsing particles is larger than that associated with their gyromotion since the 

magnetic drift departure from a flux surface is roughly a poloidal gyroradius pj j pB Bρ ρ=  rather than a 

gyroradius ( )1/2
2j j j jT M c Z eBρ = , where the subscript j  denotes the species of temperature jT , 

mass jM  and charge jZ , and e  is the magnitude of the charge of an electron and c the speed of light. 

During high confinement operation of Alcator C-Mod the pedestal is found to have radial density 

and electron temperature variations on the scale of the poloidal ion gyroradius piρ  [15]. However, the 

flows in C-Mod are subsonic so the only way to satisfy radial ion pressure balance is for the ions to be 

nearly electrostatically confined with a somewhat weaker background ion temperature variation than the 

density [16]. This weaker ion temperature variation also enhances the bootstrap current and is required to 

minimize entropy production in the pedestal; however, it is not the primary effect of interest for the 

discussion that follows.  

The more important effect is the strong radial electric field needed to keep the ion flow subsonic in 

the pedestal since the poloidal E B×
G G

 drift can compete with the small poloidal projection of the parallel 

ion streaming, thereby modifying conventional neoclassical results in the banana regime [14]. The ion 

flow is altered because the passing ion constraint on the ion-ion collision operator [11,12] must be 

imposed along the E B×
G G

 modified ion trajectory by holding canonical angular momentum fixed, rather 

than the poloidal flux function. This difference alters the nonlocal part of the ion distribution function and 

leads to a poloidal ion flow sensitive to the radial electric field when this passing collisional constraint is 



evaluated retaining the strong poloidal radial electric field variation along the trajectory. Orbit squeezing  

[17] does not play a role in modifying the nonlocal portion of the ion distribution function, but does, of 

course, change the localized contribution and, thereby, radial transport. 

The preceding discussion indicates that ion behavior in the pedestal can be expected to be rather 

different than in the core. Of particular interest for the bootstrap current calculation is the change in the 

parallel ion flow on a flux surface caused by the strong radial electric field inherent in a subsonic pedestal 

because of the need to maintain radial pressure balance. Experiments find that in many tokamaks the 

pedestal width can be of order of the poloidal ion gyroradius. Thus, for a pedestal ion, variation of the 

electrostatic energy across a neoclassical orbit is comparable to that of the kinetic energy, causing this 

orbit to be substantially different from those in the core. Of course, electron orbits are essentially 

unchanged since pe piρ ρ� . However, even though electrons do not feel the pedestal electric field 

directly, it affects them indirectly through their friction with the modified parallel velocity of the bulk 

ions. Consequently, the coefficient preceding the ion temperature gradient term in the conventional 

formula and the Sauter, Angioni, and Lin-Liu form [10] is importantly modified in the pedestal. 

To evaluate the neoclassical ion flow in the pedestal the full Maxwellian Rosenbluth potential 

form of the like particle collision operator must be employed [18] along with a term that insures 

momentum conservation for ion-ion collisions. This more complete operator [19,20] captures both energy 

and pitch angle scattering ion transitions across the electric field modified trapped-passing boundary that 

is no longer at constant pitch angle. This operator is used to evaluate the passing collisional constraint in 

the pedestal to determine the nonlocal and localized neoclassical corrections to the leading order ion 

distribution function, which is assumed to be a stationary Maxwellian 0if . The Maxwellian remains 

stationary because the E B×
G G

 drift cancels the ion diamagnetic drift in the pedestal to lowest order, and 

0if  permits the strong density variation required for near electrostatic ion confinement through its 

dependence on total energy.  

There are two changes that occur when evaluating the nonlocal portion of the constraint equation. 

The first is that the parallel velocity must be shifted by the poloidal E B×
G G

 drift ( )′≡u cI Bφ ψ  since 

the deeply trapped particles are at || 0v u+ ≈  rather than at || 0v ≈ . Here φ  is the electrostatic potential 

with ( )E φ ψ ∂φ ∂ψ ψ′= − ∇ = − ∇
G

 and ψ  the poloidal flux function. The second is in the factors that 



must be introduced to insure momentum conservation in ion-ion collisions change due to the finite electric 

field modication of the orbits. As a result of these changes, the perturbed ion distribution function 

becomes 
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where g h g hσ σ= + −  vanishes for the trapped particles (but not the passing), g hσ−  is the small local 

term giving an order 
1 2ε  correction to the ion flow (that we can neglect), and 
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with tI RB=  with tB  the toroidal magnetic field, i ZeB McΩ = , B I ζ ζ ψ= ∇ + ∇ ×∇
G

, and in , iT , 

i i ip nT= , Z  and M  the background ion density, temperature, pressure, charge number and mass. 

Notice that in addition to || ||v v u→ +  and 2 2 2v v u→ +  in hσ , the factor σ  determined by demanding 

like particle momentum conservation when evaluating g hσ−  is modified to become  
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where 1/2 33(2 ) [ ( ) ( )] 2ii erf x x xν π ν⊥ = − Ψ  and 1/2 3
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2( ) [ ( ) ( )] 2x erf x xerf x x′Ψ = − . Using the preceding to determine the lowest order parallel background 

ion velocity gives 
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Where ( )1/2
2 iU u M T≡ , ...  denotes a flux surface average, and  

 2 4( ) (6 7)[(5 2 ) 2(1 ) 2 ]J U U Uσ σ= − + − +  ,  (5) 

Adding the perpendicular ion velocity 2 1( )( )[( ) ( ) ( )]i i iV c B B d d Zen dp dψ φ ψ ψ−
⊥ = × ∇ +
G G

 to the 

parallel ion velocity gives the poloidal ion flow to be 
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 The parameter U  accounts for the presence of the equilibrium pedestal electric field with 1U ∼  

if the spatial scale of the potential φ  or in  is of order piρ . The shaping function ( )J U  is introduced to 



denote the difference between the pedestal and conventional 1J = , 0U = , and 4.33σ =  result in the 

core. In the pedestal, equations (3) and (5) give J  to be a monotonically decreasing function of 

equilibrium electric field and thereby increasing bootstrap current. The function J  goes negative for 

0.6U >  to give an additive positive poloidal flow from the ion temperature gradient term. The average 

pedestal electric field in tokamaks such as Alcator C-Mod or DIII-D corresponds to 0.75U ≈  [15,21] 

and therefore we expect pol
iV  to change sign in the pedestal near the plasma edge. 

Before presenting the modification to the bootstrap current due to the novel features of the ion 

flow outlined in the preceding paragraphs, we discuss the experimental evidence available for this effect. 

To this end, the impurity flow measurements recently performed at C-Mod [8,9] turn out to be important 

since their poloidal flow is sensitive to that flow component of the background ions and therefore 

measuring the former determines whether the latter is changed. Consequently, when the C-Mod study 

revealed impurity poloidal flows noticeably larger in banana regime pedestals than predicted by the 

conventional core formula, we were able to understand this seemingly contradictory result by retaining 

finite radial electric field modifications. We next demonstrate how this discrepancy is removed by 

employing our formula (5) instead of the usual 1J =  expression for the poloidal ion flow.  

The analysis is simplified due to the high charge number and mass, and therefore high 

collisionality, of the boron impurities used in the experiment. These features make the impurity mean free 

path much less than parallel connection length qR , where R  the major radius. As a result, the parallel ion 

and impurity flows are equal and the usual formula relating the poloidal velocities of the banana regime 

background ions to Pfirsch-Schluter impurities can be employed [22-25]: 
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where zZ , zn , and zp  are the impurity charge number, density and pressure and higher order terms in the 

aspect ratio expansion are omitted. The conventional formula for the poloidal ion flow ( 1J = ) makes the 

sum of pol
iV  and the diamagnetic terms tend to cancel on the right side of (7). As a result, the left side of 

(7) is relatively small and gives rise to the previously mentioned discrepancy between the experiment and 

conventional neoclassical formulas. On the other hand, accounting for the electric field makes pol
iV  

smaller or even negative, thereby allowing the terms on the right side of (7) to add and give a larger 

prediction for the impurity flow in agreement with the C-Mod observations. Therefore, these impurity 



measurements are consistent with our first principle analysis of the background ion flow in a banana 

regime pedestal and we can proceed to the consideration of the pedestal bootstrap current. 

 Due to the small electron gyroradius their orbits are insensitive to the background electric field. As 

a result, the electrons can only be modified by means of the altered background ion flow. Thus, we can 

readily adapt the usual techniques of evaluating the bootstrap current (e.g. see [11-13]) by using our 

electric field modified parallel ion flow result. Before doing so we remark that the electric field makes ||iV  

larger than its conventional counterpart. In the conventional 1J =  limit the diamagnetic and neoclassical 

terms have opposite signs and tend to cancel each other in (4). However, upon accounting for the presence 

of the electric field, ( )J U  becomes smaller or even negative (so that these terms add), thereby increasing 

the net parallel ion flow, as well as the resulting electron-ion friction. Hence, the bootstrap current is 

enhanced in the pedestal since it is in the same direction as ||iV  and depends on it through the electron 

friction with the ions. 

Knowing (4), the pedestal bootstrap current can be rigorously evaluated in the same way as in the 

core. The only change is due to the modified parallel ion velocity. Therefore, only the coefficient of the 

ion temperature gradient term changes. Indeed, if the bootstrap current is written as the sum of pressure 

and temperature (instead of density and temperature) gradients, the ion temperature gradient term need 

only be multiplied by ( )J U  to retain electric field effects. 

For example, in the Z → ∞  and arbitrary Z  cases, the electric field modified bootstrap current 

in a quasineutral plasma ( i eZn n= ), with order 
1 2ε  corrections ignored, become  

 ( )||

1 2

2
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and [11] 
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where en  and eT  are the electron density and temperature, and ( )e i e e ip p p n T T Z= + = + . 

Equations (8) and (9) illustrate the enhancement of the bootstrap current due to the finite radial electric 

field modification factor ( )J U . These equations predict that the pedestal bootstrap current is larger than 



that given by conventional formulas since ( )J U  becomes less than unity as 2U  increases, and then goes 

negative for 0.6U > . The modification of these results is entirely due to the finite radial electric field 

modification of the parallel ion flow.   

 The Sauter, Angioni, and Lin-Liu formula [10] can be similarly modified to retain the finite 

electric field effects by multiplying their 34Lα  ion temperature gradient coefficient by ( )J U .  

Consequently, our finite orbit generalization is qualitatively consistent with their form. As a result, we 

have shown that it should not be surprising that measurements [5-7] of the bootstrap current density near 

the plasma edge fit the phenomenological, but theory motivated, form 

 || 2
bs e e i
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J

n d T d T dB

α β γ
ψ ψ ψ

⎡ ⎤
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 ,  (10)  

and thereby find reasonable qualitative agreement with the neoclassical Sauter, Angioni, and Lin-Liu 

model [10], where the dimensionless parameters α , β , and γ  account for geometrical and collisionality 

effects. Our first principles approach demonstrates that in the banana regime pedestal the parameter γ  is 

also dependent upon the equilibrium axisymmetric electric field, but still maintains the general form of 

equation (10). 

 In conclusion, we have deduced that the bootstrap current in a banana regime pedestal is larger 

than predicted by conventional neoclassical theory. This favorable result is due to the strong pedestal 

electric field that increases the poloidal ion velocity, thereby enhancing the electron - ion friction drive for 

the bootstrap current. Experimental support for this analytical result is provided by impurity flow 

observations in the Alcator C-Mod pedestal in the banana regime that can be explained by the very same 

finite radial electric field modification of the poloidal flow that is shown here to increase the bootstrap 

current [8,9]. Therefore our first principles approach is consistent with all experimental observations [5-7] 

and recovers a bootstrap current formula of the general Sauter, Angioni, and Lin-Liu [10] form once the 

coefficient preceding the ion temperature gradient term is altered in the prescribed way to account for the 

strong pedestal radial electric field. 
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