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Abstract

A closed theoretical model to describe slow, macroscopic plasma processes in a fusion-relevant col-

lisionality regime is put forward. This formulation is a hybrid one, with fluid conservation equations

for particle number, momentum and energy, and drift-kinetic closures. Intended for realistic appli-

cation to the core of a high-temperature tokamak plasma, the proposed approach is unconventional

in that the ion collisionality is ordered lower than in the ion banana regime of neoclassical theory.

The present first part of a two-article series concerns the electron system, which is still equivalent

to one based on neoclassical electron banana orderings. This system is derived such that it ensures

the precise compatibility among the complementary fluid and drift-kinetic equations, and the rigorous

treatment of the electric field and the Fokker-Planck-Landau collision operators. As an illustrative

application, the special limit of an axisymmetric equilibrium is worked out in detail.
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I. Introduction.

Macroscopic processes in a magnetized plasma, defined as those whose characteristic length scales

are always greater than the ion Larmor gyroradius, are amenable to a fluid description of their dynam-

ics perpendicular to the magnetic field, closed by a drift-kinetic solution for their parallel dynamics1,2.

This formulation is based on asymptotic expansions of the underlying Vlasov-Boltzmann kinetic equa-

tions and their velocity moments in powers of the small ratio δ ∼ ρι/L⊥ � 1 between the ion gyroradius

and the smallest macroscopic length scale, typically established by a perpendicular gradient or fluc-

tuation wavenumber. Consideration of the gyroradius parameter δ alone is sufficient to carry out this

theory in the case of a strictly collisionless plasma. However, the occurrence of collisions introduces a

second fundamental parameter, namely the ratio ν∗ ∼ L‖/λcoll between the characteristic macroscopic

parallel length and the characteristic collisional length λcoll ∼ vths/νs, with vths and νs respectively the

thermal velocity and collision frequency of species s assumed all to have comparable temperatures.

In the core plasma of a typical tokamak magnetic fusion experiment, the parameter ν∗ cannot be

neglected altogether but it is much smaller than unity. Some important macroscopic phenomena in

these magnetic fusion plasmas, such as the precursor of the sawtooth internal disruption3,4 and the

”neoclassical tearing” mode5,6, develop on time scales of the order of the diamagnetic drift scale or

slower, i.e. frequencies of order δ or smaller relative to the Alfven or sound frequencies characteristic of

single-fluid magnetohydrodynamics (MHD). The analysis of these slow modes in a hot magnetic fusion

plasma, which is the main motivation for the present work, requires therefore a careful consideration

of the relative orderings between the two small parameters δ and ν∗. In addition, the specific ordering

of the small mass ratio between electrons and ions (which is not essential in a strictly collisionless

theory) becomes essential when collisions are taken into account.

Given the formal freedom to order the parameters δ, ν∗ and me/mι (plus several other plausible

expansion parameter choices such as geometrical ratios or the pressure ratio β), many different models

have been constructed as exemplified by Refs.6-17. However, apart from the strictly collisionless

formulations, all mainstream finite collisionality models share, to this author’s best knowledge, one

common feature: the collisionality parameter ν∗ is always ordered as comparable or higher than in

2



the lowest ion collisionality regime of neoclassical theory and this turns out to be unrealistically high

for any fusion-grade tokamak plasma. Low collisionality (so called banana regime) ion neoclassical

theory18−20 assumes both δ and ν∗ to be much less than unity and carries out a primary drift-kinetic

expansion to first order in δ, followed by a subsidiary expansion in ν∗, without going to the second

order in δ. Thus, even in the least restrictive case where the ν∗ expansion is limited to its first

order, the validity of this scheme requires ν∗ � δ consistent with retaining O(δν∗) while neglecting

O(δ2). The condition ν∗ � δ, inherent to any low collisionality theory that, like the neoclassical

one, does not consider a second order ion drift-kinetic equation, is easily violated by any modern

tokamak core plasma with ion temperatures in the several KeV range. Instead, as proposed in a

previous study of the fluid moment equations21, the present work will assume the alternative, lower

collisionality ordering ν∗ ∼ δ. This implies forsaking a hypothetical unified connection with the

intermediate and high collisionality regimes ν∗ >∼ 1 (which, barring a solution of the complete primary

kinetic equations, appears impossible to achieve consistently anyway) in favor of a more realistic

description of the high temperature regime of interest. In addition, the rather small electron to ion

mass ratio is to be formally ordered as comparable to δ2. A systematic theory can then be built

based on the somewhat unconventional but arguably fusion-relevant asymptotic expansion in uniform

powers of δ ∼ ν∗ ∼ (me/mι)1/2 � 1. In the interest of obtaining clear-cut results from this basic

single-parameter ordering scheme, no further assumptions involving additional expansion parameters

will be made. In particular, all macroscopic length scales will be formally taken as comparable, i.e.

L⊥ ∼ L‖ ∼ L, and the ratio β between thermal and magnetic pressures will be formally taken as order

unity. These maximal orderings could be relaxed a posteriori with subsidiary expansions in L⊥/L‖ � 1

or β � 1 depending on specific applications. In accordance with its intended goal of describing slow

excursions from magnetically confined equilibria, the theory to be developed here will assume close to

Maxwellian distribution functions2. Then, the orderings of the non-Maxwellian perturbations in terms

of the basic expansion parameter δ will be dictated by compatibility with a consistent perturbative

solution of the kinetic equations.

It is planned to present this work in a set of two articles, the first one devoted to the electrons

and the second one to the ions. According to the proposed ordering scheme, the electron gyroradius

parameter is δe ∼ ρe/L ∼ (me/mι)1/2δ ∼ δ2. The reach of the analysis will extend to the inverse time
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scale of order δ3vthe/L, where the collisional dynamics begins to play a role. Thus, effects of order

δeν∗ ∼ δ3 will be included whereas effects of order δ2
e ∼ δ4 will be neglected and the electron formu-

lation will be equivalent to one based on neoclassical electron banana orderings. On the other hand,

when expressed in terms of the ion thermal velocity, the collisional inverse time scale of interest is

O(δ3vthe/L) = O(δ2vthι/L). This means that effects of order δν∗ ∼ δ2 are to be included for the ions,

which will necessitate a second order ion drift-kinetic equation and a departure from conventional

neoclassical theory. In another departure from the more traditional approaches, the electron and

ion distribution functions and their drift-kinetic equations will be expressed in the moving reference

frames of the corresponding species macroscopic flow. This facilitates the evaluation of the moments

needed to close the fluid equations and ensures the precise compatibility between the complementary

fluid and drift-kinetic systems as well as the exact treatment of the electric field. Finally, due to the

assumed low collisionality and near Maxwellian orderings, only the linearized version of the collision

operators will be needed through the O(δ3vthe/L) scale to be considered. However, the complete

Fokker-Planck-Landau22 forms for Coulomb collisions will be retained and care will be exercised when

carrying out the small mass ratio reductions, in order to avoid spurious results that sometimes arise

as the consequence of oversimplified collision operator models.

II. General framework and asymptotic ordering scheme.

The theory to be developed here assumes a quasineutral plasma, made for simplicity of electrons

and a single ion species of unit charge, with comparable temperatures. It also assumes that the

electron and ion physics is described by one-particle distribution functions that evolve according to

Vlasov-Boltzmann kinetic equations with Coulomb collision operators in their Fokker-Planck-Landau

form. This kinetic system will be expanded asymptotically in powers of the small ion gyroradius

fundamental parameter:

δ ∼ ρι/L � 1 , (1)

with small mass ratio and low collisionality orderings linked to δ:

(me/mι)1/2 ∼ δ , hence δe ∼ ρe/L ∼ δ2 , (2)
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and

νι ∼ δνe ∼ δvthι/L ∼ δ2vthe/L ∼ δ2Ωcι , hence λcoll ∼ vthι/νι ∼ vthe/νe ∼ δ−1L . (3)

Here, νs, Ωcs and vths stand, respectively, for the collision frequency, cyclotron frequency and thermal

velocity of species s. The macroscopic flows will be assumed to be of the order of the diamagnetic

drifts, i.e. uι ∼ ue ∼ uDι,e ∼ δvthι ∼ δ2vthe. As previously discussed, no ordering asumptions will be

made regarding macroscopic length ratios or the pressure ratio β.

The processes this theory is intended to apply to are slow excursions from a magnetically confined

equilibrium, hence the distribution functions, fs, can be assumed to be close to Maxwellians2:

fs = fMs + fNMs =
n

(2π)3/2 v3
ths

exp

(
−|v − us|2

2 v2
ths

)
+ fNMs , (4)

with Maxwellian parts, fMs, that are referred to the moving frames of the corresponding macroscopic

flows, us, and small non-Maxwellian perturbations, |fNMs| � |fMs|. The thermal velocities are

defined as v2
ths ≡ Ts/ms ≡ ps/(msn), where Ts and ps are the mean temperature and pressure of

species s, and n is the particle number density. This near-Maxwellian ansatz is consistent with an

asymptotic solution of the kinetic equations under the above low collisionality orderings, provided the

temperature gradients parallel to the magnetic field B are small

B · ∇Ts ∼ δ2 BTs/L, (5)

with the non-Maxwellian perturbations ordered as

fNMι ∼ δ fMι and fNMe ∼ δ2 fMe . (6)

Like the Maxwellian parts, the non-Maxwellian parts of the distribution functions will be evaluated

in the moving reference frames of the macroscopic flows. Then, the 1, v − us and |v − us|2 veloc-

ity moments of fNMs will be required to vanish and, in Chapman-Enskog-like fashion23, the density,

flow velocities and temperatures will be carried entirely by the Maxwellians. The hybrid fluid and

drift-kinetic dynamical system will consist of the fluid moment equations for the density, flow veloci-

ties and temperatures, complemented by drift-kinetic equations for fNMs whose solutions provide the

variables needed to close the fluid equations. A clear advantage of obtaining these non-Maxwellian
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solutions in the reference frames of the macroscopic flows is that the evaluation of the closure variables

such as the stress and heat flux tensors is then direct, without the need of substracting the mean flows.

With the adopted low collisionality and close to Maxwellian orderings, the electron collision oper-

ators are Cee[fe, fe] ∼ Ceι[fe, fι] ∼ δ2νefMe ∼ δ3(vthe/L)fMe. Similarly, the ion collision operators are

Cιι[fι, fι] ∼ Cιe[fι, fe] ∼ δνιfMι ∼ δ2(vthι/L)fMι ∼ δ3(vthe/L)fMι. Therefore, the collisional effects

will begin to influence the dynamics on the inverse time scale of order δ3vthe/L ∼ δ3Ωcι, which is

the smallest frequency scale the analysis will be carried to. Before this third order collisional scale

is reached, the second order relative to the ion cyclotron frequency corresponds to the diamagnetic

drift frequency scale, ωDι,e = uDι,e/L ∼ uι,e/L ∼ δ2Ωcι, and the first order corresponds to the MHD

frequency scale (Alfven and sound for β ∼ 1), ωA = cA/L ∼ ωS = cS/L ∼ vthι/L ∼ δΩcι.

III. Electron fluid system.

The electron fluid system will consist of the quasineutral Maxwell equations for the electromagnetic

fields (E,B) plus the three moments of the electron kinetic equation that evolve the macroscopic

density, flow velocity and temperature. Thus, to all asymptotic orders considered here,

∂B
∂t

= − ∇× E , (7)

j = en(uι − ue) = ∇× B , (8)

and
∂n

∂t
+ ∇ · (nue) = 0 . (9)

The remaining two (momentum conservation and temperature) fluid equations will be taken in their

third order approximation under the δ ∼ ν∗ ∼ (me/mι)1/2 ∼ |ue/vthe|1/2 ∼ |fNMe/fMe|1/2 asymptotic

expansion this work is based on. Expanding the mev moment of the electron Vlasov-Boltzmann

equation (see. e.g. Ref.21) and retaining terms to O(δ3nmev
2
the/L) while neglecting O(δ4nmev

2
the/L),

one gets

men
∂ue

∂t
+ en(E + ue × B) + ∇(nTe) + ∇ ·

[
(pe‖ − pe⊥)(bb − I/3)

]
− Fcoll

e = 0 , (10)
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where pe‖ and pe⊥ are the parallel and perpendicular pressures, nTe = pe = (pe‖ + 2pe⊥)/3 is the

mean pressure, Fcoll
e is the collisional friction force, b = B/B is the magnetic unit vector and I is

the identity tensor. Any terms not included in Eq.(10), such as the convective velocity derivative

or the divergence of the non-gyrotropic stress tensor, are fourth order or smaller. After a similar

expansion of the temperature moment equation, retaining terms to O(δ3nmev
3
the/L) while neglecting

O(δ4nmev
3
the/L), one gets

3n

2
∂Te

∂t
+

3n

2
ue · ∇Te + nTe∇ · ue + ∇ ·

(
qe‖b − 5nTe

2eB
b ×∇Te

)
− Gcoll

e = 0 , (11)

where qe‖ is the parallel heat flux and Gcoll
e is the collisional heat source. Again, any terms not included

in Eq.(11), such as the divergence of the collisional perpendicular heat flux or the scalar product of the

traceless stress and velocity gradient tensors, are fourth order or smaller. The system (7-11) conserves

energy within the retained accuracy of O(δ3nmev
2
the) but gives rise to a non-conserved energy residual

of O(δ4nmev
2
the). If desired, an exact energy conservation law can be ensured by adding the fourth

order terms men(ue ·∇)ue and (pe‖−pe⊥){b · [(b ·∇)ue]−∇·ue/3} respectively to Eqs.(10) and (11).

The still unspecified variables needed to close the electron fluid system are the pressure anisotropy

(pe‖ − pe⊥) =
me

2

∫
d3v

{
3[b · (v − ue)]2 − |v − ue|2

}
fNMe = O(δ2nmev

2
the) + O(δ3nmev

2
the) ,

(12)

the parallel heat flux

qe‖ =
me

2

∫
d3v [b · (v − ue)] |v − ue|2 fNMe = O(δ2nmev

3
the) + O(δ3nmev

3
the), (13)

and the collisional moments

Fcoll
e = me

∫
d3v (v − ue) Ceι[fe, fι] = O(δ3nmev

2
the/L) (14)

and

Gcoll
e =

me

2

∫
d3v |v − ue|2 Ceι[fe, fι] = O(δ3nmev

3
the/L) . (15)

These are to be extracted from a drift-kinetic solution for the electron distribution function, which

will be the subject of the next two Sections. In addition, the complete closure of Eqs.(7-11) requires

knowledge of the macroscopic ion velocity uι, that couples this electron system to the analogous ion
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system. For the present purpose of developing the electron side of the theory, the ion velocity (as well

as the ion temperature to be needed later) can be considered as given.

IV. Electron drift-kinetic equation.

Adapting the method developed in Ref.24 for a drift-kinetic equation with fast flow to the problem

under consideration here, the electron distribution function will be represented in terms of velocity

space coordinates (v′‖, v
′
⊥, α) in the reference frame of the macroscopic flow:

v = ue(x, t) + v′‖ b(x, t) + v′⊥ [cos α e1(x, t) + sinα e2(x, t)] . (16)

Then, separating its gyrophase-averaged and gyrophase-dependent parts, the distribution function can

be written as

fe(v′‖, v
′
⊥, α,x, t) = f̄e(v′‖, v

′
⊥,x, t) + f̃NMe(v′‖, v

′
⊥, α,x, t) , (17)

with

f̄e(v′‖, v
′
⊥,x, t) = fMe(v′,x, t) + f̄NMe(v′‖, v

′
⊥,x, t) , (18)

v′ = (v′2‖ + v′2⊥)1/2 and 〈f̃NMe〉α ≡ (2π)−1
∮

dα f̃NMe = 0.

With the proposed ordering scheme, the non-Maxwellian part of the distribution function is to be

solved to the accuracy of fNMe = O(δ2fMe)+O(δ3fMe) = O(δefMe)+O(δeν∗fMe), hence calculations

of order δ4fMe ∼ δ2
efMe are not necessary and a standard drift-kinetic analysis to the first order in δe

is sufficient. Within this accuracy, the drift-kinetic equation for the gyrophase-averaged part of the

distribution function is

∂f̄e(v′‖, v
′
⊥,x, t)

∂t
+ ẋ · ∂f̄e

∂x
+ v̇′‖

∂f̄e

∂v′‖
+ v̇′⊥

∂f̄e

∂v′⊥
= 〈Cee[fe, fe] + Ceι[fe, fι]〉α , (19)

where the collision operators on the right-hand-side are of order δ3(vthe/L)fMe ∼ δeν∗(vthe/L)fMe

and the coefficient functions ẋ, v̇′‖ and v̇′⊥ of the collisionless streaming operator on the left-hand-side

can be obtained by expanding the collisionless result of Ref.24 (which applies to the first order in δe)

for the present slow flow, neglecting terms of order δ4(vthe/L)fMe ∼ δ2
e(vthe/L)fMe. Thus one gets

8



ẋ = ue − uDe + v′‖b +
v′2⊥
2
∇×

( b
Ωce

)
+

(
v′2‖ − v′2⊥

2

)b × κ

Ωce
, (20)

v̇′‖ =
b · (∇ · PCGL

e − Fcoll
e )

men
− v′‖b ·

[
(b · ∇)(ue −uDe)

]
− v′2⊥

2
b · ∇ lnB +

v′‖v
′2
⊥

2
∇ ·

(b × κ

Ωce

)
(21)

and

v̇′⊥ =
v′⊥
2

{
b ·

[
(b · ∇)(ue − uDe)

]
−∇ · (ue − uDe) + v′‖b · ∇ lnB − v′2‖ ∇ ·

(b × κ

Ωce

)}
, (22)

where

uDe =
1

men Ωce

[
b ×∇pe⊥ + (pe‖ − pe⊥)(b × κ)

]
(23)

is the electron diamagnetic drift velocity, κ = (b · ∇)b is the magnetic curvature and

b · (∇ · PCGL
e ) = b · ∇pe‖ − (pe‖ − pe⊥)b · ∇ lnB . (24)

The asymptotic expansion is carried on, after substituting Eq.(18) for f̄e with f̄NMe = O(δ2fMe) +

O(δ3fMe) and using the fluid equations (9) and (11) to eliminate the time derivative of the Maxwellian.

In the lowest order, whereby δ2(vthe/L)fMe is negligible, Eqs.(19-24) along with (9) and (11) yield:

v′‖b·
∂fMe

∂x
+

[
b · ∇(nTe)

men
− v′2⊥

2
b · ∇ lnB

]
∂fMe

∂v′‖
+

v′‖v
′
⊥

2
b·∇ lnB

∂fMe

∂v′⊥
= O

(
δ2 vthe

L
fMe

)
. (25)

This means that the Maxwellian must be a solution of the collisionless, stationary, zero-Larmor-radius

drift-kinetic equation, and this is guaranteed by the assumed small parallel temperature gradient

ordering (5) b · ∇ lnTe = O(δ2). Equation (25) does not impose any contraint on the parallel density

gradient because its two terms proportional to b · ∇ lnn, namely the one from the free-streaming

operator and the one from the parallel acceleration due to the electric field piece proportional to

the density gradient, cancel exactly. The terms proportional to b · ∇ lnB cancel too. Therefore,

the expansion of the drift-kinetic equation can proceed as planned to the highest accuracy of order

δ3(vthe/L)fMe, assuming the maximal ordering for the parallel density gradient b · ∇ lnn = O(1).

Changing to polar coordinates in velocity space (v′‖ = v′ cos χ, v′⊥ = v′ sin χ), the final result is the

following equation for f̄NMe:
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∂f̄NMe

∂t
+ cos χ

(
v′b · ∂f̄NMe

∂x
+ v2

theb · ∇ lnn
∂f̄NMe

∂v′

)
− sin χ

v′

(
v2
theb · ∇ lnn − v′2

2
b · ∇ lnB

)
∂f̄NMe

∂χ
=

=

{
cos χ

v′

2Te

(
5 − v′2

v2
the

)
b · ∇Te + cos χ

v′

nTe
b ·

[
2
3
∇(pe‖ − pe⊥) −

(
pe‖ − pe⊥

)
∇ lnB − Fcoll

e

]
+

+ P2(cos χ)
v′2

3v2
the

(
∇ · ue − 3b · [(b · ∇)ue]

)
+

1
3nTe

(
v′2

v2
the

− 3

) [
∇ · (qe‖b) − Gcoll

e

]
+

+
1

6eB

[
2P2(cos χ)

v′2

v2
the

(
v′2

v2
the

− 5

)
+

v′4

v4
the

− 10
v′2

v2
the

+ 15

]
(b × κ) · ∇Te +

+
1

6eB

[
−P2(cos χ)

v′2

v2
the

(
v′2

v2
the

− 5

)
+

v′4

v4
the

− 10
v′2

v2
the

+ 15

]
(b ×∇ lnB) · ∇Te +

+ P2(cos χ)
v′2

3eBv2
the

(b ×∇ lnn) · ∇Te

}
fMe + 〈Cee[fe, fe] + Ceι[fe, fι]〉α (26)

where Pl denote the Legendre polynomials, i.e. P2(z) = 3z2/2− 1/2. Proceeding along the same lines

to obtain the gyrophase-dependent part f̃NMe neglecting O(δ4fMe), the result is simply

f̃NMe = fMe
v′ sin χ

2eBv2
the

(
v′2

v2
the

− 5

)
(cos α e2 − sin α e1) · ∇Te . (27)

The drift-kinetic equation (26) has some unconventional yet desirable features that are worth com-

menting on. First, it is referred to the moving-frame velocity coordinates (v′, χ), which gives rise to

the driving term proportional to ∇ ·ue − 3b · [(b · ∇)ue]. In return, the fluid closure moments (12-15)

are evaluated directly without the need of a cumbersome substraction of the mean velocity. Second,

the moving-frame derivation incorporates exactly the contribution of the electric field, consistent with

the momentum conservation equation or generalized Ohm’s law (10). Some pieces of the electric field

are subject to cancellations, in particular the electron inertia piece is cancelled by an inertial force

from the transformation to the moving frame. In addition, there is the above discussed cancellation
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of terms proportional to the parallel density gradient from free-streaming and parallel electric field

acceleration on the Maxwellian. Equation (26) includes just the residual part of the electric field

after these cancellations are taken into account. Finally, Eq.(26) is automatically consistent with the

required conditions that the 1, v′‖ and v′2 velocity moments of f̄NMe vanish because, under these

conditions, the 1, v′‖ and v′2 moments of Eq.(26) are exact identities.

The collision operators in Eq.(26) are needed only in their lowest non-vanishing order, Cee[fe, fe] ∼
Ceι[fe, fι] ∼ δ3(vthe/L)fMe. Therefore, it is sufficient to use the following linearized forms:

Cee[fe, fe] = Cee[fMe, fNMe] + Cee[fNMe, fMe] (28)

and

Ceι[fe, fι] = C(3)
eι [fMe, fι] + C(3)

eι [fNMe, fMι] , (29)

where the superscripts indicate that only the leading parts of order δ3(vthe/L)fMe need to be retained.

The details of these collision operators will be discussed in the next Section.

V. Collision operators.

The linearized collision operators (28,29) will be taken in their complete Fokker-Planck-Landau

form22. In accordance with the present drift-kinetic derivation they must be expressed in the refer-

ence frame of the electron mean flow velocity, but this does not pose any difficulty by virtue of their

Galilean invariance. Only some care has to be exercised to account for the different electron and ion

mean velocities and to retain some electron-ion collision terms that produce leading-order effects as

the result of contributions to the electron distribution function structure on the ion thermal velocity

scale. For the sake of completeness, it is worth revisiting these collision operator expressions in detail.

The linearized electron-electron collision operator is completely standard and, by Galilean invari-

ance, its laboratory frame expression applies equally to the moving reference frame. Thus, dropping

the (x, t) arguments and with the electron collision frequency defined as

νe ≡ c4e4n ln Λe

4πm2
ev

3
the

(30)
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in the rationalized electromagnetic system of units being used here, the Maxwellian-test part is the

well known integral operator25,26:

Cee[fMe, fNMe](v′) =
νevthe

n
fMe(v′)

{
4πv2

thefNMe(v′) − Φ[fNMe](v′) + v−2
theΞ[fNMe](v′)

}
, (31)

where Φ and Ξ are the velocity space convolutions

Φ[f ](v′) ≡
∫

d3w
f(w)

|v′ − w| (32)

and

Ξ[f ](v′) ≡ 1
2

∫
d3w

f(w)
|v′ − w|3

[
|v′|2|w|2 − (v′ · w)2

]
(33)

or, in terms of Rosenbluth potentials,

∂

∂v′ ·
∂Φ[f ](v′)

∂v′ = −4πf(v′) (34)

and

Ξ[f ](v′) = (v′v′) :
∂2Ψ[f ](v′)

∂v′∂v′ with
∂

∂v′ ·
∂Ψ[f ](v′)

∂v′ = Φ[f ](v′) . (35)

The non-Maxwellian-test part is the also well known differential operator25,26 comprising the pitch

angle and energy scattering terms:

Cee[fNMe, fMe](v′) =
νev

3
the

v′3

{ [
ϕ

(
v′

vthe

)
− ξ

(
v′

vthe

)]
L[fNMe](v′) +

+ v′ · ∂

∂v′

[
ξ

(
v′

vthe

)
v′ · ∂fNMe(v′)

∂v′ +
v′2

v2
the

ξ

(
v′

vthe

)
fNMe(v′)

] }
, (36)

where L is the Lorentz operator

L[f ](v′) ≡ v′3

2
∂

∂v′ ·
{

1
v′

∂f(v′)
∂v′ − 1

v′3

[
v′ · ∂f(v′)

∂v′

]
v′

}
, (37)

ϕ is the error function

ϕ

(
v′

vths

)
=

v′

n
Φ[fMs](v′) =

2
(2π)1/2

∫ v′/vths

0
dt exp(−t2/2) (38)
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and ξ is the Chandrasekhar function

ξ

(
v′

vths

)
=

1
nv′

Ξ[fMs](v′) =
v2
ths

v′2

[
ϕ

(
v′

vths

)
− 2 v′

(2π)1/2vths
exp

(
− v′2

2v2
ths

)]
(39)

with the asymptotic behaviors: ϕ(x → 0) = 2(2π)−1/2x, ξ(x → 0) = (2/3)(2π)−1/2x, ϕ(x → ∞) = 1

and ξ(x → ∞) = x−2.

Given that fNMe ∼ δ2fMe and νe ∼ δvthe/L, to obtain the non-Maxwellian-test part of the

electron-ion collision operator with the required accuracy of Ceι[fNMe, fMι] ∼ δ3(vthe/L)fMe, one can

neglect the mean flow difference between species |uι − ue| = O(δvthι) in this term and take

C(3)
eι [fNMe, fMι](v′) =

νev
3
the

v′3

{ [
ϕ

(
v′

vthι

)
− ξ

(
v′

vthι

)]
L[fNMe](v′) +

+ v′ · ∂

∂v′

[
ξ

(
v′

vthι

)
v′ · ∂fNMe(v′)

∂v′ +
mev

′2

mιv2
thι

ξ

(
v′

vthι

)
fNMe(v′)

] }
. (40)

Assuming v′ ∼ vthe and keeping only the leading contributions of order δ3(vthe/L)fMe, the above

reduces to

C(3)
eι [fNMe, fMι](v′ ∼ vthe) =

νev
3
the

v′3
L[fNMe](v′) . (41)

This asymptotic expression (41) applies in most of the electron phase space, but is singular for v′ → 0

and must be regularized in the small phase space region where v′ becomes comparable to vthι. The

present work will use the complete operator (40) in order to preserve its regularity all its physical

properties. The exact expression of the Maxwellian-test part of the linearized electron-ion collision

operator is

Ceι[fMe, fι](v′) =
νevthe

n
fMe(v′)

{
4πmev

2
the

mι
fι(v′ − uι + ue) − Φ[fι](v′ − uι + ue) +

+
(

me

mι
− 1

)
v′ · ∂Φ[fι](v′ − uι + ue)

∂v′ +
v′v′

v2
the

:
∂2Ψ[fι](v′ − uι + ue)

∂v′∂v′

}
(42)

and, keeping its leading terms of order δ3(vthe/L)fMe for v′ ∼ vthe, it reduces to

C(3)
eι [fMe, fι](v′ ∼ vthe) = νevthe fMe(v′)

[
v′ · (uι − ue)

v′3
+

me

mιv′

(
Tι

Te
− 1

)]
. (43)
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Again, this asymptotic expression (43) applies in most of the electron phase space where v′ ∼ vthe, but

is singular for v′ → 0 and so it must be regularized in the small phase space region where v′ becomes

comparable to vthι. It has the noteworthy feature that it does not depend on the non-Maxwellian part

of the ion distribution function as a consequence of the small mass ratio and other assumed orderings.

The present work will adopt a regularized form obtained by retaining just the lowest-order limit of

Eq.(42) for v′ ∼ vthι, which also requires only the ion Maxwellian part. The result, that matches (43)

for v′ � vthι and restores the particle conservation property lacking in (43), is

C(3)
eι [fMe, fι](v′) = νevthe fMe(v′)

[(
Te

Tι
− 1

)
4πv2

thι

n
fMι(v′) +

+
v′ · (uι − ue)

v2
thιv

′ ξ

(
v′

vthι

)
+

me

mι

(
Tι

Te
− 1

)
v′

v2
thι

ξ

(
v′

vthι

)]
. (44)

It is now straightforward to obtain the gyrophase averages of the four collision operator terms

(31,36,40,44) that enter in the drift-kinetic equation (26). The homogeneous functional of fNMe that

results from the gyro-average of the sum of Eqs.(31), (36) and (40) is readily verified to depend only

on the gyro-averaged part of the distribution function, f̄NMe:

〈Cee[fMe, fNMe] + Cee[fNMe, fMe] + C(3)
eι [fNMe, fMι]〉α(v′, χ) = Ce[f̄NMe](v′, χ) . (45)

Moreover, this operator is diagonal in a Legendre polynomial representation of the dependence on the

angular variable χ. Thus, for f(v′, χ) =
∑∞

l=0 fl(v′) Pl(cos χ),

Ce

[ ∞∑
l=0

flPl

]
(v′, χ) =

∞∑
l=0

Ce,l[fl](v′) Pl(cos χ) (46)

where the one-dimensional operators Ce,l are:

Ce,l[fl](v′) =
νevthe

n
fMe(v′)

{
4πv2

thefl(v′) − Φl[fl](v′) +
v′2

v2
the

d2Ψl[fl](v′)
dv′2

}
+

+
νev

3
the

v′2
d

dv′

{
ξ

(
v′

vthe

) [
v′

dfl(v′)
dv′

+
v′2

v2
the

fl(v′)

]
+ ξ

(
v′

vthι

) [
v′

dfl(v′)
dv′

+
mev

′2

mιv2
thι

fl(v′)

]}
−

− νel(l + 1)v3
the

2v′3

[
ϕ

(
v′

vthe

)
− ξ

(
v′

vthe

)
+ ϕ

(
v′

vthι

)
− ξ

(
v′

vthι

)]
fl(v′) , (47)
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with
1

v′2
d

dv′

{
v′2

dΦl[fl](v′)
dv′

}
− l(l + 1)

v′2
Φl[fl](v′) = −4πfl(v′) (48)

and
1

v′2
d

dv′

{
v′2

dΨl[fl](v′)
dv′

}
− l(l + 1)

v′2
Ψl[fl](v′) = Φl[fl](v′) . (49)

The inhomogeneous term that results from the gyro-average of Eq.(44) is

〈C(3)
eι [fMe, fι]〉α(v′, χ) = De,0(v′) + De,1(v′) cos χ (50)

where

De,0(v′) = νevthe fMe(v′)

[(
Te

Tι
− 1

)
4πv2

thι

n
fMι(v′) +

me

mι

(
Tι

Te
− 1

)
v′

v2
thι

ξ

(
v′

vthι

)]
(51)

and, in terms of the parallel current j‖ = en b · (uι − ue),

De,1(v′) = νe fMe(v′)
vthej‖
v2
thιen

ξ

(
v′

vthι

)
. (52)

The collisional moments (14,15) that appear in the fluid (10,11) and drift-kinetic (26) equations

can now be evaluated. For these, the asymptotic form (41,43) of the electron-ion collision operator

for v′ ∼ vthe yields convergent integrals and is therefore sufficient. Using also the solution (27) for the

gyrophase-dependent part of the distribution function, one gets

Fcoll
e =

2meνe

3(2π)1/2e
j − meνen

(2π)1/2eB
b×∇Te − 2πmeνev

3
the

∫ ∞

0
dv′

∫ π

0
dχ sin χ cos χ f̄NMe(v′, χ) b (53)

and

Gcoll
e =

2meνen

(2π)1/2mι
(Tι − Te) . (54)

Now, the only kinetic variables left to close the fluid system are the three scalars

(pe‖ − pe⊥) = 2πme

∫ ∞

0
dv′ v′4

∫ π

0
dχ sin χ P2(cos χ) f̄NMe , (55)
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qe‖ = πme

∫ ∞

0
dv′ v′5

∫ π

0
dχ sin χ cos χ f̄NMe (56)

and F coll
e‖ given by the parallel component of Eq.(53). These involve only the gyro-averaged part of the

distribution function in the moving frame of the macroscopic flow, f̄NMe(v′, χ,x, t), and can therefore

be readily evaluated from the solution of the drift-kinetic equation (26).

VI. Application to an axisymmetric toroidal equilibrium.

In developing the above closed model, the objective was a consistent formalism applicable to dy-

namical plasma processes (prime examples of which would be the sawtooth and ”neoclassical tearing”

instabilities in tokamaks), that would facilitate the compatibility between the fluid and drift-kinetic

sides of the description. The adopted choices of a reference frame tied to the macroscopic fluid velocity

and a lowest order Maxwellian distribution function whose argument is just the particle random ki-

netic energy were found particularly well suited for this purpose. It is nonetheless illustrative to show

how such a formulation applies to the special case of an axisymmetric equilibrium, a problem that is

studied traditionally in the framework of conventional neoclassical theory18−20, working in the lab-

oratory reference frame with lowest order Maxwellians defined in terms of particle constants of motion.

In a time-independent system with axisymmetric toroidal geometry, where ζ denotes the ignorable

azimuthal angle of the cylindrical coordinates (R, ζ, Z), the quasineutral Maxwell and continuity

equations become

∇ · B = 0 , (57)

j = en(uι − ue) = ∇× B , (58)

E = −∇φ − V0∇ζ , (59)

and

∇ · (nue) = 0 . (60)

Here, the electric potential has been split into the single-valued part φ and the multi-valued part

V0ζ associated with a constant loop voltage 2πV0. Equations (57,58), together with the axisymmetry
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condition, yield the standard representations for the magnetic field and the electric current:

B = ∇ψ ×∇ζ + RBζ∇ζ , (61)

j = ∇(RBζ) ×∇ζ − R2∇ · (R−2∇ψ) ∇ζ , (62)

and it will be assumed that a toroidally confined equilibrium solution with nested magnetic surfaces

of constant ψ exists. The stationary electron momentum and temperature fluid equations are:

en(E + ue × B) + ∇(nTe) + ∇ ·
[
(pe‖ − pe⊥)(bb − I/3)

]
− Fcoll

e = 0 (63)

and
3n

2
ue · ∇Te + nTe∇ · ue + ∇ ·

(
qe‖b − 5nTe

2eB
b ×∇Te

)
− Gcoll

e = 0 . (64)

The only ion information to be needed, besides its Maxwellian temperature satisfying the small parallel

gradient condition b · ∇Tι = O(δ2 Tι/L), is the leading order momentum conservation equation

−en(E + uι × B) + ∇(nTι) = O(δ2 nTι/L) . (65)

Through its first order, i.e. neglecting δ2, the above stationary fluid system yields the well known

relations2:

n = N (0)(ψ), Ts = T (0)
s (ψ), φ = φ(1)(ψ) = O(Ts/e), RBζ = (RBζ)(0)(ψ) ≡ I(ψ) , (66)

and

us = u(1)
s = Us(ψ) B + R2

dφ(1)

dψ
+

1
esN (0)

d
(
N (0)T

(0)
s

)
dψ

∇ζ = O(δvthι) , (67)

with dI(ψ)/dψ = eN (0)(ψ)[Uι(ψ) − Ue(ψ)]. From these, it follows that

∇ψ · (b × κ) = ∇ψ · (b ×∇ lnB) = I(ψ) b · ∇ lnB , (68)

∇ · us = 0 and b · [(b · ∇)us] = Us(ψ) b · ∇ lnB . (69)
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Proceeding now to the highest retained accuracy of O(δ3nmev
2
the/L), the parallel component of the

equilibrium electron momentum equation (63) yields

N (0)T (0)
e b · ∇

(
eφ

T
(0)
e

− n

N (0)
− Te

T
(0)
e

)
= b ·

[
2
3
∇(pe‖ − pe⊥) − (pe‖ − pe⊥)∇ lnB − Fcoll

e

]
− eV0N

(0)I

BR2

(70)

and, to the highest retained accuracy of O(δ3nmev
3
the/L), the equilibrium electron temperature equa-

tion (64) yields

∇ ·
(

qe‖b − 5N (0)T
(0)
e

2eB
b ×∇T (0)

e

)
= B · ∇

(
qe‖
B

+
5N (0)T

(0)
e I

2eB2

dT
(0)
e

dψ

)
= Gcoll

e . (71)

Note that, within this highest available accuracy, the equilibrium electron temperature equation pro-

vides just a relation between the components of the heat flux tangential to the magnetic surface,

but does not provide any information on the higher order temperature correction Te(x) − T
(0)
e (ψ).

Equation (71) has the solubility condition
∮
ψ dl Gcoll

e /B = 0 which, recalling (54), requires near equal

electron and ion temperatures: T
(0)
e (ψ) = T

(0)
ι (ψ). Then it can be integrated to determine the parallel

heat flux, up to a new free magnetic surface function:

qe‖ = − 5N (0)T
(0)
e I

2eB

dT
(0)
e

dψ
+ Qe(ψ) B . (72)

Substituting the previous results in Eq.(26), the following axisymmetric equilibrium form of the

electron drift-kinetic equation is obtained:

v′
(

cos χ b · ∂f̄NMe

∂x
+

1
2
b · ∇ lnB sin χ

∂f̄NMe

∂χ

)
− Ce[f̄NMe] =

= − f
(0)
Me

{
P2(cos χ)

mev
′2

T
(0)
e

UeB + [2 + P2(cos χ)]
mev

′2

3T
(0)
e

(
5
2
− mev

′2

2T
(0)
e

)
I

eB

dT
(0)
e

dψ

}
b · ∇ lnB +

+

{
f

(0)
Me

[
b · ∇

(
eφ

T
(0)
e

− n

N (0)

)
+

(
3
2
− mev

′2

2T
(0)
e

)
b · ∇

(
Te

T
(0)
e

)
+

eV0I

T
(0)
e BR2

]
v′ + De,1

}
cos χ . (73)

Here, f
(0)
Me denotes the Maxwellian with lowest order density and temperature, N (0)(ψ) and T

(0)
e (ψ).
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Similarly, the collisional terms Ce and De,1 require only these lowest order, magnetic surface function

forms of the density and temperature. Neglecting the collisions and the loop voltage, i.e. accurate to

O(δ2fMe), a particular solution of Eq.(73) is f̄
(2)
NMe = (ge,0 + ge,1 cos χ)f (0)

Me where

ge,0 =
e

(
φ − φ(1)

)
T

(0)
e

− n − N (0)

N (0)
−

(
mev

′2

T
(0)
e

− 3

)
Te − T

(0)
e

2T
(0)
e

(74)

represents a perturbative redefinition of the Maxwellian and

ge,1 = −
[
meUeB

T
(0)
e

+
meI

2eBT
(0)
e

(
mev

′2

T
(0)
e

− 5

)
dT

(0)
e

dψ

]
v′ . (75)

Thus, calling

f̄NMe = he + (ge,0 + ge,1 cos χ)f (0)
Me , (76)

and substituting the explicit expression for De,1 (52), the equilibrium drift-kinetic equation reduces to

v′
(

cos χ b · ∂he

∂x
+

1
2
b · ∇ lnB sin χ

∂he

∂χ

)
− Ce[he] =

= Ce

[
(ge,0 + ge,1 cos χ)f (0)

Me

]
+

[
eV0I

T
(0)
e BR2

v′ +
νevthej‖
v2
thιeN

(0)
ξ

(
v′

vthι

)]
f

(0)
Me cos χ . (77)

The action of the collision operator Ce (46-49) on the particular solution (ge,0 + ge,1 cos χ)f (0)
Me can

be carried out analytically. Thus, within the maximum retained accuracy of order δ3(vthe/L)fMe,

Ce

[
ge,0 f

(0)
Me

]
= 0 and

Ce

[
ge,1 cos χ f

(0)
Me

]
= νevthe

{
UeB

v2
thι

ξ

(
v′

vthι

)
+

+
meI

eBT
(0)
e

dT
(0)
e

dψ

[
2ϕ

(
v′

vthe

)
− 10ξ

(
v′

vthe

)
+

1
2
ϕ

(
v′

vthι

)
− 5v2

the

2v2
thι

ξ

(
v′

vthι

)] }
f

(0)
Me cos χ . (78)

Now, calling the right-hand-side of Eq.(77) Sev
′ cos χ and collecting its terms,

Se =

{
eV0I

T
(0)
e BR2

+ νe

(
j‖

eN (0)
+ UeB

)
vthe

v2
thιv

′ ξ

(
v′

vthι

)
+

+
νemeI

eBT
(0)
e

dT
(0)
e

dψ

vthe

v′

[
2ϕ

(
v′

vthe

)
− 10ξ

(
v′

vthe

)
+

1
2
ϕ

(
v′

vthι

)
− 5v2

the

2v2
thι

ξ

(
v′

vthι

)] }
f

(0)
Me . (79)
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From the first order flow solution (67), the parallel current satisfies

j‖
eN (0)

= b · (uι − ue) = (Uι − Ue)B +
I

eN (0)B

dP (0)

dψ
(80)

with P (0) = N (0)(T (0)
ι + T

(0)
e ). Hence

Se =

{
eV0I

T
(0)
e BR2

+ νe

(
UιB +

I

eN (0)B

dP (0)

dψ

)
vthe

v2
thιv

′ ξ

(
v′

vthι

)
+

+
νemeI

eBT
(0)
e

dT
(0)
e

dψ

vthe

v′

[
2ϕ

(
v′

vthe

)
− 10ξ

(
v′

vthe

)
+

1
2
ϕ

(
v′

vthι

)
− 5v2

the

2v2
thι

ξ

(
v′

vthι

)] }
f

(0)
Me . (81)

The last step is to use magnetic surface coordinates (ψ, θ) in the meridian plane (R, Z) and to change

variables in phase space from (R, Z, v′, χ) to (ψ, θ, v′, λ), with λ(ψ, θ, χ) = sin2 χ Bmax(ψ)/B(ψ, θ)

and Bmax(ψ) equal to the maximum of B on the ψ-magnetic surface (assuming no multiple relative

maxima). Then, Eq.(77) becomes

v′‖ (b · ∇θ)
∂he

∂θ
− Ce[he] = Se v′‖ (82)

where now the derivative with respect to θ is taken at constant ψ, v′ and λ, and v′‖ signifies the

function

v′‖(ψ, θ, v′, λ) = ±v′[1 − λB(ψ, θ)/Bmax(ψ)]1/2 . (83)

Equation (82) has the same form as the conventional neoclassical banana equilibrium equation and

can be solved using the same techniques. However, it has a somewhat different meaning in that its

velocity space arguments are the components of the random velocity relative to the macroscopic flow

and that its solution must be such that the 1, v′‖ and v′2 moments of the complete non-Maxwellian part

of the distribution function, f̄NMe = he +(ge,0 +ge,1 cos χ)f (0)
Me, are equal to zero. This is compensated

by the differences in the source function Se, leading to the same physical results as will be discussed

next. As a bonus, this exercise will shed new light on some properties of the neoclassical equilibrium

in the banana regime.

20



Following the standard solution method of neoclassical theory18−20, one gets the perturbative

solution of Eq.(82):

he = ς(v′‖)H(1 − λ)Ke(ψ, v′, λ) + h(3)
e (ψ, θ, v′, λ) = O(δ2fMe) + O(δ3fMe) (84)

where ς(v′‖) = sign(v′‖) = ±1, H is the Heaviside step function and h
(3)
e (ψ, θ, v′, λ) = O(δ3fMe) is a

function, even with respect to v′‖, that satisfies

v′‖ (b · ∇θ)
∂h

(3)
e

∂θ
− Ce[ςHKe] = Se v′‖ . (85)

This has a solubility condition that serves to determine Ke(ψ, v′, λ):∮
ψ,v′,λ

dl v′−1
‖ Ce[ςHKe] = −

∮
ψ,v′,λ

dl Se , (86)

where the contour integral
∮
ψ,v′,λ dl along the magnetic field line at constant (ψ, v′, λ), is to be taken

around one complete poloidal turn for λ < 1 (passing domain); for λ > 1 (trapped domain) the contour

is a bounce back and forth between the two accessible zeros of v′‖(ψ, θ, v′, λ), one segment on each of the

two values of ς(v′‖). Since both v′−1
‖ Ce[ςHKe] and Se are even functions with respect to v′‖, Eq.(86) is

satisfied trivially for λ > 1 and only the λ < 1 domain needs consideration. The consistency of this per-

turbative solution requires a sufficiently smooth he (84), such that it does not give rise to singularities

when acted on by the collision operator Ce, and this imposes the boundary conditions Ke(ψ, v′, 1) = 0

and ∂Ke(ψ, v′, 1)/∂λ = 0. If a solution to (86) satisfying these boundary conditions cannot be found,

then the original Eq.(82) must be taken into account, either globally or in a boundary layer near λ = 1.

Provided a satisfactory solution for he of the form (84) exists, then, recalling (75,76), the part of

the distribution function that is odd with respect to v′‖ is:

f̄odd
NMe = ς(v′‖)H(1 − λ)Ke(ψ, v′, λ) − v′‖

[
meUeB

T
(0)
e

+
meI

2eBT
(0)
e

(
mev

′2

T
(0)
e

− 5

)
dT

(0)
e

dψ

]
f

(0)
Me = O(δ2fMe).

(87)

This must satisfy
∫

d3v′ v′‖ f̄odd
NMe = 0, which yields the following solution for the parallel flow stream

function:

Ue(ψ) =
2π

N (0)(ψ)Bmax(ψ)

∫ ∞

0
dv′ v′3

∫ 1

0
dλ Ke(ψ, v′, λ) . (88)
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Given the structure of the source function Se (81), one can see that Ue will be made of terms propor-

tional to V0/νe, Uι, dP (0)/dψ and dT
(0)
e /dψ, corresponding to electron flow contributions to the Ohmic

and bootstrap parts of the electric current27. Besides, knowledge of f̄odd
NMe allows one to evaluate the

odd closures (53,56):

F coll
e‖ =

2meνe

3(2π)1/2

(
j‖
e

+ N (0)UeB − 3N (0)I

2eB

dT
(0)
e

dψ

)
− 2πmeνev

3
theB

Bmax

∫ ∞

0
dv′

∫ 1

0
dλ Ke(ψ, v′, λ) (89)

and

qe‖ = − 5N (0)T
(0)
e I

2eB

dT
(0)
e

dψ
+

πT
(0)
e B

Bmax

∫ ∞

0
dv′ v′3

(
mev

′2

T
(0)
e

− 5

) ∫ 1

0
dλ Ke(ψ, v′, λ) , (90)

the latter being consistent with the fluid result (72) and serving to specify the magnetic surface func-

tion Qe(ψ).

Recalling now (74,76), the part of the distribution function that is even with respect to v′‖ is

f̄even
NMe = h(3)

e (ψ, θ, v′, λ) +

e
(
φ − φ(1)

)
T

(0)
e

− n − N (0)

N (0)
−

(
mev

′2

T
(0)
e

− 3

)
Te − T

(0)
e

2T
(0)
e

 f
(0)
Me. (91)

This must satisfy
∫

d3v′ f̄even
NMe = 0 and

∫
d3v′ v′2 f̄even

NMe = 0, which yield

e
(
φ − φ(1)

)
T

(0)
e

− n − N (0)

N (0)
= − 2πB

N (0)Bmax

∫ ∞

0
dv′ v′2

∫ Bmax/B

0

dλ

(1 − λB/Bmax)1/2
h(3)

e = O(δ3) (92)

and

Te − T
(0)
e

T
(0)
e

=
2πB

3N (0)Bmax

∫ ∞

0
dv′ v′2

(
mev

′2

T
(0)
e

− 3

) ∫ Bmax/B

0

dλ

(1 − λB/Bmax)1/2
h(3)

e = O(δ3) . (93)

The function f̄even
NMe would also specify the last remaining closure variable (pe‖ − pe⊥) (55) as

(pe‖ − pe⊥) =
πmeB

Bmax

∫ ∞

0
dv′ v′4

∫ Bmax/B

0
dλ

2 − 3λB/Bmax

(1 − λB/Bmax)1/2
h(3)

e = O
(
δ3N (0)T (0)

e

)
. (94)

So, the variables (Te − T
(0)
e )/T

(0)
e and (pe‖ − pe⊥)/(N (0)T

(0)
e ) that were originally ordered as O(δ2) in
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the general formulation, are actually third order in the special case of this axisymmetric equilibrium.

Much like the kinetic parallel heat flux solution (90) satisfies identically the fluid temperature equa-

tion, Eqs.(92-94) satisfy identically the fluid parallel momentum equation (70) if h
(3)
e satisfies (85).

Therefore, the equilibrium parallel Ohm’s law (70) does not add any new information to the kinetic

results (92-94) on the even part of the distribution function. Unfortunatelly, the kinetic equation

(85) for the required function h
(3)
e (ψ, θ, v′, λ) leaves unspecified a homogeneous solution of the form

H
(3)
e (ψ, v′, λ) that would only be determined by a solubility condition in the next (fourth) order of the

expansion. This goes beyond the accuracy retained in the present analysis or in the conventional low

collisionality neoclassical theory (among other things, it would necessitate extending the drift-kinetic

equation to the second order in the electron gyroradius and the collision operators to include the non-

Maxwellian quadratic terms). One must therefore conclude that the considered perturbative solution

of the low collisionality axisymmetric equilibrium system, which again is equivalent to the neoclassical

solution in the electron low collisionality regime, does not determine the lowest significant orders of

(Te−T
(0)
e ) ∼ δ3T

(0)
e or (pe‖−pe⊥) ∼ δ3N (0)T

(0)
e . Similarly, Eq.(92) implies that the poloidally varying

part of the plasma electric potential that specifies the parallel electric field, φ(ψ, θ)−φ(1)(ψ), can only

be known in its second order adiabatic approximation:

e
(
φ − φ(1)

)
T

(0)
e

=
n − N (0)

N (0)
+ O(δ3) , (95)

where n − N (0) will come from a solution of the coupled ion system and its knowledge is granted

here. This is consistent with the parallel Ohm’s law (70), where it can be seen that the third order

contribution to the parallel electric field due to the collisional friction force F coll
e‖ is known after (88,89),

but there are unknown third order contributions from the parallel temperature gradient b ·∇(N (0)Te)

and the parallel divergence of the anisotropic stress b · [23∇(pe‖ − pe⊥) − (pe‖ − pe⊥)∇ lnB]. One

can take the magnetic surface average of (70) to annihilate its left-hand-side and obtain the following

expression for the magnetic surface average of the parallel divergence of the anisotropic stress:∮
ψ

dl b ·
[
2
3
∇(pe‖ − pe⊥) − (pe‖ − pe⊥)∇ lnB

]
=

∮
ψ

dl

(
F coll

e‖ +
eV0N

(0)I

BR2

)
. (96)

This result, with (89) substituted for F coll
e‖ , is usually referred to as the averaged neoclassical parallel

viscosity28,29 but it does not provide any information on the parallel electric field. The third order par-

allel electric field, with its terms related to both the collisional friction force and the anisotropic stress,
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is crucial in processes involving magnetic reconnection such as the sawtooth and ”neoclassical tearing”

instabilities. Of course, these are three-dimensional dynamical problems for which the axisymmetric

stationary analysis does not apply and the contributions to the parallel electric field are to be obtained

unambiguously from an initial value (or perhaps normal mode) solution of the time-dependent equa-

tions given in Secs. III and IV. Anyway, the results of this Section should caution against the use of

simplified formulas based on axisymmetric equilibrium considerations when studying such instabilities.

VII. Summary.

A systematic expansion in uniform powers of ρι/L ∼ ν∗ ∼ (me/mι)1/2 � 1 has yielded a consis-

tently closed electron model, applicable to slow macroscopic phenomena in low collisionality, magnet-

ically confined plasmas. The result is a fluid and drift-kinetic hybrid system. The fluid side includes

the quasineutral Maxwell equations (7,8), the continuity equation (9) and the momentum conservation

and temperature equations (10,11), with explicit analytic expressions for the perpendicular compo-

nents of the collisional friction force (53) and the collisional heat source (54). Three scalars are left as

kinetic closure variables, namely the parallel collisional friction force (53) the pressure anisotropy (55)

and the parallel heat flux (56). These involve moments of the gyrophase-averaged, non-Maxwellian

part of the distribution function in the moving reference frame of the macroscopic electron flow that

satisfies the drift-kinetic equation (26).

The form of the finite-Larmor-radius drift-kinetic equation (26) for the non-Maxwellian pertur-

bation of the electron distribution function is one of the main results of this work. It refers to the

random velocity variables in the moving frame of the macroscopic flow, thus allowing a direct evalua-

tion of the fluid closure moments. Its derivation takes precisely into account the electric field and the

time derivative of the Maxwellian, consistent with the simultaneous fluid equations. This drift-kinetic

equation is also automatically consistent with the condition that the 1, v′‖ and v′2 moments of the

non-Maxwellian part of the distribution function vanish. Because of the adopted low collisionality and

close to Maxwellian orderings, the gyrophase-averaged collision operators entering the drift-kinetic

equation can be taken in their linearized version. Otherwise, full Fokker-Planck-Landau expressions
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are used. These result in the homogeneous integro-differential functional given by Eqs.(45-49) that

includes Rosenbluth potentials of the non-Maxwellian electron field and pitch angle and energy scat-

tering between electrons and between electron and ions, and the explicit inhomogeneous term given

by Eqs.(50-52) that includes temperature equilibration and flow difference friction between electrons

and ions.

As an illustrative application, the special limit of an axisymmetric toroidal equilibrium has been

studied. This exercise shows how the present theory can recover the neoclassical banana regime results

for the odd closures and the electron flow contribution to the bootstrap current. On the other hand

it is shown that, in the special case of this axisymmetric equilibrium and unlike in a time-dependent

system, the lowest significant orders of the pressure anisotropy and the temperature variation on a

magnetic surface cannot be determined by the present theory or its equivalent neoclassical equilib-

rium theory in the low collisionality regime. Thus, the poloidally varying part of the plasma electric

potential that specifies the parallel component of the stationary and axisymmetric electric field can

only be known in the adiabatic approximation (95).

This work can be easily generalized to include an externally applied radio-frequency (RF) source,

provided its effect after averaging over high frequency fields can be modeled by an additive term in

the electron kinetic equation30. This would be the case for applied wave frequencies in the electron-

cyclotron range and the specifics of this generalization are given in an Appendix.
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Appendix: Generalization to include an RF source.

A straightforward generalization of the present theory to include externally applied RF electro-

magnetic waves is possible, if such a source can be represented by an additive term in the electron

kinetic equation after averaging over the high frequency fields. This would be feasible for applied

wave frequencies in the electron-cyclotron range and has important applications in the modeling of

non-inductive current drive and active control of instabilities. Considering these electron-cyclotron

applied waves, it may be assumed that a time average over their characteristic high frequency scale

results in the following low frequency kinetic equation30,31:

∂fe

∂t
+ v · ∂fe

∂x
− e

me

(
E + v × B

)
· ∂fe

∂v
= Cee[fe, fe] + Ceι[fe, fι] + SRF [fe] . (A.1)

The only difference between this and the kinetic equation the main body of this work was based on

is the additional term SRF [fe] that represents a quasilinear diffusion operator in velocity space and

satisfies
∫

d3v SRF [fe] = 0. Therefore, the analysis can proceed with minimal modifications if the

amplitude of the applied waves is sufficiently small to make the RF source operator comparable to the

collision operators, SRF [fe] 
 SRF [fMe] ∼ δ3(vthe/L)fMe. Assuming this ordering, one can define the

RF source moments

FRF
e = me

∫
d3v (v − ue) SRF [fMe] = O(δ3nmev

2
the/L) . (A.2)

and

GRF
e =

me

2

∫
d3v |v − ue|2 SRF [fMe] = O(δ3nmev

3
the/L) . (A.3)

Then, the fluid and drift-kinetic system is generalized by just adding the gyrophase average of the

RF source operator, 〈SRF [fMe]〉α, to the right-hand-side of (26) and making the substitutions Fcoll
e →

Fcoll
e + FRF

e and Gcoll
e → Gcoll

e + GRF
e in (10), (11) and (26).
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