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Abstract 

 

Magnetohydrodynamic (MHD) stability comparison theorems are presented for several different 

plasma models, each one corresponding to a different level of collisionality: a collisional fluid 

model (ideal MHD), a collisionless kinetic model (kinetic MHD), and two intermediate 

collisionality hybrid models (Vlasov-fluid and kinetic MHD-fluid). Of particular interest is a re-

examination of the often quoted statement that ideal MHD makes the most conservative 

predictions with respect to stability boundaries. Some of the models have already been 

investigated in the literature and we clarify and generalize these results. Other models are 

essentially new and for them we derive new comparison theorems. Three main conclusions can 

be drawn: 1) It is crucial to distinguish between ergodic and closed field line systems; 2) In the 

case of ergodic systems, ideal MHD does indeed make conservative predictions compared to the 

other models; 3) In closed line systems undergoing perturbations that maintain the closed line 

symmetry this is no longer true. Specifically, when the ions are collisionless and their gyro 

radius is finite, as in the Vlasov-fluid model, there is no compressibility stabilization. The 

Vlasov-fluid model is more unstable than ideal MHD. The reason for this is related to the wave-

particle resonance associated with the perpendicular precession drift motion of the particles (i.e. 

the E B  drift and magnetic drifts), combined with the absence of any truly toroidally trapped 

particles. The overall conclusion is that to determine macroscopic stability boundaries for any 

magnetic geometry using a simple, conservative approach, one should analyze the ideal MHD 

energy principle for incompressible displacements. 
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1 Introduction 
 

Ideal magnetohydrodynamics (Ideal MHD) is a model often used to design and analyze 

fusion confinement devices. In this model the plasma is described as a single magnetized fluid. 

Within the framework of ideal MHD the question of the linear stability against fast macroscopic 

modes can be cast in the convenient form of an energy principle [1]. Here, “fast” implies that 

v
Ti
/L , where   is the frequency of the mode, v

Ti
 is the ion thermal velocity, and  L  is the 

typical size of the device. The energy principle requires the evaluation of the potential energy 

  
W

MHD
 due to any linear perturbation  of the MHD fluid. The principle states that the plasma 

will be stable to MHD modes iff 
    
W

MHD
0  for any allowable displacement . Using the 

energy principle to evaluate the stability property of a fusion device with respect to MHD modes 

is therefore equivalent to evaluating the sign of 
  
W

MHD
 for the perturbations of concern. 

Unfortunately, ideal MHD is based on the assumption that both the ions and electrons are 

highly collisional on the MHD time scale, /
MHD Ti

L v . This assumption is not valid for the 

ions in a fusion-grade plasma and is only marginally valid for the electrons. The violation of high 

collisionality can be seen by examining Fig. 1, in which the lines 
ee

=  and 
ii

=  are 

plotted in ,T n  (temperature, density) space assuming /
Ti
v L= . The electron-electron 

collision frequency 
  ee

 and the ion-ion collision frequency 
  ii

 are given by Braginskii [2]. Also 

shown in Fig. 1 is the rectangle corresponding to the region of fusion interest: 

   10
18

 m
3

< n < 10
20

 m
3  and    0.5 keV<T < 50 keV . Observe that for plasmas of fusion 

interest the ions are indeed collisionless on the MHD time scale, while the electrons are 

borderline collisionless.   

The point here is that unstable MHD modes are known experimentally to frequently result in 

violent plasma behavior. It is thus critical to assess the reliability of the ideal MHD predictions 

using more accurate models applicable to fusion-grade plasmas. This important problem was 

originally studied by Kruskal and Oberman [3] and Rosenbluth and Rostoker [4] many years 

ago. The results have been since refined in [5], [6], [7]. In each of these articles, a new, zero gyro 

radius, collisionless kinetic model is employed for both species, a model now known as kinetic 
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MHD [8]. The most significant result is the well-known stability comparison theorem described 

by the inequality 
   
W

MHD
W

KK
, where 

  
W

KK
 is the change of potential energy in the kinetic 

MHD model. According to this inequality, ideal MHD stability implies kinetic MHD stability. 

Or in other words, the predictions of ideal MHD, the simpler but physically invalid model, can 

be trusted in the sense that they are more conservative than those of kinetic MHD, the more 

accurate model. 

 

 

Fig. 1. Electron and ion collisionalities in plasmas of fusion interest 

 

What then are the issues that have motivated the present work? There are three issues. First, 

these early pioneering studies did not explicitly distinguish between ergodic and closed line 

systems. In effect, the comparison theorems that were derived were focused on the ideal MHD 

compressibility stabilization term, and its effect on closed field line systems such as the levitated 

dipole concept [9], where compressibility plays an important role [9], [10]. Comparison 

theorems concerning ergodic systems, such as the tokamak, were not explicitly formulated. 

Second, the zero gyro radius mathematical expansion used in kinetic MHD allows wave-

particle resonances, but only due to the parallel motion of the particles, corresponding to 
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0k v = . For closed line systems, however, the important interchange mode is characterized 

by 0k = . Thus, for this mode resonant particle effects vanish in the kinetic MHD model. Even 

so, when 0k =  there remains the physical possibility of an alternate wave-particle resonance 

due to the perpendicular guiding center particle drifts (i.e. for 
    
v

d
= v

E B
+ v

B
+ v ) which 

occurs when 
     

k v
d

= 0 , and whose physics is not treated in the kinetic MHD model. To 

capture this effect a model is thus needed that allows for a finite ion gyro radius – the Vlasov-

fluid model.   

Third, the kinetic MHD model shows that in ergodic systems there is a collisionless 

compressibility stabilization that results from the exact periodicity of the motion of the trapped 

particles [11], [12]; the particle orbits oscillate but have zero guiding center drift. This 

periodicity can again be traced back to the zero gyro radius assumption. In the finite gyro radius 

Vlasov-fluid model, the trapped particles actually precess either poloidally or toroidally, and 

their motion is therefore no longer exactly periodic. This implies that “trapped particle 

compressibility stabilization” should vanish in the Vlasov-fluid model. 

Because of these issues we have been motivated to re-examine the general question of MHD 

stability comparison theorems. Our new contributions are as follows. For the kinetic MHD 

model we have clarified and generalized the early results. Specifically we have shown the 

differences in stability criteria that arise between ergodic and closed line systems.  We have also 

generalized early results to include electromagnetic effects. Lastly, we have derived stability 

criteria for ergodic systems without having to make the original assumption that    
2

= 0  at 

marginal stability. 

For the Vlasov-fluid model we have derived an important generalization. The early studies 

focused solely on ergodic systems. We have generalized these studies to include closed line 

systems ultimately obtaining a comparison theorem that is valid for both ergodic and closed line 

systems. 

We have also introduced a new hybrid model where the ions are treated by kinetic MHD and 

the electrons by a generalized fluid description. Here too we derive comparison theorems for 

ergodic and closed line systems. This model helps bridge the gap between the pure kinetic MHD 

and Vlasov-fluid models. 
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Under the assumption that the Vlasov-fluid model provides the most accurate description of 

MHD stability in a fusion grade plasma we arrive at the following high level conclusions: (1) 

ideal MHD predicts the correct (not conservative) stability boundaries in ergodic systems, (2) the 

Vlasov-fluid model is more unstable than ideal MHD for closed line systems because of the 

vanishing of compressibility stabilization, and (3) the most accurate test for MHD stability for 

any magnetic geometry is equivalent to testing ideal MHD stability for incompressible 

displacements. 

The structure of the paper is as follows. In Section 2, we present a brief review of the well-

known ideal MHD potential energy, 
  
W

MHD
 with a focus on plasma compressibility.  Section 3 

reviews and generalizes the results for kinetic MHD resulting in the derivation a potential energy 

W
KK

. In Section 4, we derive the potential energy 
  
W

KF
 for the hybrid model in which the 

electrons are treated as a fluid and the ions are described by kinetic MHD. This result allows us 

to compare the kinetic MHD predictions (i.e. 
  
W

KK
) to the hybrid predictions (i.e. 

  
W

KF
) where 

electrons are collision-dominated which is the case, for instance, near the edge of present day 

fusion experiments. Finally, in Section 5 we review and generalize the stability predictions of the 

Vlasov-fluid model, 
  
W

VF
, to include closed line configurations.  

For the sake of readability, only the key starting equations and end results are presented in 

the main body of the text. The amount of detail involved in the analysis is to put it mildly, 

“large”. These details are presented in three appendices which can be accessed on the Physics of 

Plasmas webpage, along with the online version of this article. 

 

2 Energy relations for comparison theorems: ideal MHD 

 

In this section, the well-known ideal MHD energy principle [1] is reviewed with a focus on 

the role of plasma compressibility and its dependence on magnetic geometry.   

As is well known, in ideal MHD, the question of the stability for static equilibrium can be 

expressed in the following variational form: 
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2
=

W
MHD

( , *)

K
MHD

( , *)
 (1) 

 

Here,   is the eigenfrequency,  is the perturbed MHD fluid displacement, and 
  
W

MHD
, 
 
K

MHD
 

are the perturbed potential and kinetic energies of the plasma respectively. The potential energy 

can be written as  

 

 

W
MHD
( , *)= W ( , * )+ W

C
( , *)

W =
* ·[(J B+ J B)+ ( · p)]dr

W
C
= p | |2 dr

 (2) 

 

while the kinetic energy has the form  

 

 K
MHD
= | |2 dr  (3) 

 

In these expressions J  is the plasma current, B  is the magnetic field, p  is the plasma pressure, 

 
 is the mass density, = 5 / 3  is the coefficient of adiabatic compression, and the notation   Q  

refers to a perturbed quantity. The subscript “0” is suppressed from all equilibrium quantities. 

The perturbed magnetic field and current density are given by the well-known relations 

   
B = B( )  and 

     
μ

0
J = B( ). To simplify the analysis attention is focused on 

internal modes as evidenced by the absence of a boundary term in Eq. (2). However, it is 

important to note that all the comparison theorems derived here have been generalized to cover 

external modes as well. Key features to observe from Eq. (2) are that W  depends only on  

and that the only appearance of  is in the 
 

 stabilizing plasma compression term in 
  
W

C
. 

Ideal MHD stability theory states that a mode is stable iff  
    
W

MHD
0  for all allowable 

plasma displacements. Therefore, stability is determined by minimizing 
  
W

MHD
 with respect to 

, and then calculating the value of 
  
W

MHD
 for the minimizing . If 

    
W

MHD
0  the plasma is 

stable, whereas if  
    
W

MHD
< 0  the plasma is unstable.   



 7 

Now, since 
  

 appears only in the plasma compressibility term, it is convenient to first 

perform a universal minimization with respect to 
  

. As is well known (e.g. [13]) this 

minimization leads to the general minimizing condition 

 

    B ( ) = 0  (4) 

 

To solve this equation, two different cases have to be distinguished: (1) systems where 

   B 0  which include ergodic field line geometries as well as closed line systems undergoing 

perturbations that break the closed line symmetry, and (2) closed line systems undergoing 

perturbations that do not break the closed line symmetry.   

For the first case of interest where   B  is not singular, the equation    B ( ) = 0  is 

trivially solved yielding 
  

= 0 . The minimization with respect to  thus implies that  

 

 
    
W

MHD
( , *) = W ( , * ) (5) 

 

 Ideal MHD stability for ergodic systems is incompressible: 
    
W

C
= 0 . 

For the second case there is a periodicity constraint 
     

(l) = (l + L) , where  l  is any point 

along the arc length of the field line and  L  is the length of the line. Minimizing with respect to 

  

  then leads to the following expression for the compressibility contribution: 

 

 
     
W

C
= p | |2 dr = p | |2 dr  (6) 

 

 

where Q  indicates the field line average of the quantity Q :  

 

   

Q =

Q
dl

B

dl

B

 (7) 
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For this case the plasma compressibility term must be maintained and included in the final 

minimization with respect to 
 

. 
  
W

C
 is a positive definite quantity, and represents plasma 

compressibility stabilization, a term which plays a crucial role in the MHD stability of closed 

field line configurations, such as the levitated dipole, and the field-reversed configuration. It is 

this term that needs to be carefully examined as more sophisticated physics models are 

introduced. Indeed, the difficulty with the validity of the ideal MHD model is easily observed in 

  
W

C
, which depends explicitly on the ratio of specific heats 

 
. This factor arises from the 

adiabatic energy equation, 
    
d /dt p( ) = 0  which is only valid when the plasma is highly 

collisional, a condition that is never satisfied in fusion grade plasmas, certainly not for the ions.  

  

3 Energy relations for comparison theorems: Kinetic MHD ions, Kinetic 

MHD electrons 

 

Kinetic MHD has been extensively studied [3] - [7], and an excellent derivation of the basic 

model can be found in [8]. Several stability results for kinetic MHD have already been derived in 

the literature and for the sake of brevity we simply summarize these results when appropriate. In 

the present work, the results are generalized to include electromagnetic effects. Also the basic 

energy relation is re-derived without the need for taking the limit 
2
0 .  

 

3.1 The model 

 

The kinetic MHD model consists of the exact moments of mass and momentum derived 

from the Vlasov equation combined with the low frequency form of Maxwell equations. 

Introducing the small gyro radius assumption 
    i

/ L 1 , averaging over the gyro phase angle, 

and keeping only the leading order terms in 
   i

/ L , leads to a simplified form of the Vlasov 

equation for each species. Electron inertia can also be neglected since 
   
m

e
/m

i
1 . The starting 

nonlinear equations for the kinetic MHD model reduce to 

 



 9 

 

       

n

t
+ (nv) = 0

m
i
n

v

t
+ v v = J B

j

P
j

B

t
= (v B)

B = μ
0
J

B = 0

E
B

B

A

t
=

B ( P
e
)

enB

n
i

= n
e

n

 (8) 

 

In Eq. (8), 
 
n

j
 is the density of the species  j ,  v  is the plasma velocity, 

 
m

i
 is the ion mass, 

  
P

j
is 

the pressure tensor of the species  j , 
  
E  is the parallel component of the electric field,  is the 

electrostatic potential, and 
  
A  is the parallel component of the vector potential. The pressure 

tensor for each species  j  is of the form 

 

 P =

p

p

p

 (9) 

  

a consequence of keeping only zeroth order terms in 
   i

/ L  in the kinetic equation. This implies 

that 

 

 

      

P = p + p p( ) + bB

p p

B
 (10) 

 

 

The solution for the distribution function is needed only to calculate the density and pressure 

moments,  n , 
  
p , and 

  
p , which for each species are given by  

 



 10 

 

n = f dw =
21/2 B

m3/2
1

μB( )
1/2
f d dμ

p =
mw2

2
f dw =

21/2 B

m3/2
μB

μB( )
1/2
f d dμ

p = mw2 f dw =
23/2 B

m3/2
μB( )

1/2

f d dμ

 (11) 

 

Note that  w  is the random component of particle velocity while here and below     v = v(r,t)  is 

the macroscopic plasma velocity. Also, 
     

= (m / 2)(w2
+ w

2)  and 
    
μ = mw

2 / 2B  are the basic 

velocity variables describing the kinetic MHD distribution function f (r, ,μ,t) .  The distribution 

function itself satisfies the gyro averaged kinetic equation which can be written as 

  

 
      

f

t
+ (v + w b)· f +

f
= 0  (12) 

 

where b = B /B . The over-bar operator indicates an average over a gyro period while  

denotes    d /dt  with   d /dt  representing the full Vlasov operator. One of the main results of 

kinetic MHD theory is a derivation of the gyro averaged value of    in the limit of vanishing gyro 

radius, which is given by 

 

 

      

= qw E mw b
dv

dt

mw
2

2
v + m

w
2

2
w

2
b b( )v  (13) 

  

The above kinetic equations apply to both electrons and ions with the appropriate choice of the 

mass m  and charge 
 
q  in the expression for   . The same macroscopic velocity v  appears in 

both the electron and ion equations since 
   
v

e
v

i
v . A final point to note is that although 

E = b A / t  is formally a first order quantity in the gyro radius expansion, it 

explicitly appears in (13) and must be maintained for a self-consistent closure. It is ultimately 

calculated by a combination of the charge neutrality condition and the parallel component of the 

electron fluid momentum equation. This completes the specification of the kinetic MHD model. 
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3.2 Equilibrium 

 

Consider now equilibrium in the kinetic MHD model. In order to compare macroscopic 

stability thresholds with those of ideal MHD we choose equilibrium distribution functions that 

are independent of the adiabatic invariant  μ ; that is both the electron and ion equilibrium 

distribution functions are of the form      f (r, ,μ) f ( , )  where    (r)  is the usual flux function 

satisfying b = 0 . The equilibrium pressure tensor is then isotropic: 

     
p ( ) = p ( ) = p

e,i
( ). For static equilibria (i.e.    v = 0 ) the plasma momentum equation 

therefore becomes 

 

 

     

J B = p

p = p( ) = p
i
( )+ p

e
( )

 (14) 

 

Furthermore, since 
      
E = B ( P

e
)/enB = B p

e
/enB  it follows that 

    
E = 0 .  Similarly 

for static equilibria 
   
E = 0  implying that 

    
v

E
= E B / B

2
= 0 . The conclusion is that the 

equilibria of interest are identical to those in ideal MHD. 

 

3.3 Stability – ergodic systems 

 

Consider next the kinetic MHD energy relation. As in ideal MHD this relation is a quadratic 

integral obtained by linearizing about the equilibrium solution. All perturbed quantities are 

written as       Q(r, ,μ,t) = Q(r, ,μ)exp( i t) . The energy integral is expressed in terms of the 

displacement  defined by 
     
v i . The precise form of this integral depends upon the 

geometry (i.e. ergodic vs. closed line). These forms can be deduced by combining the results 

from various papers in the literature (e.g. [7], [15], [16]). For convenience, a self-contained 

derivation is presented in Appendix A. Importantly, the derivation generalizes previous 

investigations by allowing a non-zero value for A  representing electromagnetic effects. 

The first energy relation of interest corresponds to either ergodic systems or closed line 

systems undergoing symmetry breaking perturbations. These systems are characterized by the 
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condition    B 0  (except perhaps on isolated surfaces). In this case the energy relation can be 

written as 

 

 

    

2

=
W ( , * )+ W

kk
( , *)

K ( , * )
 (15) 

 

where 
    
W ( , * )  is identical to that corresponding to ideal MHD as given in Eq. (2) and  

 

 K ( , * )=
2

dr  (16) 

 

The modification to the potential energy 
  
W

kk
 is evaluated for arbitrary equilibrium distribution 

functions    f ( , ) that need only satisfy the constraint: 

 

 
    

f
< 0  (17) 

 

The result is a complicated expression which has the form 

 

 

      

W
kk
( , *) =

2 dr

n
(U

i
+U

e
+U

h
)

U
i

= T̂
i

f
i dw

f
i s

i

2

dw

f
i s

i
dw

2

U
e

= T̂
e

f
e dw

f
e s

e

2

dw

f
e s

e
dw

2

U
h

=
1

T̂
i

+T̂
e( )

T̂
i

f
i s

i
dw +T̂

e

f
e s

e
dw

2

 (18) 

 

where ˆ( )T  and the orbit integral s  for each species are given by 
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1

T̂
=

1

n

f
dw > 0

s( ,μ, r,t) =
mw2

2
+ m

w2

2
w2 q w A( )

t

e i t dt

 (19) 

 

The quantity    T̂( )  has the dimensions of temperature and is indeed equal to the temperature for 

the case of a local Maxwellian distribution function. Also, while the trajectory integrals enter the 

energy integrals in a positive definite form, they contain the unknowns  and A . These 

quantities can be expressed in terms of the plasma displacement  although the relations involve 

a set of coupled integral equations. Fortunately, these complicated relations are not required for 

the analysis, as is shown in Appendix A. 

A simple application of Schwarz’s inequality implies that 
    
W

kk
0 . This allows us to draw 

two conclusions. First, assume the system is ideal MHD stable:  

 

 
    
W

MHD
= W (

MHD

* ,
MHD

) > 0  (20) 

 

 

where 
  MHD

 is the ideal MHD eigenfunction. It immediately follows that  

 

 
    
W

KK
W + W

kk
W (

KK

* ,
KK

) W (
MHD

* ,
MHD

) > 0  (21) 

 

Here, 
  KK

 is the kinetic MHD eigenfunction and the last inequality holds because of the 

minimizing energy principle associated with the ideal MHD potential energy. Equation (21), 

however, leads to a contradiction in Eq. (15); that is, 
   

2

< 0 . The contradiction arises because 

the assumption Im( )> 0  has been made in the derivation of Eq. (18) when integrating back to 

  t =  in the orbit integrals. The resolution of the contradiction is that Im( ) 0  which 

implies that the system is linearly stable. The first conclusion, therefore, is that ideal MHD linear 

stability guarantees kinetic MHD linear stability. 
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A second conclusion is related to the fact that 
  
W

kk
 appears to be proportional to 

  

2

. This 

suggests that 0
kk
W =  when 

2
0= , implying from Eq. (15) that the condition for marginal 

stability in the kinetic MHD model is given by 0W =
2
. In other words the conditions for 

marginal stability in ideal MHD and Kinetic MHD seem to be identical. This conclusion is 

indeed true, but only for a straight cylindrical plasma with circular cross section. In toroidal 

systems there are trapped particles and it has been shown [11], [12] that these particles produce a 

contribution to the integral in Eq. (18) that is proportional to 
  
1/

2

. The end result is that W
kk

 

is finite as    0 .   

This can be demonstrated explicitly by examining the parallel motion in the trajectory 

integral. Qualitatively the integrand is proportional to 
     
exp[ i t + ik l(t )] where    l(t )  is the 

parallel trajectory of a particle. For a passing particle 
    
l(t ) w t  and the trajectory integral 

     
s 1/( k w )  which is finite in the limit of    

2
0 .   

However, for the periodic motion of a trapped particle 
    
l(t ) l

0
cos(

B
t )  where 

    B
( ,μ, r)  

is the bounce frequency of the orbit. The integrand in Eq. (19) can therefore be expanded in a 

Fourier series and the zeroth harmonic yields a contribution proportional to 1/ . Specifically, 

as    
2

0  the orbit integral reduces to 

 

 

      

s
i

B

s

s =
mw2

2
+ m

w2

2
w2 q w A( ) dt

0

B

 (22) 

 

                                                
2
 The statement that    

2
= 0  corresponds to marginal stability in kinetic MHD for equilibrium distribution 

functions satisfying     f / < 0  has been proven for certain geometries [7], [15] and conjectured to be true for 

general geometry.  However, the discussion above makes use of this conjecture only when discussing the role of 

trapped particles. It is worthwhile to stress that the conjecture has not been used to derive the sufficient condition for 

stability which shows that ideal MHD stability implies kinetic MHD stability. 
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Here, 
    B

= 2 /
B

 is the bounce period. The 1/  factor in the denominator leads to a finite 

value for 
  
W

kk
 given by  

 

 

W
kk
( , *)=

1

4 2

dr

n
(U
i
+U

e
+U

h
)

U
i
= T̂

i

f
i dw

f
i

Bi
s
i

T

2

dw
f
i

Bi
s
i
dw

T

2

U
e
= T̂

e

f
e dw

f
e

Be
s
e

T

2

dw
f
e

Be
s
e
dw

T

2

U
h
=

1

T̂
i
+T̂

e( )
T̂
i

f
i

Bi
s
i

T
dw+T̂

e

f
e

Be
s
e

T
dw

2

 (23) 

 

where the subscript  T  on the integrals denotes integration over the region of velocity space 

corresponding to trapped particles. 

Thus, the second conclusion is that a toroidal kinetic MHD system is positively stable when 

the ideal MHD system is marginally stable. This behavior corresponds to trapped particle 

compressibility stabilization [11], [12], an effect obviously not present in a straight cylinder. The 

results for ergodic kinetic MHD systems in the limit    
2

0  can be conveniently summarized 

as follows: 

 

 

    

W
KK

= W = W
MHD

straight cylinder

W
KK

= W + W
kk

> W
MHD

torus
 (24) 

 

3.4 Stability – closed line systems 

 

The second energy relation of interest corresponds to closed line systems undergoing 

perturbations that maintain the closed line symmetry. The analysis presented in Section 3.3 also 

applies to this case but is not directly useful for determining MHD stability comparison 

theorems. The reason is that for closed line systems 
   
W

MHD
= W + W

C
 and there is no 
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obvious way to show analytically whether 
  
W

kk
 in its present form is bigger or smaller than the 

MHD compression stabilization term 
  
W

C
. What is needed is a quantitative estimate of 

  
W

kk
, 

and not just a determination of its sign. This requires a substantial amount of analysis which is 

made possible by two previously derived results: (1) a proof that for closed line systems marginal 

stability occurs for    
2

0  [7], and (2) the derivation of an elegant procedure for determining 

the sign of certain integrals [4]. The analysis differs from the ergodic case in that the periodicity 

requirements imposed by the closed line symmetry must be taken into account. The details are 

presented in Appendix A. The end result is an inequality expression for 
  
W

KK
, valid in the limit 

of marginal stability    
2

0 . 

 

 
    
W

KK
= W ( , * )+ W

kk
( , *)  (25) 

 

In this case  

 

 

      

W
kk

5

3
p

2

dr e2 f

s

2

b
b

2

dwdr  (26) 

 

The first term on the right hand side is just 
  
W

C
, the ideal MHD compressibility effect. In the 

second term the notation 
 
Q

b
 denotes the average over the periodic orbit, 

 

 

   

Q
b

=

Q
dl

w

dl

w

 (27) 

 

 The second term is positive by virtue of Schwarz’s inequality and the assumption     f / < 0 .   

For a system that is ideal MHD stable, 
    
W

MHD
= W + W

C
> 0 . It then follows that 

 

 
    
W

KK
W + W

kk
W

MHD
(

KK

* ,
KK

) W
MHD

(
MHD

* ,
MHD

) > 0  (28) 
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Thus, if a plasma is stable in ideal MHD it is even more stable in kinetic MHD. 

Additional insight can be gained about closed field line systems by examining the special 

case when b 0  corresponding for instance to the    m = 0  mode in a cylindrical Z-pinch. In 

this case, the kinetic equation for the perturbed distribution functions takes a particularly simple 

form because E = 0  and all the terms in  f  are now fluid-like: 

 

 

      

f = f i mw
f

+ m
w2

2
+

w2

2
w2

f
 (29) 

  

The perturbed pressures are easily obtained by integration over velocity space. We find 

 

 

     

p = p 2p p

p = p p + 2p
 (30) 

 

Using these expressions, we obtain an exact energy integral given by 

 

 

2
=
W
KK

K

W
KK
= W

MHD
+ 3 p +

1

3

2

dr

 (31) 

   

It is clear in this case that 
   
W

KK
( , )  is always a purely real quantity, so that marginal 

stability does indeed occur at    = 0 . The system is unstable iff 
    
W

KK
( ,

*) 0 . The 

expression for 
   
W

KK
( , )  in Eq. (31), clearly demonstrates that ideal MHD stability implies  

kinetic MHD stability. 
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3.5 The Chew-Goldberger-Low double adiabatic model 

 

We close this section by briefly reviewing the Chew-Goldberger-Low (CGL) double 

adiabatic model [17]. This is one of the earliest models that attempts to take into account plasma 

anisotropy. The model is relatively simple although not well justified mathematically or 

physically. We have made no improvements or generalizations of the model and present it here 

primarily for the sake of completeness. 

The basic idea used to derive the CGL model is to calculate the perpendicular and parallel 

energy moments of the kinetic MHD model. In these energy equations the perpendicular and 

parallel heat fluxes are neglected as well as temperature equilibration. These assumptions, which 

cannot be justified in fusion grade plasmas, lead to a closure of the model described by two fluid-

like energy relations for p  and p . 

 

 

d

dt

p B
2

n
3
= 0

d

dt

p

nB
= 0

 (32) 

 

Here, p = p
e
+ p

i
 and p = p

e
+ p

i
. From Eq. (32) it is clear why the model is sometimes 

referred to as the “double adiabatic model”. 

Isotropic equilibria in the CGL model can be easily calculated and correspond to the choice 

p = p = p( ) . The equilibria are identical to those of ideal MHD. Stability is greatly 

simplified because of the fluid treatment of the pressures. In particular, simple expressions for 

the perturbed  and p p  are obtained: 

 

 

     

p =  p p  2p bb :  

p =  p 2p  + p bb :  

 (33) 

 

From these relations it is straightforward to carry out the stability analysis using the standard 

procedure. This leads to the following form for the CGL energy relation 
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 2
=
W
CGL

K
MHD

=
W + W

cgl

K
MHD

 (34) 

 

where 

 

 

     

W
cgl

=
5

3
p  

2

dr + 3 p
1

3
 bb :  

2

dr  (35) 

 

Equation (35) is valid for both ergodic and closed line systems since with a fluid treatment 

there are no trapped or resonant particle effects. Consider first the implications for ergodic 

systems. Unlike ideal MHD, minimizing with respect to  does not lead to the condition 

  
 = 0  because of the 

   
bb :   term. Therefore 0cglW >  and the system is more stable than 

ideal MHD. For closed line systems it immediately follows from Eq. (35) that 
   
W

cgl
> W

C
.  

Again the CGL model predicts greater stability than ideal MHD.   

Earlier studies [3], [4] that mainly focused on closed line systems also showed that the CGL 

model is more stable than kinetic MHD. Even so, because of unjustified assumptions used in the 

CGL model, we do not dwell on deriving these results.   

The overall conclusion is that for both ergodic and closed line systems the CGL model is 

more stable than ideal MHD as    
2

0 : 
CGL MHD
W W> . 

 

4 Energy relations for comparison theorems: kinetic MHD ions, fluid 

electrons 

 

In this section we describe a hybrid model where the ions are treated with the kinetic MHD 

description and the electrons are treated as a fluid. This corresponds to the regime of collisionless 

ions (always valid for fusion plasmas) and collision dominated electrons (marginally valid for 

fusion plasmas). The kinetic MHD ion – fluid electron plasma is a new model for MHD modes, 

which serves as a transition between the fully kinetic MHD and Vlasov-fluid descriptions. Since 
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the kinetic MHD model has already been described in Sec. 2, what is needed here to provide 

closure is a fluid description of the electrons. 

 

4.1 The electron fluid model 

 

We assume that the electrons are collision dominated and thus describe them by a fluid model 

with isotropic pressure. The electron momentum equation is separated into perpendicular and 

parallel components. The first non-vanishing contribution to the perpendicular component is 

zeroth order in the gyro radius expansion. The parallel component is first order but still must be 

maintained in certain parts of the analysis (e.g. the evaluation of ) for self-consistency. The 

relevant equations are 
   
E + v B = 0  and 

     
E = (b p

e
)/en  where ( , )tv r  is the (ion) fluid 

velocity which is approximately equal to the electron fluid velocity in the limit of small gyro 

radius, and where we have neglected the terms associated with friction in the parallel component. 

In contrast to the evaluation of   , 
  
E  can be neglected in Faraday’s law thus implying the 

frozen-in law 
    

B / t = v B( ) . 

The closure of the electron fluid model is slightly more complicated than the usual simple 

adiabatic energy relation. The reason is that it is the parallel electron thermal conductivity that 

often dominates the behavior, except for the case of closed lines. The desired closure relation for 

electrons starts with the following form of the energy equation which includes parallel thermal 

conductivity, convection and compression 

 

 
1

1

p
e

t
+ v p

e
+ p

e
v = B

B
2
B T

e
 (36) 

 

Here = 5 / 3  and we want to consider the limit 
   

.   

In ergodic systems for which the operator    B 0 , the solution to Eq. (36) is simply 

B T
e
= B (p

e
/n)= 0 . If we now form the operation 

    
d[B (p

e
/n)]/dt = 0  then a short 

calculation that makes use of Faradays law and the conservation of mass leads to the following 

energy equation 
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p
e

t
+ v p

e
+ p

e
v = 0  (37) 

 

corresponding to the isothermal condition 1= . See Appendix B for details. For closed line 

systems undergoing perturbations that do not break the symmetry there is an additional 

periodicity constraint that must be satisfied. In this case Eq. (37) is generalized as follows 

 

 

     

p
e

t
+ v p

e
+ p

e
v + ( 1)

n

n
p

e
v = 0  (38) 

 

where the averages are taken over each magnetic line as defined in Eq. (7). The details are also 

given in Appendix B. Equation (38) can be viewed as the general closure relation for the electron 

fluid if we keep in mind that 
    
p

e
v = 0  for ergodic systems. 

Combining these results leads to the following set of nonlinear equations describing the 

kinetic MHD ion – fluid electron model. 

 

 

       

n

t
+ (nv) = 0

m
i
n

dv

dt
= J B p

e
p

i
p

i
p

i( ) bB

p
i

p
i

B

B

t
= (v B)

B = μ
0
J

B = 0

E = (b p
e
)/en

n
i

= n
e

n

 (39) 

 

In these equations the ion density and pressures are calculated from the solution to the ion kinetic 

MHD equation and the electron pressure is obtained from the solution to Eq. (38). 

 



 22 

4.2 Equilibrium 

 

The equilibria of interest are assumed to be static (i.e.    v = 0 ) with isotropic pressure. This 

corresponds to requiring the ion distribution function to be of the form 
    
f
i

= f
i
( , )  and 

assuming 
    
p

e
= p

e
( ) . For these choices it follows that 

     
E = E = 0 . The relevant equilibrium 

equations are then given by 

 

 

     

J B = p

p = p( ) = p
i
( )+ p

e
( )

 (40) 

 

which are identical to ideal MHD. Once again we are comparing the stability of identical 

equilibria using different dynamical models. 

 

4.3 Stability – ergodic systems 

 

The stability analysis for the kinetic MHD ion – fluid electron model is quite similar to that 

of the fully kinetic MHD model and the details are presented in Appendix B. There are two main 

differences and both help to simplify the analysis. First, because of the electron energy equation 

it is straightforward to derive a direct relationship between the perturbed pressure and the plasma 

displacement. Importantly, no complicated trajectory integrals are involved. For the case of 

ergodic systems or closed line systems undergoing symmetry breaking perturbations the relation 

between 
e
p  and  can be written as 

 

 
   
p

e
= p

e
p

e
 (41) 

 

The second simplification arises from the parallel component of the electron momentum 

equation. The hybrid model yields an explicit relation between E  and  thereby eliminating the 

need to introduce the scalar and vector potentials. The desired relation is given by  
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E = b
p

e

en
 (42) 

 

Using these results we have again derived an energy relation (see Appendix B) which has a 

similar form to Eq. (15): 

 

 

    

2

=
W ( , * )+ W

kf
( , *)

K ( , * )
 (43) 

 

Here, 
    
W

kf
0  is the kinetic contribution to the potential energy:  

 

 

      

W
kf
( , *) =

2 dr

n
(U

i
+U

h
)

U
i

= T̂
i

f
i dw

f
i s

i

2

dw

f
i s

i
dw

2

U
h

=
1

T̂
i

+T
e( )

T̂
i

f
i s

i
dw

2

 (44) 

 

where 
   
T

e
= p

e
/n  and  

 

 

       

1

T̂
i

=
1

n

f
i dw > 0

s
i
( ,μ, r,t) =

m
i
w2

2
+ m

i

w2

2
w2

+T
e

t

e i t dt

 (45) 

 

We again can deduce two conclusions from the energy relation. First ideal MHD stability implies 

kinetic MHD-fluid stability: 

 

 
    
W

KF
W + W

kf
W (

KF

* ,
KF

) W (
MHD

* ,
MHD

) > 0  (46) 
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The quantity 
  KF

 is the exact eigenfunction for the hybrid model. As in kinetic MHD Eq. (44)

leads to a contradiction in Eq. (43) which can only be resolved by assuming that Im( ) 0  

which implies stability. 

The second conclusion involves the limit    
2

= 0  which we assume corresponds to marginal 

stability. In this limit 
    
W

kf
= 0  for a straight cylinder and is positive in a torus because of 

trapped particle compressibility stabilization; that is, 
    
W

kf
> 0  and is given by  

 

 

W
kf
( , *)=

1

4 2

dr

n
(U
i
+U

h
)

U
i
= T̂

i

f
i dw

f
i

Bi
s
i

T

2

dw
f
i

Bi
s
i
dw

T

2

U
h
=

1

T̂
i
+T

e( )
T̂
i

f
i

Bi
s
i

T
dw

2

 (47) 

 

The overall conclusions at    
2

= 0  can be summarized as follows: 

 

 

    

W
KF

= W = W
MHD

straight cylinder

W
KF

= W + W
kf

> W
MHD

torus
 (48) 

 

Finally, we note that it is tempting and quite plausible to assert that the hybrid model is less 

stable than the fully kinetic MHD model since trapped particle compressibility stabilization 

arises only from the ions and not both species. However, since the marginal eigenfunctions are 

not the same this is not a rigorous conclusion, only a likely conjecture. 

 

4.4 Stability – closed line systems 

 

We next consider the energy relation for the hybrid model corresponding to closed line 

systems undergoing perturbations that maintain the closed line symmetry. Again, to obtain the 
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desired result, an estimate is needed for kfW  that can be compared to the ideal MHD 

compressibility term 
C
W . The analysis is similar but simpler than that of the pure kinetic MHD 

model because of the fluid treatment for the electrons. For the closed line case this fluid 

treatment allows us to express many of the perturbed quantities directly in terms of the 

displacement vector. 

 

 

      

n
e

= n n

p
e

= p
e

p
e

1( )p
e

E = b 1/en( ) p
e

+ 1( )p
e( )

 (49) 

 

Using this information, and following the procedure described in Section 3.4, we have 

derived an energy relation analogous to Eq. (26) which is valid at marginal stability, i.e. in the 

limit 
2
0 . The details are presented in Appendix B. The energy relation is given by 

 

 
   
W

KF
= W + W

kf
 (50) 

 where (for = 5 / 3 ) 

 

 W
kf

W
C
=

5

3
p

2

dr  (51) 

 

As for pure kinetic MHD, a system that is ideal MHD stable (i.e. 
    
W

MHD
= W + W

C
> 0 ) 

is even more stable in the hybrid model. Specifically, 

 

 
    
W

KF
W + W

kf
W

MHD
(

KF

* ,
KF

) W
MHD

(
MHD

* ,
MHD

) > 0  (52) 

 
For the special case when    b 0 , corresponding for instance to the 0m =  mode in a 

cylindrical Z-pinch, the energy integral simplifies considerably. It can be explicitly evaluated for 

arbitrary   
2
 and has the form 
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2
=

W
KF

K

W
KF

= W
MHD

+ 3 p
i

+
1

3

2

dr

 (53) 

   

This is identical to the equivalent form for pure kinetic MHD given by Eq. (31) except that it 

is only the ions that contribute to the integral. Marginal stability occurs at 
2
0=  and the 

system is unstable iff *( ) 0
KF
W , .   

 

5 Energy relations for comparison theorems: Vlasov ions, fluid electrons 

 

The last model of interest is a hybrid model with Vlasov ions and fluid electrons. The 

motivation for using the Vlasov equation for the ions is to allow us to consider stability for 

arbitrary 
  
k  including both 

    
k a 1  and 

     
k

i
1 . The regime 

     
k

i
1  is important for closed 

line systems such as the levitated dipole and the field reversed configuration as well as 

ballooning and interchange modes in ergodic systems. The crucial feature included in the 

Vlasov, but not the kinetic MHD, description is the possibility of particle resonances with the 

perpendicular guiding center velocity as well as the parallel velocity. Specifically the resonance 

condition changes from 
     

k v = 0  to 
      

k v k v
d

= 0 , where 
  
v

d
 includes the   E B , 

curvature, and grad-B guiding center drifts. 

An alternative model for the ions that also contains the desired physics is gyrokinetics [18], 

[19]. Perhaps surprisingly, if we take as our final goal the derivation of an energy relation, then 

the exact Vlasov description is actually simpler to analyze than the approximate gyrokinetic 

description, for reasons that will become apparent in the remainder of this article. 

Ideally we would like to be able to treat the electrons with the Vlasov equation but this 

becomes too complicated mathematically. The basic difficulty is that a dual Vlasov model 

contains far more physics than just MHD behavior. Thus some simplifications are needed to 

restrict the physical content of the overall model such that attention can be focused on MHD 

phenomena. A fluid model for electrons meets this purpose. It is also possible to treat the 

electrons as collisionless by using the simpler kinetic MHD description. This, however, is 
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deceptive and corresponds to an inconsistent mathematical ordering. The reason is that even in 

the limit 
   
m

e

0  the perpendicular guiding center drifts of the electrons (for 
  
T

e
T

i
) are 

important when k 0  and 
     
k

i
1 .  

In carrying out the analysis there are three issues that arise that are worth noting. First, a 

simplified energy equation must be used for the electrons in order to focus on MHD modes 

which are defined as modes in which the magnetic field is frozen into the plasma. Second, a 

special choice must be made for the form of the equilibrium ion distribution function in order to 

guarantee zero macroscopic fluid velocity, corresponding to static equilibrium. This choice also 

has the feature of making the analysis valid for arbitrary 3-D geometries. Third, the analysis is 

carried out using a procedure which is traditionally and wisely thought to be highly inefficient 

and mathematically complex when applied to models that make use of a gyro radius expansion 

(e.g. gyrokinetics and kinetic MHD). The “forbidden” approach that we use directly calculates 

the perpendicular ion current from the distribution function rather than using moments. There is 

no problem doing this with the Vlasov equation since no gyro radius expansion is used and, as is 

shown, it leads to a simplified analysis if attention is focused solely on obtaining an energy 

integral. Each of these points is discussed in more detail as the analysis progresses. 

 

5.1 The electron model 

 

The electrons are treated as a massless isotropic fluid. The mass and momentum equations 

are given by their standard form: 

 

 

n
e

t
+ n

e
v
e( ) = 0

E+ v
e
B+

p
e

en
e

= 0

 (54) 

where 
  

v
e

 is the electron fluid velocity, and where for simplicity we have neglected the parallel 

thermal gradient force in the momentum equation. It is the energy equation that raises a problem. 

This can be seen by substituting the momentum equation into Faraday’s law. 
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B

t
= v

e
B +

p
e

en
e

 (55) 

 

The problem is that in order to focus on MHD modes, we require, by definition, that the 

magnetic field be frozen into the plasma. This requires that the 
   

( p
e
/en

e
)  term be zero or 

small. However, when 1
i

k , the term is comparable in magnitude to the other terms. We 

could assume an intermediate ordering such as 1
i

k k L  but this leaves us in the 

awkward position of making a gyro radius expansion in Faraday’s law but not the ion Vlasov 

equation. 

Our approach is to postulate an alternative energy equation which must have three desirable 

properties: (1) it must be mathematically simple, (2) it must include electron plasma 

compressibility effects, and (3) it must guarantee that the magnetic field is tied to the electron 

fluid. A model which has these features is as follows. 

 

 
   
p

e
= Kn

e

e  (56) 

 

Our model looks very similar to the usual adiabatic energy relation but there is one important 

difference. In our model both the equilibrium and perturbed pressure satisfy the same relation.  

In the usual adiabatic relation, 
    
d(p

e
/n

e

e )/dt = 0  the equilibrium pressure and density profiles 

are independent of each other and it is only the perturbations that are non-trivially governed by 

Eq. (56). Thus, our model is a special case of the more general adiabatic relation. The main 

consequence of Eq. (56) is that in the stability analysis only the pressure gradient can drive 

instabilities. In contrast, for the general adiabatic relation the parameter 
    e

= d lnT
e
/d lnn

e
 

also appears which can drive instabilities such as the entropy mode. Specifically, when 

5/3
e
= , then our model implies that 2/3

e
=  and for this value the entropy mode is always 

stable, as shown in cylindrical and point-dipole geometries in references [20] and [21]. Thus, 

choosing Eq. (56) as the energy relation for electrons allows us to focus on MHD modes, which 

is the topic of interest.   
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5.2 The Vlasov-fluid model 

 

The basic equations describing the Vlasov-fluid model are obtained by evaluating the 

quantity   J B  with the electron current calculated from 
  

v
e

 and the ion current by the usually 

inefficient process of integrating over the distribution function. A short calculation leads to the 

following model. 

 

 

      

J B = p
e

+e E + u B( ) f
i
du

f
i

t
+ u f

i
+

e

m
i

E + u B( ) u
f
i

= 0

n
e

t
+ (n

e
v

e
) = 0

p
e

= Kn
e

e

B

t
= (v

e
B)

B = μ
0
J

B = 0

E = (b p
e
)/en

n
i

= n
e

n

 (57) 

 

Here,  u  represents the total (not random) particle velocity. 

 

5.3 Equilibrium 

 

An exact analytic equilibrium satisfying the Vlasov-fluid equations can be found that is valid 

for arbitrary 3-D geometries. The key point to recognize is that our primary interest is in static 

equilibria. The motivation for focusing on static equilibria is to enable a mathematically 

consistent comparison with static ideal MHD equilibria which is the usual “gold” standard for 

macroscopic stability analyses. We emphasize that equilibria with flow are possible and often 

necessary when comparing with detailed experimental data. However, when comparing with 

other theoretical models it is necessary to focus on the identical class of equilibria - those that 

have zero equilibrium flow. 
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The condition of identically zero macroscopic equilibrium flow implies that the equilibrium 

ion distribution function be of the form 

 

 

     

f
i

= f ( )

=
m

i
u2

2
+e r( )

 (58) 

 

where 
   

r( )  is the electrostatic potential. From Eq. (58) it follows that the ions are 

electrostatically confined and that the ion pressure is isotropic. A short calculation also shows 

that the pressure and density are related by 

 

 

     

p
i ( ) =

m
i
u2

3
f du

n
i ( ) =

1

e

dp
i

d

 (59) 

 

Now, since there is no equilibrium ion flow,  

 

 
    
J B = p

e
+enE = p

e
en  (60) 

 

Here, we have set 
  
n

e
= n

i
n .  Substituting Eq. (59) into Eq. (60) then yields 

 
   
J B = p  (61) 

 

where 
  
p = p

e
+ p

i
. Moreover, since 

    
p

e
= Kn = K[n( )] , the total pressure also has the form 

    p = p( ) . The condition      B p = (dp /d )B = (dp /d )B E = 0  then implies that 

0E =  in equilibrium. The overall conclusion is that the choice ( )if f=  leads to Vlasov-fluid 

equilibria that are identical to ideal MHD equilibria. 
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5.4 Stability 

 

Linear stability in the Vlasov-fluid model is carried out in terms of the electron displacement 

vector  . The relationship between 
   
v

e

 and   in a system in which there is an equilibrium flow 

v
e

= J /en  is given by 
     
v

e
= i  + v

e
 v

e
[22]. Using this definition it follows 

that most of the perturbed quantities can be easily expressed in terms of  . 

 

 

n
e
=  n n  

p
e
=  p

e e
p
e

 

B =  B( )
E = i  B p

i e
p
e

 ( )/en

 (62) 

 

The remaining unknown is the perturbed distribution function which, as shown in Appendix C, 

can be written as 

 

 

f
i
=
1

n
 p

i e
p
e

 ( )+ i s
f
i

s = e(E+ u B)  (
e
p
e
/n)  

t

dt

 (63) 

 

As for the other models, an energy integral can be obtained for the Vlasov-fluid model. The 

details are presented in Appendix C. A critical point regarding this energy integral is that unlike 

for the other models, there is no need to distinguish between ergodic and closed field line 

geometries. The reason is that the orbit integral   s  does not have any terms that are proportional 

to 1/ . It is the 1/  terms in   s  that yield a finite contribution in the product    i s , giving rise 

to trapped particle compressibility stabilization and closed line periodicity stabilization.   

The vanishing of the   1/  terms occurs because the resonant denominator arising from the 

trajectory integral is modified from its kinetic MHD form 
    

k w  to its Vlasov-fluid form 

     
k u k v

d
 where 

  
v

d
 is the guiding center drift velocity comprised of the grad-B, 
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curvature, and   E B  drifts. Thus, even when 
    
k = 0  the resonant denominator in the Vlasov-

fluid model does not vanish as    
2

0  because there is always a non-zero precession drift. 

This behavior can be seen explicitly by examining the Vlasov-fluid energy integral 

 

 

    

2

=
W

K
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where 
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 (65) 

 

and 
e,i
( )= d ln p

e,i
/d lnn . Clearly, 

   
K

VF
> 0  when 

    
f
i
/ < 0 , by Schwarz’s inequality.   

A sufficient condition for stability can now easily be obtained. Assume the plasma, for any 

type of geometry, is ideal MHD stable for incompressible displacements: 
    
W 0 . Then, Eq. 

(64) is a contradiction, similar to that derived for the other models, which can only be resolved 

by recognizing that the original assumption    Im( ) > 0  is violated. In other words the system is 

linearly stable. This conclusion makes use of the fact that 
VF
K  remains finite as    0 . 

Therefore, incompressible stability in ideal MHD implies stability in the Vlasov-fluid model for 

any type of geometry.   

Consider next displacements corresponding to 
    
W < 0 . Since the Vlasov-fluid operator is 

not self adjoint it is not possible to rigorously conclude that the plasma is unstable in this model. 

However, there is strong motivation to conjecture that this is indeed the case. The reason is that 

the incompressible ideal MHD eigenfunction at marginal stability is also an exact eigenfunction 

of the Vlasov-fluid model. Then, once any plasma parameter, for example , is changed, the 

presence of resonant particles strongly suggests that the resulting eigenvalue will be complex. 
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Changing  in the appropriate direction (presumably by increasing it) should then produce a 

positive growth rate. Assuming the conjecture to be correct, then the stability results as 
2
0  

can be summarized as follows 

 

 
W
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MHD

* ,
MHD

)= W
MHD

(
MHD

* ,
MHD

) ergodic systems

W
VF

W (
MHD

* ,
MHD

) W
MHD

(
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* ,
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) closed line systems
 (66) 

 

Equations (65) and (66) indicate that the Vlasov-fluid model does not exhibit any form of 

compressibility stabilization. The absence of compressibility stabilization is likely to be more 

important for closed line configurations such as the levitated dipole and the field reversed 

configuration which depend on this effect for good plasma performance. Even so, we point out 

that the nonlinear effects may be very important since modifications to the distribution function 

may lead to stabilization without the severe consequences usually associated with ideal MHD. 

This is an area that needs further investigation. Even if so, it is still very worthwhile to 

understand the predictions of linear stability as is contained in each of the models under 

consideration. 

 

6 Summary 

 

We have derived a series of MHD stability comparison theorems corresponding to different 

plasma physics models, varying from collisional to collisionless in their physical content. Some 

of the results are generalizations and clarifications of existing results. Other results involve the 

introduction of new models and the derivation of new comparison theorems. In general we have 

shown that it is necessary to distinguish between ergodic systems and closed line systems. Also, 

cylindrical systems must sometimes be distinguished from toroidal systems. 

Below, we summarize in the form of two tables the results of our analysis. Specifically, we 

present the comparison results for each energy relation in the marginal stability limit    
2

0 . 

The first table corresponds to ergodic systems including closed line systems undergoing 

symmetry breaking perturbations. The second table corresponds to closed line systems 

undergoing perturbations that maintain the closed line symmetry. In both tables the entries are 

arranged in (the most probable) ascending order with the most conservative model appearing 
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first. The comparisons for ergodic systems are made against the reference model corresponding 

to the ideal MHD potential energy for incompressible displacements 
   
W . For closed line 

systems the comparisons are made with respect to the compressible ideal MHD potential energy 

   
W

MHD
= W + W

C
. 

 

Model Comparison Theorem 

Ideal MHD 
MHD
W W=  

Vlasov-fluid 
VF
W W=  

Kinetic ion-fluid electron 
KF
W W=               cylindrical 

KF
W W>                toroidal 

 

Kinetic ion-kinetic electron 
KK
W W=              cylindrical 

KK KF
W W W> >   toroidal 

Double adiabatic CGL 
CGL KK KF
W W W W> > >  

 

Table 1. Summary of comparison theorems for ergodic systems 

 

Model Comparison Theorem 

Vlasov-fluid 
VF
W W=  

Ideal MHD 
MHD C
W W W W= + >  

Kinetic ion-fluid electron 
KF MHD
W W>    cylindrical 

KF MHD
W W>    toroidal 

 

Kinetic ion-kinetic electron 
KK MHD
W W>    cylindrical          

KK KF MHD
W W W> >   toroidal 

Double adiabatic CGL 
CGL KK KF MHD
W W W W> > >  

 

Table 2. Summary of comparison theorems for closed line systems 
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The overall conclusions are as follows. For ergodic systems stability boundaries are 

accurately predicted by the ideal MHD energy principle for incompressible displacements: 

    
W = 0 . The trapped particle compressibility stabilization arising in the kinetic MHD model 

may be an artifact since the more accurate (in terms of gyro radius approximations) Vlasov-fluid 

model also predicts marginal stability when 
    
W = 0 . 

For closed line systems, the usual statement that ideal MHD represents the most conservative 

stability estimate is incorrect. While the statement is true with respect to kinetic MHD models it 

fails for the Vlasov-fluid model. In this model resonant particles moving with the perpendicular 

precession drift velocity eliminate all compressibility stabilization effects so that the stability 

boundary is again given by 
    
W = 0 . There is no compressibility stabilization. 

The results presented here may be more important for closed line configurations such as the 

levitated dipole and the field reversed configuration where MHD compressibility stabilization 

plays an important role in predicted plasma performance. Even so, the comparisons theorems 

only apply to linear stability and the nonlinear MHD behavior may not be catastrophic, 

particularly for modes driven by a small class of resonant particles. 
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