
PSFC/JA-10-36 
 
 

Particle interactions with spatially localized 
wavepackets 

 
Y. Kominis, a K. Hizanidis, a and A.K. Ram 

 
October 2010 

 
 
 
 

Plasma Science and Fusion Center, Massachusetts Institute of Technology 
Cambridge, MA 02139  U.S.A. 

 
a National Technical University of Athens  

Association EURATOM-Hellenic Republic 
Zografou, Athens 15773. Greece 

 

 

 
 
 
 
 
 
 
 
 
 

This work was supported by the U.S. Department of Energy, This 
work is supported by DoE grants DE-FG02-99ER-54521 and DE-
FG02-91ER-54109, and by Association EURATOM, Hellenic 
Republic. Reproduction, translation, publication, use and disposal, 
in whole or in part, by or for the United States government is 
permitted. 

 
To be published in the Proceedings of the 37th European Physical Society Conference on Plasma 

Physics (2010). 



Particle interactions with spatially localized wavepackets 

 

Y. Kominis1, K. Hizanidis1, A.K. Ram2
 

1School of Electrical and Computer Engineering, NTUA, Athens GR 15773, Greece 
2Plasma Science and Fusion Center, MIT, Cambridge MA 02139, USA 

 

 

Wave-particle interaction is one of the most well studied subjects in plasma physics. Particle 

dynamics in the presence of electrostatic or electromagnetic waves has been one of the main 

paradigms on which the modern theory of nonlinear Hamiltonian dynamics and chaos has 

been applied [1]. However, almost all previous studies of wave-particle interactions from the 

point of view of Hamiltonian dynamics have been focused on waves having discrete spectra, 

namely, periodic waves. In a previous work [2] we have studied particle interactions with 

localized wavepackets propagating in the absence of a magnetic field or along a uniform 

magnetic field. In this work we study such interactions in the general case where the 

wavepackets propagate at an angle to a magnetic field.   

The Hamiltonian describing particle motion in a uniform constant magnetic field B=B0z is 

H0=|p-(e/c)A|2/(2M), where A=-B0yx is the vector potential corresponding to the magnetic 

field and p=Mv+(e/c)A is the canonical momentum. Utilizing the generating function 

F1=MΩ[(y-Y)2cotφ/2-xY] (Ω=eB0/Mc, is the gyration frequency) we transform to “guiding 

center” variables with the new Hamiltonian being . The new variables 

are the guiding center position (X,Y), the z coordinate and momentum (z,Pz) and the gyration 

angle and angular momentum (φ, Pφ). Under the presence of a localized electrostatic wave 

field Φ0(r-Vgt) sin(k r-ωt), with wavenumber k = k z+k y and group velocity Vg, the 

Hamiltonian is 
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where ρ(Pφ) = (2Pφ/ΜΩ)1/2 is the Larmor radious and Jm(k ρ) are Bessel functions. The wave 

fields range from ordinary wavepackets to ultra short few-cycle and subcycle transient pulses. 

Note that for the latter, the assumption of adiabaticity for amplitude modulation, commonly 

adopted in previous works, does not hold. We consider the presence of the localized wave as a 

perturbation to the particle motion in the constant uniform magnetic field. The unperturbed 



frequencies of particle motion are ωφ = Ω and ωz = Pz/M (= vz). The perturbation results in 

resonances between the degrees of freedom given by the condition 
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In order to analyze particle dynamics we utilize the canonical perturbation method [1]. 

According to this method we construct a near-identity canonical transformation resulting to a 

new Hamiltonian where the dependence on canonical positions is "pushed" to higher order. 

According to a standard procedure [1], the first order generating function is calculated by 

integrating the perturbative part of the Hamiltonian along unperturbed particle orbits. 

Although our approach is general, in the following we focus on a localized wave of Gaussian 

form  
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In order to consider finite Larmor effects, i.e. take into account the fact that the Larmor 

radious can be comparable to the spatial with of the wave, we use a first order, with respect to 

(ρ/α ), Taylor expansion of Φ0. Therefore we obtain the first order generating function as 

( ) ( )1 1

22 2 2

1 2 2 2

1 1

4
exp exp exp

2 4 4 2

                                               

                                             

m m
m

m

iθ iθ
m m m m

Ω BΩeE B A Cw iΨ i
A A A A

ρJ R J e J e K At B
a

−
⊥ − +

⊥

⎛ ⎞⎛ ⎞− ⎛ ⎞= − +⎜ ⎟⎜ ⎟ ⎜ ⎟⎝ ⎠⎝ ⎠ ⎝ ⎠
⎧⎡ ⎤⎪ + − +⎨⎢ ⎥
⎪⎣ ⎦⎩

∑

( ) ( ) ( )2 2
1 1      iθ iθ

m m m m m
Vρ J e J e B K At B Λ At B

a A
−⊥

− +
⊥

⎫
+ − + − +⎡ ⎤⎬⎣ ⎦

⎭
where: 

 

[ ] ( )

2 22 2

1 1
1 2

2 2 2 2

( / )
, ,

( / )
, ,

,    2 ,    

tan ,    tan

,     

( / )

( / ) ,    
2

z

yx z z

x

y

x y

m z

m
m z m

z P M tX Y
a a a

VV V P M
a a a

A B C
VXθ θ

Y V

R X Y a V V V a

Ψ k z P M t k Y m φ Ωt
B iΩΩ k P M mΩ ω Β

A

⊥ ⊥

⊥ ⊥

− −

⊥ ⊥ ⊥

⊥

⎛ ⎞−= ⎜ ⎟⎜ ⎟⎝ ⎠
⎛ ⎞−= ⎜ ⎟⎜ ⎟⎝ ⎠

= = − ⋅ =

= =

= + = +

= − + − −
+= − − =

R

V

V R V R

⊥

 



The nonperiodic time dependence of the generating function is given through the functions 
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The magnitude of w1 depends exponentially on the momentum parallel to the magnetic field 

Pz, the gyration frequency Ω and the wave frequency ω, through the exponential term 

( 2 2exp 4mΩ A− ) . The generating function has a significant magnitude in the phase space area 

localized around the locations where the resonance conditions Ωm = 0 are fulfilled, with the 

width of these areas being inversely proportional to the transit time of the localized field 

through the particle (A ~ V/a). The effect of the “cross-section” of the wave-particle scattering 

is taken into account through the exponential term 
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First-order finite Larmor radius effects are taken into account through terms proportional to 

(ρ/α ).  

Having calculated w1, we can construct first-order approximate invariants ( ), ,z φP P Χ of the 

particle motion as follows: 
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where (P, Q) = (Pz, z), (Pφ, φ), (ΜΩΧ, Υ) are the respective pairs of canonically conjugate 

variables. By setting two variable pairs equal to constants the contour plots of each one of 

these approximate invariants provides analytically the Poincare surface of section in the plane 

defined by the third pair. Moreover, we can study the maximum canonical momentum 

variation after an interaction of the particle with the localized wave through the equation 
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The above results refer to the study of single particle dynamics under interaction with the 

localized wave field. Based on the generalized Madey’s theorem [3], [4], we can utilize the 

results of first-order perturbation theory in order to calculate position averaged quantities, 

depending on the canonical momenta, with up to second-order accuracy.  Therefore the 



averaged canonical momentum variation of an ensemble of particles having different initial 

gyration angles, z and Y positions, after a single interaction with the localized wave, is  
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where we have substitute the initial values of the canonical variables in the r.h.s. This 

equation provides the canonical momentum variation depending on the initial values of Pz, Pφ 

and X. Additional averaging over the initial guiding center coordinate X results in space-

averaged parallel and angular momentum variations that are of interest to calculations on 

energy transfer through wave-particle interactions with applications to heating and current 

drive in magnetized plasmas. 

In addition we can study the transient diffusion of particle momentum and X position for an 

ensemble of particles interacting with the localized wave field by utilizing the following 

evolution equation for the particle distribution function averaged over (z0, φ0, Υ0) 
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where P = (Pz, Pφ, Χ) and Q = (z, φ, Υ) and 
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is the time-dependent diffusion tensor [5]. 

In conclusion, we have studied particle interaction with spatially localized electrostatic waves 

in a constant uniform magnetic field. The localized fields may range from ordinary 

wavepackets to ultra short few-cycle and subcycle transient pulses, since no adiabaticity 

assumption is considered. The utilization of the canonical perturbation theory allowed for the 

construction of approximate invariants of the motion containing all the essential information 

for the strongly inhomogeneous phase space of the system, corresponding to the chaotic 

scattering and transient momentum variation of the particles. Moreover, the collective particle 

behaviour has been studied by calculating position-averaged momentum variations and 

transient momentum and position diffusion.  
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