A Stereo Vision System with Automatic
Brightness Adaptation
by
Keith G. Fife

Submitted to the Department of Electrical Engineering and Computer Science
in Partial Fulfillment of the Requirements for the Degrees of

Master of Engineering
and
Bachelor of Science in Electrical Engineering and Computer Science

at the
Massachusetts Institute of Technology

_May 1999 (

L:)&_w‘ o D

© 1999 Massachusetts Institute of Technolog; All rights reserved.

Signature of Author

Departmént of Electrical Engineering and Computer Science
- 7 May 1999

Certified by

Charles G. Sodini, Ph.D.
~Professor of Electriegl Engineering

J}ésis Sypervisor
Accepted by — i , e

“Arthur C. Smith, Ph.D.
Professor of Electrical Engineering

S Ar T SETT e INSTTTE Graduate Officer
- ARCHIVES
p—a
LIBRARIES

A Stereo Vision System with Automatic
Brightness Adaptation

by
Keith G. Fife

Submitted to the Department of Electrical Engineering and Computer Science
on 7 May 1999 in partial fulfillment of the requirements for the degrees of
Master of Engineering
and
Bachelor of Science in Electrical Engineering and Computer Science

Abstract

This thesis describes the development of an automatic brightness adaptive imaging system
for use in stereo vision algorithms implemented for a variety of processing architectures. A
256 x 256 array of wide dynamic range pixels with on-chip A/D converters provides the
digital data path for a feedback network which controls the charge integration parameters
at each pixel. The first goal of the project was to build a real-time demonstration of the
imager with configurable compression functions. Secondly, electronic irising was employed
by controlling the global charge integration time based on the average intensity of the
image. In addition to electronic-irising, the imaging system employs a linear or a logarithmic
compression scheme based on the image data. The controller fits the compression function
to the image by comparing the average intensities of many different regions within the image.
Finally, a 3-camera stereo-vision system was developed with data transfer to a PC through
the PCI bus at 60fps. The imagers are synchronized and controlled based on the center
imager’s data which allows for consistent object correlation in stereo vision algorithms.

Thesis Supervisor: Charles G. Sodini
Title: Professor of Electrical Engineering

Acknowledgments

I am very grateful to the number of people who have contributed to the successful completion
of my master’s project.

First, I'd like to extend my gratitude to Professor Charles Sodini for providing me with
this research opportunity. Throughout the project he exhibited trust in my judgment and
confidence in my ability. I also thank Dr. Ichiro Masaki for his insight and judgment in
this technical field.

Without the help of Zubair Talib I would not have been able to meet the deadline
for the first stage of this project. He also helped me out with general computing issues
and warmed me up to the idea of using PCs rather than UNIX Workstations when the
proper tools fit better there. He also provided many useful tools such as perl programs
and IATEX documents. Thanks to Lane Brooks for being the key player in developing the
software for displaying the 3 real-time images on the PC.

I thank all of the students and staff in Professor Sodini’s research group. Many thanks
to Steven Decker for his help on the first stage of the project and in general for creating
the CMOS imager chip upon which this thesis is based. Pablo Acosta-Serafini allowed me
to move the lab into our office and lengthen my desk with the infamous desk extender. Jim
MacArthur offered assistance and advice with design and general engineering problems.
Many thanks are in order to Patricia Varley and Anne Hunter for their generous assistance
in dealing with MIT administrative tasks.

Finally, I thank my family. In addition to all her support, and despite her busy schedule,
my wife kindly proof-read my thesis. I also thank my Mom and Dad. It was they who
encouraged me to explore my scientific interests while growing up. I'm very grateful for
their constant support, encouragement, and money.

Contents

1 Intreduction 15
1.1 Imager Architecture 16
1.1.1 3 Transistor MOS pixel 16

1.1.2 Wide-Dynamic Range MOS pixel 17

1.2 Imager System Requirements 18
1.3 Automatic Brightness Adaptation. 18
1.4 Project Description e e e 19
1.5 Thesis Organization 19

2 Imager Architecture and Compression Functions 21
2.1 ThePixel Array e e e e 21
2.2 The Compression Function 23
2.3 Adjusting Global Integration Period 26
2.4 Compression Function Used for Automatic Brightness Adaptation 27

3 Alternative Brightness Adaptive Schemes 29
3.1 Image Sensors with Exteiided Dynamic Range 29
3.1.1 Multiple Integration Periods 29

3.1.2 Non-Linear Pixels 32

3.2 Techniques for Automatic Iris control 32
3.2.1 Mechanical Irising 32

3.22 ElectroniclIrising o e 33

3.3 Systematic Solutions for Intelligent Vehicles 33

4 Design 35
41 OVerview e e e e e e e e e 35
4.1.1 Real-Time Demonstration 35

4.1.2 Digital Imager 35

4.1.3 Automatic Brightness Adaption System 36

414 PCllInterface e 38

4.2 Real-Time Camera Implementation 39
4.2.1 Format Converter e 39

422 NTSCEncoder 42

4.2.3 Imager Timing Signals 45

4.3 Digital Imager Implementation 47

CONTENTS

4.4 Automatic Brightness Adaptation Controller Board
4.5 3-Camera Board with Automatic Brightness Adaptation

Results

5.1 Real-time Imager Demonstration
5.2 Automatic Brightness Adaptation.o
53 PCIInterface « o v v v i i i i e e e e e e e
54 3-Camera System

Conclusion
6.1 SUMMATY . . . o o v o e e e e e e e e e e e e e e e e e
6.2 Future Work o i e e e e e e e e e e e e e e e e e

References

Real-Time Imager Demonstration

A1 VHDL e e e e e
A.1.1 Top Level VHDL -ims .. vhd
A.1.2 Imager Timing and Barrier Function - image.vhd
A.1.3 Top Level VHDL - format.vhd
A.1.4 Format Conversion - inout.vhd
A.1.,5 NTSCencoder-ntsc.vhd

A.2 Schematics e e

Automatic Brightness Adaptation Demonstration
B.l VHDL oot e e e e e e e e e e
B.1.1 Top Level - imsync.vhd
B.1.2 Data Protocol and Barrier Generation - image.vhd
B.1.3 Package for all Digital Imager Signals - imagertiming.vhd
B.1.4 Top Level - topbox.vhdo
B.1.5 Controller for Arithmetic Functions - boxcontrol.vhd
B.1.6 Sychronous Sample - samplewvhdo
B.1.7 Serial to Parallel Converter - serial2parallel.vhd
B.1.8 Selector - chipmux.vhd o 0oL
B.1.9 Start of Frame - startlatch.vhd,
B.1.10 Generating Averages - boxaverage.vhd
B.1.11 Top Level - topwithlights.vhd
B.1.12 Output Signals - lights.vhd
B.1.13 Next Level - topcomponents.vhd
B.1.14 LED display for Dynamic Range - gridlights.vhd
B.1.15 Iris Generation - sendiris.vhd o000
B.1.16 Comparators - compare.vhdo
B.1.17 Iris Generation - irisgen.vhdo
B.1.18 Subtraction-sub.vhd oo o
B.1.19 Mode Generation - modegen.vhd
B.1.20 Division - divider.vhd oo oo

55
55
56
59
60

63
63
63

66

CONTENTS 9

B.1.21 Top Level - monitordigitalvhd 120
B.1.22 Serial-to-Parallel Converter - serial2parallel.vhd 123
B.1.23 Format Converter - inout.vhd 124
B.1.24 Synchronous Sample - sample.vhdo oL 128
B.1.25 NTSC Encoder -ntsc.vhd 129
B.1.26 Generate flip Signal - flip.vhd 131
B.1.27 Start of Frame - startlatch.vhd 131
B.1.28 Test Interface to GuPPI Card - topguppi.vhd 132

B.2 Schematics o . e e e e e e e 135

10

CONTENTS

List of Figures

1.1
1.2
1.3
14

2.1
2.2
2.3
24
2.5
2.6
2.7
2.8
2.9
2.10
2.11

3.1
3.2
3.3
3.4

4.1
4.2
4.3
4.4
4.5
4.6
4.7
4.8
4.9
4.10
4.11
4.12
4.13
4.14

3-transistor voltage output pixel.
Wide dynamicrange pixel..
Stepped logarithmic barrier function.
Imager architecture.

The 256 x 256 CMOS pixel array.
Circuit for wide dynamicrange pixel.
Linear and logarithmic compression functions.
Barrier function with charge versus illuminationplot.
Images captured with linear compression at two different iris settings.

Two-step barrier function, Q vs. I plot, and Image data.
Two-step high barrier function, Q vs. I plot, and Image data.
Three-step barrier function, Q vs. I plot, and Image data.
Seven-step barrier function, Q vs. I plot, and Image data.
Compression functions with decreased integration time.
Barrier function and compression curve for automatic control.

Two sample extention of dynamicrange.
Sample photos using Adaptive Sensitivity.
The isc2050 Camputer.
Sample photos using floating point pixel ADC.

Real-time imager with brightness adaptive modes.
Iris feedback controller
Algorithm for measuring a wide dynamic range image
Imager output lines
Output format foreachpin
Format converter
Mapping of input counter to SRAM address
Mapping of output counter to SRAM address
Summary of format converter
Details of horizontal blanking and syncpulses
Details for the successive fields in NTSC
Opamp for driving the video monitor
Imager timing signals
Twisted pair interface.

26

12

4.15
4.16
4.17
4.18
4.19
4.20
4.21

5.1
5.2
5.3
5.4
5.5
5.6
5.7
5.8
5.9
5.10
5.11

6.1
6.2

Al
A2

B.1
B.2
B.3
B.4
B.5
B.6

LIST OF FIGURES

Timing for datacall and outs.o 48
Timing for clock and srisbit. oo 49
Automatic brightness adaptive test board. 50
Block diagram and symbols of CPLDs for brightness adaptation. 51
Accumulators used for frame averageing. 52
Timing for clock and irésbit.o 52
Block diagram of the 3-camera stereo vision system. 53
The real-time imager circuit boards and assembled camera. 56
Images captured with linear compression at two different iris settings. ... 56
Autobright test board for auto-irising and compressing. 57
Components for the digital camera. o 57
Lens cover for the digital imager that minimizes internal reflections. 57
Sequence of frames using auto-irising. 58
Sample images without and with auto compression. 59
Headlight test.o .o 59
Tadpole test board for auto-irising and compressing. 60
3-camera stereo vision arrangement.o 61
3-CAIMETA VIEWET. .« « » v v e e e e v e e e e e e e e e e e e e 61
Sweeping median algorithm.o 64
Intelligent vehicle demonstration system. 65
Analog imager schematics. oo 84
Format converter schematics. oo oo 85
Analog components and socket for imager. 136
Digital controller and interface for receiver. 137
Controller and comparator for automatic brightness algorithm. 138
Controller and programming interface for autobright. 139
NTSC encoder and format converter for display. 140

Tadpole daughter card for GuPPL. 141

List of Tables

2.1

4.1
4.2
4.3

Summary of imager performance. 0L 26
Imager output pins L. e e 40
Details of NTSC signals 44
Imager pin description oo o 46

13

14

LIST OF TABLES

Chapter 1

Introduction

The technology of microelectronic devices like sensors and digital processors has reached a
stage where complex intelligent vehicle control is now feasible [1], [2], [3], [4]. Many practical
image processing algorithms created for this application have been designed to operate on
digital processors in real-time using conventional imagers [5], [6]. Improvements in this field
will continue to be made as image sensors evolve and as processing power increases.

One limitation in image sensors is the effective dynamic range. Imaging applications
often deal with situations in which lighting conditions are far from optimal. In particular,
these may include objects positioned against strong back lighting which causes the object’s
details to become too dark if the camera adjusts itself to the high average brightness. In
some situations there may be many regions with steep gradations of brightness which are
hard to handle by standard cameras. Other situations depend on the dynamic behavior of
the camera. If there are abrupt changes in illumination, the camera may not be capable of
effectively readjusting its parameters.

Since the power of computation continues to improve, there has been a large motivation
to use general purpose processors in intelligent vehicle applications. These processors are
generally well documented, easy to use and compatible with previous architectures of the
same type. While the architecture of these processors may not be the most efficient for
low-level image processing, algorithms have been developed that successfully operate in
real-time on these processors [7], [8]. More conventional image processing algorithms like
edge-detection, smoothing and segmentation, median filtering and optical flow are generally
computationally intense but are based on repeatedly performing a few relatively simple
operations to every pixel. The pixel-parallel architectures described in [9] and [10] have
been created for such processing.

Improvements in imaging can be made with wide dynamic range algorithms implemented
in hardware and software for various processing systems. This thesis is based on a CMOS
imager chip developed by Decker and Sodini that has a controllable function for charge
integration [11]. Both the amount of time that the pixel reacts to light and the level to
which it can integrate charge can be dynamically controlled.

While research in intelligent vehicles has been largely based on driver assisted schemes
like adaptive cruise control, lane following, and collision avoidance, the research can also
be applied to fully autonomous systems. Stereo vision in particular has been a necessary
comnponent in nearly all passive vision systems [12], [13]. Real-time stereo vision with

15

16 CHAPTER 1. INTRODUCTION

column
line
photodiode

out

OF

v

Figure 1.1: 3-transistor voltage output pixel.

brightness adaptation could make both driver assisted and fully autonomous vehicles more
reliable.

The goal of this project is to design and build a stereo vision system that is well suited
for the image processing tasks of an intelligent vehicle application. To support the proposed
machine vision system, first a description of general imager architecture is presented, fol-
lowed by the specific requirements of imagers used for machine vision. Finally a 3-camera
automatic brightness adaption system is presented.

1.1 Imager Architecture

An imager is an array of pixels that convert light into charge, current or voltage. The
two main technologies for solid-state imagers are charge-coupled device (CCD) arrays and
metal-oxide semiconductor (MOS) arrays. One advantage of MOS imagers is that they
can be built into standard Complementary Metal Oxide Semi-conductor (CMOS) processes
which allow easier integration with digital and analog circuitry. A CMOS array of pixels
which uses on-chip circuitry to extend the dynamic range of an image is used for this project.

1.1.1 3 Transistor MOS pixel

An MOS imager consists of any pixel array which uses MOSFET transistors to convey
the signal from the pixels to the output circuitry. The basic form of the voltage readout
pixel is shown in Figure 1.1. The pixel is reset by pulling ¢, high. In a hard reset, ¢, is
pulled more then a threshold drop above V3 and the photodiode is reset to Vgg. In a soft
reset, ¢, does not go high enough to equalize the voltage across M2. Assuming ¢, goes to
Vid, the photodiode is reset to approximately Vyg — Vie 2. Integration starts when ¢, goes
low. The photodiode potential drops at a rate proportional to the illumination. The effect
comes from the photocurrent in the diode discharging a parasitic capacitor. At the end of
the integration period, the row select device M3 turns on, connecting M1’s source to the
current source at the bottom of the column line. The output signal is the voltage on the
column line, which has an approximate linear dependence on the illumination.

1.1. IMAGER ARCHITECTURE 17

column
line
photodiode

b(t) N(@
'y A
Nmax Nmax

highI .:

low 1 (

>t » 1
J‘max.lin lmnx,comp
integrated charge

b(t)
I 1 / drain (fixed potential)

Figure 1.3: Stepped logarithmic barrier function.

1.1.2 Wide-Dynamic Range MOS pixel

While conventional imagers frequently employ a mechanical or electronic shutter to adjust
the global integration time, the wide-dynamic range imager by Decker contains a pixel with
a lateral overflow drain as shown in Figure 1.2. The voltage level on the gate of M3 can be
varied during the integration period to control the amount of charge that is accumulated.

The function b(t) applied to this gate is referred to as a barrier function because the
amount of charge a pixel can accumulate over a given period is limited by the voltage level
on this gate. Figure 1.3 shows an example of a barrier compression function which can
be applied to this gate. The imager effectively uses a long integration period for regions
of low illumination and a short integration period for regions of high illumination. The
improvement in dynamic range demonstrated by this functionality is shown by the values
of Imax,lin and Imax,comp.

The imager is capable of delivering over 300 frames/sec and has a column-parallel ar-
chitecture. The floorplan of the imager is shown in Figure 1.4.

18 CHAPTER 1. INTRODUCTION

64 ADC ckis |

128 CDS ckis |

256 X 256
pixei array

128 CDS ckis |

64 ADC ckts |

Figure 1.4: Imager architecture.

1.2 Imager System Requirements

The main criteria for imagers used in intelligent vehicles is the frame rate, dynamic range
and pixel array size. Some of the requirements for the resolution and accuracy of imagers
used for autonomous mobility have been outlined by Kelly in [14]. The frame rate necessary
for the system depends on the speed of the vehicle or the intelligent machine. Most systems
could use a variable frame rate in the range from 5 to 100 fps. The NTSC standard of
30 fps is commonly used, although not always sufficient. The dynamic range required in
most applications is greater than that of linear imagers. Since image intensities may vary
by over six orders of magnitude, details in the darker regions of an image are lost by most
conventional imagers. While auto-irising may eliminate the saturation of bright objects in
a scene, the dynamic range captured by the imager remains unchanged. Finally, the pixel
array size or spatial resolution requirements for imagers is usually very large. However,
many systems use multiple cameras with different focal lengths to capture information at a
number of discrete distances from the vehicle. Therefore, in multiple imager systems, lower
spatial resolution imagers are sufficient.

1.3 Automatic Brightness Adaptation

Automatic brightness adaptation includes both electronic irising and automatic dynamic
range adjustment. In scenes that do not have a large dynamic range, a linear mapping of the
pixel’s brightness level should be used because features in an image are more distinguishable
when uncompressed. However, when the scene has a large dynamic range, a logarithmic
compression may be preferable. The imager should be able to control its image compression
scheme based on the dynamic range of the image. In addition, it must control the global
integration time based on the average brightness of the entire image. Furthermore, for an
imaging system that contains multiple imagers used for stereo vision, all imagers should
receive the same compression and integration parameters.

1.4. PROJECT DESCRIPTION 19

1.4 Project Description

The CMOS imager by Decker presents an array of pixels that can meet many of the perfor-
mance requirements described in Section 1.2. In order to create a useful imaging system for
intelligent vehicle applications, the system must provide automatic brightness adaptation.
The pixel array must be controllable from the host system and the output format must
ordered in such a way that the data can be readily processed. The automatic brightness
adaptive system will continually provide the processor with useful image data, even over
the most diverse conditions. It is the goal of this thesis to produce a 3-camera stereo vision
system with the specifications listed below:

e Automatic brightness adaptation (control range from 70db to 90db)
o High frame rate (60 fps)

e PCI interface for general purpose processing

e Secondary digital data path for customized processor

o NTSC output for viewing on a standard monitor

o Compact size

In the 3-camera system, all the imagers are synchronized and adjusted based on the cen-
ter imager’s data content. This allows for consistent object correlation in a stereo algorithm.
Some of the challenges of this project include:

e Creating a small printed circuit board to drive the imager
array and decode uploaded compression functions.

e Creating a protocol which uses a small number of intercon-
nections and allows multiple imagers to be synchronized.

e Designing an algorithm to control the global integration time
and to actively switch compression schemes based on the in-
coming imager data.

e Building a PCI interface which allows three 256 x 256 images
at 60ps to be loaded and displayed on a PC with minimal
latency and continuous throughput.

e Understanding both the analog and digital issues associated
with the imager array in order to produce high-quality im-
ages.

1.5 Thesis Organization

This chapter has described the motivation for research in automatic brightness adapta-
tion for intelligent vehicle control applications. Chapter 2 describes how to use the wide
dynamic range pixel and the architecture of the CMOS imager. Chapter 3 discusses al-
ternative brightness adaptation systems. Chapter 4 presents the various design stages of

20 CHAPTER 1. INTRODUCTION

the imager system. Chapter 5 describes the implementation and results of the automatic
brightness adaptation circuit boards. Chapter 6 summarizes the accomplishments and offers
suggestions for future work. Appendices A and B document the NTSC and digital imager
boards. Appendix C describes the software system and interface for the real-time demo on
a PC.

Chapter 2

Imager Architecture and
Compression Functions

The main topic in this chapter is the functionality of the wide dynamic range pixel. A
detailed discussion of the layout and circuit design involved in the 256 x 256 pixel array
is found in [11]. The two parameters that may be adjusted in the barrier function are the
voltage level and time. The following sections describe the pixel array and the motivation
behind adjusting these parameters during the frame period.

2.1 The Pixel Array

The micro-chip used for this project is shown in Figure 2.1. The chip features a 256 x 256
array of wide dynamic range pixels that can be controlled from the Pin Grid Array (PGA)
package. The imaging array also contains the CDS and ADC circuits necessary for the data
conversion.

The circuit for the wide dynamic range pixel is represented in Figure 2.2. The transistor
M4 is the overflow gate used to control the compression function. The voltage on this gate
decreases in steps during the integration period. The chip allows for 8 different stepped

Figure 2.1: The 256 x 256 CMOS pixel array.

21

22 CHAPTER 2. IMAGER ARCHITECTURE AND COMPRESSION FUNCTIONS

Vad
o]
4
b(t)-{ M4
cgbias
1 | M1 RS
M3 I |
hotodi charge b
photodiode collecting M2
diffusion

Ibias *

Figure 2.2: Circuit for wide dynamic range pixel.

voltage levels. Depending on the location and timing of these steps, many compressive
characteristics can be approximated. M3 is the charge spill gate which increases the sen-
sitivity of the pixel because it acts as a common gate amplifier. The photocurrent flows
into the low impedance source node and is discharged into the high impedance drain. This
allows charge collected by the large photodiode to be sensed by the small charge collection
diffusion. This feature was actually disabled for reasons described in Chapter 5. The source
follower M1 buffers the pixel from the column line loading. M2 is the row select transistor
that connects the source follower output to the column line during the row read-out period.

The integration period starts with the lateral overflow gate and sense diffusion at the
highest potential. Charge generated in the large photodiode diffuses across M3 into the
sense diffusion which lowers its potential. M4 applies a time-varying potential barrier to
the electron flow into the charge collecting diffusion. At the end of the integration period,
M2 turns on, allowing a bias current to flow through the source follower device. After
voltage on the column line has settled, the pixel output voltage is sampled by the correlated
double sampling (CDS) circuit. The first sample represents the amount of charge the pixel
has accumulated during the integration period plus the amount it started with before the
integration period started. Next, M4's gate is pulled to its maximum voltage which resets
the pixel. The pixel output voltage is then sampled again. The difference between the
two samples represents the total amount of light that was converted to charge during the
integration period. After M4 resets the pixel, its gate drops to the next step voltage level
and starts the integration period again.

2.2. THE COMPRESSION FUNCTION 23

2.2 The Compression Function

A wide dynamic range ime,e is one in which the ratio of light intensity between the darkest
and brightest portions of the image is more than what can be reliably captured by a standard
camera. The functionality of the lateral overflow transistor in the pixel array allows the
imager to capture and quantify high levels of illumination that would otherwise saturate
the pixel. Figure 2.3 shows both linear and logarithmic compression functions that can be
applied to the gate during one frame period.

Linear charge integration Logarithmic charge integration

Barner level ¢ frametime ={ —— famatme=f ————————————»

d Barrier level ¢

B - L

colioct collact

start read out stant read out

Figure 2.3: Linear and logarithmic compression functions.

For the linear charge integration function, the barrier level is used only to reset the
pixel. When it falls to the lowest level, the pixel level is always above the barrier unless
the pixel saturates. The eight levels in the pseudo logarithmic compression function cause
different illumination levels on the pixel to be mapped linearly into 7 regions of compression.
The first region is the largest and handles the lowest illumination levels. The regions
become progressively smaller until the last region, which represents the brightest levels of
illumination. In essence the low illumination levels are emphasized and the high illumination
levels are compressed. This is similar to the characteristics produced when taking the
logarithm of illumination. Figure 2.4 shows five steps in the barrier level where reset has
been referenced to the lowest voltage rather than the highest voltage. This convention
allows a more straight-forward transition into the charge versus illumination plot in the same
figure. The five regions of compression are represented by the five straight line segments
which approximate the logarithmic function. In the Collected Charge vs. Illumination plot,
I, represents the slope of the line passing through the points (0,0) and (¢1, b;) in the Barrier
Voltage vs. Integration Time plot. In general, each of the I points are the slopes of lines
representing the maximum light intensity that is unaffected by the barrier level during that
step of the function.

Nearly any compression characteristic can be implemented by varying the lateral over-
flow gate during the frame period. Four different compression characteristics are shown in
this section by applying the functions to the pixel array during the capture of the scene
shown in Figure 2.5. The scene requires a wide-dynamic range because in order to read the
words “MIT” near the light source the manual iris on the lens must be opened to the level
shown in the first image. However, In order to see the details in the light, it is necessary to
close the iris to the point where the word becomes unreadable.

The first compression function shown in Figure 2.6 gives the largest dynamic range. The
barrier is held at the first step voltage for nearly the entire integration period. This allows

24 CHAPTER 2. IMAGER ARCHITECTURE AND COMPRESSION FUNCTIONS

o
o
T

b2

o
-

Col lecteg Charge (Normalized)
-

Barrier Voltage (Normalized)

'
|
'
'
' '
1

o H)
1 Al

L

L] “] 2

50 100 0 200 0 02 04 [08
Integration Time (256 = 33ms} Illumination {Normalized)

Figure 2.4: Barrier function with charge versus illumination plot.

only the lowest levels of light to be mapped linearly to the voltage readout circuitry. Just
before the end of the integration period, the barrier moves to the top step which allows
only the very high intensities to reach the upper levels of the quantization. Although this
will give the largest dynamic range, the mid range light levels will be lost. In order to get a
better dark response, the first step of the barrier voltage can be moved to nearly half-scale
as shown in Figure 2.7. By adding an intermediate step between the low and high levels,
the image in Figure 2.8 is produced. This turns out to be the best visual compression
function for this scene. However, the best compression function to apply to a general set
of wide-dynamic range scenes is shown in Figure 2.9. By using all 8 barrier levels, a wide
dynamic-range image is produced with transition points that are not noticeable. The details
in the light are not as clear in the image because the dynamic range is about 4 times less
than that in Figure 2.6.

The previous plots of the collected charge versus the photocurrent have been scaled ap-
propriately based on the measured data of the imager. In order to determine the low end of
the dynamic range, the dark response and the random noise were used. The photocurrent
estimates were made based on the saturation level and the relationship between photocur-
rent and output level. Table 2.1 gives a summary of the imager’s performance taken from
[11].

Figure 2.5: Images captured with linear compression at two different iris settings.

2.2. THE COMPRESSION FUNCTION 25

° °
H H H -

B&zgiur Voltage (Normalized)
H

°
2

°
s

°

Collected Charge (Normalized)

o ™

3 3 a0, = % . -
Integration Time (256 = 33ms) Illumination (pA)

Figure 2.6: Two-step barrier function, Q vs. I plot, and Image data.

ge_(Normalized)

Barrier Volta
H

g8 (Ncrn;ali zed)

Col 1:=tad Char:

3 0 3 0 w_m m ®» »®
Integration Time (256 = 33ms) Illumination (pA)

1

Barrier Voltage (Normalized)
H

Collected Charge (Normalized)

s 10

% w 5) W B ox % e
Integration Time (256 = 33ms) Illumination (pA)

Figure 2.8: Three-step barrier function, Q vs. I plot, and Image data.

26 CHAPTER 2. IMAGER ARCHITECTURE AND COMPRESSION FUNCTIONS

Barrier Voltage (Normalized)
Cﬂll.ectnd .chuqc- (Non:nuud)

- e
Integration Time (256 = 33ms) Y1lumination”(pA)

Figure 2.9: Seven-step barrier function, Q vs. I plot, and Image data.

Table 2.1

Summary of imager performance.
Parameter Measured
dark response 174 mV/s @ 22° C
responsivity 23 mA/W @ 550 nm
conversion gain 13.1 pV/e~
FPN (dark) 4.0 mV (1 o)
power dissipation 52 mW @ 30 Hz, 5 V (10 bits)
saturation level 1.69 V
random noise (dark) 0.56 mV (1 o)
DR (linear mode) 3000

2.3 Adjusting Global Integration Period

By varying the starting point of the barrier function, the integration period can be adjusted.
Figure 2.10 shows the linear and logarithmic compression functions for part of a frame
period where the global integration period has been decreased. Varying the starting point
of the integration time is similar to varying the shutter speed on a still camera. This is
achieved by holding the pixel at the reset value until charge integration is permitted to
start. By automatically adjusting the start of the integration period based on the image
data, electronic-irising can be employed.

Linear charge integration Logarithmic charge integration
Barrier level ————— — frame time = { Barner leve! e frame time = ———
resel roset
collect = collect
t t
stant read out start read out

Figure 2.10: Compression functions with decreased integration time.

2.4. COMPRESSION FUNCTION USED FOR AUTOMATIC BRIGHTNESS ADAPTATION 27

Furthermore, by adjusting both the global integration time and the voltage steps on
the lateral overflow transistor, customized compression schemes can be created for various
scenes. Automatic brightness adaptation will therefore require both electronic-irising and
automatic compression adjustments. Logic must be produced to control these parameters
automatically based on the image data.

2.4 Compression Function Used for Automatic Brightness
Adaptation

In order to decide how to adjust the compression function to the image, many iterations
must be made in the function fitting process. If the image does not contain a lot of mid-range
intensities, the two-step barrier function which maximizes the dynamic range may be used.
However, adjusting to such a compression function may result in a large number of invalid
frames before a decision can be made. Choosing just two general compression functions
(linear and log) will allow good results because only the adjustment of the integration
period is necessary after the decision for linear or log compression is made.

Determining the transition points for the steps in the barrier function with varying
global integration times may be easily performed if the correct function and barrier levels
are chosen. By dividing the remaining interval by 2 after each step, the next step transition
point is determined. If the barrier step levels are all equally spaced, the correct function
is calculated except for the last transition point. By simply making the last barrier step
level twice as big as the previous ones, the correct function is employed. This step can be
increased by setting the analog voltage difference for the last two steps to a larger value.
Figure 2.11 shows the barrier function used for the automatic brightness adaptive imager
in this project. If more dynamic range is desired, or if more emphasis is to be placed on
high-illumination, the last step can be made even larger with repect to the previous ones.

T T T T T T T -r

Collected Charge (Normalized)

Barrier Voltage (Normalized)

80 100 150 200 2;0 ; ; 6 . ; . 10 12 1.4 "8 18
Integration Time (256 = 33ms) Illumination (pA)

Figure 2.11: Barrier function and compression curve for automatic control.

28

CHAPTER 2. IMAGER ARCHITECTURE AND COMPRESSION FUNCTIONS

Chapter 3

Alternative Brightness Adaptive
Schemes

This chapter explores other methods used for auto-irising and wide dynamic range imaging.
Section 3.1 focuses on specific products and research related to extended dynamic range
solid-state image sensors. Section 3.2 focuses on the various techniques used for automatic
iris control. Finally a discussion on system-level solutions is given in Section 3.3.

3.1 Image Sensors with Extended Dynamic Range

Dynamic range is defined as the ratio of the largest non-saturating signal in an imager
to the random noise of the imager in the dark. Common CCD sensors can acquire an
image contrast of about 1:1000 (60 dB). The poor dynamic range is constrained by the dark
current of the pixel on the low end and limited by the total amount of charge that can be
accumulated per pixel on the high end. Since the dark current decreases with temperature,
the dynamic range can be substantially enhanced by cooling the sensor and by employing
special readout circuits [15]. However, such methods, in addition to being very expensive,
may be inappropriate for real-time applications.

Several approaches for extending the dynamic range have been described and imple-
mented for CCD and CMOS image sensors. The various schemes can be divided into two
main types: Sensors utilizing multiple integration periods and sensors employing nonlinear
pixel characteristics.

3.1.1 Multiple Integration Periods

Cameras with extended dynamic range have many commercial applications. As a result,
some companies are producing high-end imagers with this feature — and patents protecting
them. One such company is i-Sight, Inc. Adaptive Sensitivity™is a proprietary i-Sight tech-
nology which enables the acquisition and display of wide dynamic range images [16]. The
technology is a visual information processing feature that attempts to mimic the human
eye’s ability to compensate for uneven illumination in high-contrast scenes. By combin-
ing data from multiple images, an optimally contrasted image is created. The Adaptive

29

30 CHAPTER 3. ALTERNATIVE BRIGHTNESS ADAPTIVE SCHEMES

CCDh
charge

o

44— 72dB —% [llumination

Figure 3.1: Two sample extension of dynamic range.

Sensitivity™ video-processor is a VLSI device for video signal processing in digital cameras.

The algorithm takes advantage of two image exposures. One exposure is made with an
electronic shutter set at a short exposure time which captures the brightest details in the
image. This causes most of the very dark areas of the image to become lost in the noise.
A second exposure of the same image is taken at a relatively long exposure time which
contains details of the darker parts of the image. This leaves the brightest areas of the
image saturated, without detail. The two images are then combined with the algorithm so
as to produce a single, wide dynamic range image. Figure 3.1 shows how the dynamic range
is extended by about 12dB.

The Figure 3.2 shows an example of the results produced by the algorithm. The first
two images show the areas of a scene requiring a wide dynamic range. Each image lacks the
details which may be seen in its counterpart. The last image was produced by the Adaptive
Sensitivity™algorithm and shows the benefits offered by both exposures.

Figure 3.2: Sample photos using Adaptive Sensitivity.

Figure 3.3 is a picture of the iISC2050 camPuter [15], a wide dynamic range digital video
camera based on this video processing technology. The camera is capable of obtaining a
dynamic range of over 72 dB. The camera has a remote head that is attached to the control
unit. The electronic shutter is user selectable from 1/60 to 1/30,000 of a second. The power
requirement for the system is 12 volts with a supply current of 1.5A.

Another technique for extending the dynamic range of an imager using multiple exposure
periods is explained and implemented by Yang [17]. A 640 x512 CMOS imager with floating
point pixel-level ADC has been fabricated in a 0.35um prccess. Figure 3.4 shows the results

3.1. IMAGE SENSORS WITH EXTENDED DYNAMIC RANGE 31

Figure 3.3: The isc2050 Camputer.

of using 8 samples (4 shown) to obtain a wide dynamic range image. The technique involves
a pixel-level ADC that is suited to multiple sampling. The expansion in dynamic range has
been shown to be 2%, where k is the number of image samples taken. The combined image
has a floating point resolution with exponent k.

Figure 3.4: Sample photos using floating point pixel ADC.

Researchers at Toyota have been developing wide dynamic range imagers and algorithms
for use in autonomous vehicles, as described in [18], [19], [20]. One of the most recent sen-
sors has a dynamic range of 10,000 which combines images taken under different exposure
conditions. The effectiveness of the developed vision sensor in comparison with a conven-
tional video camera was confirmed from experiments on a highway under various lighting
conditions.

32 CHAPTER 3. ALTERNATIVE BRIGHTNESS ADAPTIVE SCHEMES

3.1.2 Non-Linear Pixels

Delbruck [21] describes a photoreceptor circuit that can be used in massively parallel analog
VLSI silicon chips to perform initial analog visual information processing. The receptor
provides a continuous-time output that has low gain for static signals, and high gain for
transient signals that are centered around the adaptation point. The response is logarithmic,
which allows for a dynamic range of more than 6 decades. The 5-transistor receptor uses
an adaptive element that is resistant to excess minority carrier diffusion. The continuous
and logarithmic transduction process makes the bandwidth scale with intensity.

Rowley [22] has developed a continuous-time, logarithmic photoreceptor which exhibits
an improvement in the signal-to-offset ratio at low and medium light intensities. The loga-
rithmic receptor gives a larger dynamic range than many other continuous-time receptors.
The research has shown that the offsets in the photo-conversion elements decrease as the
pixel current levels increase.

A floating-gate photosensor used for detecting wide-band photosignals that has high
dynamic range and low noise has been developed by Kub and Lin [23]. Low noise is achieved
by converting photocurrent to a voltage through capacitive coupling rather than the using
a load resistor. The floating-gate photosensor has demonstrated low noise and a dynamic
range of 10,000:1. The detector is AC coupled and has a square-root compressing transfer
function for the highest light intensities.

Vietze [24] has introduced a pixel structure that exhibits an enhanced dynamic range by
subtracting an offset current from the pixel while retaining a linear readout characteristic.
The offset current can be programmed by a specific programming voltage. This circuit may
be suitable for conventional photodiode sensor architectures as well as for active pixel sensor
(APS) designs. Experimental results have shown an increase in dynamic range.

NEC Corp [25] has developed technology for narrow-channel effect suppression in pho-
todiodes for reduction of smear in order to improve dynamic range in small pixel interline-
transfer CCD image sensors. The new technologies have been applied to progressive-scan
CCDs which show improvement in the pixel charge capacity and dynamic range.

Hamamoto [26] proposes a motion adaptive sensor for image enhancement and wide
dynamic range imaging. The motion adaptive sensor is able to control integration time
pixel by pixel. The integration time is determined by saturation and temporal changes of
incident light. The idea is to obtain high temporal resolution in the moving area and high
SNR in the static area.

Bohm et al. [27] have developed image sensors in a TFA (Thin Film on ASIC) tech-
nology. A TFA prototype for automotive vision systems has been presented which allows
each pixel to adapt its individual sensitivity to the local illumination. A dynamic range of
greater than 120 dB has been reported.

3.2 Techniques for Automatic Iris control

3.2.1 Mechanical Irising

There are two common types of automatic iris lenses. The first type, called the Video Auto
Iris, uses the video signal as feedback to the iris control motor. The other common variant

3.3. SYSTEMATIC SOLUTIONS FOR INTELLIGENT VEHICLES 33

is called the DC Auto Itis which relies on circuitry contained within suitably-equipped
cameras. The circuitry monitors the image data and produces a DC output representing
the desired iris opening size.

A popular method for iris control in camcorders is described by Furlong [28]. A Hall-
effect device is mechanically connected to the iris motor which monitors the iris opening
and provides feedback for the opening size of the diaphragm. The voltage output of the
Hall-effect switch is typically in the range from 3 volts down to 1 volt. A microprocessor
inside the camera creates a pulse width modulated (PWM) iris drive signal. The signal is
fed to the iris motor via the drive amplifier. The duty cycle of the PWM signal determines
the size of the iris opening. A closed-loop feedback path allows the iris opening to accurately
track the PWM drive signal. The microcontroller then selects the iris opening size based
on the incoming video signal.

3.2.2 Electronic Irising

Auto iris control that does not involve mechanical parts is usually referred to as electronic
irising. There are two basic methods used for electronic irising: automatic shutter speed
control and automatic gain control.

The most common fixed shutter speeds for video cameras are 1/60, 1/120, 1/180, 1/250,
1/500, 1/1000, 1/4000, and 1/10,000th of a second. The clocking schemes in many CCDs
have been adapted for electronic irising. Since the signals from a CCD pixel array are usually
analog, the control unit for setting the shutter speed is also analog. Proper feedback and
filter design can lead to very quick response times. In general, electronic irising provides a
much quicker response than a mechanical auto-iris.

Automatic gain control can be implemented in the “front end” of a CCD to control the
voltage range at which the pixel level registers its data. This technique is not very useful
if a wide dynamic range image is desired. Since the dynamic range is limited by the dark
current in the low end and the pixel’s charge capacity in the high end, using gain to adjust
the signal level only reduces the range in either direction.

3.3 Systematic Solutions for Intelligent Vehicles

The Matsushita Audio and Video Research Lab have developed a technique for automat-
ically adapting to a wide dynamic range image [29]. A variable and nonlinear gamma
characteristic is applied to the input image depending on the distribution of the luminance.
The gamma, characteristic is decided so as to amplify the luminance of the dark pixels and
to preserve the contrast of the bright pixels for the back-lit objects. Apparently, the output
luminance is set to the input luminance for the front-lit objects. A decision rule for the
gamma, characteristic has been established using the learning algorithms of neural networks.
The idea is to make the decision rule coincide with human vision decision rules. The effect
of the method is expansion cf the dynamic range by about 10 dB. A cascaded connection of
RAMs has been developed for the implementation of the gamma decision rule. The adaptive
gamma processing has been designed into a consumer video camera.

Systematic solutions for autonomous control are image sensors that adapt to the en-
vironment and interface to high-level processors. Although many solid-state imagers now

34 CHAPTER 3. ALTERNATIVE BRIGHTNESS ADAPTIVE SCHEMES

employ electronic irising, very few companies address solutions for systems. Many of the
algorithms described in Section 3.1.1 use off-the-shelf CCD arrays. Actively adjusting an
imager to its lighting conditions requires a custom pixel structure designed for a specific set
of algorithms. The right combination may require work in both areas simultaneously.

Chapter 4

Design

4.1 Overview

In order to accomplish all of the design objectives of this project it was necessary to build
the imager system in stages. The first part of the project involved demonstrating the imager
in real-time on a standard monitor with linear and logarithmic compression functions. The
next part of the project involved designing a digital imager with a twisted pair interface
that could be synchronized to other imagers. The imager would receive and decode any
compression function or iris value. The third stage of the project involved the design and
evalution of the automatic brightness adaptive algorithm. This included the hardware for
electronic-irising and automatic compression. Finally a 3-camera system was built based
on the experience and results of the preceding stages of the project.

4.1.1 Real-Time Demonstration

This part of the project involved generating all of the timing signals for the imager as well
as the discrete circuitry for the analog sources. The timing circuits are used for controlling
the integration period as well as selecting the barrier function. The imager also contains
switched-capacitor ADC and CDS circuitry for which the timing signals must be generated.
A surface mount PC board was made to keep the size of the imager to a minimum. An NTSC
encoder was incorporated into the programmable logic as well as a feature for switching
between linear and logarithmic compression functions on the fly. Two discrete blocks of
SRAM are used to store an incoming frame and to display the previous frame. The CPLD
then ping-pongs between the two memory blocks, depending on the cycle. A D/A converter
is used to convert the digital data to an analog NTSC signal for display on a standard
monitor. Figure 4.1 shows a block diagram of this system.

4.1.2 Digital Imager

A digital imager was designed to plug into the controller board using a twisted-pair cable
connection. A 256 macrocell CPLD was used to provide all the timing for the chip as well
as the decoding and encoding of incoming and outgoing data. In order to send data at rates

35

36 CHAPTER 4. DESIGN

| 1 1
CMOS IMAGER
Yol < SRAM
control
QT s,
deta CPLD
—F vo' *qAM
| e
ourrent sources
pixsl out
voltage references
hidind DAC
NTSC

Figure 4.1: Real-time imager with brightness adaptive modes.

referance

H(s) iris(s) >

avorsge —
Lo |

Figure 4.2: Iris feedback controller.

above 50 MHz, low voltage differential signal (LVDS) drivers and receivers were used. The
lens cover was designed to accept either CS-mount or C-mount style lenses.

4.1.3 Automatic Brightness Adaption System

The Automatic brightness adaptive imager consists of both electronic irising and intelligent
compression. For both features, average frame values are calculated with dedicated hard-
ware as the imager sends data to the host processor. The electronic irising algorithm uses
the average of the entire frame and the current iris value in order to calculate the next iris
value. The intelligent compression controller uses the averages from 16 subregions in order
to approximate the dynamic range of the entire image. An efficient design is presented here
that makes use of the column-parallel nature of the imager data.

Electronic Irising

The objective of the electronic iris is to keep the imager’s frame average intensity at a
desired reference level. A feedback controller is designed to drive the frame average to the
reference by using the iris value as the output control signal. A block diagram of the control
system is shown in figure 4.2.

The compensator for this feedback controller should allow fast settling time with the
lowest overshoot possible. If the effect of image lag is neglected, the only dynamics as-
sociated with the imager is the delay from one frame to the next. When an iris value is
chosen, the frame average is immediately updated on the next available sampled frame

4.1. OVERVIEW 37

value. Rather than operating or. the difference between the frame average and the reference
value, a simple calculation for the iris at every other sample point will prove to give the
best results. The iris control variable that sets the integration time can be thought of as
a mechanical shutter to the imager. If the illumination in the environment stays constant,
then there is a linear relationship between the position of the shutter and the brightness of
the image on the surface of the pixel array.

The iris value that generated the frame average at each sample is known. Since the
relationship between the iris value and the frame average is also known, the illumination
level of the room can be calculated. Once the illumination level is determined, the next iris
value can be selected. If the illumination in the room stays constant over the next frame
period, the frame average will be driven directly to the reference value in the subsequent
frame. The equation for controlling the iris value uses the following parameters:

iris — 255 when closed (4.1)
0 when open)
255 when bright

frame — { 0 when dark (4.2)
ref +— 128 = half-scale (4.3)
The equation is then given by:
. ref .
TSy m X 1Tt8p—1 (4.4)

The relationship between the iris value and the frame average shown in equation 4.4 is
used for the electronic-iris in the digital imager. Therefore, controlling the integration time
of the imager involves dividing a previous integration time by the frame average and shifting
the result. The hardware implementation involves an accumulator and a cyclic divider.

Automatic dynamic range adjustment

The two main issues with changing the compression scheme during the integration period
are how to measure the dynamic range of the image and how many different compression
functions to use. Figure 4.3 shows one way of estimating the dynamic range of an image
by breaking it into smaller blocks and calculating the average intensity of each region. By
comparing the average intensities of the individual blocks, a wide dynamic range image can
be targeted.

For the purposes of this project, the system will either choose between a linear com-
pression function or a logarithmic compression function. The system will use the 16 x 16
blocks to estimate the dynamic range. A ratio of the brightest block to the darkest block
can give a good estimate of the dynamic range if the imager is also using electronic irising.
The estimate of the dynamic range will have different values depending on the compression
function that is employed during the calculation. Therefore, the dynamic range estimate
is comnpared against a linear threshold value when the linear compression function is used

38 CHAPTER 4. DESIGN

Average

ai3 - a12 = maximum intensity difference

Figure 4.3: Algorithm for measuring a wide dynamic range image.

and against a logarithmic threshold value when the logarithmic compression funtion is used.
The decision rule for the compression function is given below:

When in linear mode:

if dynamic range > linear threshold then
mode <+ log

When in log mode:

if dynamic range < log threshold then
mode + linear

The difference between the two threshold values causes a hysteresis in the decision rule
which minimizes the possiblity of oscillating between modes in border-line cases.

4.1.4 PCI Interface

In order to get three 256 x 256 images at 60 fps into the PC a specialized PCI interface board
would have to be designed. The software radio group at MIT had already designed a data
acquisition board that would meet the design needs for this project [30], [31]. The General
Purpose PCI Interface (GuPPI) card was easy to use and already had drivers written for
linux. The formatted data was grouped into 32-bit words with the last 24 bits containing
8 bits from each imager. The upper 8 bits were used for the vertical sync and reserved for
any extra information that might need to be sent to the PC. The only necessary signals for
loading the data into the GuPPI card were the clock and write-enable signals. The GuPPI
card also sends 4 control signals to the board that could enable or disable features such as
electronic irising and auto-compression.

4.2. REAL-TIME CAMERA IMPLEMENTATION 39

4.2 Real-Time Camera Implementation

Generating the logic for the various stages of this project involved creating modules in
VHDL for programming CPLDs. The following sections describe some of the modules that
were used in the first real-time demonstration of the imager. Nearly all of the modules
described in this section were used again in later stages of the project.

4.2.1 Format Converter

The format of the imager’s pixel data has been described in Chapter 2. The image datapath
is broken up into bit-planes by row. In essence, each row is separated into two parts. All of
the bits for the first part are sent in bit-planes, starting with the MSB. Upon completion
of the transfer of the LSB bit-plane, the second half of the row is sent in the same format
starting with the MSB. Each subsequent row is sent in the same manner until the entire
frame is finished. In order to reformat the data into a raster scan format, at least half a row
must be buffered at a time. However, if the data must be sent in NTSC format, an entire
frame must be buffered because the read out operation is faster than the write in operation.
This is due to the horizontal and vertical blanking periods of the NTSC standard, as will be
described in Section B.1.25. Therefore, the strategy for reformatting the data is to perform
part of the reformatting while writing data into SRAM and the final formatting on the read
out operation.

A diagram of the output pins of the imager is shown in Figure 4.4. Each of the 32 output
pins is responsible for 8 columns located near the lines shown in the figure. The details for
the order of the column outputs for one-fourth of the imager is shown in Figure 4.5. The
A and B select signals are generated along with the signals that drive the ADC and CDS
circuits. Since every two columns share one ADC, the A and B select signals are necessary
to control which column to convert. Due to the nature of the ADC, all of the bits for the
columns in A must be generated before switching to the columns in B. The data for each
row is therefore broken down into two halves that are separated by the periods of the A
and B select. For example, the output sequence of pin 16 is listed below with the notation,
colummipit_number:

A:17,57,97,137 — 16, 56,96, 136, . . . , 10, 50, 90, 130 —
B :37,77,117,157 — 3¢, 76,116, 15¢,. .., 30, 70, 115, 150

The object of reformatting the data is to put pixels together starting with the MSB
down to the LSB. In order to do this, each 32-bit word that comes off the imager during the
output cycle is broken down into eight 4-bit words. Using SRAM that stores 8-bit words
allows two 4-bit blocks to be stored at each word location. Table 4.1 shows which imager
outputs are mapped to the 4-bit blocks. The idea is that by writing four bits from separate
columns in the first half of the word, the second half of the word is reserved for the next
four bits from the same columns. This allows any column’s M SB to be written to the same
word as the MSB — 1. The process is then a matter of first reading out the previously

4 25 26 27 28 29 30 31

1

Figure 4.4: Imager output lines.

18 17 18 19 20 21 22 23 2
16 14 13 12 11 10 9
. @ . ®@
A H H A H H
R R
s 7 1 113 w2327 N
1 s o 13 7 21 2% 2
2 ¢ 10 14 1 2 26 0
4 128 1 120 264} 23} %
[- T S-S B
a [A HEEEE N O
B H s H

Figure 4.5: Output format for each pin.

CHAPTER 4. DESIGN

written four bits from SRAM before storing the next four bits along with the previous four

bits.

The key to formating the data is that the address counter for the SRAM gets shuffled in
a particular way for the write in operation and in a different way for the read out operation.
Figure 4.6 shows how all the data from the imager gets stored in SRAM.The signals inc,
n, pac, part, prime and row all correspond to aliases for the bits on a 17-bit counter. The

Table 4.1
Imager output pins.

4-bit Block

Imager Output Pins

TOoO"mEHEOQwWe

16
18
20
22
24
26
28
30

15
13
11
9

P JCINS I

17
19
21
23
25
27
29
31

14

12
10
8

O N O

4.2. REAL-TIME CAMERA IMPLEMENTATION 41

_ 32-blt0utmerollmng¢r_7
|Ax|Bxle|Dx]Ex|Flex]Hxl

inc M pac prime row
A Ap .
w7y - .
- Qun — =
) —_—
2 e e
L
; S pa—
'y e
o ¢]
1 5400
02 Lole —es
2] — — pa—] el
- ; e e
% —_—
oy .
B :
-t
e o —
Es x S
" I
(de = o] et
o el Quaned] <t
H1 . I
H - SN
Y::"-: je— j

Figure 4.6: Format converter.

counter increments when each 4-bit block from the 32-bit imager data is handled. The
aliases have the following associations: pac stands for each of the eight 4-bit blocks from
the imager data, inc is for the four columns associated with the A or B select, n controls
the write in or read out operation, part is for the four parts of the pixel, prime indicates
the A or B select cycle, and row is the row number.

The aliases are combined together to form the shufled address for the SRAM. Figure 4.7
shows how the aliases are assigned to the counter and mapped to the address lines for the
SRAM. The timing for writing into SRAM is governed by the timing of the imager. A
state machine controls the operation of the read and write operations. When data from the
imager is ready, the state machine cycles through 8 reads and 8 writes from SRAM. The
bottom 4 bits from each word in SRAM are combined with a 4-bit block from the imager
and then written back to SRAM. This causes two adjacent bit-planes to be stored in the
same word location for the SRAM. An example of the first four words in SRAM is given
below:

17 27 177 187 1l 26 17¢ 18
57 67 217 227 b5¢ 6 21 22
97 107 257 267 9¢ 10¢ 256 266
137 147 297 307 136 14¢ 296 30

42 CHAPTER 4. DESIGN

Tow part Inc
countin = LK 1 I8

prime

addr =

rom Inc1

prlmcn

Figure 4.8: Mapping of output counter to SRAM address.

The read out cycle is governed by the timing for the NTSC encoder. The encoder gives
a signal to start a new frame, followed by a row start signal. In order to turn out one 8-bit
pixel, it takes 4 reads from SRAM. An 18-bit counter is used as the pixel counter and new
aliases are shuffled and mapped to the address bits for SRAM. Figure 4.8 shows the aliasing
for the output counter and the mapping to the SRAM bits. The aliases incl, nl, pacl,
partl, primel and rowl have the same significance as the aliases from the input counter.
The variable top is used for masking the words that are read off of the SRAM. Another
variable called bot is simply top — 4 aud together they select only the top and bottom bits
for the same column of an 8-bit word from the SRAM. After 4 reads from the SRAM, a
variable called pizel becomes full and is sent to the output as a correctly formatted word.
Figure 4.9 gives a summary of the operation of the write in and read out cycles.

The CPLD controls the swapping of the I/O ports and the address lines for the two
SRAM chips. A variable called flip is used to ping back and forth between SRAM chips.
The VHDL code for the format converter is included in Appendix A under the file name
inout.vhd. The updated format converter used in the automatic brightness adaptive system
is found in Appendix B.

4.2.2 NTSC Encoder

In order to display the images in real-time on a monitor, an NSTC encoder was included
in the design. Off-the-shelf NTSC encoders were not well-suited to this project because the
packaging of the encoders was too large to fit in the desired PCB size. Also, running an
NTSC encoder meant that a complicated network of handshaking and clock division would
need to be implemented. Instead, an NTSC encoder was written in VHDL and programmed

4.2. REAL-TIME CAMERA IMPLEMENTATION 43

[1, T2 [17.]18]
[5:] 6 [21,]22] WRITE IN READ OUT
[9: T10:]25:]267)
137/147129+|307
[l lrde) [Tz Trlelhlazdied M EALE AR LY
: : Azl z:12:02 171212
EIzTzhel EARA R N FA G2 I]
: P (e fiedrefrediefigd e ia)
[1:]2: [17:]18;] [1. 12 Ji7.018:.3 1o] 25 §17cl 180}
[1.]2 [17.]18]
7o)

Figure 4.9: Summary of format converter.

| g |
—_— Back porch Front porch
~ r'd

Image data
| /\ blank
! B e
i 1

Figure 4.10: Details of horizontal blanking and sync pulses.

Amplitude

into the same chip that generated the timing signals for the imager. The only signals that
needed to be generated for the encoder were a sync signal and a blank signal. The sync
signal is a combination of vertical and horizontal syncs. The blank signal is used to blank
out the electron beam of the picture tube during vertical and horizontal retrace. Figure 4.10
show the characteristics of the horizontal sync and blanking periods. The vertical sync is
made up of equalization and seration pulses. A listing of standard NTSC pulses is included
in Table 4.2.

Since it takes 4 clock cycles to get out one pixel from SRAM, the pixel clock was set to
the system clock divided by 4. The ratio for visible line time to the total horizontal line time
is 0.84. Since the imager has a square array of 256 x 256 and a monitor has an aspect ratio of
4 x 3, a small section on each side of the monitor is blanked out. The actual visible line time,
then becomes 0.84 x 3/4 = 0.63. Since it takes 1024 clocks to show all 256 pixels, the total
number of clock cycles for the entire horizontal line should be 1024 x 1/0.63 = 1625. The
system clock was selected to be 24.576 M H z because it can be divided down to exactly 60Hz.

44 CHAPTER 4. DESIGN

Table 4.2
Details of NTSC signals.
PERIOD TIME
Total line (H) 63.5us
H blanking 0.14H = 9.5 - 11.5us
H sync pulse 0.08H = 4.75 £ 0.5us
Front Porch 0.02H = 1.27us
Back Porch 0.06H = 3.81us
Visible line time 0.84H = 52 — 54pus
Total field (V) 262.5H or 1/60 = 0.0167s
V blanking 0.05V — 0.08V
Each V sync pulse 27.35us
Total of six V sync pulses 3H = 190.5pus
Each E pulse 0.04H = 2.54pus
Each seration 0.07TH = 4.4us
Visible field time 0.92V —0.95V
Equalizing Interval Equalizing Interval Blanked Horizontal syncs
-——l H |+«— 34 — -~ 3H —f— 5H — sync level
LI DT e e
L\ I._ 3H _,l Blanking level / _|
Verticie Sync
_ /\ (Serrated pulses) VA
eeed Lol L) Ll o Peak white T B IV R -
Bottom of Image Vertcle Blanking Period I Top of Image

Figure 4.11: Details for the successive fields in NTSC.

The number of clocks per frame is therefore 24.576 M Hz /60H z = 409600. Since NTSC has
262.5 lines per frame, the number of clocks per row should be 409600/262.5 = 1560.3809.
Instead, 256 lines per frame is chosen to give exactly 1600 clocks per row. This works out
very nicely because 1600 clock cycles gives the correct aspect ratio on the monitor and
allows a consistent row time throughout the image. Since there are fewer lines per frame,
the number of blanked lines after the vertical sync is less than an ordinary NTSC signal.
This simply reduces the size of the blank region at the top of the image.

Figure 4.11 gives the details of the vertical blanking period during vertical scanning.
The vertical flyback starts with the leading edge of the third seration which means that one
horizontal line time passes during the vertical sync before flyback starts. Also, six equalizing
pulses equal to three lines occur before vertical sync. So 1 + 3 = 4 lines are blanked at the

4.2. REAL-TIME CAMERA IMPLEMENTATION 45

dac blank sync i

68K 0
340K Q
475KQ
20KQ

—W—o

5Q

10KQ

Figure 4.12: Opamp for driving the video monitor.

bottom of the picture just before vertical retrace starts. The amount of time needed for
vertical retrace is usually 5 lines. As the scanning beam retraces from the bottom of the
monitor to the top, five complete horizontal lines are produced. This leaves 4 lines blanked
at the bottom before flyback and 5 lines blanked during flyback. So the total number of
blank lines must be at least 9. An ordinary NTSC signal uses 20 blank lines during the
vertical blanking period. For this project, 14 blank lines were chosen. This leaves a viewing
area with a spatial resolution of 256 x 242. By slightly altering the vertical blanking period,
a very efficient encoder was constructed. The result was 30 frames of data per second with
60 fields per second displayed in non-interlaced format. The VHDL code for the encoder
can be found in Appendix B. An interlaced encoder was also developed and included in
Appendix A.

A D/A converter was used for generating the analog pixel values for NTSC. When the
blank signal is activated, the D/A converter outputs its lowest level. In order to combine
the output of the D/A converter and the blanking and sync signals, an opamp was used
with a summing junction as shown in Figure 4.12. A 75 ohm resister was used for matching
the impedance of the coaxial cable and video monitor.

4.2.3 Imager Timing Signals

The signals that must be generated for the pixel array are listed in Table 4.3 with the digital
signals in the upper section and the analog signals in the lower section. The schematics for
the analog components can be found in Appendix A. The schematics for the updated ana-
log components of the digital imager is found in Appendix B. The bias voltages VREFP,
VREFM,VCM,OFFSET, and CBIAS were generated with fixed resistors acting as volt-
age dividers with tantalum capacitors at each node. The current sources oalbias, oa2bias,
and cbias were also fixed resistors from the analog supply to the input pins. The colz
voltages were generated from a resistor array with ceramic capacitors on each node.

The digital signals are generated from a CPLD that was programmed from VHDL files.
The timing diagram in Figure 4.13 shows the digital waveforms for these signals. The
outputs of the imager are 50 times slower than the system clock so a process is run that
updates the imager signals every 50 clock cycles. The generation of the phiz signals requires
some internal states to avoid overlapping edges. This was important because the operation

CHAPTER 4.

DESIGN

Table 4.3
Imager pin description.
PINS DESCRIPTION
rsin bit for start of frame

swsell ,swsel2,swsel3
colsell,colsel2,colsel3
clkBB,clkA
phil,phi2,phi3,
phi4,phi5,phi6
phi0,phiObar
Aselect,Bselect
isolate
samplel , sample2
clkr

selection for output mux
selection of barrier level
latches ADC outputs into mux
clocks for ADC circuit

signals for start of ADC
selection for columns to ADC
hold values on the CDS circuits

samples pixel value and reset (CDS)

advances row select

clkb advances barrier

out(1 - 32) the 32 pixel outputs

vcm common mode voltage for opamp
vrefm,vrefp voltage references for ADC

offset offset for CDS

oa2bias sets bias for ADC opamps
oalbias sets bias for CDS opamps

cbias sets bias for pixel source followers
cgbias voltage at charge spill device

colsell,colsel2,colsel3,
colsel4,colsel5,colsel6,
colsel7,colsel8

voltage levels for barrier function

4.3. DIGITAL IMAGER IMPLEMENTATION 47

ass] | i u u u u u u
U

clkA

S R I I I I S B

swsel2

UL U UL UL UL UL

w 1 I

wws] LT

« MN_nNn_n _n n n n n

© 1M mn _n_rn_nm
s n_n_n _n_n _rn_rmn I
" n_n _n _n_n_n_’n._n
Asclect | f

Bsclect __]]

sample1 r_’——_—]___—
sample2 l N
isolate | L
clkb N

clkr 1

s OO0 XXGOOOOOOOOOOCONGONX

cotsel(i) XXX ORI XXKXXXXX
5 = Aselect 96 = Bselect

Figure 4.13: Imager timing signals.

of the ADC requires clean, non-overlapping signals.

A choice between 2 barrier functions is selected by an on-board switch. In linear
mode. The colsel signals choose only between The highest potential (reset) and the lowest
potential(~ 2.5V). In compression mode, the 3-bit colsel word increments at the specific
row intervals corresponding tc the desired function.

4.3 Digital Imager Implementation

The operation of the digital imager is essentially the same as in the real-time demo except
that a new data protocol was developed to send and receive data to and from the host.
In order to keep a small link between the imager and host, the data from the imager is
sent serially with a clock. The clock line also contains information about the start of each
sample and the start of the frame. The imager receives a system clock signal and an input
line from the host. The data rate for the link is about 50Mbs, so LVDS drivers and receivers
are used with twisted pair media. Figure 4.14 shows the interface between the imager and

48 CHAPTER 4. DESIGN

Imager Rocoiver

—— b clock+
clock- A—

clock+
clock-

Inisbite ¢ p irisbit+
insbit- insbit-

{ datacall+ ¢ b datacall+

outs+ [b outs+

outs- outs- _—

Figure 4.14: Twisted pair interface.

clock.]L..||_|L.||_|UUUUUUUUUUUUUUUUUUUUUUUL

L—end of frame start pulse start of frame -|<——ﬁrst packet sample
datacall J LT LI LI 1S lo 1 2 3 s[5]ls 7 8§ 15 16 17
outs K27 Y28 {29 {30 (31 o G 2 3 e 5 e {7 Xe)

last packet sample —’l*— 1st check -I

dataca Sy L e 2 s
outs X8 ¥T0 X132 Y33)34 X35 Y36 37 X38 Y7o 0 Y21 X2 (25 X4 X 25 X268 X27 X2z Y= Y30 i

|‘~ 2nd check —J end of wait ——|
Gatacall 45 8 7 8 o %o m y2 1 1 s 1 w [T
outs Yo X1 X2 X3 a5)e 7 Xs Jo 101112}

Figure 4.15: Timing for datacall and outs.

receiver.

The four signals outs, datacall, clock, and irisbit are the only signals used to communi-
cate between the imager and the controller. Figure 4.15 is a timing diagram of the signals
outs and datacall. The image data is sent to the receiver in 32-bit packets from outs. The
signal datacall is used to clock in the data at the receiver. A watch dog monitors the wait
interval between samples in order to determine if the next packet is at the start of the
frame. A wait interval is targeted when four clock cycles pass before datacall increments
the count register at the receiver. If the second wait interval passes with out a change in
datacall the count register resets and waits for the next rising edge of datacall. However, if
datacall changes during the second interval, the next packet will be the start of the frame.

The signal clock is sent from the receiver and becomes the imager’s system clock. This
allows multiple imager’s to use the same system clock so the all the data is synchronized.
Figure 4.16 shows a timing diagram for the transfer of the iris and mode values. The signal
irisbit remains low until the transfer is about to proceed. It is then sent high for one clock
period and low for the next clock period. The transfer then begins with the MSB of the iris
value. The last bit that gets transfered is the mode value which indicates the compression
function to apply. The signal irisbit is also used to reset the imager. When irisbit is held
high for 16 clock cycles the imager enters a reset state. The imager then starts at the

4.4. AUTOMATIC BRIGHTNESS ADAPTATION CONTROLLER BOARD 49

dock TLIMLMALM MMM Mo are st

Iris and mode transfer

irisbit 1 B7 {66 (&5 B4 B3 JB2 (Bt [Bo ™

cock LALLM ML gt
reset pulse

insbit ——___ fo 1 2 3 4 5 6 7 8 8 10 11 12 13 14 15 |

Figure 4.16: Timing for clock and irisbit.

beginning of the frame when ¢risbit falls low.

4.4 Automatic Brightness Adaptation Controller Board

The automatic brightness adaptive system consists of both electronic irising and automatic
mode switching. A test board was made to demonstrate the effectiveness of the algorithm
working with just one imager. A block diagram of the system is shown in Figure 4.17.
The digital imager plugs into the board with a twisted pair interface. The two serial lines
irisbit and outs are used to send and receive data from the controller board. The data
received by the board is formatted and sent to either an NTSC monitor or a standard PC
running linux. The shaded feedback path in the figure involves both controlling the charge
integration time as well as the pixel compression function. An average of each 64 x 64 block
is computed during the frame time and then used to calculate the dynamic range and the
total frame average. These values are then used to set the compression function and the
global charge integration time.

The logic required for the electronic-iris and the automatic mode switching consists of
two CPLDs shown in figure 4.18. The CPLD TOPBOX controls and accumulates the
incoming data from the imager in order to calculate the average values of the 16 regions
used for the dynamic range calculation. The first block SERIAL2PARALLEL converts
the serial data from the imager to parallel data using the signal datacall from the im-
ager as its shift register clock. A start-of-frame signal is also decoded from datacall by
SERIAL2PARALLEL. The parallel data gets sampled and sychronized to the system by
SAMPLE and is passed on to CHIPMUX where the data gets broken into 4-bit blocks.
These 4-bit blocks are used by the 4 accumulators contained in BOX AV ERAGE.

Figure 4.19 shows how the 4-bit data is piped through the accumulators. Each of the
accumulators represents one of the 4 columns of the 4 x4 block averages used for the dynamic
range calculation. The signal column is used to select which column average is active in
subsequent blocks. The signals newbitplane, newpizel, and newblock are control signals
from BOXCONT ROL which is a finite state machine that is used to control the arithmetic
units of the system. The accumulators are essentially sychronous loadable counters that
each use one of the 4-bit inputs as the load signal. Therefore calculating the average is only
a matter of incrementing a counter. Since the bits from the imager come off in bit-planes
ranging from the MSB down to the LSB, the signals newbitplane, newpizel, and newblock

50 CHAPTER 4. DESIGN

WMode
I Dacision
Send
1 Serial
Digital Imager Data y l Pixet
LvDS od
.E‘g\ Inisbit Time
N |-
Receive
84x64 El
— Serial
Dats Averaging Iris
Oynamic Range
Calculation
INGSTAEN
Monitor
l Encoder A
Format
Conveiter
I pCt
Interface

Figure 4.17: Automatic brightness adaptive test board.

are used to shift and load the bits of the counter depending on which bit-plane is being
processed. The saturation blocks are used to ensure that an overflow is represented by the
highest average value (all ones).

The CPLD called TOPWITHLIGHTS contains most of the arithmetic functions for
the system. TOPBOX sends the control signals and the averages for the 16 regions which
are selected by the signal column and by the row time during the frame period. The block
called COMPARE is used to latch in the brightest and darkest region averages for the
image. Figure 4.20 shows a logic diagram of the components used to perform the operation.
Another accumulator is included in COMPARE that adds up the 16 regions so that a
total frame average value can be used for electronic irising. The block DIVIDER is used
to divide the current iris value by the frame average. The division is carried out to 7-
bits beyond the decimal which also performs the multiply-by-128 operation described in
Section 4.1.3. The divider implemented for this algorithm requires one cycle for every bit
output as described by the VHDL files in the Appendix B starting on page 119.

The block MODEGEN either sets the compression function to linear or logarithmic.
The dynamic range value represented as the ratio of the brightest and darkest regions is com-
pared against the thresholds set by the decision rule described in Section 4.1.3. The mode-bit
is then combined with the iris value and sent to the imager by the block IRISGEN.

The remaining features in the CPLD TOPWITHLIGHTS include input pins for
switches and output pins for LED indicators. The switches are used to turn on and off
automatic irising and compression. The frame average, iris value and dynamic range are
also displayed by rows of LEDS. A 4 x 4 grid of dual-color leds is used to show the brightest

4.4. AUTOMATIC BRIGHTNESS ADAPTATION CONTROLLER BOARD

ous datacalt

eemceeeonaaa Jomeee ey

) 1

! ToEOX !

. SERIALZPARALLEL :

1 1

1 1

1]

. | ,

] [}

] [}

L [}

' SAMPLE '

)]

) 1

' l 1

])

) 1

[})

1]

' CHIPMUX !

1 1

1 1

1 1

: | .

1 1

1)

: BOXCONTROL .

1] 1

' [yepepepny pupn IR '

: S |

' 'y)

') '

' BOXAVERAGE i ' COMPARE :

[L 1

1

: ¥ :

.................... ! !
.......................... H
1 1
! ToPwiTHUGHTS DIVIDER H
1)
[} 1
1 1 1 1
1 1
' '
[} 1
' MODEGEN IRISGEN '
])
])
1 J
: o S P
1 1
1 l l h nsbit
1 1
1)
. LIGHTS GRIDLIGHTS :
1 1
[t 1
leenceveenelheoreececccrcenecnccrcanchonoeeeee 1

LEDS LEDS for 16 x16 display

L
T

thresholdin

ok clockoul outs datacal 2
—Sf|
. R —
—1

8
B —

ToPBOX OLA pere TOPWITHLIGHTS

: o fx‘f“’eﬁ?@f%
l NI

Figure 4.18: Block diagram and symbols of CPLDs for brightness adaptation.

"gigpsg

Tl

51

52

CHAPTER 4. DESIGN

P e R PR Ry,
R e T Sy Sy U U g S)

L

Figure 4.20: Timing for clock and irisbit.

4.5. 3-CAMERA BOARD WITH AUTOMATIC BRIGHTNESS ADAPTATION 53

Dighai imager

o .

Mode
Decision
Pixel
Time
Send
] Seral
Digital Imager Deta
LvDa
] st
s Systsm o——|
o ous Control
Receive
saxes Dynamic Rangs
— ::‘ Averaging Caiculation
£ Monitor
- [
Digltal Imager
LvDs I
s o nam
Format
outs Converter

Figure 4.21: Block diagram of the 3-camera stereo vision system.

and darkest spots of the image in order to ensure that the algorithm is working properly.

4.5 3-Camera Board with Automatic Brightness Adaptation

The final 3-camera stereo vision system is a combination of the other boards described in
this chapter. A block diagram of the system is given in Figure 4.21. The brightness adaptive
control parameters of the imagers are all based on the center imager’s data which ensures
that there is good correlation between image data. The same output from the feedback
loop is sent to all the imagers but the data from each imager is formatted separately. The
control signals for the format converters and the interface to the GuPPI card are all shared
between the blocks. Each imager’s datapath contains its own memory buffer and SRAM
controller.

54

CHAPTER 4. DESIGN

Chapter 5

Results

The results from each stage of the project contributed to the final 3-camera stereo vision
system. A discussion of the problems and the results of each stage of the project are included
here. Section 5.1 addresses the performance achieved by the real-time imager demonstration.
Section 5.2 discusses the results of the automatic brightness adaptive algorithm. Section 5.3
addresses the PCI interface. Finally, Section 5.4 discusses the completion of the 3-camera
stereo vision project. All figures in this chapter are digital images generated by the imager
itself.

5.1 Real-time Imager Demonstration

The two board design for the real-time imager demonstration was completed without any
major problems. Figure 5.1 shows the fronts and backs of the circuit boards in the first
two pictures and the assembled camera in the last picture. The major contributing factor
to completing the project was the design and testing of the imager in stages. Many lines
of VHDL code were written to program the imager and it would have been impossible to
get everything to work properly without a way of testing each stage. The NTSC encoder
was programmed and tested in a CPLD before the circuit board was made. The format
converter and imager timing signals were thoroughly simulated. One of the more creative
ways of initially testing the imager board was the implementation of a battery tester. The
imager board must receive 5 volts in order to operate. Since a dual package opamp was
used for the NTSC encoder there was one opamp left unused. By configuring the second
opamp as a comparator, the scaled battery voltage could be compared against a zener diode.
When the supply voltage fell below a desired level, the power LED indicator would start
to blink. The signals used to cause the LED tc blink were important timing signals for the
pixel array. Correct operation of the CPLD and timing signals could easily be confirmed by
simply turning down the supply voltage. After initial problems programming the CPLDs,
and after correcting a data shuffling error, a real-time image could be displayed on the
screen. A long period of fine tuning was necessary in order to get a very good quality
image. Most of the problems were due to the offset in the CDS circuitry and the bias
currents for the on-chip opamps. Also, the voltage level for the barrier function was finally
set to the appropriate level. Some small white dots appeared in the image that were due

55

56 CHAPTER 5. RESULTS

to digital noise near the opamp. To correct this, the traces on the printed circuit board
were cut and rewired by hand. The last issue with the real-time imager demonstration was
pixel lag. During the pixel reset period, a small proportion of charge from the previous
integration pericd is left in the pixel. The imager produced slight image lag that was
reduced by turning off the effect of the common gate amplifier. The voltage cgbias (see
Chapter 2) was therefore set to the supply voltage.

Figure 5.1: The real-time imager circuit boards and assembled camera.

A standard demonstration of the real-time NTSC camera consists of showing an image
that requires a wide dynamic range and then switching between linear and logarithmic
modes. The first image in Figure 5.2 shows the scene with the iris set so that the filament
in the light bulb can be seen. Then the iris is set so that the sign can be read. Finally, the
imager is switched to logarithmic compression and both the filament in the light bulb and
the details in the sign are captured. Since the first real-time demonstration of the imager
did not have a data interface for a PC, the later digital version of the imager provided the
images for this figure.

Figure 5.2: Images captured with linear compression at two different iris settings.

5.2 Automatic Brightness Adaptation

The automatic brightness adaptive imaging test board, called Autcbright, was the major
testing platform for the project. Figure 5.3 shows the circuit board with all of the com-
ponents in place. Figure 5.4 shows the components for the digital imager. The lens cover,

5.2. AUTOMATIC BRIGHTNESS ADAPTATION 57

Figure 5.4: Components for the digital camera.

shown in Figure 5.5, is an improvement over the previous design because there are less
internal reflections. The two board design was made to keep the overall size to a minimum.
The debugging procedure for the circuit board was a long process. Most of the problems
were found systematically by reprogramming the CPLDs with test code. Solder problems
were a big source of error in the beginning. One of the circuit boards was fabricated with
shorted traces.

The Autobright test board contained a digital output to a daughter board called T'adpole

Figure 5.5: Lens cover for the digital imager that minimizes internal reflections.

58 CHAPTER 5. RESULTS

which provided a path into the PC through the PCI bus. This enabled quick analysis and
viewing of the captured images. The raw data was important for debugging purposes
because absolute intensities were written to files and displayed on a computer monitor. The
standard video monitor has automatic gain control and contrasting that make it difficult to
understand what data the imager is producing.

The auto-irising feature worked as expected. The settling time for the frame average
after a change in lighting conditions is much faster than the eye can perceive. Figure 5.6
shows three sample images that demonstrate the auto-iris. The first picture is an image
taken after the iris has settled to steady state. The auto iris was then disabled for a small
period while the light is turned on. This causes the average image intensity to go beyond
half-scale. The auto-iris is then enabled which causes the frame average to move to exactly
half-scale in the next frame.

The iris value which represents the pixel’s charge integration time is updated every other
frame. The reason for this is that the controller must wait an entire frame period after an
iris value is applied before the image data corresponds with that iris value. The integration
time specified by the iris value is set in the pixel array at readout time. Therefore, at the
next readout time the pixel will have integrated the charge over the time interval specified
during the last readout sequence. The controller simply ignores the imager’s frame data
that is generated while a new iris value is applied. However, at the end of the next frame
a new iris value is immediately calculated if the frame average is not at half-scale. This
iris value is then applied during the next two frames. Although the controller ignores every
other frame, all frames are displayed or transmitted to the computer.

Using the method for calculating the iris value described in Section 4.1.3, the response
time for the auto-iris should be 1/(framerate/2). The only delay in the response comes
from waiting for the end of the integration period and for the entire frame data to be read
out of the imager. This delay is effectively two frame periods. Testing at a rate of 60fps
has confirmed that the iris value settles to within +1LSB in 1/30Hz = 33ms.

Figure 5.6: Sequence of frames using auto-irising.

The automatic compression function also worked as expected. Figure 5.7 shows the two
images with and without automatic compression. The feature is a little unstable in border
line cases when the hysteresis value is not appropriate for the lighting conditions. The
threshold values for entering and exiting the logarithmic compression mode are set on an 8-
bit scale. The threshold values are compared against the pseudo dynamic range value for the

5.3. PCI INTERFACE 59

frame as described in Section 4.1.3. The linear threshold was set to 64 and the logarithmic
threshold was set to 128. This gave enough hysteresis to avoid oscillations in nearly all cases.
Occasionally, between the borders of the individual regions that are illustrated in Figure 4.3
in Section 4.1.3 on page 37, the imager can still oscillate between linear and logarithmic
compression. Some ways to improve the the decision rule are discussed in Chapter 6.

Figure 5.7: Sample images without and with auto compression.

In order to see some initial results of the imager in its intended environment, it was
put to the test on a pair of headlights. Figure 5.8 shows the images captured with a small
integration period, a long integration period, and finally with a logarithmic compression
function.

5.3 PCI Interface

The original specification for the frame rate delivered to the PC was 60fps. The PCI interface
can not yet handle this rate so only 30fps are currently delivered to the PC. This problem
will be solved after more work has been done on the software system for communicating
with the GuPPI card. Figure 5.9 shows the daughter card Tadpole that plugs into the
GuPPI card.

Figure 5.8: Headlight test.

60 CHAPTER 5. RESULTS

Figure 5.9: Tadpole test board for auto-irising and compressing.

5.4 3-Camera System

The final 3-camera printed circuit board which interfaces to the PC is still being fabricated.
The board is essentially a combination of the Autobright and Tadpole circuit boards. Three
imagers, plug into the back of the PC via twisted pair. The circuit board also has a standard
NTSC output signal generated for each imager. Figure 5.10 shows how the three digital
imagers are mounted to a vehicle for stereo processing. The image data is written into
the RAM of the PC and displayed on the monitor via the interface shown in Figure 5.11.
Although the automatic brightness adaptation algorithm is implemented in hardware, the
user can still select between compression functions and choose to enable or disable auto-
irising from the PC terminal. Various frame rate values can also be selected from the
terminal.

2 A
Iz

3-CAMERA SYSTEM

Figure 5.10: 3-camera stereo vision arrangement.

Figure 5.11: 3-camera viewer.

61

62

CHAPTER 5. RESULTS

Chapter 6

Conclusion

This thesis has described the design and implementation of a 3-camera stereo vision system
and the various stages of the project. This chapter summarizes the project and presents
suggestions for future work.

6.1 Summary

The wide dynamic range image sensor with lateral overflow drain proves to be an effective
architecture for machine vision applications where varying levels of illumination are ex-
pected. Many techniques have been shown to enhance the dynamic range of image sensors
but few present system-level solutions. The objective of this project has been to create a
system that adapts to the environment by providing high detail video images even in the
most extreme conditions. The specific requirements for the project have been met through
the design and implementation of both electronic iris control and automatic compression. A
full stereo vision system has been designed and implemented from the front-end pixel array
to the PCI interface for general purpose processing. In building the system from the sensor
to the processcr, many of the historic vision formatting limitations have been overcome.
While the imager can be adjusted for any frame rate (and reconfigured on the fly), it can
still provide data in NTSC format for a standard video monitor.

6.2 Future Work

The automatic dynamic range adjustment algorithm has been effective in demonstrating
the potential for intelligent compression schemes. More work should be dedicated to the
development of a robust solution. Both the targeting of the wide dynamic range image
and the fitting of the compression scheme can be improved. One suggestion to improve the
current algorithm is to run a sweeping box average or median across the image as shown
in Figure 6.1. By comparing the brightest area to the darkest area, a wide dynamic range
image can be targeted. This will eliminate the possibility of indecision at the boundary
lines that may occur in the current algorithm. Future work may involve implementing
the improved algorithm in a small pixel-parallel processing array like the one described by
Gealow [9].

63

64 CHAPTER 6. CONCLUSION

Figure 6.1: Sweeping Median Algorithm.

Another idea for improving the automatic compression scheme is to evaluate the fre-
quency content of the image. The technique might be very similar to algorithms used for
auto-focus lenses. There, the idea is to evaluate the luminance value of the video signal and
adjust the lens until the highest frequency content is found. This ensures that the image
is focused and sharp as opposed to soft and blurred. Rather than evaluating the pixel to
pixel frequency content, the algorithm could evaluate the frequencies from region to region.

Whatever methods are used for determining the dynamic range of the image, it will
probably be important to fit characteristic compression functions to different types of im-
ages. An image with a large dynamic range may have very few objects which fall in between
brightest and darkest points in the image. Ideally, this image will be compressed differently
than one with various light intensities spanning the entire dynamic range.

Finally, the 3-camera system should be put to use in an intelligent vehicle application.
Figure 6.2 shows a block diagram of the conceptual setup for the demonstration of vehicle
control based on stereo vision. The first stage of the project will involve creating and
testing stereo algorithms. A powerful demonstration will be to show that the PC can make
decisions based on how close objects come to the imagers. The PC could signal to the user
that he has come too close for comfort by sending out a loud ear-piercing noise. A colorful
image depth-map could also be designed and demonstrated in real-time. Once a robust set
of algorithms have been created for the system, an interface to a small electric vehicle such
a golf cart could be created to show adaptive cruise control, obstacle avoidance, etc.

6.2. FUTURE WORK

65

Al, Modeling
&
Estimation

[

\

Imager Controller
&
Brightness
Adaptation

Feature
Extraction

CZ> High-Level E.:>

Controller

Electro-mechanical

Interface

oY%

Figure 6.2: Intelligent vehicle demonstration system.

66

CHAPTER 6. CONCLUSION

References

(1] M. Maurer, “A framework for flexible automation of semi-autonomous land vehicles,”
in ISIC Intelligent Vehicle Control, pp. 531-536, 1998.

[2] T. Kamada and K. Oikawa, “Amadeus: a mobile, autonoumous decentralised utility
system for indoor transportation,” in IEEE Robotics and Automation, pp. 2229-2236,
May 1998.

(3] I. Masaki, R. Demir, and E. F. Crawley, “System design for intelligent transportation
systems,” in Intelligent Vehicles Symposium, pp. 323-326, 1996.

[4] H. Raza and P. Ioannou, “Vehicle following control design for automated highway,” in
Vehicular Technology Conference, pp. 904-908, May 1997.

[5] V. Gazi, M. Moore, and K. M. Passino, “Real-time control system software for intelli-
gent system,” in ISIC Intelligent Vehicle Control, pp. 102-107, 1998.

[6] Tao Xiping, Guo Muhe, and Ahang Bo, “A neural network approach to the elimination
of road shadow for outdoor mobile robot,” in Intelligent Processing Systems, pp. 1302—
1306, October 1997.

[7] Ernst Dieter Dickmanns, “Road vehicle eyes for high precision navigation,” in High
Precison Navigation, pp. 329-336, 1995.

[8] Soo Kweon, Yue Bao, and N. Fujiwara, “Motion estimation from sequential image
using correlation,” in ITSC Intelligent Transportation System, pp. 775-780, November
1997.

[9] Jeffrey Carl Gealow, An Integrated Computing Structure for Pizel-Parallel Image Pro-
cessing. PhD thesis, Massachusetts Institute of Technology, June 1997.

(10] Zubair Talib, “A real-time 256 x 256 pixel-parallel image processing system,” Master’s
thesis, Massachusetts Institute of Technology, October 1998.

[11] Steven John Decker, A Wide Dynamic Range CMOS Imager With Parallel On-Chip
Analog-to-Digital Conversion. PhD thesis, Massachusetts Institute of Technology,
September 1997.

[12] M. Okutomi and S. Noguchi, “Extraction of road region using stereo images,” in Pat-
tern Recognition, pp. 853-856, August 1998.

67

68 REFERENCES

[13] J. Kosecka, R. Blasi, C. J. Taylor, and J. Malik, “A comparative study of vision-based
lateral control,” in Robotics and Automation, pp. 1903-1908, May 1998.

[14] A. Kelly and A. Stentz, “Analysis of requirements for high speed rough terrain au-
tonomous mobility,” in Robotics and Automation, pp. 3326-3333, 1997.

[15] i-Sight, Adaptive Sensitivity, May 1999.
http://www.i-sight.com/asl.htm.

[16] Ginosar, Ran, Hilsenrath, Oliver, Zeevi, and Yehoshua, “Wide dynamic range camera,”
in U.S Patent No. 5,144,442, 1992.

[17] D. Yang, A. El Gamal, B. Fowler, and H. Tian, “A 640 x 512 cmos image sensor with
ultra wide dynamic range floating point pixel level adc,” in ISSCC Digest of Technical
Papers, February 1999.

(18] K. Yamada, T. Nakano, and S. Yamamoto, “A vision sensor having an expanded dy-
pamic range for autonomous vehicles,” in IEEE Transactions on Vehicular Technology,
pp- 47(1):332-341, February 1998.

[19] K. Yamada, T. Nakano, and S. Yamamoto, “Effectiveness of video camera dynamic
range expansion for lane mark detection,” in IEEE Conference on Intelligent Trans-
portation Systems, pp. 584-588, November 1997.

[20] K. Yamada, T. Nakano, and S. Yamamoto, “Wide dynamic range vision sensor for
autonomous vehicles,” in IEEE International Conference on Robotics and Automation,
pp. 1:770-775, May 1995.

[21] T. Delbruck and C.A. Mead, “Adaptive photoreceptor with wide dynamic range,” in
IEEE International Symposium on Circuits and Systems, pp. 4:339-342, 1994.

[22] M.D. Rowley, J.G. Harris, and Shao-Jen Lim, “A logarithmic photoreceptor incorpo-
rating lateral bipolar,” in IEEE International Symposium on Circuits and Systems,
pp. 3:1852-1855, 1997.

[23] F.J. Kub and H.C. Lin, “High dynamic range, low-noise floating-gate photosensor,” in
International Electronic Devices Meeting, pp. 919-922, December 1996.

[24] O. Vietze and P. Seitz, “Active pixels for image sensing with programmable, high
dynamic range,” in Advanced technologies, Intelligent Vision, pp. 15-18, October 1995.

[25] A. Tanabe, Y. Kudoh, Y. Kawakami, K. Masabuchi, S. Kawai, T. Yamada, M. Mo-
rimoto, K. Arai, K. Hatano, M. Furumiya, Y. Nakashiba, n. Mutoh, K. Orihara, and
H. Teranishi, “Dynamic range improvement by narrow-channel effect,”

[26] T. Hamamoto, K. Aizawa, and M. Hatori, “Motion adaptive image sensor,” in Asia
and South Pacific Design Automation Conference, pp. 343344, February 1998.

REFERENCES 69

[27]

[28]

[29]

[30]

[31]

M. Bohm, T. Lule, H. Fischer, J. Schulte, B. Schneider, S. Benthien, F. Blecher,
S. Coors, A. Eckhardt, H. Keller, P. Rieve, K. Seibel, M. Sommer, and J. Sterzel,
“Design and fabrication of a high dynamic range image sensor,” in Symposium on
VLSI Circuits, pp. 202-203, 1998.

Ray Furlong, “Troubleshooting camcoder zoom lenses,” in Electronics Now, pp. 76-80,
March 1997.

S. Sakaue, M. Nakayama, A. Tamura, and S. Maruno, “Adaptive gama processing of
the video cameras for the expansion of the dynamic range,” in IEEE Transactions on
Consumer Electronics, pp. 41(3):555-562, August 1995.

Michael Ismert, “Making commodity pcs fit for signal processing,” Software Devices
and Systems Group, 1998.
http://www.sds.lcs.mit.edu.

Michael Ismert, “Guppi board description,” Software Devices and Systems Group,
1998.
http://www.sds.lcs.mit.edu/SpectrumWare/guppi.html.

70

REFERENCES

Appendix A

Real-Time Imager Demonstration

A.1 VHDL

The VHDL files used for this board are located in:

/homes/kfife/Imagerl/24.5MHz/
imsync.vhd
format.vhd
image.vhd
inout.vhd
ntsc.vhd

Project name: warp.pfg

These files are used to generate jedec files for two devices. The two top level designs are
held in imsync.vhd and format.vhd. The lower level files are packages that are included in
the top level designs.

A.1.1 Top Level VHDL - imsync.vhd

Location:

/homes/kfife/Imager1/24.5MHz/imsync.vhd

Library ieee; --this file uses a 49MHz clock and divides
--it by 2 to get the right NTSC fregq
Use ieee.std_logic_1164.all;

Entity imsync IS PORT (
clock,reset: IN std_logic;

clkBB,clkA,svsell,susel2,swsel3: OUT std_logic;
phil,pki2,phi3,ph14: BUFFER std_logic;

Aselect, Bselect: BUFFER std_logic;

phiO,phiObar: BUFFER std_logic;

isolate: BUFFER std_logic;

clkb,clkr: BUFFER std_logic;

rsin: BUFFER std_logic;

mode: IN std_logic; ~--integration or linear mocde
colsel: BUFFER std_logic_vector(2 downto 0);

samplel, sample2: BUFFER std_logic;

71

72 APPENDIX A. REAL-TIME IMAGER DEMONSTRATION

phi5,phi6: OUT std_logic;
£1ip: BUFFER std_logic;
dataready,startframe: OUT std_logic;

---LOW BATTERY LOGIC

vlievel: IN std_logic;

led: OUT std_logic;
---CLOCKS

cin: IN std_logic;

clk: BUFFER std_logic;

c: OUT std_logic; --goes to pin 98

clkin: IN std_logic; --comes in on pin 99 dedicated to clocks
~--MODE LED

modeled: OUT std_logic;

hsync,hblank: BUFFER std_logic;
blnk: OUT std_logic;
startr,startf: OUT std_logic);
attribute pin_avoid of imsync:entity is "€ 46 76 116";
sclk, smode,SD0,SDI

attribute pin_numbers of imsync:entity is "clock:19 " &
"reset:59 " &
“rsin:143 " &

“svsel3:144 " &
"svsel2:145 " &
"susell:146 " &

"colsel(2):70 " &
"colsel(1):67 " &
"colsel(0):65 " &

“c1kBB:23 " &
"clkA:24 " &
“phi6:26 * &
“phi5:26 " &
“phid:27 " &
"phi3:28 " &
"phi2:29 " &
"phi1:30 " &

“phiObar:148 " &
"phi0:147 * &

"Aselect:32 " &
"Bselact:33 " &

"clkb:38 " &
"f1ip:149 " &
"hsync:2 " &
"hblank:3 " &
"blnk:4 " &

"dataready:89 " &
"startframe:63 " &

“startr:18 " &
"startf:13 “ &
"mode:91 " &

"vievel:92 " &
"led:93 " &

"modeled:94 " &

"ein:77 " &
"clk:79 " &
"c:98 " &

"clkin:99 ";
End imsync;
USE WORK.std_arith.ALL;

Use work.ntscpkg.all;
Use wvork.imagepkg.all;

A.l. VHDL

ARCHITECTURE behavior OF imsync IS
SIGNAL flash: std_logic;
BEGIN

image0: im PORT MAP(
clock,reset,
¢1kBB,clkA,susell,svsel2,svsel3,
phil,phi2,phi3,phi4,
Aselect, Bselect,
phi0,phiObar,
isolatoe,
clkb,clkr,
rsin,
mods, -~integration or linear mcde
colsel,
samplel, sample2,
phib,phi6,
£1ip,
flash,
dataready,startframe);

ntsc0: ntsc PORT MAP(

clock,reset,

hsync,hblank,

startr,startf);
led <= flash vhen vlevel = '0’ else ’1’;
zodeled <= 1’ vhen mode = '1’ else ’0’;
~-blanking for DAC--
blnk <= ’1’ when hblank = ’0’ else '0’;

process begin

Wait Uptil clkin = '1’;
clk <= not clk;

end process;

END behavior;

A.1.2 Imager Timing and Barrier Function - image.vhd
Location:

/homes/kfife/Imager1/24.5MHz/image .vhd

Library iees;
Use ieee.std_logic_1164.all;
Entity im IS PORT (

clock,reseti: IN std_.logic; --Teset active low
clkBB,clkA,svsell,susel2,swsel3: OUT std_logic;

phil,phi2,phi3,phi4: BUFFER std_logic; -=ADC timing

Aselect, Bselect: BUFFER std_logic; --ADC selector for pad driver

phiO,phiObar: BUFFER std_logic;

isolate: BUFFER std_logic;

<clkb,clkr: BUFFER std_logic;

rsin: BUFFER std_logic;

mode: IN std_logic; --integration or linear mode

colsel: BUFFER std_logic_vector(2 downto 0);

samplel, sample2: BUFFER std_logic;

phib,phi6: O0UT std_logic;

£1ip: BUFFER std_logic;

flash: OUT std_logic;

dataready,startframe: OUT std_logic); --used to say vhen to start a frame and when data is ready
End im;

USE WORK.std_arith.ALL;
ARCHITECTURE fsmim OF im IS

SIGNAL i: integer range O to 49; --i is used to divide the clock by 50.
SIGNAL r: integer range 0 tn 255; --r is the number of rovs

SIGNAL count: std_logic_vector(5 downto 0);
SIGNAL slow: std_logic_vector(2 downto 0);

74 APPENDIX A. REAL-TIME IMAGER DEMONSTRATION

SUBTYPE v3 is std_logic.vector(2 downto 0);
alias switch: v3 is count(2 downto 0);

SIGNAL phihl,phih2,phih3,phih4: boolean;
BEGIN
PROCESS (cleck,i,svitch,reseti)

BEGIN
IF reseti = '0’ THEN
i<=0;
r <= 0;
count <= "000000";
£1ip <= '0’;

ELSIF clock’EVENT AND clock = 1’ THEN
if i = 49 then ~-divide down the system clock
i <= 0;

--phil-4
if (svitch = "111") or (switch = "000")then
phih3 <= TRUE; else phih3 <= FALSE; end if;

if (switch = "001") or (switch = "010")then
phih4 <= TRUE; else phih4 <= FALSE; eand if;

if (switch = "011") or (switch = "100")then
phiht <= TRUE; else phihi <= FALSE; end if;

if (switch = "101") or (switch = "110")then
phih2 <= TRUE; else phih2 <= FALSE; end if;

--Aselect and Bselect

if (count = "000000") then
Bsolect <= '1’; end if;

1Y (count = "011111") then
Bseslect <= '0’; end if;

if (count = "100000") then
Aselect <= '1’; end if;

if (count = "111111") then
Aselect <= ’0’; end if;

--samplel and sample2 and isolate
if (count = "100000") then
sample2 <= '0Q’; end if;

if (count = "100001") then
samplel <= '1’; end if;

if (count = "101101") then
samplel <= '0’; end if;

if (count = "101110") then
sample2 <= '1'; end if;

if (count = "100001") then
isolate <= ’1’; end if;
if (count = "111011") then
isolate <= ’0’; end if;

--¢clkb

if (count = "101101") then
clkb <= ’17;

else clkb <= 0’;

end if;

~-clkr

if (count = "100000") then
clkr <= '17;

else clkr <= '0’;

end if;

if count = "111111" then

count <= "000000";

if r = 265 then --counting rovs
r <= 0;
f1ip <= NOT flip; --flip SRAMS
slow <= slow + 1;

else r <=1 + {;

end if;

else count <= count + 1;

end if;

elge i <= §{ + 1;
end if;

END IF;

A.l. VHDL

END PROCESS;

flash <= alow(2);

-non-overlapping phig----------

phil <= ?i’ yhen phihl and not phihé else ’'0’;
phi2 <= '1’ when phih2 '0’;
phi3 <= ’1’ vhen phih3 0’
phi4 <= '1’ vhen phih4 and not phih3 else ’'0’;

clkA <= 'Q’ when switch = 000" else ’1’;
clkBB <= ’Q’ when swvitch = "100" else ’1’;

phi0 <= *1’ vhen (count{4 downto 0) > "11011") else '0’;
phiObar <= not phiO;

--rsin
rsin <= ’1’ vhen r = 255 else '0’;

--phi5, phi6
phib <= Aselect;
phi6 <= Bselect;

susel2 <= switch(0);
svsell <= guwitch(1);
swseld <= gwitch(2);

barrier function

process(r,mode,clock,colsel)
begin

IF clock’EVENT AND clock = ’1' THEN

if mode = ’1’ then --integration mode; approximating log function
caze T is
vhen 255 => colsel <= "000"; ~--highest potential(reset = 5v)
vhen 0 => colsel <= "Q001";
when 127 "010";
when 191 "o11";
vhen 223 => colsel <= "100";
when 239 => colsel <= "101";
vhen 247 => colsel <= "110";
vhen 251 => colsel <= "111"; --lovest potential{ = 2.5v)
vhen others => colsel <= colsel;

end case;
else
case r is --linear mode
vhen 256 => colsel <= "000";
vhen 0 => colsel <= "111";
vhen others => colsel <= colsel;
end case;
end if;
END IF;

end process;

----interface

dataready <= ’1’ when i = 9 else '0’;
startframe <= ’1’ vhen r = 0 else ’0’;

END femim;

Library iece;

Use ieee.std_logic_1164.all;

PACKAGE imagepkg IS

COMPONENT im PORT (
clock,reseti: IN std_logic;
c1kBB,clkA,svsell,swsel2,susel3: OUT std_logic;
phil,phi2,phi3,phi4: BUFFER std_logic;
Aselect, Bselect: BUFFER std_logic;
phiO,phiObar: BUFFER std_logic;
isolate: BUFFER std_logic;
¢clkb,clkr: BUFFER std_logic;
rsin: BUFPFER std_logic;
mode: IN std_logic; --integration or linear mode
colsel: BUFFER std_logic_vector(2 downto 0);
samplel, sample2: BUFFER std_logic;
phi5,phi6: OQUT std_logic;
f1ip: BUFFER std_logic;

76 APPENDIX A. REAL-TIME IMAGER DEMONSTRATION

flash: OUT std_logic;
dataready,startframe: OUT std_logic);
END COMPONENT;
END imagepkg;

A.1.3 Top Level VHDL - format.vhd

Location:

/homes/kfife/Imager1/24.5MHz/format .vhd

Library iece;
Use ieee.std_logic_1164.all;

Entity systop IS PORT (
clock,reset: IN std_logic;
WE,QOE: OUT std_logic;
addr: BUFFER std_logic_vector(1§ downto 0);
chip: IN std_logic_vector(0 to 31);
I0: INOUT std_logic_vector(7 downto 0);
dataready,startframe: IN std_logic;

startf startr: IN std_logic;

WE1,0B1: OUT std_logic;

addr1: BUFFER std_logic_vector(15 downto 0);
I01: INOUT std_logic_vector(7 dowato 0);
pixout: BUFFER std_logic_vector(7 downto 0);

£1lip: IN std_logic);

attribute pin_avoid of systop:entity is "6 46 76 116";
sclk, smode ,SDO,SDI

attribute pin_numbers of systop:entity is "clock:19 " &
“reset:59 " &

"WE:11 " &

"0E:12 " &

"addr(0):143 "
"addr(1):144 *
"addr(2):145 "
“addr(3):146 "
"addr(4):147 "
“addr(5):148 "
“addr(6):149 "
“addr(7):150 "
“addr(8):78 " &
"addr(9):48 " &
"addr(10):36 “ &
"addr(11):16 " &
“addr(12):85 " &
“addr(13):87 " &
“addr(14):1568 " &
"addr(15):137 " &

L 2 N]

“chip(0):63 " &
“chip(1):68 " &
“chip(2):64 " &
"chip(3):67 " &
“chip(4):65 " &
"chip(5):56 " &
“chip(6):66 “ &
“chip(7):66 " &

“chip(8):67 " &
“chip(9):64 " &
“chip(10):68 " &
"chip(11):53 " &
“chip(12):69 " &
"chip(13):62 " &
"chip(14):70 " &
"chip(16):51 * &

"chip(16):91 " &
“chip(17):30 " &
"chip(18):92 " &
"chip(19):29 " &
"chip(20):93 " &
"chip(21):28 " &
"chip(22):94 " &

A.l. VHDL

»

“chip(23):27 "

"chip(24):95 "
"chip(25):26 "
"chip(26):95 "
"chip(27):25 "
“chip(28):97 "
“chip(29):24 "
“chip(30):98 “
“chip(31):23 "

L N

--original pins vere changed for the correct format--
--"chip(0):23 " &
--"chip(1):24 " &
--"chip(2):25 " &
--"chip(3):26 " &
--"chip(4):27 " &
--"chip(5):28 " &
--"chip(6):29 " &
~-"chip(7):30 " &
--"chip(8):51 " &
--"chip(9):52 " &
--"chip(10):53 "
--"chip(11):54 "
--"chip(12):55 "
‘chip(13):56 *
--"chip(14):57 "
--"chip(15):58 "
--"chip(16):63 "
--"chip(17):64 "
~-"chip(18):65 "
--"chip(19):66 "
--"chip(20):67 "
--"chip(21):68 *
--"chip(22):69 "
--"chip(23):70 "
~="chip(24):91 "
192 "
--"chip(26):93 "
"chip(27):84 "
~~"chip(28):95 "
--"chip(29):96 "
--"chip(30):97 "
--"chip(31):98 "

L N O]

L N]

LA

"10(0):32 *
"10(1):42 "
"10(2):72 "
"10(3):82 *
"10(4):112 " &
“10(5):7 " &

"10(6):114 " &
“10(7):118 " &

LR

"dataready:2 " &
“startframe:3 " &

“startf:4 " &
"startr:5 " &

"WE1:13 " &
"0E1:14 " &

"addr1(0):122 "
“addr1(1):123 *
“addr1(2):124 "
“addr1(3):126 "
“addri(4):126 "
“addri(5):127 "
“addri(6):128 "
“addr1(7):129 "
"addr1(8):79 " &
"addr1(9):49 " &
"addr1(10):37 " &
“addr1(11):17 " &
"addr1(12):86 " &
“addr1(13):88 " &
“addri1(14):159 " &
"addr1(15):138 " &

L g

"101(0):33 " &
"101(1):43 " &
"101(2):73 " &

78 APPENDIX A. REAL-TIME IMAGER DEMONSTRATION

*101(3):83 " &
"101(4):113 " &
"101(6):8 " &

“101(6):1156 “ &
"101(7):119 " &

"pizout(0):152 "
“pixout(1):163 "
“pizout(2):131 "
"pizout(3):132 "
"pixout(4):103 "
"pixout(6):104 "
"pixout(6):38 " &
“pixout(7):39 " &

"£1ip:15 ";

End systop;

Use vork.inopkg.all;

ARCHITECTURE behavioral OF systop IS

BEGIN
ino0: ino PORT MAP(
clock,reset,
WE,OE,
addr,
chip,
10,
dataready,startframe,

startf,startr,
WE1,0B1,
addri,

101,

pizout,

£1ip);
END behavioral;

A.1.4 Format Conversion - inout.vhd

Location:

/homes/kfife/Imager1/24.5MHz/inout .vhd

Library ieee;
Use ieee.std logic_1164.all;

Entity ino IS PORT (
clock: IN std_logic;
reset: IN std_logic; --active low
WE,OE: OUT std_logic;
addr: BUFPER std_logic_vector(15 downto 0);
chip: IN std_logic_vector(0 to 31);
1I0: INOUT std_logic.vector(7 downto 0);

pix,start: IN std_logic; --start indicates begining of frame

--pix indicates vhen a set of 32 bits from the imager are ready
startf,startr: IN std_logic; --startf causes pixels to be output at begining of frame
WE1,0E1: QUT std_logic; --starfr cause pixels to be output at begining of row

addrl: BUPFER std_logic_vector(15 downto 0);
103: INOUT std_logic_vector(7 downto 0);
pizout: BUFFER std_logic_vector(7 downto 0);

£1ip: IN std_logic); --£1ip switches SRAM parameters. ie- addr,WE,OE,ID
End ino;

USE WORK.std_arith.ALL;

ARCHITECTURE fsmino OF ino IS
TYPE states IS (idle,doread,dovrite,begins);
SIGNAL state : statos;

SUBTYPE v17 is std_logic_vector(16 downto 0);
SUBTYPE v8 is std_logic_vector(7 downto 0);
SUBTYPE v2 is std_logic_vector(i downto 0);
SUBTYPE v3 is std_logic_vector(2 downto 0);

A.l. VHDL

SIGNAL rov_prime_part_n_inc_pac: vi7;

alias pac: v3 is row_prime_part_n_inc_pac(2 downto 0);
alias inc: v2 is row_prime_part_n_inc_pac(4 dovnto 3);
alias n: std_logic is rov_prime_part_n_inc_pac(5);
alias part: v2 is rov_prime_part_n_inc_pac(7? downto 6);
alias prime: std_logic is rov_prime_part_n_inc_pac(8);
alias row: v8 is Tov_prime_part_n_inc_pac(16 downto 9);

SIGNAL buff: std_logic_vector(3 downto 0);

TYPE statesl IS (rowwait, dorow);
SIGNAL statel : statesi;

SIGNAL count18: std_logic_vector(17 downto 0);

alias rowl: std_logic_vector(7 downto 0) is count18(17 downto 10);
std_logic_vector(2 downto 0) is counti8(9 downto 7);
std_logic_vector(l downto 0) is count18(5 downto 4);
std_logic is count18(3);

alias partl: std_logic_vector(l downto 0)is count18(1 downto 0);

SIGNAL startflag: std_logic;
SIGNAL top: integer range 4 to 7;

SIGNAL pixel: std_logic_vector(7 downto 0);

------- statemachine for input formatting----------=--==-s~
BEGIN

PROCESS (clock,pix,inc,n,part,prime,rov,start,reset)
BEGIN

IF (reset = '0’) THEN
state <= begins;

ELSIF clock’EVENT AND clock = '1’ THEN
CASE state IS

WHEN idle => IF (pix = ’1’) THEN
state <= doread;
END IF;

WHEN doread => state <= dowrite;

WHEN dowrite => IF (row_prime_part_n_inc_pac = "11111111111111111") THEN
state <= begins;
ELSIF (pac = "111") THEN
state <= idle;
ELSE
state <= doread;
END IF;
rov_prime_part_n_inc_pac <= row_prime_part_n_inc_pac + 1;

WHEN begins => IF {start = ’1’) THEN
state <= idle;

END IF;
WHEN OTHERS => state <= idle;
END CASE;
END IF;
END PROCESS;
------- controlling WE and 0E
PROCESS (state,flip,statel,counti8)

BEGIN

it flip = '0’ then
if (state = dowrite) then
WE <= 20’;
eloe WE <= 117;
end if;

if (state = doread) then

O <= '0’;
olse OE <= '1?;
end if;
if (statel = dorow) then ---from read process
Q0E1 <= 10’;
clse
OE1 <= *17’;
end if;
WE1 <= 1’;
else
if (state = dovrite) then
WE1 <= '0’;
olse WE1 <= 717,

end if;

if (state = doread) then

79

80 APPENDIX A. REAL-TIME IMAGER DEMONSTRATION

OE1 <= ’0’;
else DE1 <= 1’;
end if;

if (statel = dorow) then ---from read process
OB <= 0°;
else
O0E <= ’1°;
end if;
WE <= ¢,
end if;
END PROCESS;

1ling I0 ports
PROCESS (state,clock,buff,I10,101,£1ip)
BEGIN
IF clock’EVENT AND clock = '1' THEN
if f1ip = '0’ then

IF (state = doread) THEN -- read out of SRAM and put the value in buff
buf? <= I0(3 downto 0);
END IF;
olse
IF (state = doread) THEN -- read out of SRAM1 and put the value in buff
buff <= I01(3 downto 0);
END IF;
end if;
END IF;
END PROCESS;

PROCESS (state,buff,chip,flip,pac,clock)
variable index0: integer range 0 to 31;

variable range 0 to 31;
variable range 0 to 31;
variable index3: integer range O to 31;
BEGIN

index0 := to_integer(pac) » 4;

indexl := to_integer(pac) * 4 + 1;
index2 := to_integer(pac) * 4 + 2;
index3 := to_integer(pac) » 4 + 3;

IF (clock = '0’) THEN --output gets ored with clock so that there is no contention.
if f1lip = '0’ then
101 <= "22222222"; --allows I01 to be used as an input during this time
IF (state » dowrite) THEN --read out of SRAM and put the value in buff
10 <= buff & chip(index0) & chip(index1) & chip(index2) & chip(index3);
-~combine outputs of chip with the other four bits
ELSE --in buff and vrite to SRAM
10 <= “22222222";
END IF;
else
10 <= "222272Z22";
IF (state = dovrite) THEN
101 <= buff & chip(index0) & chip(index1) & chip(index2) & chip(index3);
ELSE
101 <= “22222222";
END I7;
end if;
ELSE I0 <= (others => 'Z'); 101 <= (others => ’'2');
END IF;

END PROCESS;

PROCESS (clock,statel,startf,I01,pixel,startr,f1ip)
VARIABLE bot: integer range 0 to 3:= top - 4;

BEGIN
bt (start? = '1’) THEN
statel <= rowwait;
count18 <= (others => ’0’);

ELSIF clock’EVENT AND clock = '1’' THEN
CASE statel IS
WHEN dorow => if flip = '0' then

CASE partl IS -~ read out of SRAM
WHEN "00" => pixel(7 downto 6) <= I01(top) & I01(bot);
WHEN 01" => pixel(5 downto 4) <= 101(top) & I01(bot);
WHEN 10" => pixel(3 downto 2) <= I01(top) & I01(bot);
WHEN "11" => pizel(1 dowmto 0) <= I01(top) & I01(bot);
WHEN OTHERS => pixel <= pixel;

A.l. VHDL

END CASE;

olse

CASE parti IS -=- read out of SRAM
WHEN "00" => pixel(7 downto 6)
WHEN "01" => pixel(5 downto 4)
WHEN "10" => pizel(3 downto 2)
WHEN "11" => pixel(1 downto 0)
WHEN OTHERS => pixel <= pixel;

END CASE;

end if;

CASE parti IS ~-- read out of SRAM
WHEN "00" => pixout <= pixel;

<= 10(top) & I0(bot);
<= I0(top) & ID(bot);
<= 10(top) & ID(bot);
<= ID(top) & ID(bot);

WHEN OTHERS => pixout <= pixout;

END CASE;

IF (count18(9 downto 0) = "1111111111") THEN

statel <= rowwait;
ELSE

statel <= dorow;
END IF;

count18 <= counti8 + 1;

WHEN rowvwait => countl8 <= counti18;
pixout <= pixel;
IF gtartr = '1’ THEN
statel <= dorow;
END IF;

WHEN OTHERS => statel <= rowwait;
END CASE;
END IF;
END PROCESS;

PROCESS (count18)
BEGIN

IF counti8(6) = '0’ THEN
IF count18(2) = ’0’ THEN
top <= 7;
ELSE top <= §;
END IF;
ELSE
IF count18(2) = '0’ THEN
tep <= 5;
ELSE top <= §;
END IF;
END IF;
END PROCESS;

P ing
proccu(flip.rou.primo,pn-t,pac,inc,rovl,primai.putl.pucl,incl)
begin

if £1ip = 0’ then

addr <= rov & prime X part & pac & inc;

addrl <= rowl & primsl & parti & paci & inci;
olse

addrl <= row & prime & part & pac & inc;

addr <= rowl & primel & partl & pacl & incl;
end if;

end process;

END fsmino;

Library ieee;
Use ieee.std_logic_1164.all;
PACKAGE inopkg IS
COMPONENT ino PORT (
clock: IN std_logic;
reset: IN std_logic;
WE,0E: OUT std_logic;
addr: BUFFER std_logic_vector(15 downto 0);
chip: IN std_logic_vector(0 to 31);
I0: INOUT std_logic_vector(7 downto 0);

pax,start: IN std_logic; --start indicates begining of frame

--pix indicates vhen a set of 32 bits from the imager are ready
startf,startr: IN std_logic; --startf causes pixels to be output at begining of frame
WE1,0E1: OUT std_logic; --starfr cause pixels to be output at begining of row

addrl: BUFFER std_logic_vector(15 downto 0);
101: INOUT std_logic_vector(7 downto 0);
pixout: BUFFER std_logic_vector(7 downto 0);

81

82 APPENDIX A. REAL-TIME IMAGER. DEMONSTRATION

£1ip: IN std_logic); --£1ip switches SRAM parameters. ie- addr,WE,OE,I0
END COMPONENT;
END inopkg;

A.1.5 NTSC encoder - ntsc.vhd

Location:

/homes/kfife/Imager1/24.5MHz/ntsc.vhd

--This is code to generate an interlaced ntsc encoder. The
--non-interlaced version version is better and more efficent
Library ieoe;
Use ieco.std_logic_11€4.all;
En*ity ntsc IS PORT (
clock,resote: IN std_logic; --reset active low
bsync,hblank: BUFFER std_logic;
startr,startf: OUT std_logic);
End ntsc;

USE WORK.std_arith.ALL;
USE WORK.int_math.ALL;

ARCHITECTURE fsmntsc OF ntsc IS
SIGNAL count: integer range 0 to 1569;
SIGNAL line: integer range 0 to 543;
BEGIN

PROCESS (clock,count,resete)
BEGIN

IF resote = 0’ THEN
count <= 0;
line <= 0;
ELSIF clock’EVENT AND clock = '1’ THEN
-- odd goes from O to 242, even goes from 271 to 513

IF (NOT((line > 259 AND line < 270)or(line > 531 AND line < 543)) and count =« 1559) THEN
count <= 0;
line <= line + 1;

ELSIF ((line = 542) AND (count = 1559)) THEN --reset on the end of line 542
count <= 0;
line <= 0;

ELSIF (count = 1569) THEN --kills 10 clks for the above intervals. (200 total killed clks)
count <= 0;
line <= line + 1;

--Eq and Ser pulses

ELSIF ((line > 241 AND line < 260) OR {(line > 513 AND line < 632)) AND count = 779 THEN
count <= 0;

line <= line + 1;

ELSE count <= count + 1;
END IF;

CASE count IS
WHEN 0 => hsync <= '0’; --start hsync pulse

WHEN 123 => IF NOT ((line > 242 AND line < 261) OR (line > 513 AND line < 532)) THEN
hsync <= ’1’; --end hsync pulse
ELSE hsync <= hsync;
END IF;

WHEN 57 => IF (line > 242 AND line < 248) OR (line > 254 AND line < 261) OR (line > 513 AND line < 520) OR (line > 525 AND line < 532) THE
hsync <= '1'; --eq pulse width
ELSE hsync <= hsync;
END IF;

WHEN 659 => IF (line > 248 AND line < 2565) OR (line > 519 AND line < 626) THEN --ser width
hsync <= '17;
ELSE hsync <= hsync;
END IF;

WHEN OTHERS => hsync <= hsync;
END CASE;

A.2. SCHEMATICS 83

CASE count IS

WHEN 385 => IF NOT ((line > 242 AND line < 272) OR (line > 513 AND line < 543)) THEN
hblank <= '1’; --active video after back porch
ELSE hblank <= '0’;
END IF;

WHEN 779 => 1F line = 271 THEN --(1228/2 + 120 + 114 - 1 = 877) set to 779
hblank <= '1’; --active video again (top of screen)
ELSIF line = 242 THEN --front porch going into ser
hblank <= '0’;
ELSE hblank <= hblank;
END IF;

WHEN 1409 => hblank <= '0’'; --front porch start

WHEN OTHERS => hblank <= hblank;
END CASE;

CASE count IS

WHEN 379 => IF NOT ((line > 242 AND line < 272) OR
(line > 513 AND line < 543)) THEN
startr <= ’1’; --active video, read pixel 4 clocks before end of blanking
ELSF. startr <= 0’;
startf <= '1’;
END IF;
WHEN OTHERS => startr <= '0’;
startf <= ’Q’;
END CASE;
END IF;
END PROCESS;
END famntsc;
Library ieee;
Use isee.std logic_1164.all;
PACKAGE ntscpkg IS
COMPONENT ntsc PORT (
clock,resete: IN std_logic;
hsync,hblank: BUFFER std_logic;
startr,startf: QUT std_logic);
END COMPONENT;
END ntscpkg;

A.2 Schematics

The board schematics, library files, and PC board layout for the real-time imager demon-
stration are located in /homes/kfife in ACCEL binary format.

/homes/kfife/Accel/Realtime/
imager.sch
imager.pcb
format.sch
format.pcb
imageril.1lib

Schematics for The Realtime demonstration are shown in Figures A.1 and A.2.

84

APPENDIX A. REAL-TIME IMAGER DEMONSTRATION

» i [I [¥) -
E .
5
e o
—F——
> S A0 €32
1QuF g —E—
PRI ;g AW €33
g 3 c34
oF Ao
v g S
c3 R €35
+—B
S JAuF c3s
i ; g e A
< QP 13 AF €37
<4 Lid 1 — K
o1 c38
R E
¥ 1.2 208 200 200 200 2 200
a9 —u A yyd Fove Fyvd AP bl Fyvd vy
) R7 RS Ré R2 R1
® L. LA
il k| c’;’z |§ ;
I\ A 1 g U]] U
*
c41 i
19uF
: %
- H €13
§ 23 2 '
i ——ye—i§
!
o
19uF
L
cs
‘g 15< 3% 412
N R13 Riz !
L
1‘¢.|F
T
€13
gl .
o & AAA— ANA IE
R1S Ri4 ¥ !
) E————
i H -
] £ = g
—3 Hy —
— B s RHTIIY W
V13
80
RIS
m
g ° 19uF
=1 L
; R RCe __._u_._‘-_.__..-_:::::c::=: ______ 3 cie
dhpla s
| 0 R19
- WQuF
¥
i o
-f Bl oo | aw
< WA W ,s
ES
=
¥ L]
IS [| [N} | -

Figure A.1: Analog imager schematics.

A.2. SCHEMATICS

85

IS l [N -
5 10712 0T1
s g ; s
> 1 o .
1 IVJU:] :' i
2.e 3 ' o
T | vaue} | © '3 P H
— ce | I & —
[Volue g oo ooy
vos
LB 2
|vi:.] i = o |
i SRAM SRAM
@
C:‘ ; Sran-gsslets = g
{Voiue] i . Ei' ‘_J—’i,%'_ g
: : B
|| Vohsel - :g al che |
C:S é §
{Vaiue} L
o "\
A R Ty
SRBYERBSE °
R g
| % .
~
GND g
18
© z
B
1 & o 5
S B
§“ g Mo
Ny
! 3
m
g ? F {Volue} |
[P’ TR
; i3 s
s J g @ E
] °
s 3
}r - 1 RIS g ¢ R18
ricl ‘; o olue} iVaiua] | {Valus} g
f 5 g{ 4—,;{5? -
- F i g o= Volus]
! g
ES ’ <4 & Sy
—5 ! ®
'S | w -

Figure A.2: Format converter schematics.

86

APPENDIX A. REAL-TIME IMAGER DEMONSTRATION

Appendix B

Automatic Brightness Adaptation
Demonstration

B.1 VHDL
The VHDL files for the digital imager are located in:

/homes/kfife/Imagerl/Stereo/
imsync.vhd

image.vhd

imagertiming.vhd

project name: imagerpc.pfg

The VHDL files used for frame averaging are located in:

/homes/kfife/Imagerl/Stereo/ALU
topbox.vhd

boxcontrol.vhd

sample.vhd

serialZ2parallel.vhd

chipmux.vhd

startlatch.vhd

boxaverage.vhd

project name: boxaverage.pfg

The VHDL files used for targeting a wide dynamic range image are located in:

/homes/kfife/Imager1l/Stereo/ALU
topwithlights.vhd
lights.vhd

87

88 APPENDIX B. AUTOMATIC BRIGHTNESS ADAPTATION DEMONSTRATION

topcomponents.vhd
gridlights.vhd
sendiris.vhd
compare.vhd
irisgen.vhd
sub.vhd
modegen.vhd
divider.vhd

project name: components.pfg

The VHDL files used for reformatting and displaying images are located in:

/homes/kfife/Imagerl/Stereo/DATAPATH
monitordigital.vhd
serial2parallel.vhd

inout.vhd

sample.vhd

ntsc.vhd

flip.vhd

startlatch.vhd

project name: march999.pfg

The files used for the daughter card to the GuPPI card are located in:

/homes/kfife/Imagerl/Stereo/GUPPI
topguppi.vhd

project name: guppi.pfg

B.1.1 Top Level - imsync.vhd

Location:

/homes/kfife/Imagerl/Stereo/imsync.vhd

Library ieee;
Use ieso.std_logic_1164.all;

Entity imsync IS PORT (
clock,reset: IN std_logic;
¢1kBB,clkA,svsell,sviel2,swsel3: OUT std_logic;
phil,phi2,phi3,phi4: BUFFER std_logic;
Asolect, Bselect: BUFFER std_logic;
pbi0,phiObar: BUFFER std_logic;
isolate: BUFFER std_logic;
clkb,clkr: BUFFER std_logic;
rsin: BUFFER std_logic;
modebd: IN std_logic; --integration or linear mode

B.1.

VHDL

colsel: BUFFER std_logic_vector(2 downto 0);

samplel, sample2: BUFFER std_logic;

phi5,phi6: OUT std_logic;

manual: IN std_logic; --says to use manual or autoiris
cs: OUT std_logic;

aclk: QUT std_logic;

irisi: IN std_logic;

chip: IN atd_logic_vector(31 downto 0);
outs: BUFFER std_logic;
datacall: OUT std_logic; --used to say vhen to start a frame and vhen data is ready

irisbit: IN std_legic; --used to transfer iris one bit at a time and sampled by clock

---POWER ON

led: OUT std_logic;

--=-CLOCKS

clk: OUT rtd_logic;

~---MODE LED

manled: OUT std_logic;
modeled: OUT std_logic);

attribute pin_avoid of imsync:entity is "6 46 76 116";

sclk, smode,SD0,SDI

attribute pin_numbers of imsync:entity is
"OuUTS:2 " &

“PHI5:11 " &
“PHIG:14 " 2

“LED:15 " &
"CLK:16 " &

"CLOCK:19 " &

“IRISBIT:22 " &

“PHI1-32 " &
"RSIN:33 " &
"MANLED:34 " &
“PHI3 42 " &

“MODELED:47 " &

“COLSEL(2):48 " &
“COLSEL(1):49 " 2
“COLSEL(0):51 " &

"PHI2.52 " &
“PHI4:53 " &
"CLKB:65 " &
"SAMPLE1:68 “ &
"ISOLATE-68 " &
"ASELECT:70 " &
"BSELECT.72 " &
“CLKA:73 " &
"CLKR:74 " &

"SAMPLE2-76 " &
"DATACALL:78 " &
"CLKBB.79 " &

"MANUAL-97 " &
"RESET:99 " &

"MODEBD:102 " &

"PHIOBAR:103 " &
“SWSEL1:104 " &
“SWSEL2:105 " &
“SWSEL3:106 " &

“C5.113 " &
“ACLK:114 " &
“IRISI:116 " &

“PHIO:119 " &

“CHIP(0):122 "
“CHIP(1)-123 "
“CHIP(2):124 "
“CHIP(3):125 "
“CHIP(4):126 "
“CHIP(6):127 "
“CHIP(6):128 "
“CHIP(7).129 *

LI N)

89

90 APPENDIX B. AUTOMATIC BRIGHTNESS ADAPTATION DEMONSTRATION

“CHIP(8):131 " &
"CHIP(9):132 " &
“CHIP(10):133 "

“"CHIP(11):134 "

"CHIP(12):136 "

"CHIP(13):136 "

"CHIP(14):137 "

“CHIP(15):138 "

"CHIP(16):143 "

“CAIP(17):144 "

"CHIP(18):145 *

"CHIP(19):146 "

"CHIP(20):147 "

"CHIP(21):148 "

"CHIP(22):149 "

“CHIP(23):150 "

"CHIP(24):1562 "

"CHIP(25):163 "

“CHIP(26):154 "

"CHIP(27):165 "

“CHIP(28):156 "

“CHIP(29):167 "

“CHIP(30):168 "

“CHIP(31):169 ";
End imsync;

LA N L O O O

Use vork.imagepkg.all;
USE WORK.std_arith.ALL;
ARCHITECTURE behavior OF imsync IS

SIGNAL modebdnot: std_logic;
SIGNAL mode: std_logic;
SIGNAL reseti: std_logic;
SIGNAL resets: std_logic;

SIGNAL startframe: std_logic;
SIGNAL flash: std_logic_vector(4 downto 0);

BEGIN

image0: im PORT MAP(
clock,resets,
clkBB,clkd,svsell,svsel2,swsel3,
phil,phi2,phi3,phi4,
Aselect, Bselact,
phiO,phiObar,
isolate,
clkb,clkr,
rein,
modebdnot, --integration or linear mode
colsel,
samplel, sample2,
phib,phis6,
manual, --says to use manual or autoiris
cs,
aclk,
irisi, --signal from ADC
chip,
mode,
reseti,

startframe,

outs,
datacall, --used to say vhen to start a frame and vhen data is ready

irisbit); --used to transfer iris one bit at a time and saxpled by clock

debd <c not debd;
led <= flash(4) or irisbit;
modeled <= '1' vhen mode = ’'1' else 'O’
sanled <= '1' vhen manual = '1’ else '0O’;
resots <= resot vhen manual = '1’' else resoti,

B.1. VHDL 21

process begin

vait until clock = '1?;
if startframe = '1’ then
flash <= flash + 1;

end if;

end process;

END bebhavior;

B.1.2 Data Protocol and Barrier Generation - image.vhd
Location:

/homes/kfife/Imager1l/Stereo/image.vhd

Library iees;
Use iese.std_logic_1164.all1;
Entity im IS PORT (

clock,reset: IN std_logic; --resot active low
cl1kBB,clkA,svsell,svsel2,swsel3: OUT std_logic;

phil,phi2,phi3,phi4: BUFFER std_logic; --ADC timing

Aselect, Bselect: BUFFER std_logic; --ADC selector for pad driver

phi0,phiObar: BUFFER std_logic;
isolate: BUFFER std_logic;
clkb,clkr: BUFFER std_logic;
rsin: BUFFER std_logic;
modebd: IN std_logic; ~-integration or linear mode
colsel: BUFFER std_logic_vector(2 downto 0);
semplel, sample2: BUFFER std_logic;
phib,phi6:0UT std_logic;
manual: IN std_logic; --says to use manual or autoiris
cs: OUT std_logic;
aclk: QUT std_logic;
irisi: IN std_logic;
chip: IN std_logic_vector(3i downto 0);
- chap: BUFFER std_logic_vector(31 downto 0);

mode: BUFFER std_logic; -- ported mode so that this can be used in package
reseti: OUT std_logic; ~--ported for internal signal when packaged
startframe: BUFFER std_logic;

outs: BUFFER std_logic;

datacall: OUT std_logic;

irisbit: IN std_logic); --used to transfer iris/mode/reset

End im;

--16384 32-bit outputs per frame At 24.576MHz -> 409600 clks per frame, so / by 25,
--hence i = 0 to 24.

--As of 1/3/99 1 am using a 49 MHz clk so I divide by 50 and send the output at 46MHz.
--Sending data for the 32 intervals and then wvait for 18

USE WORK.std_arith.ALL,
USE WORK.imagertimingpkg.all; -- all the signal for the chip exc.pt for colsel and 32 outs

ARCHITECTURE femim OF im IS

SIGMAL count. std_logic_vector(b downto 0);
SIGNAL 1 integer range 0 to 49; --1 is used to divide the clock by 80.
SIGNAL r: integer range 0 to 255; --r is the number of rovs.

SIGNAL lock: std_logic;

SIGNAL A. std_logic_vactor(7 downto 0), --used in comparator
SIGNAL compare. boolean; --output of comparator
Attribute synthesis off of coapare: SIGNAL is TRUE;

SIGHAL iriscount std_logic_vector(2 downto 0),

SIGNAL iris' std logic_vector(7 dowvnto 0},

SIGNAL rov std_logic_vector(i downto 0},

92 APPENDIX B. AUTOMATIC BRIGHTNESS ADAPTATION DEMONSTRATION

SIGNAL irisin: std_logic_vector(7 downto 0); --holding place for adc iris

SIGNAL irisbd: std_logic_vector(7 downto 0); --holding place for adc iris registered
SIGNAL locki: std_logic;

SIGNAL csadc: std_logic;

SIGNAL getbit: std_logic;

-~ SIGNAL startframe: std_logic;
SIGNAL dataready: std_logic; --used to say whan to start a frame and vhen data is ready

TYPE states IS (idle,check,vaitl,wait2,modestate,bits);
SIGNAL state: states;

SIGNAL modecbd: std_logic;

SIGNAL irisobd: std_logic_vector(7 downto 0);
SIGNAL count16: std_logic.vector(3 downto 0);
SIGNAL sample: boolean;

SIGNAL sampleadc: boolean;

BEGIN

--standard imagortiming--
imagertiming0: imagertiming port map (

clock,reset, --reset active low
clkBB,clki,susell, svsel2,cwsel3,

phil,phi2,phi3,phi4, --ADC timing

Asslect, Bselect, --ADC selector for pad driver
phiO,philObar,

isolste,

clkb,clkr,

rsin,

samplel, sample2,

phib,phi6, --used to say when to start a frame and vhen data is ready
count,

i, -~i is used to divide the clock by 50.
r); --r is the row count

--decoding irisbit -
Autoiris: PROCESS (clock,reset,startframe,irisbit)

begin

If reset = '0’ then
state <= idle;

ELSIF clock’EVENT AND clock = 1’ THEN

CASE state IS

WHEN idle => iriscount <= "000";
IF startframe = ’1’ THEN
state <= chack;
ELSE state <= jdle;
END IF;

WHEN check => IF irisbit = ’0’ THEN
state <= vaitl;
ELSE state <= idle; --error
END IF;

WHEN waitl => IF irisbit = 1’ THEN
state <» wait2;
ELSE state <= waitl;
END IF;

WHEN wait2 => IF irisbit = '0’ THEN
state <= bits;
ELSE state <= wait2;
END IF;

WHEN bits => irisobd <= irisobd(6 downto 0) & irisbit; ~-gend MSB first
iriscount <= iriscount + 1;

IF iriscount = "111" THEN
state <= modestate;
ELSE atate <= bits;
END IF;

WHEN modestate => modeobd <= irigbit; --9th bit of date is the mode.
state <= jdle;

WHEN OTHERS => state <= idls;

END CASE;

END IF;

END PROCESS Autoiris;

--reset signal generated from irisbit held high for 16 counts----------=------
Resetsignal: PROCESS (clock,irisbit,countl6)

B.1. VHDL

begin
IF clock’EVENT AND clock = 1’ THEN

IF irisbit = '1’ and (count16 /= "1111") THEN
count16 <= countif + 1;

ELSIF (irisbit = ’0’) THEN count16 <= "0000";
END IF;

IF (counti6 = "1111") THLN
reseti <= '0’;
ELSE reseti <= '1’;
END IF;
END IF;
END PROCESS Resetsignal;

process begin
vait until clock = '1’; --outs gets registered to reduce the propagation delay.

IF i = 17 THEN sample <= true; END IF;
IF i = 49 THEN sample <= false; END IF;

case i 13
vwhen 17 => outs <= chip(16);
when 182> outs <= chip(20);
vhen 19=> outs <= chip(24);
vhen 20=> outs <= chip(28);
vhen 2§ => outs <= chip(15);
vhen 22 => outs <= chip(11);
when 23 => outs <= chip(7);
when 24 => outs <= chip(3);
when 25 => outs <= chip(17);
vhen 26 => outs <= chip(21);
vhen 27 => outs <= chip(25);
when 28 => outs <= chip(29);
when 29 => outs <= chip(14);
vhen 30 => outs <= chip(10);
vhen 31 => outs <= chip(6);
when 32 => outs <= chip(2);
when 33 => outs <= chip(18);
when 34 => outs <= chip(22);
vhen 35 => outs <= chap(26),
when 36 => outs <= chip(30);
when 37 => outs <= chip(13);
when 38 => outs <= chip(9);
vhen 39 => outs <= chip(5);
when 40 => outs <= chip(1);
vhen 41 => outs <= chip(19);
vhen 42 => outs <= chip(23);
when 43 => outs <= chip(27);
vhen 44 => outs <= chip(31);
when 45 => outs <= chip(12);
vhen 46 => outs <= chip(8);
vhen 47 => outs <= chip(4);
vhen others => outs <= chip(0);

END case;

end process;

process(clock,i,r,lock) begin --registered to prevent glitches
if rising_edge(clock) then
---startframe
IF ((r = 0) AND (i = 4) AND (lock = ’0')) THEN
startframe <= '1';
lock <= 17
else startframe <= '0’;
END IF;
IF r = 1 THEN lock <= '0’; END IF;
end if;
end process;

dataready <= (not clock) vhen sample else '0’; --sample data on not clock

datacall <= datarcady or startframe; --combines startframe and dataready into one.

94 APPENDIX B. AUTOMATIC BRIGHTNESS ADAPTATION DEMONSTRATION

barrier function
~-process(r,mode,clock,colsel)
--begin

--IF clock’EVENT AND clock = ’'1' THEN

-=-if mcde = '1’ then --integration mode; approximating log function
- case r is

- vt;sn 256 => colsel <= "000"; --highest potential(reset = 5v)
- when 0 => colsel <= "001";

-- when 127 => colsel <= "010";

- when 191 => colsel <= "01i";

- when 223 => colsel <= "100";

- when 239 => colsel <= "101";

- vhen 247 => colsel <= "110";

-- vhen 251 => colsel <= "111"; --lowest potential(= 2.5v)
- vhen others => colsel <= colsel;

- end case;

~-else

-- case r is -=linear mode

- when 255 »> colmel <= "000";

-- vhen 0 => colsel <= "11i";

- vhen others => colsel <= colsel;

- end case;

--end if;

--END IF;

-~end process;

------------ mux for selecting iris; computation of log function.
vith colsel select
A <= iris when "000",

'1? g iris(7 downto 1) wvhen "OO1",
"11" & iris(7 downto 2) when "010",
111" & iris(7 downtoc 3) vhen "O11",
"1111" & iris(7 downto 4) when "100",
"11111" & iris(7 downto 5) when "101",
"111111" & iris(7 downto 6) when "110",
"11111111" vhen "111",
"00000000" when others;

-=--8-b p
compare <= r = to_integer(A); --compares row to iris to determine vhen to step barrier

Barrier:PROCESS (clock,r)
BEGIN

IP r = 256
then colsel <= "000";

ELSIF clock’EVENT AND clock = *1’' THEN

IF mode = '1’' THEN
IF r = 254 THEN
colsel <= "111"; --at least grab the last little step
ELSIF compare THEN colsel <= colsel + 1;

END IF;

eolse
IF compare THEN colsel <= "1i1";
END IF;

END IF;

END IF;
END PROCESS Barrier;

-------------- getting iris from adc
Getiris: Process(startframe,clock,row,lockl,getbit,irisi) --get iris from adc

begin
IF clock'EVENT AND clock = ’'1’ THEN

IF (manual = '1’) THEN
IF sampleadc and (lockl = '0’) THEN
irisin <= irisin(6 downto 0) & irisi; --send MSB first
lockl <= ’1?;
END IP;

B.1. VHDL

IF not sampleadc THEN --lock is set at the beginning of rovs
lockl <= ?0’;
END IF;

IF (r = 0) THEN
irisbd <= irisin;
END IF;

END IF;

END IF;
END PROCESS Getiris;

--timing for serial adc--
vath r select
gotbit <= '1’ vhen 5(7/9(11113116117}19,
'0’ when others;

vith r select
sampleadc <= true when 618/10112i14116/18120,
false vhen others;

with r select
csadc <= '0’ when 0 to 19,
'1’ vhen cthers;

1

row <= to-nd_lo;ic_vo:tor(rﬂ); --converts r to std_logic_vector
aclk <= row(0); --takes the lsb of row for a2d clock

cs <= csadc when (manual = ’1’') else ’'1’;
mode <= modebd vhen (manual = '1’) else modoobd;
iris <= irisbd vhen {manual = ’1’) else airisobd;

END fsmim;

Library ieee;

Use ieee.std_logic_1164.all;
PACKAGE imagepkg IS
COMPONENT im PORT (

clock,reset: IN std_logic; --reset active low
c1k8B,clki,svsell,svsel2,swsel3: QUT atd_logic;

phil,ph12,ph13,phi4: BUFFER std_logic; ~-ADC timing

Aselect, Bselect: BUFFER std_logic, --ADC selector for pad driver

phiO,phiObar: BUFFER std_logic;

isolate: BUFFER std_logic,

clkb,clkr: BUFFER std_logic;

rsin: BUFFER std_logic;

modebd: IN std_logic; --integration or linear mode
colsel: BUFFER std_logic.vector(2 dowato 0);

samplel, sample2: BUFFER std_logic,

phi5,phi6:0UT std_logic;

manual: IN std_logic; --says to use manual or autoiris
cs: OUT std_logic;

aclk: OUT std_logic;

irisi: IN std_ logic;

chip: IN std_logic_vector(31 dewnto 0);

mode: BUFFER std_logic; ~-- portad mode so that this can be used in package
reseti: DUT std_logic; --ported for internal signal vhen packaged

startframe: BUFFER std_logic;

outs: BUFFER std_logic;

datacall: OUT std_logac;

irisbit. IN std_logic); --used to transfer iris/mode/reset

END COMPONENT;
END imagepkg;

B.1.3 Package for all Digital Imager Signals - imagertiming.vhd

Location:

/homes/kfife/Imagerl/Stereo/imagertiming.vhd

95

96 APPENDIX B. AUTOMATIC BRIGHTNESS ADAPTATION DEMONSTRATION

--All signals for the imager chip except for colsel and the 32 bit outputs.
Library ieees;

Use iese.std_logic_1164.all;

Entity imagertiming IS PORT (

clock,reset: IN std_logic; -~reset active low
clkBB,clkA,swsell,svsel2,svsel3: OUT std_logic;

phil,phi2,phi3,phi4: BUFFER std_logic; --ADC timing

Aselect, Bselect: BUFFER std_logic; --ADC selector for pad driver

phi0,phiObar: BUFFER std_logic;
isolate: BUFFER std_logic;
clkb,clkr: BUFFER std_logic;
rsin: BUFFER std_logic;
-- colsel: BUFFER std_logic_vector(2 downto 0);
samplel, sample2: BUFFER etd_logic;

Phi5,phi6:0UT std_logic; --used to say vwhen to start a frame and vhen data is ready
count: BUFFER std_logic_vector(5 downto 0);

i: BUFFER integer range 0 to 49; --i is used to divide the clock by 60.

r: BUFFER integer range 0 to 255); --r is the row count

End imagertiming;

USE WORK.std_arith.ALL;

ARCHITECTURE behavior OF imagertiming IS

SUBTYPE v3 is std_logic_vector(2 downto 0);
alias switch: v3 is count(2 dosnto 0);

SIGNAL phihi,phih2,phih3,phih4: boolean;
BEGIN
PROCESS (clock,i,switch,reset)
BEGIN

IF reset = 0’ THEN
i<=0;
r <= 0;
count <= "000000";

ELSIF clock’EVENT AND clock = '1’ THEN
if i = 49 then --divide down the system clock
i <= 0;

--phil-4
if (switch = "111") or (switch = "000")then
phih3 <= TRUE; else phih3 <= FALSE; end if;

it (svitch = "001") or (switch = "010")then
phih4 <= TRUE; else phih4 <= FALSE; end if;

if (switch = "011") or (switch = "100")then
phihl <= TRUE; else phihl <= FALSE; end if;

if (switch = "101") or (switch = "110")then
phih2 <= TRUE; else phih2 <= FALSE; end if;

--Aselect and Bselect

if (count = "000000") then
Bsgelect <= '1’; end if;

if (count = "011111") then
Bselect <= '0’; end if;

if (count = "100000") then
Aselect <= ’1’; oond if;

if (count = "111111") then
Aselect <= '0Q’; end i?;

--samplel and sample2 and isolate
if (count = "100000") then
sample2 <= '0’; end if;

if (count » "100001") then
samplel <= '1’; end if;

it (count = "101101") then
samplel <= '0’; end if;

if (count = "101110") thea
sample2 <= ’1’; end if;

it (count = "100001") then
isolate <= '1'; end if;
i? (count = "“111011") then
isolate <« '0’'; end if;

-~clkb
i? (count = "101101") then
clkb <= ’1';

B.1. VHDL

else clkb <= '0’;

end if;

=--clkr

if (count = "100000") then
clkr <= 17;

else clkr <= ’Q’;

end if;

if count = “111111" then
count <= “000000";
if r = 255 then -~counting rows
r <= 0;
elee r <=1 + 1;
end if;
else count <= count + 1;
end if;

else i <= i + 1;

end if;
END IF;

END PROCLIS;

------------ non-overlapping phis-«--------
phil <= *1’' vhen phihl and not phih4 e 0
phi2 <= '1? vhen ph*“2 and not phihl else '0’;
phi3 <= '1? vher pb.u3 and not phih2 e 05
phi4 <= 1’ vhen phih4 and not phih3 else ’0’;

clkA <=

’0’ when switch = "000" else ’1’;

clkBB <= '0’ vhen switch = "100" else ’1’;

phi0 <=
philbar

--rsin
rsin <=

--phi5,
phib <=
phi6 <=

’1’ when (count(4 downto 0) > "11011") else '0’;
<= not phi0Q;

'1? when r = 255 else ’'0’;

phi6
Aseloct;
Bselect;

susel2 <= switch(0);
susell <= switch(1);
susel3 <= switch(2);

END behavior;

Library

ieea;

Use ieee.std_logic_1164.all,

PACKAGE

imagertimingpkg IS

COMPONENT imagertiming PORT (

clock,reset: IN std_logic; --reset active low
clkBB,clkA,svsoll,svsel2,swsel3: OUT std_logic;

phil,phi2,phi3,phi4: BUFPER std_logic; --ADC taming

Asalect, Bselect: BUFFER std_logic; --ADC selector for pad driver

phiO,phiObar: BUFFER std_logic;

isolate: BUFFER std_logic;

clkb,clkr: BUFFER std_logic;

rsin: BUFFER std_logic;

colsel: BUFFER std_logic_vector(2 downto 0);
samplel, sample2: BUFFER std_logic;

phib,phi6:0UT std_logic; ~-uswd to say whoen to start a frame and vhen data is ready
count: BUFFER std_logic_vector(5 downto 0);

i: BUFFER integer range 0 to 49; ~-i is used to divide the clock by 50.

r: BUFFER intoger range O to 255); --r is the rov count

END COMPONENT;
END imagertimingpkg;

B.1.4 Top Level - topbox.vhd

Location:

/homes/kfife/Imagerl/Stereo/ALU/topbox.vhd

97

98 APPENDIX B. AUTOMATIC BRIGHTNESS ADAPTATION DEMONSTRATION

Library ieee;
Use iece.std logic_1164.al11;
Entity topbox IS PORT (

clk: IN std_logic;

clk49: IN std_logic;

clkout: OUT std_logic;

clock: IN std_logic;

clockout: BUFFER std_logic; --This is the half clock.

outs: IN std_logic;

datacall: IN std_logic;

index: ouT ltd_lo;ic-vcctct(.’. downto 0);

CLR: OUT std_logic;

LDbot: OUT std_logic;

avg: OUT std_logic_vector(7 downto 0);

LDall: OUT std_logic;

interin: IN std_logic_vector(3 downto 0); --in from monitor digital
interout: OUT std_logic_vector(3 downto 0)); --readable to gridlights

attribute pin_avoid of topbox:sntity is "6 46 76 116";
sclk,smode,SD0,SDI

attribute pin_numbers of topbox:entity is
"AVG(0):2 " &

"AVG(1):9 " &

"DATACALL:19 " &

“CLK:22 " &
"AVG(2):23 " &
"AVG(3):27 " &
"AVG(4):30 " &
“CLOCKOUT:33 *
"0UTS:69 " &
"AVG(5):64 " &
“CLOCK:99 " &
“INDEX(0):122 "
“INDEX(1):123 *
"INDEX(2):124 "
"INDEX(3):1256 “
“CLR:131 " &
“LDBOT:132 " &
“LDALL:133 " &
"INTERIN(0):135
"INTERIN(1):136
"INTERIN(2):137 " &
“INTERIN(3):138
"clk49:143 " &
“clkout:144 " &
"AVG(6):1562 " &
"AVG(7):153 " &
"INTERQUT(0):165 " &
“INTERGUT(1):156 " &
“INTEROUT(2) :167 " &
“INTEROUT(3):158 ";

" &

L 4

L]

~

End topbox;
USE WORK.std_arith.ALL;

USE WORK.sorial2parallelpkg.all;
USE WORK.startlatchpkg.all;

USE WORK.samplepkg.all;

USE WORK.chipmuxpkg.all;

USE WORK.boxcontrolpkg.all;

USE WORK.boxaveragepkg.all;

ARCEITECTURE behavior OF topbox IS

SUBTYPE v1 is std_logic;

SUBTYPE v2 is std_logic_vector(l downto 0);
SUBTYPE v4 is std_logic_vector(3 downto 0);
SUBTYPE v3 is std_logic_vector(2 downto 0);
SUBTYPE v8 is std_logic_vector(7 downto 0);
SUBTYPE v32 is std_logic_vector(31 downto 0);

SIGNAL datain: v32;

SIGNAL chip: v32;

SIGNAL dav: std_logic;
SIGNAL rdav: std_logic;
SIGNAL samplenow: std_logic;
SIGNAL scart: std_logic;
SIGNAL startreset: std_logic;
SIGNAL done: std_logic;
SIGNAL clearbits: boolean;
SIGNAL Readin: std_logic_vector(2 downto 0);
SIGNAL Lalfbyte: v4;

SIGNAL column: v2;

SIGNAL row: v2;

SIGNAL newpixel: boolean;

B.1. VHDL

SIGNAL nevbitplane: boolean;
SIGNAL newvblock: boolean;

Attribute synthesis_off of halfbyte: SIGNAL is TRUE;
BEGIN

serial2parallel0: serial2parallel PART MAP(
clk=>clk,
start=>start,
data=>datain,
outs=>outs,
dav=>dav,
rdav=>rdav,
datacall=>datacall);

startlatch0: startlatch PORT MAP(
clock=>clock,
start=>start,
done=>done,
startQ=>startreset);

sample0: sample PORT MAP(
clocke>clock,
davs>dav,
rdav=>rdav,
sanplenow=>samplenow,
datain=>datain,
dataout=>chip);

chipmuzQ: chipmux PORT MAP(
chip=>chip,
output=>halfbyte,
clearbita=>clearbits,
Readin=>Readin);

boxcontrold: boxcontrol PORT MAP(
clock=>clock,
startreset=>startreset,
sanplenov=>samplenow,
Readin=>Readin,
clearbits=>cleardits,
done=>done,
column=>column,
TOW=d>TOW,
nevpixel=>newpixel,
nevbitplane=>newbitplane,
newblock=>newblock,
LDbot=>LDbot,
CLR=>CLR,
LDall=>LDall);

boxaverage0: boxaverage PORT MAP(
clock=>clock,
input=>halfbyte,
column=>column,
newpixel=>newpixel,
nevbitplane=>newhbitplane,
nowblock=>newblock,
avg=>avg);

--This is the index for gridlights
index <= row & column;

process begin

WAIT UNTIL (clk = '1');

clockout <= not clockout; -~divide clk by two
end process;

interout <= interin;
clkout<=clk49;

END behavior;

100 APPENDIX B. AUTOMATIC BRIGHTNESS ADAPTATION DEMONSTRATION

B.1.5 Controller for Arithmetic Functions - boxcontrol.vhd

Location:

/homes/kfife/Imagerl/Stereo/ALU/boxcontrol.vhd

Library iees;
Use joee.std_logic_1164.all;
Entity boxcontrol IS PORT (

clock: IN std_logic;

startreset: IN std_logic; --this comes from the Q output of an rs latch, done resets it.
samplenov: IN std_logic;

Readin: BUFFER std_logic_vector(2 downto 0);

clearbits: OUT boolean;

done: OUT std_logic; --reset for the startlatch

column: BUFFER std_logic_vector(1l downto 0);

Tow: BUFFER std_logic_vector(1l downto 0);

newpixel: OUT boolean; --fcr boxaverage

nevbitplane: OUT boolean; --for boxaverage

newblock: OUT boolean; --for boxaverage

LDbot: OUT std_logic; --for compare

CLR: OUT std_logic; --for compare

LDall: OUT std_logic); --signal to Load and clear the frame average --also signal to start division

End boxcontrol;
USE WORK.std_arith.ALL;
ARCHITECTURE behavior OF bexcontrol IS

SUBTYPE v4 is std_logic_vector(3 downto 0);
SUBTYPE v3 i3 std_logic_vector(2 downto 0);

TYPE states IS (doread,loadaverage,vaitread,settleavg);
SIGNAL state: states;

SIGNAL countin: std_logic_vector(i4 downto 0);
SIGNAL columnindex: std_logic_vector(l downto 0);

BEGIN

Readin <= countin(2 downto 0); --8 sets of 4-bit wide column-eeparated packets in one 32 bit sample
clearbits <= FALSE vhen state = doread else TRUE;

PROCESS (state,clc:k,startreset,Readin,countin)

BEGIN

IF clock’EVENT AND clock = '1’ THEN

CASE state IS
WHEN doread =>
IF (countin = "111111111111113") THEN
state <= settleavg;
ELSIF (Readin = "111") then
state <= wvaitread;
END IF;

countin <= countin + 1;

WHEN settleavg => state <= loadaverage;
IF (row = "00") THEN CLR <= '1’; END IF; --this loads in avg0 in both bright and dark registers

WHEN loadaverage =>
IF (columnindex = "11") then
state <= waitread;
row <= row + 1;
END IF;
CLR <= 0';
columnindex <= columnindex + 1;

WHEN wvaitread =>
IF (samplenow = ’1’) then
state <= doread;
END IF;

IF (startreset = ’1') THEN
countin <= (others => '0');
columnindex <= "00";

B.1. VHDL

Tow <= "00";
done <= '1’;

LDall
ELSE

<= 117,

done <= '0’;
LDall <= '0’;
END IF;

WHEN OTHERS => state <= waitread;

LDbot <= 71’ when (state = loadaverage) else '0’;

column <= columnindex;

—————— booleans for boxaverage-

process begin
vait until clock = '1’;

IF (countin(7 do
newpixel <= TRUE

wato 0) = "11111111") THEN

ELSIF (countin(4 downto 0) = "11111") THEN
nevbitplane <= TRUE;

ELSE
newpixel <= FALS

E;

nevbitplane <= FALSE;

END IF;

IF(columnindex =
newblock <= TRUE
ELSE

newblock <= FALS
END IF;

end process;

"11") THEN

E;

END behavior;

Library ie

Use iese.std_logic_1164.all;

PACKAGE boxcontrolpkg IS

COMPONENT boxcontrol PORT (

clock:
startreset: IN s
samplenow:
Readin:
clearbits:
done:
column:
row:
nevpixel:
newbitplane:QUT
newblock:
LDbot:
CLR:
LDall:

END COMPONENT;

END boxcontrolpkg;

B.1.6 Sychronous Sample - sample.vhd

Location:

/homes/kfife/Imageri/Stereo/ALU/sample.vhd

Library ieee;

IN std_logic;
td_logic;
IN std_logic;

--this comes from the Q output of an rs latch, done resets it.

BUFFER std_logic_vector(2 downto 0);

OUT boolean;
OUT std_logic;

--reset for the startlatch

BUFFER std_logic_vector(i downto 0);
BUFFER std_logic_vector(1 downto 0);

OUT boolean;
boolean;

OUT boolean;
OUT std_logic;
OUT std_logic;
OUT std_logic);

Use ieee.std_logic_1164.all;

Entity sample IS PORT (
clock:
dav:
rdav:
samplenow:
datain:

End sample;

IN std_logic;
IN std_logic;
OUT std_logic;
QUT std_logic;

--for
--for
--for
--for
~-=-for

~-pignal to Load and clear the frame average --also signal to start division

boxaverage
boxaverage
boxaverage
compare
compare

IN std_logic_vector(31 downto 0);
QUT std_logic_vector(31 downto 0));

101

102 APPENDIX B. AUTOMATIC BRIGHTNESS ADAPTATION DEMONSTRATION

USE WORK.std_arith ALL;
ARCHITECTURE behavior OF sample IS
BEGIN

PROCESS(clock,dav,datain)

BEGIN

IF clock’EVENT AND clock = ’1’ THEN

IF dav = '1’ THEN
dataout <= datain;
samplenow <= ’'1’;
rdav <= 'i?;
ELSE
samplenow <= '0’;
rdav <= '0’;
END IF;

END IF;

END PROCESS;
END bebavior;
Library iees;
Use ieee.std_logic_1164.all;

PACKAGE samplepkg IS
COMPCSENT sample PORT (

clock: IN std_logic;

dav: IN std_logic;

rdav: QUT std_logic;

samplenow: OUT std_logic;

datain: IN std_logic_vector(31 downto 0);
dataout: OUT std_logic_vector(31 downte 0));

END COMPONENT;
END samplepkg;

B.1.7 Serial to Parallel Converter - serial2parallel.vhd
Location:

/homes/kfife/Imager1/Stereo/ALU/serial2parallel.vhd

--data.vhd uses datacall from imager to create a 32 bit word from
--the 1-bit input ’outs’ from imager

Library iees;
Use ieee.std_logic_1164.all;
Entity serial2parallel IS PORT (

clk: IN std_logic; ~-clk on board receiving end

start: BUFFER std_logic; --start signal for the start of frame
data: BUFFER std_logic_vector(31 downto 0);

outs: IN std_logic; --bit input from imager

dav: QUT std_logic; --indication of when data is ready
rdav: IN atd_logic; --resets dav asynchronously

datacall: IN ltd_logic); --clock for outs start signal embedded

End serial2parallel;
USE WORK.std_arith.ALL;

ARCHITECTURE datapath OF serial2parallel IS

SIGNAL count: std_logic_vector(4 downto 0); --clocked with datacall

SIGNAL ckcount: ltd_lagi:_voetor(ﬁ downto 0); --counter for check for deadzone 1in datacall
SIGNAL check: std_logic_vector(4 downto 0); --used to sample count value

SIGNAL previouscheck: std_logic_vector(4 downto 0); --used to sample check value

SIGNAL breakcondition: boolean;
SIGNAL idlecondition: boolean;
SIGNAL normalcondition: boolean;

SIGHNAL resetcount: std_logic;
ates IS (normal,breek,vaitsample,idle);
state : states;

B.1. VHDL 103

-ee-----gorial to parallel conversion-~-=--------
PROCESS (datacall,rdav,roset t,start)
begin

IF rdav = ’1’ THEN
dav <= '0*;

ELSIF (resetcount = '1’ or start = 'i’) TEEN
count <= (others => ’0');

ELSIF datacall’EVENT AND datacall = 1’ THEN

data <= data(30 downto 0) & outs;
count <= count + 1;

IF (count = "11111") THEN
dav <= 1’;
END 1F;

END IF;
END PROCESS;

---decoding the start frame signal--------=----

--The process samples the count value with check. Check is sampled by previouscheck.
--By comparing the two values, the process determines vhen there is a break in the
--~datacall clock. It then looks for the start signal by probing check and previouscheck
--during a 4 period clock mequence. If found, the start signal is fired. Otherwise the
--process resumes normal behavior.

breakcondition <= (ck = “011") and (previouscheck = check);
jidlecondition <= (ckcount = "111") and (previouscheck = check);
normalcondition <= (check(0) = ’1');

process(clk)
begin

IF rising_edge(clk) THEN
check <= count;
previcuscheck <= check;
IF (previouscheck = check) THEN
ckcount <= ckcount + 1;
ELSE
ckcount <= (others => ’'0’);
END IF;

CASE state is
vhen normal => start <= ‘0';
resetcount <= '0’';
IF breakcondition THEN
state <= break;
END IF;

when break =>

IF idlecondition THEN
resetcount <= ’1’;
state <= waitsample;

ELSIF (previouscheck /= check) THEN
start <= ’1°;
state <= waitsample;

END IF;

when waitsample => resetcount <= '0’;
start <= '0’;
state <= idle;

vhen idle => start <= ’0’;
IF normalcondition THEN
state <= normal;
END IF;

vhen others => state <= normal;
END CASE;

END IF;
end process;

END datapath;

Library iees;
Use iee td_logic_1164.all;
PACKAGE serial2parallelpkg IS
COMPONENT serialZparallel PORT (
clk: IN std_logic; --clk on board receiving end

104 APPENDIX B. AUTOMATIC BRIGHTNESS ADAPTATION DEMONSTRATION

start: BUFFER std_logic; --start signal for the start of frame
data: BUFFER std_logic_vector(31 downto 0);

outs: IN std_logic; --bit input from imager

dav: OUT std_logic; --indication of when data is ready
rdav: IN std_logic; --ressts dav asynchronously

datacall: IN std.logic); =--clock for outs start signal embedded

END COMPONENT;
END serial2parallelpkg;

B.1.8 Selector - chipmux.vhd

Location:

/homes/kfife/Imagerl/Stereo/ALU/chipmux.vhd

Library iees;
Uso ieee.std_logic_1164.all;
Entity chipmux IS PORT (

chip: IN std_logic_vector{(31 downto 0);

output: OUT std_logic_vector(3 downto 0);

cloarbits: IN boolean;

Readin: IN std_logic_vector(2 downto 0));
End chipmux;

USE WORK.std_arith.ALL;
ARCHITECTURE behavior OF chipmux IS

SUBTYPE v4 1s std_logic_vector(3 downto 0);
SUBTYPE v3 is std_logic_vector(2 downto 0);

SIGNAL outputprime: v4;

Imager output to PLD input configurationssssss-------

alias chipA: v4 is chip(31 downto 28);
alias chipB: v4 is chip(27 downto 24);
aliae chipC: v4 is chip(23 downto 20);
alias chipD: v4 is chip(19 downto 16);
alias chipB: v4 is chip(15 downto 12);
alias chipF: v4 is chip(11 downto 8);
alias chipG: v4 is chip(7 downto 4);

alias chipH: v4 is chip(2 downto 0);

--each oI these correspond to 1 bit for each of 4 columns

PROCESS BEGIN
CASE Readin is
WHEN "000" => outputprime <= chipA;
WHEN "001" => outputprime <= chipB;
WHEN “010" => outputprime <= chipC;
WHEN "011" => outputprime <= chipD;
WHEN "100" => outputprime <= chipE;
WHEN "101" => outputprime <= chipF;
WHEN "110" => outputprime <= chipG;
WHEN others => outputprime <= chipH;
END CASE;
END PROCESS;

v

output <= "0000" when clearbits else outpusprime;
END behavior;

Library iees;

Use ieee.std_logic_1164.all;
PACKAGE chipmuxpkg IS
COMPONENT chipmux PORT (

chip: IN std_logic_vector(31 downto 0);
output: OUT std_logic_vector(3 downto 0);
clearbits: IN boolean;

Readin: IN std_logic_vector(2 downto 0));

END COMPONENT;
END chipmuxpkg;

B.1. VHDL

B.1.9 Start of Frame - startlatch.vhd

Location:

/homes/kfife/Imagerl/Stereo/ALU/startlatch.vhd

Library iees;
Use iees.std_logic_1164.all;
Entity startlatch IS PORT (

clock: IN std_logic;
start: IN std_logic;
done: IN std_logic;
startQ: BUFFER std_logic);

End startlatch;
USE WORK.std_arith.ALL;
ARCHITECTURE behavior OF startlatch IS

SIGNAL startsync: std_logic;
BEGIN

--Q <= not(reset or not(set or Q)); --rs latch
startQ <= not(done or not(start or startQ));

process begin

wait until clock = ’i?;
startsync <= start;
end process;

END behavior;

Library iecee;

Use 1eve.std_logic_1164.all;
PACKAGE startlatchpkg IS
COMPONENT startlatch PORT (

clock: IN std_legic;
start: IN std_logic;
done: IN std_logic;
startQ: BUFFER std_logic);

END COMPONENT;
END startlatchpkg;

B.1.10 Generating Averages - boxaverage.vhd
Location:

/homes/kfife/Imagerl/Stereo/ALU/boxaverage.vhd

Library ieee;
Use ieee.std_logic_1164.all;
Entity boxaverage IS PORT (

clock: IN std_logic;

input: IN std_logic_vector(3 downto 0);
column: IN std_logic_vector(1l downto 0);
nevpixel: IN boolean;

newbitplane: IN boolean;

newblock: IN boolean;

avg: OUT std_logic_vector(7 downto 0));

End boxaverage;
USE WORK.std_arith.ALL;
ARCHITECTURE behavior OF boxaverage IS

SUBTYPE v4 is std_logic_vector(3 downto 0);
SUBTYPE v3 is std_logic_vector(2 downto 0);

SUBTYPE v21 is std_logic_vector(20 downto 0);

SIGNAL accum0: v21;
SIGNAL accuml: v21;
SIGNAL accum2: v21;
SIGNAL accum3: v21;

105

106 APPENDIX B. AUTOMATIC BRIGHTNESS ADAPTATION DEMONSTRATION

SUBTYPE v8 is std_logic_vector(7 downto 0);

SIGNAL avg0Q: v8;
SIGNAL evgl: v8;
SIGNAL avg2: v8;
SIGNAL avg3: v8;

BEGIN

avg0 <= accum0(12 downto 5) when (accum0(13) = ’0') else x"FF";
avgl <= accumi(12 downto 5) when (accum1(13) = ’0’) else x"FF";
avg2 <= accum2(12 downto 5) when (accum2(13) = ’0') else x"FF";
avgd <= accum3(12 downto 5) when (accum3(13) = ’0’) else x"FF';
~-The MSBs are send first

Process begin

vait until (clock = ’17);

IF (input(0) = *1') THEN

Accum0 <= Accum0 + 1;

ELSIF (newblock) THEN

Accum0 <= (others => '0');

ELSIF (newpixel) THEN

Accum0 <= Accum0(6 downto 0) & Accum0(20 downte 7);
ELSIF (newbitplane) THEN

Accum0 <= Accum0(19 downto 0) & Accum0{20);

END IF;

IF (input(1) = ’1i') THEN

Accuml <= Accumi + 1;

ELSIF (newblock) THEN

Accuml <= (others => ’0’);

ELSIF (newpixel) THEN

Accuml <= Accum1(6 downto 0) & Accumi(20 downto 7);
ELSIF (newbitplane) THEN

Accuml <= Accum1(19 downto 0) & Accumi(20);

END IF;

IF (input(2) = ’1') THEN

Accum2 <= Accum2 + 1;

ELSIF (newblock) THEN

Accum2 <= (others => '0');

ELSIF (newpixel) THEN

Accum2? <= Accum2{6 downto 0) & Accum2(20 downto 7);
ELSIF (newbitplane) THEN

Accum? <= Accum?(19 downto 0) & Accum2(20);

END IF;

IP (input(3) = '1’) THEN

Accum3 <= Accum3d + 1;

ELSIF (newblock) THEN

Accum3 <= (others => '07);

ELSIF (newpixel) THEN

Accum3 <= Accum3(6 downto 0) & Accum3(20 downto 7);
ELSIF (newbitplane) THEN

Accum3 <= A 3(19 d 0) & A 3(20);

END IF;

end process;

vith column select
avg <= avg0d when "11",
avgl when "10",
avg2 when "01",
avg3 when others; ~-avg3 is actually the first column.

END behavior;

Library iees;

Use ieee.std_logic_1164.all;
PACKAGE boxaveragepkg IS
COMPONENT boxaverage PORT (

clock: IN std_logic;

input: IN std_logic_vector(3 downto 0);
column: IN std_logic_vector(i downto 0);
newpixel: IN boolean;

newbitplane: IN boolean;

newblock: IN boolean;

avg: OUT std_logic_vector(7 downto 0));

END COMPONENT;

B.1. VHDL

END boxaveragepkg;

B.1.11 Top Level - topwithlights.vhd

Location:

/homes/kfife/Imagerl/Stereo/ALU/topwithlights.vhd

Library iees;

Use ieee.std _logic.1164.all;
Entity topwithlights IS PORT (

clock:
clk:
Tesat:
index:
LDbot:
CLR:
nvg H
LDall:
manual:

autorange:
thresholdlog:
thresholdlin:

irisbit:
modeman:
irisman:
interin:
modeled:
autoled:

autorangeled:

diffled:

frameled:

irisled:

brightgridled:
darkgridled:

N
IN

IN std_logic; --normally high, push for low

IN std_logic_vector(3 downto 0);

IN std_logic;

IN std_logic;

IN std_logic_vector(7 downto 0);

IN std_logic;

IN std_logic; --board switch active low so not it.
IN std_logic; --board switch active low so not it.
IN std_logic_vector(7 downto 0);

IN std_logic_vector(7 downto 0);

OUT std_logic;

IN std_logic; --manual mode input --board swvitch active low so not it.
IN std_logic_vector(7 downto 0);

IN std_logic_vector(3 downto 0); --in from topbox
OUT std_logic;

BUFFER std_logic;

OUT std_logic;

OUT std_logic_vector(7 downto 0);

ouT
ouT
ouT
ouT

std_logic; --half clock
std_logic; --fast clock

std_logic_vector(7 downto 0);

std_logic_vector(7 downto 0);

std_logic_vector(15 downto 0); --0 to 15 starting in upper left cormer.
std_logir_vector(15 downto 0));

attribute pin_avoid of topwithlights:entity is "6 46 76 116";

sclk, smode,SD0,SDI

attribute pin_numbers of topwithlights:entity is
"FRAMELED(0):2 " &

“LDBOT:3 " &
“RESET:4 " &
"AUTORANGE:5 " &

“FRAMELED(1):7 " &
"FRAMELED(2):8 " &
“DARKGRIDLED(0):11 " &
“THRESHOLDLOG(0):12 " &

"INDEX(0):13 " &
"AVG(0):14 " &

"IRISMAN(0):15 " &

"CLOCK:19 " &
“CLK:22 " &

"DARKGRIDLED(1):23 " &
“DARKGRIDLED(2):24 " &
“DARKGRIDLED(3):25 " &

“BRIGHTGRIDLED (0)

126 " &

"DARKGRIDLED(4):27 " &
“DARKGRIDLED(5):28 " &
"DARKGRIDLED(6):29 " &
"DARKGRIDLED(7):30 " &
"DARKGRIDLED(8):32 " &
“DARKGRIDLED(9):33 " &
"DARKGRIDLED(10):34 " &
"DARKGRIDLED(11):35 " &
"DARKGRIDLED(12):36 " &
"DARKGRIDLED(13):37 " &
“DARKGRIDLED(14):38 " &
"DARKGRIDLED(15):38 " &

"BRIGHTGRIDLED (1)
"BRIGHTGRIDLED (2)
"BRIGHTGRIDLED(3)
“BRIGHTGRIDLED(4)
"BRIGHTGRIDLED(5)
“BRIGHTGRIDLED(6)
“BRIGHTGRIDLED(7)
“BRIGHTGRIDLED(8)
“BRIGHTGRIDLED(9)

42 " &
43 " &
44 " &
45 " &
EL TR
48 " &
49 " &
81 " &
52 " &

"BRIGHTGRIDLED(10):53 " &
"BRIGHTGRIDLED(11):54 " &
“BRIGHTGRIDLED(12):55 " &

107

108 APPENDIX B. AUTOMATIC BRIGHTNESS ADAPTATION DEMONSTRATION

"BRIGHTGRIDLED(13):56 " &
"BRIGHTGRIDLED(14):57 " &
“BRIGHTGRIDLED(15):58 " &
"THRESHOLDLIN(0)}:59 " &
“IRISBIT:63 " &

"THRESHOLDLOG(1):64 " &
"AVG(1):65 " &
"AVG(2):66 " &
"IRISMAN(1):67 " &
“THRESHOLDLOG(2):72 " &
“INDEX(1):73 " &
"AVG(3):74 " &
“IRISMAN(2):76 " &
"THRESHOLDLIN(1):79 " &

"IRISLED(0):82 " &
"IRISLED(1):83 " &
"IRISLED(2):84 " &
"IRISLED(3):85 " &
"IRISLED(4):86 " &
"IRISLED(5):87 " &
"IRISLED(6):88 " &
"IRISLED(7):89 " &
"AVG(4):91 " &
“INDEX(2):92 " &
"IRISMAN(3):93 " &
"THRESHOLDLOG(3):97 " &
"THRESHOLDLIN(2):98 " &
"THRESHOLDLIN(3):99 " &
"THRESHOLDLIN(4):102 " &
"IRISMAN(4):104 " &
“AVG(5):105 " &
"INDEX(3):108 " &
“THRESHOLDLOG (4):109 *
“THRESHOLDLIN(5):110 *
“DIFFLED(0):112 "
"DIFFLED(1):113 "
“DIFFLED(2):115 "
"DIFFLED(3):118 "
"DIFFLED(4):119
“DIFFLED(6):122 '
"FRAMELED(3):123 " &
“DIFFLED(6):124 " &
“DIFFLED(7):125 " &
"FRAMELED(4):126 " &
“FRAMELED(S):127 " &
“FRAMELED(6):128 " &
“FRAMELED(7):129 " &
“THRESHOLDLIN(6):131 " &
"THRESHOLDLOG(S):132 " &
“THRESBOLDLOG(6):133 " &
"AVG(6):134 " &
“IRISMAN(5):135 " &
“MODEMAN:136 " &
“THRESHOLDLIN(7):143 " &
“THRESHOLDLOG(7):144 " &
"LDALL:145 " &

“CLR:146 " &
"IRISMAN(6):147 " &
"INTERIN(0):149 "&
“INTERIN(1):160 "&
"MODELED:162 " &
"AUTOLED: 153 " &
"AVG(7):154 " &
"IRISMAN(7):156 " &
“MANUAL:156 " &
"INTERIN(2):157 “&
"INTERIN(3):158 “&
“AUTORANGELED:1569 ";

o »

L

End topwithlights;
USE WORK.std_arith.ALL;

USE WORK.gridlightspkg.all;
USE WORK.topcomponentspkg.all;
USE WORK.lightspkg.all;

ARCHITECTURE behavior OF topwithlights IS

SUBTYPE v2 is std_logic_vector(l downto 0);
SUBTYPE v4 is std_logic_vector(3 downto 0);
SUBTYPE v3 is std_logic_vector(2 downto 0);
SUBTYPE v8 is std_logic_vector(7 downto 0);
SUBTYPE v32 is std_logic_vector(31 downto 0);

SIGNAL modechoice: std_logic;

B.1. VHDL

SIGNAL irischoice: std_logic_vector(7 downto 0);

SIGNAL diff: std_logic_vector(7 downto 0);

SIGNAL frame: std_logic_vector(7 downto 0);

--Attribute synthesis_off of frame: SIGNAL is TRUE;
--Attribute synthesis_off of diff: SIGNAL is TRUE;
--Attribute synthesis_off of irischoice: SIGNAL is TRUE;

SIGNAL greater: boolean;

SIGNAL laesser: boolean;

SIGNAL brightindex: v4;

SIGNAL darkindex: v4;

SIGNAL brightindexp: v&;

SIGNAL darkindexp: v4;

Attribute synthe _off of greater: SIGNAL is TRUE;
Attribute synthesis_off of les : SIGNAL is TRUE;

SIGNAL internaldecision: std_logic;
SIGNAL modedecision: std_logic;

SIGNAL autorangenot: std_legic;
SIGNAL modemannot: std_logic;
SIGNAL resetnot: std_logic;
SIGNAL manualp: std_logic;

BEGIN

20:

PORT MAP(

pcomp
clock=>clock,
clk=>clk,
reset=>resetnot,
LDbot=>LDbot,
CLR=>CLR,
frameout=>frame,
diffout=>diff,
avg=>avg,
LDall=>LDall,
manual=> manualp,
autorange=> autorangenot,
thresholdlog=>thresholdlog,
thresholdlin=>thresholdlin,
irisbit=>irisbit,
modeman=>modemannot,
irisman=>irisman,
modechoice=>modechoice,
irischoice=>i—~ischoice,
greaters>grezser,
lesser=>lesser);

1ights0: lights PORT MAP(
clock=>clock,
frame=>frame,
diff=>difef,
LDall=>LDall,
manual=> manualp,
autorange=> autorangenot,
mode=>modechoice,
iris=>irischoice,

--test
startframetest=>interin(0),

modeled=>modeled,
autoled=>autoled,
autorangeled=>autorangeled,
diffled=>diffled,
frameled=>frameled,
irisled=>irisled);

gridlights: gridlights PORT MAP(
brightindex=>brightindex,
darkindex=>darkindex,
brightgrid=>brightgridled,
darkgrid=>darkgridled);

resetnot <= not reset;
autorangenot <= not autorange;

d <= pot d when interin(0) = 1’ else interin(2)
manualp <= manual vhen interin(0) = ’1’ else interin(1) ;

process begin
WAIT UNTIL (clock = ’1’);

IF LDbot = '1' THEN
IF greater THEN
brightindexp<= index;
END IF;

i

109

110 APPENDIX B. AUTOMATIC BRIGHTNESS ADAPTATION DEMONSTRATION

IF lesser THEN
darkindexp<= index;
END IF;

END IF;

IF LDall = '1’ THEN
brightindex<= brightindexp;
darkindex<=darkindexp;

END IF;

end process;

END behavior;

B.1.12 Cutput Signals - lights.vhd

Location:

/homes/kfife/Imager1l/Stereo/ALU/lights.vhd

Library iocee;
Use ieee.std logic_1164.all;
Entity lights IS PORT (

clock: IN std_logic; --half clock

frame: IN std_logic_vector(7 downto 0);

diff: IN std_logic_vector(7 downto 0);

LDall: IN std_logic;

manual: IN std_logic;

autorange: IN std_logac;

mode : IN std_logic; ~-manual mode input
iris: IN std_logic_vector(7 downto 0); --test

startframetest: IN std_logic;

autoled: BUFFER std_logic;

modeled: OUT std_logic;

autorangeled: OUT std_logic;

frameled: OUT std_logic_vector(7 downto 0);

irisled: OUT std_logic_vector(7 downto 0);

diffled: OUT std_logic_vector(7 downto 0));
End lights;

USE WORK.std_arith.ALL;
ARCHITECTURE behavior OF lights IS

SUBTYPE v2 is std_logic_vector(l downto 0);
SUBTYPE v4 is std_logic_vecter(3 downto 0);
SUBTYPE v3 is std_logic.vector(2 downto 0);
SUBTYPE v5 is std_logic_vector(4 downte 0);
SUBTYPE v8 is std_logic_vector(7 downto 0);

SIGNAL flash: v5; --counter for dividing Ldall down by 2°4.
constant top: integer:= 4; --place for msb for flash

SIGNAL framereg: v8;

SIGNAL giffreg: v8;

BEGIN

modeled<= mode;
autoled<= flash(top) wvhen manual = ’Q’ else ’0’;
autorangeled<= flalh(top-l) vhen autorange = ’1’ else '0’;

--frameled(0)<= ’1’ when framereg >= "00010000" else '0’;
--frameled(i)<= '1’ when framereg >= "00110000" else '0’;
~-frameled(2)<= '1’ vhen framereg >= "01010000" else '0’;
--frameled(3)<= ’1’ vhen framereg >= "01110000" else '0’;
--frameled(4)<= ’1’ vhen framereg >= "10010000" else '0’;
--frameled(5)<= ’1’ vhen framereg >= "10110000" else ’'0’;
--frameled(6)<= ’1’ when framereg >= "11010000" else ’0’;
--frameled(7)<= ’1’' vhen framereg >= "11110000" else '0’;

frameled <= framoreg;

-~diffled(0)<= *1’ when diffreg >= "00010000" else '0’;
--diffied(i)<= ’1’ vhen diffreg >= "00110000" else ’0’;
--diffled(2)<= ’1’ vhen diffreg >= "01010000" else '0’;
--diffled(3)<= ’1' vhen diffreg >= "01110000" else '0’;
--diffled(4)<= ’1’ vhen diffreg >= "10010000" else '0’;
--diffled(5)<= ’1’ vhen diffreg >= "10110000" else '0’;
--diffled(6)<= '1’' vhen diffreg >= "11010000" else '0’;

B.1. VHDL

~-diffled(7)<= ’1’ when

diffled <= diffreg;

irisled(0)<= ’1’ when iris >= "00010000"
irisled(1)<= ’1' vhen iris >= "00110000"
irisled(2)<= 1’ when iris >= "01010000"
irisled(3)<= ’1’ wvhen iris >= "01110000"
irisled(4)<= ’1’ wvhen iris >= "10010000"
irisled(5)<= ’1’ vhen iris >= "10110000"
irisled(6)<= ’1’ vhen iris >= "11010000"
irisled(7)<= 1’ vhen iris >= "1111000C"

process begin

diffreg >= "11110000" else '0’;

07;
07;
00;
07;
07;
0,
00;
200;

WAIT UNTIL (clock = '1');

IF (LDall = ’1') THEN
flash <= flash + 1;
framereg <= frame;
diffreg <= diff;

END IF;

end process;

END behavior;

Library ieee;

Use ieee.std_logic_1164.all;

PACKAGE lightspkg IS
COMPONENT 1ights PORT (
clock:
frame:

dife:

LDall:

manual:
autorange:
wode:

iris:
startframetest:

autoled:
modeled:
autorangeled:
frameled:
irisled:
diffled:

END COMPONENT;

END lightspkg;

IN std_logic; --half clock

IN std_logic_vector(7 downto 0);

IN std_logic_vector(7 downto 0);

IN std_logic;

IN std_logic;

IN std_logic;

IN std_logic; --manual mode input
IN std_logic_vector(7 downto 0); --test

IN std_logic;

BUFFER std_logic;

OUT std_logic;

QUT std_logic;

OUT std_liogic_vector(? downto 0);
OUT std_logic_vector(7 downto 0);
OUT std_logic_vactor(7 downto 0));

B.1.13 Next Level - topcomponents.vhd

Location:

/homes/kfife/Imager1l/Stereo/ALU/topcomponents.vhd

Library iees;

Use ieee.std_logic_1164.all;

Entity topcomponents IS
clock:
clk:
reset:
LDbot:
CLR:
fraaeout:
diffout:
avg:
LDall:
manual:
autorange:
thresholdlog:
thresholdlin:
irisbit:
modeman:
irisman:
modechoice:
irischoice:

PORT (

IN std_logic; --half clock

IN std_logic; --fast clock

IN std_logic;

IN std_logic;

IN std_logic;

OUT std_logic_vector(7 downto 0);
OUT std_logic_vector(7 downte 0);
IN std_logic_vector(7 downto 0);
IN std_logic;

IN std_logic;

IN std_logic;

IN std_logic_vector(7 downto 0);
IN std_logic_vector(7 downto 0};
OUT std_logic;

IN std_logic; --manual mode input
IN std_logic_vector(7 downto 0};
BUFFER std_logic;

BUFFER std_logic_vector;

greater: BUFFER boolean;
lesser: BUFFER boolean);

End topcomponents;

USE WORK.std_arith.ALL;

111

112 APPENDIX B. AUTOMATIC BRIGHTNESS ADAPTATION DEMONSTRATION

USE WORK.comparepkg.all;
USE WORK.dividerpkg.all;
USE WORK.sendirispkg.all;
USE WORK.irisgenpkg.all;
USE WORK.modegenpkg.all;

ARCHITECTURE behavior OF topcomponents IS

SUBTYPE v2 is std_logic_vector(l downto 0);
SUBTYPE v4 is std_logic_vector(3 downto 0);
SUBTYPE v3 is std_logic_vector(2 downto 0);
SUBTYPE v8 is std_logic_vector(7 downto 0);
SUBTYPE w32 is std_logic_vector(31 downto 0);

SIGNAL iris: v8;

SIGNAL irisnext: v8;

SIGNAL dav: std_logic;

SIGNAL irisgo: std_legic;
SIGNAL irisauto: v8;

SIGNAL modenext: std_logic;
SIGNAL difflatched: v8;

SIGNAL toggle: std_logic;
SIGNAL LDalldelayed: std_logic;
SIGNAL framelatched: v8;

SIGNAL modeauto: std_logic;
SIGNAL irisbitprime: std_logic;

SIGNAL frame: v8;

SIGNAL diff: v8;

SIGNAL bright: v8;

Attribute synthesis_off of frame: SIGNAL is TRUE;
Attribute synthesis_off of diff: SIGNAL is TRUE;
Attribute synthe: _off of bright: SIGNAL is TRUE;

BEGIN

corpare0: compare PORT MAP(
clock=>clock,
CLR=>CLR,
LDbot=>LDbot ,
frame=>frame,
diff=>difs,
bright=>bright,
avg=>avg,
greater=>greater,
lesser=>lesser);

frameout <= frame;
diffout <= diff;

divider0: divider PORT MAP(

clk=>clock,

a=>iris, --a is dividend

b=>frame, --b is divisor

start=>LDall, --high for one clock to indicate start
q=>irisnext, --q is quotient,

testq=>open,

davs=>dav) ; --dav is low until division is done

sendirisO: sendiris PORT MAP(
clock=>clk, --fast clock
dav=>dav, --high when iris is valid
irisgo=>irisgo);

irisgenO: irisgen PORT MAP(
clock=>clk, --fastclock
start=>irisgo,
mode=>modechoice,
iris=>irischoice,
irisbit=>irisbitprime);

modgen0: modegen PORT MAP(
diff=>difflatched,
frame=>framelatched,
modecurrent=>modeauto,
thresholdlog=>thresholdlog,
hresholdlins=>thresholdlin,
modenext=>modenext);

modechoice <= modeman vhen (autorange = ’'0’) ELSE modeauto;
irischoice <= irisman vhen (manual = ’1’) ELSE irisauto;
irisauto <= not iris;

irisbit <= irisbitprime or reset;

B.1. VHDL

process begin

WAIT UNTIL (clock = ’1');
IF (LDall = ’1’) THEN
LDalldelayed <= '1’;
difflatched <= diff;
framelatched <= frame;
ELSE LDalldelayed <= ’0’;
END IF;

IF (LDalldelayed = *1') THEN
IF toggle = ’1’ THEN --can only change modes everyother frame.
modeauto <= modenext;
toggle <= '07;
ELSE toggle <= '1°;
END IF;
END IF;

end process;

process begin
WAIT UNTIL (clock = ’1’);

IF toggle = 0’ THEN --can only change modes evaryother frame.
IF (dav = ’1°) THEN
iris <= irisnext;
END IF;

END IF;

end process;
END behavior;
Library ieaes;
Use iece.std_ logic_1164.all;

PACKAGE topcomponentspkg IS
COMPONENT topcomponents PORT (

clock: IN std_logic; <--half clock

clk: IN std_logic; --fast clock
reset: IN std_logic;

LDbot: IN std_logic;

CLR: IN std_logic;

frameout: OUT std_logic_vector(7 cowntc 0);
diffout: OUT std_logic_vector(7 downto 0);
avg: IN ltd_logic_vcctor(T downto 0);
LDall: IN std_logic;

manual: IN std_logic;

sutorange: IN std_logic;

thresholdlog: IN std.lcgic_vector(7 downto 0);
thresholdlin: IN atd_logic_vector(7 downto 0);

irisbit: OUT std_logic;

modeman: IN std_logic; --manual mode input
irisman: IN std_logic_vector(7 downto 0);
modechoice: BUFFER std_logic;

irischoice: BUFFER std_logic_vector;

greater: BUFFER boolean;
lesser: BUFFER boolean);
END COMPONENT;
END topcomponentspkg;

B.1.14 LED display for Dynamic Range - gridlights.vhd

Location: =
/homes/kfife/Imagerl/Stereo/ALU/gridlights.vhd
Library icee;
Use ieee.std_logic_1164.all;
Entity gridlights IS PORT (
brightindex: IN ltd_logic_voctor(S downto 0); --first 2 bit are column, second 2 are rov.
darkindex: IN std_logic_vector(3 downto 0);
brightgrid: OUT std_logic_vector(15 downto 0); --0 to 15 starting in upper left cormer.
darkgrid: OUT std_logic_vector(15 downto 0));

End gridlights;
USE WORK.std_arith.ALL;
ARCHITECTURE behavior OF gridlights IS

BEGIN

113

114 APPENDIX B. AUTOMATIC BRIGHTNESS ADAPTATION DEMONSTRATION

process(brightindex,darkindex)

variable brightplace: integer range 0 to 15;
variable darkplace: integer range 0 to 15;

begin

brightplace:= to_integer(brightindex);
darkplace:= to_integer(darkindex);

for i in 15 dovato 0 loop
if i = brightplace then
brightgrid(i) <= '17;
else
brightgrid(i) <= '0’;
end if;

end loop;

for i in 15 downto 0 loop
if i = darkplace then
darkgrid(i) <= °’1’;
olse
darkgrid(i) <= '0’;
end if;

ond loop;

end process;
END behavior;
Library ises;
Use iece.std_logic_1164.all;

PACKAGE gridlightspkg IS
COMPONENT gridlights PORT (

brightindex: IN std_logic_vector(3 downto 0); --first 2 bit are column, second 2 are row.
darkindex: IN std_logic_vector(3 downto 0);

brightgrid: OUT std_logic_vector(15 downto 0); --0 to 156 starting in upper left corner.
darkgrid: OUT std_logic_vector(15 dewnto 0));

END COMPONENT;
END gridlightspkg;

B.1.15 Iris Generation - sendiris.vhd
Location:

/homes/kfife/Imager1/Sterec/ALU/sendiris.vhd

Library iees;
Use ieee.std_logic_1164.all;
Entity sondiris IS PORT (

clock: IN std_logic; --fast clock
dav: IN std_logic; --high when iris is valid
irisgo: OUT std_logic);

End sendiris;
USE WORK.std_arith.ALL;
ARCHITECTURE behavior OF sendiris IS

TYPE states IS (wvaitfire,vaitreset);
SIGNAL state: states;

BEGIN

PROCESS (clock)
BEGIN

IF clock’EVENT AND clock = ’1' THEN

CASE state IS

WHEN vaitfire => IF (dav = ’'1’) THEN
irisgo <= '1’;
state <= vaitreset;
END IF;

WHEN vaitreset => IF (dav = '0’) THEN
state <= waitfire;
END IF;
irisgo <= '0’;

WHEN OTHERS => null;

B.1. VHDL

END CASE;
END IF;

END PROCESS;
END behavior;
Library ieese;
Use iees.std _logic_1164.all;

PACKAGE sendirispkg IS
COMPONENT sendiris PORT (

clock: IN std_logic; --fast clock
dav: IN std_logic; ~-high when iris ix valid
irisgo: OUT std_logic);

END COMPONENT;
END sendirispkg;

B.1.16 Comparators - compare.vhd

Location:

/homes/kfife/Imager1l/Stereo/ALU/compare.vhd

Library ieee;
Use iees.std_logic_1164.all;
Entity compare IS PORT (

clock: IN std_logic; --half clock

CLR: IN std_logic;

LDbot: IN std_logic;

frame: OUT std_logic_vector(7 downto 0);
diff: OUT std_logic_vector(7 downto 0);
bright: BUFFER std_logic_vsctor(7 dowmto 0);
avg: IN std_logic_vector(7 downto 0);

BUFFER boolean;
BUFFER boolean);

End compare;

USE WORK.std_arith.ALL;

ARCHITECTURE behavior OF compare IS

SUBTYPE v4 is std_logic_vector(3 downto 0);
SUBTYPE v3 is std_logic_vector(2 downto 0);
SIGNAL frameave: std_logic_vector(12 downto 0);
SIGNAL adder: std_logic_vector(12 downto 0);
SUBTYPE v8 is std_logic_vector(7 downto 0);
SIGNAL dark: v8;

BEGIN

adder <= avg + frameave;
frame <= f. (11 d 4) wvhen (f. e(12) = ’0’) else x"FF";

PROCESS(avg,clr,bright)

BEGIN

IF (avg > bright) or CLR = ’1' THEN
greater <= TRUE;

ELSE

greater <= FALSE;

END IF;

END PROCESS;

PROCESS (avg,clr,dark)

BEGIN

IF (avg < dark) or (CLR = ’1') THEN
lessar <= TRUE;

ELSE

lesser <= FALSE;

END IF;

END PROCESS;

diff <= (bright - dark);

115

116 APPENDIX B. AUTOMATIC BRIGHTNESS ADAPTATION DEMONSTRATION

Process

BEGIN

wait until clock = ’1’;
IF (LDbot = '17)THEN

IF (CLR = '1’) THEN

frameave <= "00000" &k avg;
ELSE

frameave <= adder;
END IF;

IF greater THEN
bright <= avg;
END IF;

IF lesser THEN
dark <= avg;
END IF;

END IF;
END Process;

END behavior;

Library iees;

Use ieee.std_ logic_1164.all;
PACKAGE comparepkg IS
COMPONENT compare PORT (

clock: IN std_logic; --half clock

CLR: IN std_logic;

LDbot : IN std_legic;

frame: auT ltd_logic-vlctor('f downto 0);
daife: OUT std_logic_vector(7 downto 0);
bright: BUFFER std_logic.vector(7 downto 0);
avg: IN std_logic_vector(7 downto 0);
greater: BUFFER boolean;

lesser: BUFFER boolean);

END COMPONENT;
END compsrepkg;

--compare0: compare PORT MAP(
- clock=>clock,

- CLR=>CLR,

- LDbot=>LDbot,

- frane=>frame,

- diff=>dife,

- avg=>avg,

- greater=>greater,

- lesser=>lesser);

B.1.17 Iris Generation - irisgen.vhd

Location:

/homes/kfife/Imageri/Stereo/ALU/irisgen.vhd

Library ieee;

Use iese.std_ logic_1164.all;

Entity irisgen IS PORT (
clock: IN std_logic;
start: IN std_logic; --reset active high
mode: IN std_logic;
iris: IN std_logic_vactor(7 dowmto 0);
irisbit: OUT std_logic);

End irisgen;

USE WORK.std_arith.ALL;

ARCHITECTURE behavior OF irisgen IS
SIGNAL count: std_logic_vector(2 dowmto 0);
TYPE states IS (idle,high,bits,modestate);

SIGNAL state: states;

BEGIN

B.1. VHDL 117

PROCESS {clock,count,start)
variable order: integer range 0 to 7;
begin

IF clock’EVENT AND clock = ’1’ THEN
order:= to_integer(not count); --send msb first

CASE state IS

WHEN idle => IF start = ’1’ THEN
state <= high;
irisbit <= ’1?;
ELSE state <= idle;
count <= "000";
irisbit <= '0’;
END IF;

WHEN high => state <= bits;
irisbit <= '0’;

WHEN bits => irisbit <= iris(order);
count <= count + 1;
IF (count = "111") TEHEN
state <= modegtate;

ELSE
state <= bits;
END IF;
WHEN modestate => irisbit <= mode;

state <= idle;
WHEN OTHERS => state <= idle;
END CASE;

END IF;
END PROCESS;

END behavior;

Library ises;

Use ieee.std_logic_1164.all;

PACKAGE irisgenpkg IS

COMPONENT irisgen PORT (
clock: IN std_logic; --fastclock
start: IN std_logic; ~-reset active high
mode: IN std_logic;
iris: IN std_logic_vector(7 downto 0);
irisbit: OUT std_logic);

END COMPONENT;

END irisgenpkg:

B.1.18 Subtraction - sub.vhd

Location:

/homes/kfife/Imager1l/Stereo/ALU/sub.vhd

Library ieee;
Use ieee.std_logic_1164.all;

--USE WORK.numeric_std.all;

Entity sub IS PORT (

h: IN std_logic.vector(8 downto 0);
B: IN std_logic_vector(7 downto 0);
co: QUT std_logic;
result: OUT std_logic.vector(7 downte 0});
End sub;
USE WORK.std_arith.ALL; --found in varp library as mod_gen.vhd

--to_integer(a) and to_std_logic_vector(a,size)
ARCBITECTURE behavior OF sub IS
SIGNAL R: std_logic_vector(8 downto 0);
BEGIN

R<=A -~ ('0’ &B);

118 APPENDIX B. AUTOMATIC BRIGHTNESS ADAPTATION DEMONSTRATION

result <= R(7 dowato 0);
co <= R(8);

END behavior;

Library ieee;

Use ieee.std logic_1164.8ll;
PACKAGE subpkg IS

COMPONENT sub PORT (

A: IN atd_logic_vector(8 downto 0);
B: IN std_logic_vector(7 downto 0);
co: OUT std_logic;
result: OUT std_logic_vector(7 downto 0));
END COMPONENT;
END subpkg;

B.1.19 Mode Generation - modegen.vhd

Location:

/homes/kfife/Imager1l/Stereo/ALU/modegen.vhd

Library ieee;
Use iaee.std logic_1164.all;

USE WORK.numeric_std.all;

Entity modegen IS PORT (

dife: IN std_logic_vector(7 downto 0);
frame: IN std_logic_vector(7 downto 0);
modecurrent: IN std_logic;

thresholdlog: IN std.logic_vector(7 downto 0);
thresholdlin: IN std_logic_vector(7 downto 0);
modenext: OUT std_logic);

End modegen;

USE WORK.std_arith.ALL; --found in warp library as mod_gen.vhd
--to_integer(a) and to_std_logic_vector(a,size)

ARCHITECTURE behavior OF modegen IS
signal logmode: boolean;
BEGIN

logmode <= modecurrent = *1°’;

process(diff,thresholdlog,thresholdlin,mod rent,logmode) begin

IF logmode THEN

IF (diff < thresholdlog) then modenext <= '0’; END IF;
ELSIP (diff > thresholdlin) then modenext <= ’1’;
END IF;

--END IF;
end process;

END behavior;

Library ieee;

Use ieee.std_logic_1164.all;
PACKAGE modegenpkg IS
COMPONENT modegen PORT (

diff: IN std_logic_vector(7 downto 0);
frame: IN std_logic_vector(7 downto 0);
modecurrent: IN std_logic;

thresholdlog: IN std_logic_vector(7 downto 0);
thresholdlin: IN std_logic_vector(7 downto 0);
modenext: OUT std_logic);

END COMPONENT;

END modegenpkg;

B.1. VHDL

119

B.1.20 Division - divider.vhd

Location:

/homes/kfife/Imager1l/Stereo/ALU/divider.vhd

---Divides a by b and multiplies result by 128. q ranges betveen x00 and xFF. Saturates and cutsoff.

library ieee;

use iees.std _logic_1164.all;
use work.std_arith.all;

use work.subpkg.all;

entity divider is port (

clk: in std_logic;

a: in std_logic_vector(7 downto 0); --a is dividend

b: in std_logic_vector(7 downto 0); --b is divisor

start: in std_logic; --high for one clock to indicate start
q: buffer std_logic_vector(7 downto 0); --q is quotient,

testq: buffer std_logic_vector(7 downto 0); --q is quotient,

dav: buffer std_logic); --dav is lov until division is done

eond divider;

architecture behavior of divider is
signal temp: std_logic_vector(7 dovmto 0); ~--loads a and shifts out MSB at each cycle
signal r: std_logic_vector(7 downto 0); --remainder
signal result: std_logic_vector(7 downto 0); ~--result of subtraction
signal co: std_logic; --carry out
signal count: std_logic_vector(3 downto 0); ~--dotermines when 15 cycles have passed
signal AA: std_logic_vector(8 d 0); arg for subtraction

begin

process(clk)

begin

if rising_edge(clk) then

if start = ’1' then
dav <= ’0’;
q <= (others => '0’);
count <= (others => '0’)
r <= (others => '0’);
temp <= a;

elsif dav = ’0’ then
temp <= temp(6 downto 0)
if (co = ’1’) then

q <= q(6 downto 0) & '0*;
r <= r(6 downto O) & temp(7);

olse

q <= q(6 downto 0) & ’1’;
r <= result;

end if;

if q(7) = '1’ then
q <= (others =>
dav <= ?

elsif (count = "1110") then
if "0000100" >= q(6

-~ set the remainder to 0 to start
-- set the temp to be the dividend

~-- shift out the next bit of dividend
~-this means that AA vas less than b.

-- this bit of the quotient is 0
== set the romainder

& '0°;

-- this bit of the quotient is 1
sot nev remainder

--check to see if g saturates
")
12;
--get 8 bits and shift 7 for mult by 128
downto 0) then q <= "00001001"; end if; --this is the lowest we want iris to go

dav <= 1’

end if;
count <= count + 1;

end if;
end if;
end process;

AA <= r(7 downto 0) & temp(7);
------ ~-----gubtraction------~c------
sub0: sub port map(
A=>AA,
B=>b,
co=>co,
result=>result);

-~8 bits wide;

--8 bits wide;

testq <= "01111111";
end behavior;
Library ieee;

Use ie td_logic_1164.all;
PACKAGE dividerpkg IS

--9 bits vide; necessary for certain inputs

--carry out used to determine whether to load result or shift previous EE

120 APPENDIX B. AUTOMATIC BRIGHTNESS ADAPTATION DEMONSTRATION

COMPONENT divider PORT (
clk: in std_logic;

a: in std_logic_vector(7 downto 0); ~--a ig dividend

b: in std_logic_vector(7 downto 0); --b is divisor

start: in std_logic; --high for one clock to indicate start

q: buffer :td-logic-voctarﬁ downto 0); --q is quotient,

testq: buffer std_logic_vector(7 downto 0); --q is quotient,

dav: buffer std_ logic); --dav is low until division is done
END COMPONENT;
END dividerpkg;

k

B.1.21 Top Level - monitordigital.vhd
Location:

/homes/kfife/Imager1l/Stereo/DATAPATH/monitordigital.vhd

Library ieee;
Use ieee.std_logic_1164.all;

Entity monitor IS PORT (

clk,clock,reset :IN std_logic; --reset iz not assigned

clockout: BUFFER std_logic; --feed to SRAMS and to clock
WE,OE: OUT std_logic;

addr: BUFFER std_logic_vector (15 downto 0);

I0: INOUT std_logic_vector(7 downto 0);
WEb,OEb: QUT std_logic;

addrb: BUFFER std_logic_vector(15 downto 0);

I0b: INOUT std_logic_vector(7 downto 0);

pixout: BUFFER std_logic_vector(7 downto 0);

dacclk: BUFFER std_logic;

hsync,hblank: BUFFER std_logic;
blank: OUT std_logic; --output for DAC blank

outs,datacall: IN std_logic;
--interface to pc

digitalen: IN std_logic;

out0: QUT std_logic; --vertical sync

BCKCLK: OUT atd_logic; --256MHZ

WEN: OUT std_logic; --active low

in0: IN std_logic;

inil: IN std_logic;

in2: IN std_logic;

in3: IN std_logic;

peiclk: IN std_logic;

interconnect: DUT std_logic_vector(3 downto 0)); =--for other cplds

attribute pin_avoid of monitor:entity is "6 46 76 116";
sclk, smode,SD0,SDI

attribute pin_numbers of monitor:emntity is
“CLOCKOUT:2 " &
"ADDR(0):11 " &
“INTERCONNECT(0):12 " &
“INTERCONNECT(1):13 " &
“ADDRB{(0):14 " &
"WEN:16 " &
"INTERCONNECT(2):17 " &
"DATACALL:1S " &

"CLOCK 22 " &
"BCKCLK:23 " &

"INO:24 " &

"ADDR(1):32 " &
"ADDR(2):33 " &
"ADDRB(1):34 " &
"ADDRB(2):35 " %
VADDRB(3):36 " &
“ADDR(3):37 " &
"ADDR(4):38 " &
"ADDRB(4):39 " &
"HSYNC:42 " &
“HBLANK:49 " &
"ADDRB(6):51 " &
"ADDR(5):52 " &
“ADDR(6):63 " &

B.1. VHDL

"ADDRB(6):64 " &
"ADDRB(7):55 " &
"ADDR(7):56 " &
"ADDR(8):57 " &
"ADDRB(8):58 " &
"gUTS:59 " &
"10b(0):63 " &
"I0b(1):64 " &
"WEb:66 " &
“ADDR(9):66 " &
"ADDR(10):67 " &
"ADDRB(9):68 " &
"“ADDRB(10):69 " &
"I0b(2):70 " &
“PIXOUT(0):72 " &
“PIXOUT(1):73 " &
"PIXOUT(2):74 " &
"PIXOUT(3):76 " &
"QE:77 " &
"0Eb:78 " X
"DACCLK:79 " &
“IN1:82 " &
"DIGITALEN:83 " &
"I0b(3):91 " &
"WE:92 " &k
"10(0):95 " &
"I0b(4):98 " &
“PCICLK:99 " &
"CLK:102 " &
"IN2:103 " &
"IN3:104 " &
"I10(1):112
"10(2):113 *
"10(3):115 "
"10(4):119 '
“ADDR(11):122 " &
"ADDRB(11):123 " &
"10(5):124 " &
“10(6):126 " &
“10(7):126 " &
“I0b(5):127 " &
"10b(6):128 " &
"I0b(7):129 " &
“PIXOUT(4):131 " &
“PIXOUT(5):134 " &
1
&

LA R

“PIXOUT(6):135 "
“PIXOUT(7):138 "
“ADDR(12):143 " &
“ADDR(13):144 " &
"ADDR(14):145 " &
"ADDR(16):146 " &
“ADDRB(12):147 “ &
“ADDRB(13):148 " &
“"ADDRB(14):149 " &
“ADDRB(15):150 " &
“0UTO:152 " &
"INTERCCNNECT(3):164 " &
“blank:155 ";

End monitor;

Us

work. inopkg.all;

Use work.serial2parallelpkg.all;

Use vork.samplepkg.all;
Use work.ntscpkg.all;

Use work.fliplatchpkg.all;
Use vork.startlatchpkg.all;

ARCHITECTURE behavioral OF monitor IS

SIGNAL flip: std_logic;
SIGNAL start: std_logic;

SIGNAL datain: std_logic_vector(31 downto 0);
SIGNAL chip: std_.logic_vector(3i downto 0);

SIGNAL dav: std_logic;
SIGNAL std_logic;
SIGNAL : std_logic;

SIGNAL startf: std_logic;

SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL

SIGNAL
SIGNAL

startr: std_logic;
done: std_logic;
startreset: std_logic;
one: std_logic := '1';
low: std_logic := '0’;

samplepixel: boolean;
vertsync: std_logic;

121

122 APPENDIX B. AUTOMATIC BRIGHTNESS ADAPTATION DEMONSTRATION

BEGIN

serial2parallelQ: serial2parallel PORT MAP(
clk=>clk,
start=>start,
data=>datain,
outs=>outs,
davs=>dav,
rdavs>ydav,
datacall=>datacall);

sample0: sample PORT MAP(
clock=>clock,
dav=>dav,
rdavs>rdav,
samplenow=>pix,
datain=>datain,
dataout=>chip);

£1ipletchO: fliplatch PORT MAP(
clock=>clock,
startreset=>startreset,
£1ip=>£1ip);

startlatchO: startlatch PORT MAP(
clock=>clock,
start=>start,
done=>done,
startreset=>startreset);

ino0: ino PORT MAP(
clock=>clock,
done=>done,
WE=>WE,
OE=>QE,
addr=>addr,
chip=>chip,
10=>10,
pix=>pix,
starts>gtartreset,
startf=>startf,
startr=>startr,
WE1=>WEb,
DE1=>0Eb,
addri=>addrb,
I01=>I0b,
pixout=>pixout,
dacclk=>dacclk,
samplepixel=>samplepixel, --boolean
vertsync=>vertsync, --std_logic

£1lip=>£1ip);

atscO: ntac PORT MAP(
clock=>clock,
startreset=>startrecet,
hsync=>hsync,
hblank=>hblank,
startr=>startr,
startf=>startf);

-~the pixout iz wired to the header

=-pciclk and digitalen are not driven;

outO<=vertsync;

BCKCLK<=dacclk;

WEN <= 0’ vhon samplepixel and (flip = ’1’ or in3 = '1’) else '1’;

interconnect <= in3 & in2 & inl & in0;

process begin

WAIT UNTIL clk = *1’;

clockout <= not clockout; --divides the clk by 2.
end process;

blank <= not hblank; -~for the dac blanking

END behavioral;

B.1. VHDL

B.1.22 Serial-to-Parallel

Location:

123

Converter - serial2parallel.vhd

/homes/kfife/Imagerl/Stereo/DATAPATH/serial2parallel.vhd

Library iees;
Use ieee.std_logic_1164.all;
Entity serialZparallel IS PORT (

--clk on board receiving end
~--start signal for the start of frame

--bit input from imager
--indication of when data is ready
--rasets dav asynchronously

clk: IN std_logic;

start: BUFFER std_logic;

data: BUFFER 3td_logic_vector(31 downto 0);
outs: IN std_logic;

dav: OUT std_logic;

rdav: IN std_logic;

datacall: IN std_logic);

End serial2parallel;
USE WORK.std_arith.ALL;

ARCHITECTURE datapath OF serialZparallel IS

SIGNAL count: std_logic_vector(4 downto 0);
SIGNAL ckcount: std_logic_vector(2 downto 0);
SIGNAL check: std_logic_vector(4 downto 0);
SIGNAL previouscheck: std_logic_vector(4 downto
SIGNAL breakcondition: boolean;

SIGNAL idlecondition: boolean;

SIGNAL normalcondition: boolean;

SIGNAL resetcount: std_logic;

TYPE states IS (normal,break,waitsample,idle);
SIGNAL state : states;

BEGIN

serial to parallel conversion
PROCESS(datacall,rdav,resetcount,start)

begin

IF rdav = 1’ THEN
dav <= 0’;

ELSIP (resetcount = ’1’ or start = ’1’) THEN
count <= (others => ’0’);

ELSIF datacall’EVENT AND datacall = ’1’ THEN

data <= data(30 downto 0) & outs;
count <= count + 1;

IF (count = “11111") THEN
dav <= '1’;
END IF;

END IF;

END PROCESS;

~--decoding the start frame signal------ cmoeom—

~-clock for outs start signal embedded

-~clocked with datacall

--counter for check for deadzone in datacall
--used to sample count value

0); --used to sample check value

--The process samples the count value with check. Check is sampled by previouscheck.
--By ccmparing the two values, the process determines vhen there is a break in the
--datzcall clock. It then looks for the start signal by probing check and previouscheck
--during a 4 period clock sequence. If found, the start signal is fired. Otherwise the

--process resumes normal behavior.

br dition <= (cki
idlecondition <= (ckcount = "111") and (previous
normalcondition <= (check(0) = ’1');

process(clk)
begin

IF rising_edge(clk) THEN
check <= count;
previouscheck <= check;
IF (previouscheck = check) THEN
ckeount <= ckcount + 1;
ELSE
ckcount
END IF;

<= (others => ’0’);

= "011") and (previouscheck = check);

check = check);

124 APPENDIX B. AUTOMATIC BRIGHTNESS ADAPTATION DEMONSTRATION

CASE state is
when normal => start <= ’Q’;
resetcount <= '0’;
IF breakcondition THEN
state <= break;
END IF;
vhen break =>
IF idlecondition THEN
resetcount <= ’1’;
state <= waitsample;
ELSIF (previouscheck /= check) THEN
start <= 117
state <= waitsample;
END IF;
vhen vaitsample => Tesetcount <= '0’;
start <= '0’;
state <= idle;
vhen idle =>
IF normalcondition THEN
state <= normal;
END IF;
vhen others => state <= normal;
END CASE;
END IF;
end process;

END datapath;

Library iees;

Use iece.std logic_1164.all;
PACKAGE serial2parallelpkg IS
COMPONENT serial2parallel PORT (

clk: IN std_logic; --clk on board receiving end

start: BUFFER std_logic; --start signal for the start of frame
data: BUFFER std_logic_vector(31 downto 0);

outs: IN std_logic; --bit input from imager

dav: OUT std_logic; --indication of when data iz ready
rdav: IN std_logic; --resets dav asynchronously

datacall: IN std_logic); --clock for outs start signal embedded

END COMPONENT;
END serial2parallelpkg;

B.1.23 Format Converter - inout.vhd
Location:

/homes/kfife/Imager1l/Stereo/DATAPATH/inout .vhd

Library iees;
Use iceo.std logic_1164.all;

Entity ino IS PORT (
clock: 1IN std_logic;
done: OUT std_logic;
WE,OE: OUT std_logic;
addr: BUFFER std_logic_vector(16 downto 0);
chip: IN std_logic_vector(31 downto 0);
I0: INOUT std_logic_vector(7 downte 0);
pix,start: IN std_logic; --start indicates begining of frame
--pix indicates when a zet of 32 bits from the imager are ready
startf,starcr: IN std_logic; --startf causes pixels to be output at begining of frame
WE1,0E1: OUT std_logic; ~--starfr cause pixols to be output at begining of row
addri: BUFFER std_logic_vector(15 downto 0);
I01: INOUT std_logic_vactor(7 downto 0);
pixout: BUFFER std_logic_vector(7 downto 0);

dacclk: BUFFER std_logic;
samplepixel: OUT boolean;
vertsync: OUT std_logic;
flip: IN std_logic); --f1ip switches SRAM parameters. ie- addr,WE,OE,10

End ino;

USE WORK.std_arith.ALL;

ARCHITECTURE fsmino OF ino IS

B.1. VHD

L

TYPE states IS (idle,doread,dowrite);

SIGNAL

state : states;

SUBTYPE v17 is atd_logic_vector(16 downto 0);
SUBTYPE v8 is std_logic_vector(7 downto 0);
SUBTYPE v2 is std_logic_vector(i downto 0);
SUBTYPE v3 is std_logic_vector(2 downto 0);

SIGNAL row_prime_part_n_inc_pac: vi7;

alias pac: v3 is

alias
alias

inc: v2 is
n: std_logic is

alias part: v2 is
alias prime: std_logic is

alias

row: vB is

row_prime_part_n_inc_pac(2 downto 0);
row_prime_part_n_inc_pac(4 downto 3);
row_prime_part_n_inc_pac(5);
rov_prime_part_n_inc_pac(7 dounto 6);
row_prime_part_n_inc_pac(B);
rovw_prime_part_n_inc_pac(16 downto 9);

SIGNAL buff: std_logic_vector(3 downto 0);

TYPE statesl IS (rowwait, dorow);

SIGNAL

statel : statesi;

SIGNAL count18: std_logic_vector(17 downto 0);

alias rowl: std_logic_vector(7 downto 0) is counti8(17 downto 10);
alias paci: std_logic_vector(2 downto 0) is counti8(9 downto 7);

alias
alias

alias

X

std_logic is count18(6);

incl: std_logic_vector(l downto 0) is count18(5 downto 4);
alias primel: std_logic is count18(3);

y:

alias parti: std_logic_vector(i

SIGNAL
SIGNAL
SIGNAL

SIGNAL
SIGNAL
SIGNAL
SIGNAL
SIGNAL

BEGIN

startflag: std_logic;

std_logic is count18(2);

downto 0)is count18(1 downto 0);

top: integer range 4 to 7;
pixel: std_logic_vector(7 downto 0);

lastsample: boolean;
firstsample: std_logic;
firstprime: boolean;
dontsample: boolean;
samplepixelp: boolean;

PROCESS (clock,pix,inc,n,part,prime,rov,start)

BEGIN

IF (start = ’1
state

') THEN
<= idle;

row_prime_part_n_inc_pac <= (others => '0’);

ELSIF clock’EVENT AND clock = '1’ THEN

CASE state IS
WHEN idle =>

done <= 0’;

IF (pix = '1’) THEN
state <= doread;
END IF;

WHEN doread => state <= dowrite;

WHEN dowrite =>

IF (pac = "111") THEN

state <= idle;

done <= ’17;

ELSE

state <= doread;

END IF;

rov_prime_part_n_inc_pac <= row_prime_part_n_inc_pac + 1;

WHEN OTHERS => state <= idle;

END CASE;

END IF;

END PROCESS;

PROCESS (state

,£1ip,statel,count18)

BEGIN
if flip = '0’ then

if (state = dowrite) then

WE <= 107;

else WE <= *'1’;

end if;

if (state = doread) then

OE <= ’0*;

else OE <= ’1’;
end if;

125

126 APPENDIX B. AUTOMATIC BRIGHTNESS ADAPTATION DEMONSTRATION

if (statel = dorovw) then ---from read process
OE1 <r 0°;
olse
OE1 <= *1°;
end if;
WE1 <= 'i’;
else
it (state = dowrite) then
WE1 <= '0';
elso WE1 <= '17;
end if;

i? (state = doread) then
0B1 <= '0’;

else DE <= '1’;

ena if;

if statel = dorowv then ~-~-from read process
Q0B <= '07;
else
OE <= '1’;
end if;
WE <= 1°;
end if;
PROCESS;

controlling ID ports
PROCESS (state,clock,buff,I0,I01,f1ip)
BEGIN
IF clock’EVENT AND clock = '1’' THEN
if flip = '0’ then
IF (state = dorsad) THEN -- read out of SRAM and put the value in buff
buff <= 10(3 downto 0);

END IF;
alse
IP (state » doread) THEN -- read out of SRAM1 and put the value in buff
buff <= I101(3 doumto 0);
END IF;
end if;
END IF;
END PROCESS;

PROCESS (stato,buff,chip,flip,clock,pac)
variable index0: integer range 0 to 31;
variable indexl: integer range 0 to 31;
variable index2: integer range 0 to 31;
variable index3: integer range 0 to 31;
BEGIN

index0 := to_integer(pac) = 4;
indexl := to_integer(pac) * 4 + 1;
index2 := to_integer(pac) = 4 + 2;
index3 := to_integer(pac) = 4 + 3;
if flip = ’0’ then
101 <= "22222Z22Z"; ~-allows I01 to be used as an input during this time
IF (state = dowrite) THEN --read out of SRAM and put the value in buff
10 <= buff & chip(index0) & chip(indexl) & chip(index2) & chip(index3);
ELSE ~-in buff and write to SRAM
10 <= "22222222";
END IF;
else
10 <= “222Z222Z2";
IF (state = dowrite) THEN --read out of SRAM and put the value in buff
101 <= buff k chip(index0) & chip(index1) & chip(index2) & chip(index3);
ELSE --in buff and write to SRiM
101 <= "2222222Z";
EXD IF;
end if;
END PROCESS;
RASTER: QUTPUT

PROCESS (clock,statsi,startf,I01,pixel,stertr,flip)
VARIABLE bot: integer range 0 to 3:= top - 4;
BEGIN
IF (start? = ’1’) THEN
firstprime <= true;

statel <= rowwait;
count18 <= (others => '0’);

B.1. VHDL

RLSIF clock’EVENT AND clock = '1' THEN
CASE statsl IS

WHEN dorow =>
if flip = '0’ then

CASE partl IS -- read out
"00" => pixel(7
"01" => pixel(5
"10" => pixel(3
"11" «> pixel(1
OTHERS => pixel

END CASE;
elso

CASE partl IS -~ read out
VHEN "00" => pizel(7
VHER “01" => pixel(5
WHEN "10" => pixel(3
WHEN "11" => pixel(1
WHEN OTHERS => pixel

end if;

CASE parti IS -- load dac

of SRAM

downto 6)
downto 4)
dovato 2)
downto 0)
<= pizxel;

of SRAM

downto 6)
downto 4)
downto 2)
downto 0)
<= pixel;

WHEN "00" => pixout <= pixel;
vertsync <= firstsample;
--for digital out header--

IF firstprime THEN
firstsample <= ’1°;
firstprime <= false;
ELSE firstsample <= '0’;

END IF;

<
<

101(top) & IG1(bot);
101 {top) & I01(bot);
101(top) & I01(bot);
101(top) & 101(bot);

10(top) & 10(bot);
10(top) & I0(bot);
10(top) & I0(bot);
10(top) & 10(bot);

IF dontsample THEN

ELSE

dontsample <= false;

samplepixelp <= true;

END IF;

WHEN OTHERS => pixout <= pixout;
samplepixelp <= false;

END CASE;

IF (count18(9 downto 0) = "1111111111") THEN

statel <= rowvait;
ELSE

statel <= dorow;
END IF;

count18 <= countiB + 1;
WHEN rowwait => count18 <= countiB;

pixout <= pixel;
IF lastsample THEN

samplepixelp <= true;

lastsample <= fals
ELSE samplepizelp <= false;
END IF;

IF startr = '1’ THEN
statel <= dorow;
lastsample <= true;
dontsample <= true;

END IF;

WHEN OTHERS => statel <= rowvait;
END CASE;
END IF;
END PROCESS;
top <= 7 - to_intuger(x & y);

dacclk <= not clock; -- or just clock;

P 8
process(f1lip,rov,prime,part,pac,inc,rovl,primel,parti,pacl ,inc1)
begin

if flip = ’0’ then

addr <= rov & prime & part & pac & inc;

addri <= rowl & primel & partl & pacl & inci;

else

addrl <= rov & prime & part & pac & inc;

addr <= rovl & primel & partl & pacl & incl;

127

128 APPENDIX B. AUTOMATIC BRIGHTNESS ADAPTATION DEMONSTRATION

end if;
end process;

samplepixel <= samplepizelp;
END fsmino;

Library ieee;
Use iese.std_logic_1164.all;
PACKAGE inopkg IS
COMPONENT imo PORT (
clock: IN std_logic;
done: OUT std_logic;
WE,OE: OUT std_logic;
addr: BUFFER std_logic_vector(15 downto 0);
chip: IN std_logic_vector(31 downto 0);
10: INOUT ctd_logic_vector(? downto 0);
pixz,start: IN atd_logic; --start indicates begining of frame
~-pix indicates vhen a set of 32 bits from the imager are ready
startf,startr: IN std_logic; --startf causes pixels to be output at begining of frame
WE1,0E1: OUT std_logic; --starfr cause pixels to be output at begining of row
addr1: BUFFEN std.logic_vector(15 dowato 0);
101: INOUT std_logic_vector(7 downto 0);
pixzout: BUFFER std_logic_vector(7 downto 0);

dacclk: BUFFER std_logic;
samplepixel: OUT boolean;
vertsync: OUT std_logic;
£1ip: IN std_logic); --f1ip svitches SRAM parameters. ie- addr,WE,OE,I0

END COMPORENT;
END inopkg;

B.1.24 Synchronous Sample - sample.vhd

Location:

/homes/kfife/Imageri/Stereo/DATAPATH/sample.vhd

Library i 3
Use ieee.std_logic_1164.all;
Pe¢ity sample IS PORT (

clock: IN »td_logic;

dav: IN std_logic;

rdav: BUFFER std_logic;

samplenov: OUT std_logic;

datain: IN std_logic_vector(31 downto 0);

dataout: OUT std_logic_vector(31 dowanto 0));
End sample;

USE WORK.std_arith.ALL;

ARCHITECTURE behavior OF sample IS

signal data: std_logic_vector(31 downto 0);
BEGIN

process begin

WAIT UNTIL (clock = '1');
IF dav = ’1’ THEN

rdav <= ’1?;

ELSE

rdav <= '0’;

END IF;

end process;

PROCESS(clock,dav,datain)

BEGIN

IF clock’EVENT AND clock = '1' THEN
IF rdav = '1’ THEN
data <= datain;
samplenow <= '1’;

ELSE
samplenow <= '0’;

B... VHDL

END IF;
END IF;

END PROCESS;

dataout <=

data(0) & data(4) & data(8) & data(12)2
data(16) & data(20) & data(24) & data(28)k
data(1) & data(5) & data(8) & data(13)2
data(17) & data(21) & data(25) & data(29)2
data(2) & data(6) & data(10) & data(14)k
data(18) & data(22) & data(26) & data(30)2
deta(3) & data(7) & data(11) & data(i5)2
data(19) & data(23) & datef27) & data(31);

EED behavior;

Lidbrary iees;

Use ieee.std_logic_1164.all;
PACKAGE samplepkg IS
COMPONENT sample PORT (

clock: IN std_logic;

dav: IX std_logic;

rdav: BUFFER std_logic;

sazplenov: OUT std_logic;

datain: IN std_logic_vector(31 downto 0);

dataout : OUT std_logic_vector(31 downto 0));
END COMPONENT;
END samplepky;

B.1.25 NTSC Encoder - ntsc.vhd

Location:

/homes/kfife/Imager1/Stereo/DATAPATH/ntsc.vhd

Library ieee;
Use ieee.std_logic_1164.all;
Entity ntsc IS PORT (
clock: IN std_logic; --reset active low
startreset: IN std_logic;
hsync,hblank: BUFFER std_logic;
startr,startf: OUT std_logic);
End ntsc;

USE WORK.std_arith.ALL;

ARCHITECTURE fsmntsc OF ntsc 1S
TYPE states IS (visible,EQ1,ser,EQ2,blank);
SIGNAL state : states;

SIGNAL count: integer range O to 1599;
SIGNAL line: integer range 0 to 255;

~~~-parametors
CONSTANT fpw: integer:= 192; --front porch
CONSTANT bpw: intege 256; ~~back porch
CONSTANT syncw: integer:= 128; --sync width
CONSTANT serw: integer:= 112; -~seration
CONSTANT av: integer:= 64; --equalization

CONSTANT visible_lines: irteger:= 242;
CONSTANT rowclk: integer := 1600;
constant serl: integer:= rowclk/2 - serv;
constant halfrow: integer:= rowclk/2;

constant evw2:integer:= halfrow + ew;
constant serl2: integer:= rowclk - serv;

constant bp_blank: integer:= syncw + bpw;
constant
constant start_read: integer:= bp_blank - 6;

SIGNAL visible_region: boolean;
SIGNAL eq_region: boolean;
SIGNAL ser_region: boolean;
SIGNAL blank_region: boolean;

BEGIN

visible_region <= state = visible;

129



130 APPENDIX B. AUTOMATIC BRIGHTNESS ADAPTATION DEMONSTRATION

eq_region <= state = EQ1 or state = EQ2;
ser_region <= state = ser;
blank_region <= state *= blank;

PROCESS (clock,count,startreset,state)

BEGIN
IF clock’EVENT AND clock = 1’ THEN
--Eq and Ser pulses

IF ((line = 255) AND (count = 1599)) or (startreszet = ’1') THEN
count <= 0;

line <= 0;

state <= visible;

ELSIF (count = 1599) THEN
count <= 0;
line <= line + 1;

ELSE count <= count + 1;
END IF;

CASE state IS
WHEN visible => IF line = (visible_lines) THEN
stato <= EQ1;

END IF;

WHEN EQ1 => IF line = (visible_lines + 3) THEN
state <= sor;
END IF;

WHEN ser => IF line = (visible_lines + 6) THEN
state <= EQ2;
END IF;

WHEN EQ2 => IF line = (visible_lines + 9) THEN
state <= blank;
END IF;

WHEN blank => IF line = O THEN
state <= visible;

END IF;
WHEN OTHERS => state <= state;
END CASE;
CASE count IS
WHEN 0 => hsync <= '0’; --start hsync pulse

WHEN syncw => IF visible_region or blank_region THEN
hsync <= '1’; --end hsync pulse

END IF;

WHEN ow => IF eq.region THEN --eq width
hsync <= ’1’; --eq pulse width
END IF;

WHEN evw2 => IF eq.region THEN --eq width
hsync <= '1?; --eq pulse width
END IF;

WHEN halfrov => IF eq_region or ser_region THEN
hsync <= '0';
END IF;

WHEN sorl => IF ser_region THEN --ser width
hsync <= '1’;
END IF;

WHEN seri2 => IF ser_region THEN --ssr width
hsync <= '1’;
END IF;

WHEN OTHERS => hsync <= hsync;

END CASE;

CASE count IS

WHEN bp_blank => IF visible_region THEN
hblank <= ’i’; --active video after back porch
ELSE hblank <= '0’;
END IF;

WHEN fp_blank =>hblank <= '0’; --front porch start

WHEN OTHERS => hblank <= hblank;
END CASE;

IF (count = start_read) THEN
startr <= ’1’; ELSE startr <= '0’;
END IF;

IP (count = start_read - 4) and (line = 0) THEN



B.1. VHDL

startf<= ?1'; ELSE startf <= °'0’;
END IF;

END IF;
END PROCESS;

END fsxzntsc;

Library iees;
Use ieeo.std_logic_1164.all;
PACKAGE ntascpkg IS
COMPONENT ntsc PORT (
clock: IN std_logic; --reset active low
startreset: IN std_logic;
hsync,hblank:  BUFFER std_logic;
startr,startf: OUT std_logic);
END COMPONENT;
END ntscpkg;

B.1.26 Generate flip Signal - flip.vhd

Location:

/homes/kfife/Imager1/Stereo/DATAPATH/f1lip.vhd

Library iees;
Use ieee.std_logic_1164.all;
Entity fliplatch IS PORT (

clock: IN std_logic;
startreset: IN std_logic;
£lip: BUFFER std_logic);

End fliplatch;

USE WORK.std_arith.ALL;

ARCHITECTURE behavior OF fliplatch IS

BEGIN

PROCESS (clock)

BEGIN

IF clock’EVENT AND clock = ’1’' THEN
IF startreset = 1’ THEN

£lip <= not flip;

END IF;

END IF;

END PROCESS;

END behavior;

Library iees;

Usa iese.std_logic_1164.all;

PACKAGE fliplatchpkg IS
COMPONENT f1iplatch PORT (

clock: IN std_logic;

startreset: IN std_logic;

£lip: BUFFER std_logic);
END COMPONENT;

END fliplatchpkg;

B.1.27 Start of Frame - startlatch.vhd

Location:

/homes/kfife/Imagerl/Stereo/DATAPATH/startlatch.vhd

131



132 APPENDIX B. AUTOMATIC BRIGHTNESS ADAPTATION DEMONSTRATION

Library ioes;
Use ieee.std_logic_1184.ell;
Entity startlatch IS PORT (

clock: IN std_logic;
start: IN std_logic;
done: IN std_logic;
startreset: BUFFER std_logic);

End startlatch;
USE WORK.std_arith.ALL;
ARCHITECTURE behavior OF startlatch IS
TYPE states IS (ready,go):
SIGNAL state: states;
SIGNAL startQ: std_logic; --internal signal for rs latch.
BEGIN
--grab asynchronous start--
--Q <= not(reset or not(set or Q)); --rs latch
startQ <= not(startreset or not(start or startQ));
PROCESS (clock)
BEGIN
IF clock’EVENT AND clock = '1’ THEN
CASE state IS
WHEN ready => IF (startQ = '1’) THEN
state <= go;
BND 1IF;
startreset <= '0’;
WHEN go => IF (done = ’1') THEN

startreset <= '1’;
state <= ready;

END IF;
WHEN OTHERS => state <= ready;
END CASE;
END IP;
END PROCESS;
END behavior;
Library iees;
Use iese.std_logic_1164.all;
PACKAGE startlatchpkg IS
COMPONENT startlatch PORT (
clock: IN std_logic;
start: IN std_logic;
done: IN std_logic;
startreset: BUFFER std_logic);

END COMPONENT;
END startlatchpkg;

B.1.28 Test Interface to GuPPI Card - topguppi.vhd
Location:

/homes/kfife/Imagerl/Stereo/GUPPI/topguppi.vhd

Lidbrary ieee;
Use ieee.std _logic_1164.all;
BEntity guppi IS PORT (

clock: IN std_logic; --registers

ins: OUT std_logic_vector(31 downto 0); --top
infe: IN std_logic;

bekelk: OUT »td_logic;

inaf: IN std_logic;

inhe: IN std_logic;

inae: IN std_logic;

inef: IN std_logic;

wen: OUT std_logic;

beken: IN std_logic; --side



B.1. VHDL

peiclk:
bekrs:
bekid:
beketrl:
beksts:

pixout:
out0:
peiclkred:
inred:
venred:
bckclkred:

byteA:
byteB:
bytel:

led:

IN std_logic;
IR std_logic;
0UT otd_logic_vector(3 downto 0);
IN std_logic_vector(3 downto 0);
OUT std_logic_vector(3 downto 0);

IN std_logic_vector(7 decwnto 0);
IN std_logic;
OUT std_logic;
OUT std_logic_vector{(3 downto 0);
IN std_logic;
IN std_logic;

IN std_logic_vector(7 downto 0);
IN std_logic_vector(7 dowmto 0)
IN std_logic_vector(7 downto 0);

~-registers

--digitalhead

--on board

OUT std_logic_vector(7 downto 0)); --on board leds

attribute pin_avoid of guppi:entity is "6 46 76 118";

attribute p.
"BCKID(0):2 " &
“INRED(0):3 " &
“INRED(1):4 " &
“INRED(2):5 " &
“INRED(3):7 " &
"INS(0):8 " &
"INS(1):9 " &

"BCKID(1):11 " &
"BCKSTS{0) 12 " &
“BCKSTS(1):13 " &
"BCKCLK:14 " &
"PCICLKRED:15 " &
“WEN:16 " &
“BCKSTS(2):17 " &
"CLOCK:19 " &
"PCICLK:22 " &
"INS(2):23 " &
“BCKCLKRED:27 " &
“BCKCTRL(0):28 " &
“BYTEB(0):28 “ &
“INFF:30 " &
“INS(3):32 " &
“BCKCTRL(1):356 " &
"BYTEA(2):36 " &
"BYTEA(3):37 " &
"BYTEB(1):38 " &
“INAE:39 " &
“INS(4):42 " 2
“BCKCTRL(2):45 " &
"BYTEC(2):47 " &
"BYTEA(4):48 " &
“PIXOUT(7):49 " &
"INS(5):61 " &
"BCKCTRL(3):54 " &
“BYTEC(3):55 " &
"BYTEA(b):56 " &
"PIXOUT(4):57 " &
“PIXOUT(0):58 " &
"PIXQUT(1):69 " &
"INS(6):63 " &
“BCKEN:66 " &
"BYTEC(4):67 " 2
"BYTEA(6):68 " &
"PIXOUT(5):69 " &
"PIXQUT(6):70 " &
“INS(7):72 " &
"INEF:76 " &
“BYTEC(5):77 " &
"BYTEA(7):78 " &
“BYTEB(2):79 " &
"INS(8):82 " &
"QUTO:85 " &
"BYTEC(6):86 " &
"BYTEB(3):87 " &
"BYTEB(4):88 " &
"INHF:89 " &
"INS(9):91 " &
"WENRED:94 " &
“BYTEC(7):96 " &
"BYTEB(5):96 " &
“BYTEB(6):97 " &
“"INAF:98 " &
"PIXOUT(2):99 " &

----------- sclk, smode,SDO,SDI

in_numbers of guppi:entity is

133



134 APPENDIX B. AUTOMATIC BRIGHTNESS ADAPTATION DEMONSTRATION

"PIXOUT(3):102 " &
"INS(10):103 " &
“LED(0):107 " &
"BYTEC(0):108 " &
“BYTEA(0):109 " &
“BYTEB(7):110 " &
"INS(11):112 " &
"LED(1):113 " &
"BYTEC(1):118 " &
“BYTEA(1):119 " &
"INS(12):122 " &
“BCKSTS(3):124 " &
“LED(2):126 " &
"INS(13):126 " &
"BCKRS:127 " &
“LED(3):128 " &
"INS(14}:131 " &
“LED(4):132 " &
“LED(5):133 " &
"LED(6):134 " &
"INS(15):135 " &
“LED(7):136 " &
"INS(16):137 " &
"INS(17):138 " &
“BCKID(2):143 " &
“INS(18):144 " &
"INS(19):145 " &
"INS(20):146 " &
"INS(21):147 " &
"INS1<2):148 " &
"INS(23):149 " &
"INS(24):150 " &
"BCKID(3):152 " &
"INS(25):163 " &
"INS(26):154 " &
“INS(27):155 " &
"INS(28):156 " &
“INS(29):157 " &
“INS(30):158 " &
“INS(31):169 ";
End guppi;

USE WORK.std_arith.ALL;
ARCHITECTURE behavior OF guppi IS

SUBTYPE v1 is std_logic;

SUBTYPE v2 is std_logic_vector(i downto 0);
SUBTYPE v4 is std_logic_vector(3 downto 0);
SUBTYPE v3 is std_logic_vector(2 downto 0);
SUBTYPE v8 is std_logic_vector(7 downto 0);
SUBTYPE v32 is std_logic_vector(31 dowanto 0);

SIGNAL truebyteA: boolean;

SIGNAL truebyteB: boolean;

SIGNAL truebyteC: boolean;

--Attribute synthesis_off of halfbyte: SIGNAL is TRUE;
--Attribute synthesis_off of lesser: SIGNAL is TRUE;

BEGIN

truebyted <= byteA = x"FF";
truebyteB <= byteB = x"FF";
truebyteC <= byteC = x"FF";

led <= bekctrl & "0000";

process begin

WAIT UNTIL (pciclk = ’1’);
bekid <= "0001";

end process;

beksts <= "ZZZ2";

ins <= x"FP" & pixout & pixout & pixout vhen (out0 = ’'1’) else x"00" & pixzout & pixout & pixout;
bckclk <= bckclkred;

ven <= yenred;

inred <= bckctrl;

--unimportant
peiclkred <= pciclk;

END behavior;



B.2. SCHEMATICS 135

B.2 Schematics

The board schematics, library files, and PC board layout for all parts of the Automatic
Brightness Adapation demonstration are located in /homes/kfife/Accel in ACCEL bi-
nary format.

Schematics for the Digital Imager are shown in Figures B.1 - Figures B.2. The corresponding
files are located in:

/homes/kfife/Accel/Imager/
combined.sch
combined.pcb
imagerl.pcb
imager2.1lib

Schematics for the Automatic Brightness Adaption Board are shown in Figures B.3 - Fig-
ures B.5. The corresponding files are located in:

/homes/kfife/Accel/Autobright/
box.sch
box.pcb
autobright.pcb
imager2.1lib
autobright.lib

The schematic for the Tadpole Daughter Card is shown in Figure B.6.The corresponding
files are located in:

/homes/kfife/Accel/Guppi/
guppi.sch
guppi.pcb
Rguppi.pcb
guppi.lib
imager2.1ib
autobright.lib



136 APPENDIX B. AUTOMATIC BRIGHTNESS ADAPTATION DEMONSTRATION

IS l “ l N ] -
. p
— ey p--— ——
; !55.5: $ s 3 3 :EF g
2%
Loy e ] s
H < Frvy a3 18
] & ) ) 8 { TR AW T
H
{ |y
L4 L
< 3,0: I. 1 cn
2 ca3 ] 1.5 R34
© 2 A < W hvrd
o cs ¥ *
AF [t §
c"'s Cum
A kil
: - o 8 i ez
1 < 18 | - K 38
cas | | Mg «— W
AW +—
% Ao gh
(24 —*_gm
AWF
o b
o il bl | e €33
c48 'l Ao ] . s
¥ L BT
c49 AW
o ®
1&5
- 3
cy4
! & 3.
< AN Foved
R30 R
]
o
m
R
g
-
*
?
» | - 1 b I -

Figure B.1: Analog components and socket for imager.



B.2. SCHEMATICS 137

» | w ] ~ | =
v g 180 R3
> "
2 ]
— oo -]
s (%)
‘—
- 3“
g - -
g
@
| B4
|| 8
&
H
o
- IR
o
s R ¢ i AW |
- L"__JZI._‘J I - l c1e 18
) AW
- ¥ g
e ¢z ! g o
A
v e ‘Nl 'EF
c12 C";
A
m — 1quF
ct3 g
I .,, z
—a cis =
{ =l 19
cis =
] ";E'F 1QuF
cs g
¥ W
o - 5
£ ¥ .l
L ‘;‘: G
ok <+
2 cie 2
= < W
! 3 @
» | o | ~ | -

Figure B.2: Digital controller and interface for receiver.



138 APPENDIX B. AUTOMATIC BRIGHTNESS ADAPTATION DEMONSTRATION

» T w | ) ] -

Figure B.3: Controller and comparator for automatic brightness algorithm.



B.2. SCHEMATICS

139

c1t
AuF
%

¥—

c12

JAuF
'

W
ci3

x
(-10]

%
*
c?

N
o
ce

oo 4
g

o]

w|

ﬁi"i

1

8

1

-

2 2% B3P e €

3

83f 9

— ]
A ]

20Y086S0

> |

» I

Figure B.4: Controller and programming interface for autobright.




140

APPENDIX B. AUTOMATIC BRIGHTNESS ADAPTATION DEMONSTRATION

we A

gri BB
3

asaRz

an:

ISR B B, Oh NS o) peyIees &

cz8 ' ]

1QuF E ____

id
ca7

1Quf
Liad

wes]
vasa]

wI

I Brd Gyd BrE GE By Byd By

ol
;¢

g: a gs:; Sa:'

P
<

> I u | N i

Figure B.5: NTSC encoder and format converter for display.




B.2. SCHEMATICS 141

R

o

EH

24
20

Baf Ro? B4F Qad

oo 4

Bie B B B1e B B

fow

1
EELELEE

]

eS|
unsag

|

» | [ | [ ] -

Figure B.6: Tadpole daughter card for GuPPI.






THESIS PROCESSING SLIP

FIXED FIELD: ill. name

index biblio

» COPIES: @ Ao Dewey GogD Hum

Lindgren Music Rotch  Science

TITLE VARIES: »[_]

NAME VARIES: »D/ @l en

IMPRINT: (COPYRIGHT)

» COLLATION: l L, ’ ?

» ADD: DEGREE:& & » DEPT.: E~ 6 .

SUPERVISORS:

NOTES
catr: date:
page:
»DEPT. __ L & P N2eA e

»YEAR:__\4A4 Q4 »DEGREE: ___ W ¢ Do

»NamE: E\EE . Ko\ CGo,




