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Abstract

The spatial topology of magnetic field lines can be chaotic for fields generated by simple current

configurations. This is illustrated for a system consisting of a circular current loop and a straight

current wire. An asymmetric configuration of the current system leads to three-dimensional spa-

tially chaotic magnetic fields. The motion of charged particles in these fields is not necessarily

chaotic and exhibits intriguing dynamical properties. Particles having initial velocities closely

aligned with the direction of the local magnetic field are likely to follow chaotic orbits in phase

space. Other particles follow coherent and periodic orbits - these orbits being the same as in the

symmetric current configuration for which the field lines are not chaotic. An important feature

of particles with chaotic motion is that they undergo spatial transport across magnetic field lines.

The cross-field diffusion is of interest in a variety of magnetized plasmas including laboratory and

astrophysical plasmas.

PACS numbers: 52.20.Dq, 52.65.Cc
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I. INTRODUCTION

An intricate part of laboratory, space, and astrophysical plasmas are the magnetic fields.

The fields can be induced externally as in controlled fusion devices or generated naturally as

occurs in space. In the natural occurring plasmas, magnetic fields are ubiquitous and play a

crucial role in microscopic and macroscopic scales. As noted by Parker [1], “It appears that

the radical element responsible for the continuing thread of cosmic unrest is the magnetic

field.” In this paper we study the motion of charged particles in spatially chaotic magnetic

fields. The chaotic magnetic fields are generated by uniform currents in a simple system

composed of a circular current loop and a straight current wire. The magnetic field of such a

system can be analytically obtained and is textbook material [2]. Since the magnetic field is

divergence free, the magnetic field lines are completely deterministic and can be described by

a Hamiltonian. For asymmetric configurations of the loop-wire system, when the magnetic

field lines do not lie on a two-dimensional surface, we find that the field lines can become

chaotic in space [3–5]. Subsequently, we study the dynamics of charged particles in such

chaotic magnetic fields and compare it with the dynamics in a symmetric configuration where

the field lines lie on a surface and are not chaotic. The particle dynamics in a magnetic field

is a Hamiltonian system. So there is no randomness that is extrinsically included in either

the description of the magnetic field or in the dynamics of the particles. From numerical

simulations we demonstrate that in a chaotic magnetic field the particle motion is chaotic

for a limited part of its available phase space. An interesting and new result that emerges

from our studies is that the motion of a particle in a three-dimensional chaotic magnetic

field is not necessarily chaotic. Previously, it has been shown that stochastic instability of

magnetic field lines can induce anomalous diffusion across the confining magnetic field line

[6]. We show that, in the presence of chaotic magnetic fields, cross-field diffusion occurs only

for a restricted part of the dynamical phase space in which the particle motion is chaotic.

Particles in most of the phase space do not undergo spatial diffusion in the presence of

chaotic magnetic fields.

The idea to study properties of magnetic field lines using current systems is not new. It

has been pointed out by Alfvén that a description in terms of currents gives important new

aspects of cosmical electrodynamics and a different approach to the generation of magnetic

fields [7]. In his book on mathematical problems, Ulam notes that topological properties of
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magnetic field lines in space can be studied simply by considering fields due to steady state

currents flowing in wires along prescribed curves [8]. In this paper we take an additional

step by studying the motion of particles in such magnetic fields.

The effect of magnetic fields on the motion of charged particles is of considerable inter-

est. In cosmic rays the transport of particles across the magnetic field is believed to be

responsible for regulating the high-energy particle density in galactic magnetic fields [9, 10].

The propagation of solar cosmic rays in the interplanetary space cannot be explained unless

there is transport of energetic particles across the interplanetary magnetic field [11]. The

existence of chaotic magnetic field lines in space is postulated as a means for explaining

diffusion of charged particles [9, 12]. In these studies ad hoc random perturbations to the

magnetic fields are included in the modeling to explain the diffusion of particles. In our case

the chaotic magnetic field is a natural consequence of three-dimensional asymmetry of the

current configuration.

The assumption of steady currents in the loop-wire system eliminates the need to include

electric fields associated with time-varying magnetic fields. Consequently, the energy of the

particles is a constant of the motion. Furthermore, we can compare general features of the

particle dynamics with analytical studies of particle motion in magnetic fields [13]

While collective effects are important in the study of magnetized plasmas, a wealth of

physical insight into the plasma behavior can be obtained from the dynamics of charged

particles in the relevant magnetic fields. A kinetic description of the plasma is then for-

mulated based on the test particle dynamics. The diffusion coefficients associated with

particle transport that are incorporated, for example, into the Fokker-Planck description

are obtained from single particle dynamics [14].

The paper is organized as follows. We show that chaotic magnetic field lines are generated

by spatially asymmetric configurations of the loop-wire current system. We then study the

dynamics of charged particles in these chaotic magnetic fields.

II. MAGNETIC FIELD DUE TO A CURRENT LOOP AND A STRAIGHT CUR-

RENT WIRE

We consider a current loop with its center located at the origin of a Cartesian coordi-

nate system (x, y, z) and lying in the x-y plane. In spherical coordinates, defined with the
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standard convention, the vector potential of the current loop is given by [2]

ALφ(r, θ) =
µ0IL

2π

a(
a2 + r2 + 2ar sin θ

)1/2
F (k) (1)

where µ0 is the free space permeability, IL is the current in the loop, r is the radial coordinate,

θ is the zenith angle, φ is the azimuthal angle, a is the radius of the loop,

F (k) =
1

k2

[(
2− k2

)
K(k)− 2E(k)

]
(2)

k2 =
4ar sin θ

a2 + r2 + 2ar sin θ
(3)

and K(k) and E(k) are the complete elliptic integrals of the first and second kind, respec-

tively [15]. The vector potential is along the azimuthal direction so the azimuthal component

of the magnetic field BLφ = 0. The other two components of the magnetic field due to the

current loop are

BLr =
1

r sin θ

∂

∂θ
(sin θ ALφ) (4)

BLθ = −1

r

∂

∂r
(r ALφ) (5)

For a current carrying straight wire along the z-axis and perpendicular to the plane of the

loop, the vector potential has just the z-component and depends only on the radial distance

from the wire [2]

AWz(r) =
µ0IW

2π
ln (r) (6)

where IW is the current in the wire and r =
√

x2 + y2 is the radial distance from the wire.

The magnetic field is along the direction of the azimuthal angle

BWφ = − ∂

∂r
AWz =

µ0IW

2π

1

r
(7)

The other two components of the magnetic field due to the wire are BWr = 0 and BWθ = 0.

III. MAGNETIC FIELD LINES FOR THE LOOP-WIRE SYSTEM

The equations for the magnetic field lines ~B = (Br, Bθ, Bφ) in spherical coordinates are

dr

Br

=
rdθ

Bθ

=
r sin θ dφ

Bφ

=
ds

|B| (8)
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where s is the path length along the field line. The magnetic field line components are the

sum of magnetic field components of the loop, (4) and (5), and the wire (7). We study the

field lines for the loop-wire system by numerically solving Eq. (8). While the current loop is

kept fixed in space, we allow for the wire to be displaced relative to the center of the loop.

A simple translation of the wire relative to the origin can be easily incorporated into the

formula for the magnetic field in Eq. (7). Due to the azimuthal symmetry of the current

loop only the distance of the wire from the z-axis matters. For our computational results we

normalize all distances to a, the radius of the loop, and the magnetic fields to µ0IL/(2πa).

In what follows, we will assume that the IW /IL = 0.2. Let ∆r be the normalized distance

by which the wire is displaced with respect to the center of the loop.

Figure 1 shows the Poincaré surface-of-section, in the x − z plane, of the magnetic field

line in the case where the wire is passing through the center of the loop, i.e., ∆r = 0.

The flux surfaces defined by the Poincaré surface-of-sections are similar to those one would

expect for a dipolar magnetic field due to a current loop.

Figure 2 shows the flux surfaces, in the surface-of-section plot, when the wire is displaced

by ∆r = 0.001. The initial conditions for the magnetic field lines in this figure are the same

as in Fig. 1. The inner two surfaces are still well defined as in Fig. 1 but the outer surfaces

have broken up into islands. The order of the islands increases as the field lines move away

from the outer edge of the current loop. The formation of islands is indicative of the fact

that the field lines are no longer confined to a surface but occupy a finite volume in space.

Figure 3 is the Poincaré surface-of-section for two field lines with ∆r = 0.01. Here we

see that the inner most flux surface is still well preserved but the outer flux surfaces have

disintegrated to occupy large volumes of space. The outer magnetic field lines are chaotic.

In the case of Fig. 1, the loop-wire system is azimuthally symmetric so that the field lines

lie on a two-dimensional flux surface. A displacement of the wire relative to the center of

the loop breaks this azimuthal symmetry leading to field lines spanning a three-dimensional

volume in space. The chaotic field lines are a result of symmetry breaking. There is no

externally induced randomness as the currents in the loop and wire are kept constant and

the geometry of the current carriers is preserved. Since we can create chaotic magnetic

field lines with such a simple configuration, it is likely that, in general, three-dimensional

field lines are chaotic. It is only under very special circumstances that one can preserve

symmetries that do not lead to chaotic magnetic field lines.
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IV. CHARGED PARTICLE ORBITS IN THE LOOP-WIRE SYSTEM

The orbits of charged particles in a magnetic field are given by the Lorentz equation

d~v

dt
=

q

m
~v × ~B (~r) (9)

where ~r and ~v are the position and velocity, respectively, of a particle of charge q and mass

m. The magnetic field ~B is composed of Eqs. (4), (5), and (7), with the appropriate spatial

translations of the wire included in (7). We introduce dimensionless variables by multiplying

time with the frequency Ω0 = (q/m)(µoIL/2πa), and velocities by Ω0/a. The energy of a

particle, E = v2/2 =
(
v2
⊥ + v2

‖
)

/2, moving in just a spatially dependent magnetic field is

conserved. Here v⊥ and v‖ are components of the particle velocity perpendicular and parallel

to the direction of the magnetic field at the location of the particle.

From our numerical analysis, we find that the trajectory followed by a particle depends

on the value of the parameter α = v2
‖/2E at the starting location of the particle. If α = 1

then the initial velocity of the particle is along the local magnetic field. For α = 0 the

velocity is perpendicular to the local magnetic field. When the wire is located at the center

of the loop, as in Fig. 1, there exists a critical value α = αc such that for α < αc the particle

bounces between two turning points and it drifts. This corresponds to a trapped particle

orbit. For α > αc, the particle goes around azimuthally in one direction. This corresponds

to a passing orbit. The normalized energy is chosen so that the Larmor radius ρ of the

particle at the starting location is much smaller than the magnetic field scale length LB at

that point. ρ = v⊥/Ωc where Ωc = qB/m with B being the magnitude of the magnetic

field at the location of the particle, and 1/LB = |∇B|/B. In theoretical studies [13], it has

been noted that the magnetic moment of the particle µ = v2
⊥/2B is an adiabatic invariant

provided ρ/LB ¿ 1. The evolution of both ρ/LB and µ along the trajectory of a particle

will be discussed below.

We study the effect of chaotic magnetic field lines on particle orbits by choosing the initial

positions of the particles to be in the chaotic region of Fig. 3. The trajectories of particles

are followed numerically and we plot a point in the x− z plane every time a particle crosses

this plane with its velocity having a positive y component. Figure 4 shows the intersection

points for four different particles for α = 0.9. The orbits intersect the x− z plane for both

x > 0 and x < 0; the orbit of particles 1 and 4 are as labelled while those of 2 and 3 lie

sequentially between them. These are trapped particle orbits for which the turning points
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are precessing in the azimuthal direction. While it is apparent that the particle trajectories

are not chaotic, it is interesting to note that the particles have the same trajectories if we

were to assume that the loop-wire system is symmetric as in Fig. 1. In other words, the

particles whose orbits are shown in Fig. 4 behave as if the magnetic field lines are not

chaotic, even though the field lines are fully chaotic. In Figs. 5 and 6 we plot, respectively,

µ/µ0 and ρ/LB along the orbit of particle 2 in Fig. 4. Here µ0, not to be confused with the

free-space permeability, is the value of µ at the starting point for this particle. Figures 5

and 6 are approximately for one cycle - the curves repeating over subsequent times. From

Fig. 5 we note that µ varies by more than a factor of 2 from its minimum to its maximum

value along the orbit. This variation implies that µ is definitely not an adiabatic invariant.

However, the average change in µ over an entire cycle is zero. Figure 5 shows that ρ/LB is

much less than 1 along the entire cycle. One would expect from theoretical studies [13] that

µ will not vary much along the particle orbit for ρ/LB ¿ 1. But that is not the case. It

is the average value of µ over one or more cycles that does not change, i.e., µ is a constant

only in an average sense. The average value of µ over an integer number of cycles remains

zero. So µ is not an adiabatic invariant as a function of time, but it is essentially invariant

over one or more periodic cycles.

Figure 7 displays particle orbits in the x − z plane for α = 0.989. Some of these orbits

are different from those that would be obtained in the symmetric loop-wire system. This

is illustrated in Fig. 8 which is a magnified view of an island structure in Fig. 7. The

outermost particle orbit displayed in Fig. 7 is the same as that for a particle moving in

a symmetric loop-wire configuration. So a part of phase space is affected by the chaotic

magnetic field for this α.

Figure 9 shows chaotic particle orbits for two particles with α = 0.990625. From numerical

simulations we find that this value of α is the critical value for which chaotic particle orbits

are present. The orbit indicated by blue dots has no turning points and intersects the x− z

plane moving in one azimuthal direction. For both these particles the variation of µ along

the particle orbit is also chaotic while ρ/LB ¿ 1.

In Fig. 10 we indicate the intersection points (blue dots) in the x− z plane of a particle

orbit. Here α = 1 so that the initial particle velocity is aligned along the magnetic field line.

Starting at the same initial spatial location as the particle, we plot magnetic field intersection

points (red dots) for the chaotic magnetic field in Fig. 3. The number of intersection points
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of the magnetic field line is the same as those for the particle orbit. The differences in the

two sets of points show that, even when the initial velocity is along the magnetic field line,

the particle does not follow the magnetic field line. It separates away from the field line,

covering a broader range of space and, thus, diffuses across the magnetic field line.

V. CONCLUSIONS

From Figs. 9 and 10 it is evident that chaotic magnetic field lines can lead to spatial

transport of particles. The spatial transport goes hand-in-hand with chaotic motion of the

particle since the particle meanders over a wider range in space as compared to the orbits

shown in Figs. 4 and 7. The spatial transport is limited to only those particles which are

started off with α greater than some critical value αc. As the energy of particles is increased

the range of α’s for which the particle motion becomes chaotic increases - αc decreases

relative to 1 as the energy increases. For low energy particles the range of α’s is limited as

αc approaches 1. This implies that spatial transport across the magnetic field lines is more

likely for energetic particles.

In the loop-wire current system, chaotic magnetic fields are generated by small deviations

from a symmetric configuration. The magnetic field lines no longer lie on some nice two

dimensional surfaces. Thus, it would seem that non-chaotic magnetic field lines require

special constraints while chaotic magnetic field lines may be easier to generate.

In the presence of chaotic magnetic field lines, the motion of particles is not necessarily

chaotic. There exist a class of particle whose orbits are quite regular and are similar to the

orbits that would occur in the presence of a non-chaotic magnetic field. The orbits of only

those particles are chaotic whose initial velocities are closely aligned with the direction of

the local magnetic field.

The magnetic field line equations and the particle orbit equations are solved numerically

using the Gauss and Lobatto Collocation methods [16]. We have used methods of order 4 and

6. These methods are symplectic and possess desirable stability properties as discussed in

reference [16]. In the case of particle orbits, the energy is conserved to almost within machine

accuracy. The step sizes for the numerical solutions are chosen such that decreasing the step

size does not affect the results. This is necessary in order for us to look at changes in the

particle orbits as α is varied over small ranges. The results shown in Figs. 7 and 8 required
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stable algorithms that are accurate.
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FIG. 1: Poincaré surface-of-section of six magnetic field lines. The dot at x = 1 and z = 1 marks

the intersection of the current loop with this plane and the current wire is along the z-axis.
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FIG. 2: Surface-of-section of six magnetic field lines when the wire is displaced by a distance

∆r = 0.001 relative to the centre of the loop.

11



0 20 40 60

−20

−10

0

10

20

x 

z 

FIG. 3: Surface-of-section of two magnetic field lines with the wire displaced by a distance ∆r =

0.01 relative to the centre of the loop. The inner most curve corresponds to one field line that is

not chaotic.
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FIG. 4: Intersection points in the x − z plane of the trajectories of four particles moving in

the chaotic magnetic field configuration of Fig. 3. The normalized energy is E = 1.25 × 10−5

and α = 0.9. The intersection points of particles 1 and 4 are as labelled while 2 and 3 follow

sequentially. The four particles are started at different spatial locations which all lie within the

region of chaotic magnetic field line shown in Fig. 3.
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FIG. 5: µ/µ0 along the particle orbit for particle 3 in Fig. 4. µ, sometimes referred to as the

first adiabatic invariant, is the magnetic moment of the particle. µ0 is the initial value of µ at the

starting position of the particle.

0 5 10 15 20
2

4

6

8

10x 10
−3

τ

ρ 
/ L

B

FIG. 6: ρ/LB along the particle orbit referred to in Fig. 5. ρ is the local Larmor radius of the

particle and LB is the magnetic field scale length at the spatial location of the particle.
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FIG. 7: Intersection points in the x-z plane of various particle orbits for α = 0.989.
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FIG. 8: A magnified view of one of the island structures displayed in Fig. 7.
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FIG. 9: Intersection points in the x − z plane of two particle orbits (red and blue dots) for

α = 0.990625. Note the appearance of the red dots in the x > 0 region indicating that this particle

is partially trapped.
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FIG. 10: The blue dots are the intersection points in the x− z plane of a single particle orbit for

α = 1, corresponding to the initial velocity of the particle being along the magnetic field line. The

red dots are the intersection points of the field line. The number of points corresponding to the

particle orbit is the same as those for the field line. The spatial structure and extent of the field

line is less than that shown in Fig. 3 since we consider only a limited subset of points.
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