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Abstract 

We show that in quasi-isodynamic magnetic fields, which are generally non-quasisymmetric and 

which can approximate fields of experimental interest, neoclassical calculations can be carried 

out analytically more completely than in a general stellarator. Here, we define a quasi-isodynamic 

field to be one in which the longitudinal adiabatic invariant is a flux function and in which the 

constant-B  contours close poloidally. We first derive several geometric relations among the 

magnetic field components and the field strength. Using these relations, the forms of the flow and 

current are obtained for arbitrary collisionality. The flow, radial electric field, and bootstrap 

current are also determined explicitly for the long-mean-free-path regime. 
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1. Introduction 

Drift trajectories of trapped particles in a stellarator are not generally confined, leading to 

large fluxes of particles and heat compared to a comparable axisymmetric plasma. It is therefore a 

goal of stellarator design to minimize the average radial guiding-center drifts1. A magnetic field is 

termed omnigenous1,2 if the radial drift of all particles averages to zero in time, where the average 

is performed over the leading-order motion along a field line. As particles conserve the 

longitudinal adiabatic invariant 
||
 J v d= ∫  during their drift motion, omnigeneity can be 

defined equivalently as the constancy of J  over each flux surface. Omnigeneity is guaranteed for 

a field which is quasisymmetric3,4, meaning that B  varies on a flux surface only through a fixed 

linear combination of the Boozer angles5. The conserved quantity associated with this symmetry 

implies that all orbits are strictly confined. A field can never be exactly quasisymmetric6, but 

fields can be found which are approximately so4,7. However, requiring even approximate 

quasisymmetry places a severe constraint on stellarator optimization. It is therefore desirable to 

examine non-quasisymmetric fields which are still nearly omnigenous. In Refs. 8,9 it was shown 

that any analytic and perfectly omnigenous field must be quasisymmetric, but analytic fields can 

be constructed which are nearly omnigenous and yet are far from being quasisymmetric.  

Omnigenous fields have many remarkable mathematical and physical properties. For 

example, it is proven in Ref. 8 that the maximum and minimum of B  are the same for each field 

line on a flux surface. In contrast to a general stellarator, the vanishing of the time-averaged radial 

drift implies that no 1/D ν∝  regime exists in a perfectly omnigenous device, whereD  is any 

radial transport coefficient and ν  is the relevant collision frequency.  

An important subset of omnigeneous fields is the set of fields which are quasi-

isodynamic10-13. A field is defined as being quasi-isodynamic13 if it is omnigenous and if the 

constant-B  contours close poloidally, as opposed to closing toroidally or helically. Quasi-

isodynamic fields are experimentally relevant, as the W7-X stellarator is approximately quasi-

isodynamic at high beta14,15. Axisymmetric fields are not quasi-isodynamic since constant-B  

contours close toroidally. In a quasi-isodynamic plasma, the part of the long-mean-free-path 

(banana) regime distribution function determined by the collisional constraint is found from an 

equation which is identical in form to the analogous equation for an axisymmetric plasma13. Also, 

if there is no net toroidal current inside a flux surface, then the bootstrap current vanishes11,13.  

Several new results for quasi-isodynamic fields are obtained in the following sections. In 

section 2, we give new derivations for some of the properties of quasi-isodynamic fields 

discussed in Ref. 13, and new relations are also derived which relate the components of B  to 

derivatives of B  and of the Boozer angles. In section 3, we derive a general form for the flow 

and current in a quasi-isodynamic field. It is shown that the distribution function obtained in Ref. 
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13 for the long-mean-free-path regime is consistent with this form, but the form applies to all 

regimes of collisionality. In section 4, we use ambipolarity to determine the radial electric field in 

the long-mean-free-path regime. The bootstrap current is given in section 5, and we conclude in 

section 6. Emphasis is given throughout on practical calculations for a specified ( ),  B θ ζ , and the 

figures show an example calculation of the key quantities for a model field.  

Flows and transport in a general stellarator have been discussed previously in many 

references, such as Refs. 16-20. Here we focus on quasi-isodynamic devices to highlight the 

additional analytic results which can be obtained due to the strong constraint on the field 

geometry. Although the field of any real stellarator will not be perfectly quasi-isodynamic, the 

results which follow are useful in several regards. A perfectly quasi-isodynamic model field can 

be provided as input to transport codes, so the results herein can be used to validate such codes. In 

addition, the flow, current, and radial electric field in a plasma which is approximately quasi-

isodynamic can be expected to resemble the analytic forms derived here. Therefore, the results 

herein may give insight into the physics of W7-X-like stellarators. 

2. Geometric properties of quasi-isodynamic fields 

We begin by writing the magnetic field in Boozer coordinates5: 

 1qψ θ ζ ψ−= ∇ ×∇ + ∇ ×∇B  (1) 

and 
 I K Lζ θ ψ= ∇ + ∇ + ∇B , (2) 

where 2πψ  is the toroidal flux, ( )/ 2cI ψ  is the poloidal current linked outside the flux surface, 

( )/ 2cK ψ  is the toroidal current inside the flux surface, and ( )q ψ  is the safety factor. We 

introduce the field line label 1qα θ ζ−= − , so ψ α= ∇ ×∇B . Let B  and B  denote the 

minimum and maximum of B  along a field line. Omnigeneity requires that the most deeply 

trapped particles (those with 
||

0v = ) have no radial drift, so if the potential is a flux function, the 

radial B∇  drift B ψ∝ ×∇ ⋅∇B  must vanish. As these particles also lie at B B=  where 

0B⋅ ∇ =B , then B  must be independent of field line ( / 0B α∂ ∂ = ). By considering the 

action of marginally trapped particles, it is proven in Ref. 8 that B  must be independent of field 

line as well. As the range of allowed B  is thus independent of α , and as a 2π  increase in α  at 

fixed B  is a closed poloidal loop, it becomes convenient to use ( ),  ,  Bψ α  as coordinates. 

However, specifying ( ),  ,  Bψ α  does not uniquely determine a location on the flux surface – 

there are two possible locations in each magnetic well, one on either side of B  along the field 

line. We denote this discrete degree of freedom by 1γ = ± , which Helander and Nührenberg 

term the branch13.  

In an omnigenous field, the longitudinal adiabatic invariant 
||
 J v d= ∫  must be 

constant on a flux surface. This requirement implies8 
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 0
B

Bγ

γ
α

⎛ ⎞∂ ⎟⎜ ⎟ =⎜ ⎟⎜ ⎟⎜∂ ⋅∇⎝ ⎠
∑ b

, (3) 

a result which is termed the “Cary-Shasharina Theorem” in Ref. 13. Here and throughout, 

subscripts on partial derivatives indicate which quantities are held fixed. A proof of (3) is given in 

Appendix A. It is shown in Ref. 8 that (3) implies the contours of B B=  are straight in Boozer 

coordinates. In a quasi-isodynamic field, the B  contours close poloidally, and so B B=  

contours must be curves of constant ζ . 

It is useful to express B  in terms of its covariant components in the ( ),  ,  Bψ α  

coordinates: 

 
B

B B B Bψ αψ α= ∇ + ∇ + ∇B . (4) 

From the dot product of this expression with ψ α= ∇ ×∇B  we find 

 
2

B

B
B

B
=

⋅∇B
. (5) 

The dot product of  (4) with Bψ∇ ×∇  gives /B B Bα ψ= − ×∇ ⋅∇ ⋅∇B B , and the dot 

product of  (4) with Bα∇ ×∇  gives /B B Bψ α= ×∇ ⋅∇ ⋅∇B B . 

 We note that an incremental step can be written in the ( ),  ,  Bψ α  coordinates as 

 ( ) ( )1
d B d B d dB

B
α ψ ψ α⎡ ⎤= ∇ ×∇ + ∇ ×∇ +⎢ ⎥⎣ ⎦⋅ ∇

r B
B

 (6) 

and in the ( )  , ,ψ θ ζ  coordinates by 

 ( ) ( ) ( )1
d d d dθ ζ ψ ζ ψ θ ψ θ ζ

ζ
⎡ ⎤= ∇ ×∇ + ∇ ×∇ + ∇ ×∇⎢ ⎥⎣ ⎦⋅ ∇

r
B

. (7) 

By applying Ampere’s law to a constant-B  poloidal loop on a flux surface, and using (6)

to write B dα α⋅ =B dr  for this path, we find 
2

0
2B d K

π

α α π=∫ , where ( )K ψ  is the same 

quantity as in (2). It follows that13  

 
B

B h
B K

Bα

ψ
α

⎛ ⎞×∇ ⋅∇ ∂ ⎟⎜ ⎟= − = +⎜ ⎟⎜ ⎟⎜⋅∇ ∂⎝ ⎠

B
B

 (8) 

for some single-valued function h . As shown in Ref. 21, /B Bψ×∇ ⋅∇ ⋅∇B B  is a flux 

function if and only if the field is quasisymmetric, so the ( )/ 0
B

h α∂ ∂ →  limit corresponds to 

quasisymmetry. More precisely, ( )/ 0
B

h α∂ ∂ →  corresponds to quasi-poloidal symmetry 

( ( ),  B B ψ ζ= ) since, by definition, B  contours in a quasi-isodynamic field close poloidally. 

Next, we use the fact that ( )∇× ×B B  is parallel to ψ∇  in a scalar-pressure MHD 

equilibrium, so  

 ( ) ( ) ( )0 B

B

B B
B

B
α

α

ψ ψ
α

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂⎟ ⎟⎜ ⎜⎢ ⎥⎟ ⎟⎜ ⎜= ∇× ⋅∇ = ∇⋅ ×∇ = ⋅∇ −⎟ ⎟⎢ ⎥⎜ ⎜⎟ ⎟⎟ ⎟⎜ ⎜∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
B B B . (9) 

Plugging in (5) and (8), we obtain the useful identity 
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2 2

B

B h
B Bα α

⎛ ⎞∂ ∂⎟⎜ ⎟ =⎜ ⎟⎜ ⎟⎜∂ ⋅∇ ∂ ∂⎝ ⎠ B
. (10) 

Applying (3), 2 / 0h B
γ
γ α∂ ∂ ∂ =∑ . Integrating this result from B  to B , then 

( )/ 0
B

h
γ
γ α∂ ∂ =∑ , i.e. ( )/

B
h α∂ ∂  must be branch-independent everywhere. In this 

integration, the contribution from the B  boundary vanishes because 1γ = +  and 1γ = −  refer 

to the same location there, so Bα  is branch-independent there, and so ( )/
B

h α∂ ∂  is branch-

independent there as well. Although ( )/
B

h α∂ ∂  must therefore be γ -independent everywhere, 

h  itself may depend on the branch. However, consider the quantity 

( ) ( )1 1 / 2h h hγ γΣ
⎡ ⎤= = + = −⎢ ⎥⎣ ⎦ . By applying ( )/

B
α∂ ∂  to ( ) ( ) ( )1

2
h h h hγ γ γΣ

⎡ ⎤= + − −⎢ ⎥⎣ ⎦ , 

we then find ( ) ( )/ /
B B

h hα αΣ∂ ∂ = ∂ ∂ , so h  could be replaced by hΣ  in (8), the equation 

which defined h . Thus, it is no loss in generality to assume h  is branch-independent. This proof 

differs somewhat from the one given in Ref. 13, though the underlying principles are the same. In 

the sections which follow, we will only ever need ( )/
B

h α∂ ∂  rather than h  itself, so the 

calculation of hΣ  will not be necessary. 

For completeness, we now present one additional relation which can be found for Bψ . 

We use (4) to form 

 ( ) ( )
2

,B

B B
B

B B
ψ

αα

ψ
ψ

⎡ ⎤⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂⎟⎜⎢ ⎥⎟⎟ ⎜⎜⎟⎜ ⎟⎟∇× × = ⋅∇ − ∇⎜⎜⎟⎢ ⎥⎟⎜ ⎟ ⎜⎟ ⎜ ⎟⎟⎜⎜ ⎜∂ ∂ ⋅∇⎟⎜ ⎝ ⎠⎢ ⎥⎝ ⎠⎝ ⎠⎣ ⎦
B B B

B
. (11) 

Then, from MHD equilibrium ( )4 pπ∇ = ∇× ×B B  it follows that 

 
2

,

4

B

B B dp
B B B d
ψ

αα

π
ψ ψ

⎛ ⎞ ⎛ ⎞⎛ ⎞∂ ∂⎟⎜ ⎟⎟ ⎜⎜⎟⎜ ⎟⎟= +⎜⎜⎟ ⎟⎜ ⎟ ⎜⎟ ⎜ ⎟⎟⎜⎜ ⎜∂ ∂ ⋅∇ ⋅∇⎟⎜ ⎝ ⎠ ⎝ ⎠⎝ ⎠ B B
. (12) 

We now relate the components of B  in the ( ),  ,  Bψ α  basis to the more familiar 

quantities θ  and ζ . The results will be important in later sections for calculating the parallel flow 

and current. First, the dot product of (1) with (2) gives ( )2 1/B qI K qθ ζ−⋅∇ = + = ⋅∇B B , and 

it follows that  

 ( )
1

2B B B
qI K q

B
ζ θ

θ ζ

−⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂⎟ ⎟⎢ ⎥⎜ ⎜⎟ ⎟= + +⎜ ⎜⎢ ⎥⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⋅∇ ∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦B
. (13) 

Using ( ) ( ) ( )/ / /B B q B
α ζ θ

θ θ ζ∂ ∂ = ∂ ∂ + ∂ ∂ , then 

 ( )
2B qI K

qI K
B B q B

α α

θ ζ⎛ ⎞ ⎛ ⎞∂ + ∂⎟ ⎟⎜ ⎜⎟ ⎟= + =⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜⋅∇ ∂ ∂⎝ ⎠ ⎝ ⎠B
. (14) 

Also, from (2) we can form 

 ( ) B B
B q I K

ζ θ

ψ θ
θ ζ

⎡ ⎤⎛ ⎞ ⎛ ⎞∂ ∂⎟ ⎟⎢ ⎥⎜ ⎜⎟ ⎟×∇ ⋅∇ = ⋅∇ −⎜ ⎜⎢ ⎥⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜∂ ∂⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
B B . (15) 

Plugging this result into (8) we obtain 
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 ( )
1

B

h B B B
qI K q

ζ ζ θ
α θ θ ζ

−⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎟ ⎟ ⎟ ⎟⎢ ⎥⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟= − + +⎜ ⎜ ⎜ ⎜⎢ ⎥⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
. (16) 

Using ( ) ( ) ( )/ / /B B B
ζ α θ

θ θ α∂ ∂ = ∂ ∂ + ∂ ∂ , then (16) implies 

 ( ) 1
B B B

h qI K
qI K

q
θ ζ

α α α

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ + ∂⎟ ⎟ ⎟⎜ ⎜ ⎜⎢ ⎥⎟ ⎟ ⎟= + − =⎜ ⎜ ⎜⎟ ⎟ ⎟⎢ ⎥⎜ ⎜ ⎜⎟ ⎟ ⎟⎜ ⎜ ⎜∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
 (17) 

where we have used  

 0
B B

B B B

α θ

α
θ θ θ α

⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟= = +⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠
. (18) 

Comparing (14) and (17), it is evident that (10) is satisfied. Equations (16) and (17) are key 

results we will need for computations in section 3. 

 As the B B=  contours are constant-ζ  curves, then ( )/ 0
B

ζ α∂ ∂ =  along these 

contours. Equation (17) then implies ( )/ 0
B

h α∂ ∂ →  along these contours as well. 

 Let ( ) ( )/
B

B
B B dB

γ α
ζ γ ζΔ = ∂ ∂∑ ∫  be the difference in ζ  between the two points of 

field magnitude B  on either side of B , where ( )Bζ ζ= . By (14) and (3),  

 ( )( )/ 0
B

ζ α∂ Δ ∂ =  (19) 

for a quasi-isodynamic field. In section IV of Ref. 8, Cary and Shasharina give a procedure to 

construct a function ( ),  B θ ζ  with the property (19) and with B  straight in Boozer coordinates. 

This construction is reviewed briefly in Appendix B since we will use it to obtain the figures. 

Differentiating (19), then  

 
2

0
Bγ

ζ
γ

α
∂

=
∂ ∂∑  (20) 

which, due to (14), implies (3). Thus, any field generated by the Cary-Shasharina construction 

will be quasi-isodynamic, in the sense that all the properties described in this section will apply. 

For example, ( )/
B

h α∂ ∂  can be calculated from (16), and the result will automatically be 

branch-independent. (This last fact can also be seen by integrating (20) from B  and using (17).) 

Figure 1 shows a quasi-isodynamic field generated using the Cary-Shasharina 

construction, with parameters specified in Appendix B. The property (19) is illustrated by the fact 

that the two thick line segments in Figure 1, both of which are parallel to the field lines, have the 

same ζΔ . Figure 2 shows ( )/
B

h α∂ ∂  which is calculated for this field using (16).  

3. Parallel flows  

3.a. General collisionality case 

We now derive the form of the flow for any particle species in a quasi-isodynamic field. 

We assume the species density n , pressure p , and electrostatic potential Φ  are all flux functions 
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to leading order. The perpendicular flow is given to leading order by the sum of the ×E B  and 

diamagnetic flows: 2Bω ψ−
⊥ = ×∇V B , where ( ) ( )/c cp Zenω ψ ′ ′= Φ + , Z  is the ion charge, 

and primes denote / ψ∂ ∂ . Then writing 1
||
V B−

⊥= +V V B  and applying the mass conservation 

relation ( ) 0n∇⋅ =V , we obtain 

 ||

2
0

B B

nV n h n
K

B B BBα

ω ω
α α

⎧ ⎫⎡ ⎤⎪ ⎪⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂⎪ ⎪⎟ ⎟ ⎟ ⎟⎪ ⎪⎜ ⎜ ⎜ ⎜⎢ ⎥⎟ ⎟ ⎟ ⎟= − + +⎜ ⎜ ⎜ ⎜⎨ ⎬⎟ ⎟ ⎟ ⎟⎢ ⎥⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟⎪ ⎪⎜ ⎜ ⎜ ⎜∂ ∂ ∂ ⋅∇⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎪ ⎪⎣ ⎦⎪ ⎪⎩ ⎭ B
. (21) 

We apply (10) to cancel a pair of terms and then integrate in B  to obtain 

 ( )||

2

nV n
Y K W

B B

ω
= − +  (22) 

where Y  is the integration constant, and 

 ( ) 2

3
,  ,  2

B

B
B

dB h
W B B

B
ψ α

α

⎛ ⎞∂ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜∂⎝ ⎠∫ . (23) 

Again, dots underneath a quantity indicate it is evaluated using the dummy integration variable 

B  rather than using the local value of B . We will see the quantity W  plays an important role in 

quasi-isodynamic fields. 

While Y  is by definition independent of B , additional work is required to show that Y  

is also independent of α  and γ , which we do as follows. At B B= , both signs of γ  refer to the 

same location, so 
||
V  is γ -independent there. Consequently the entire right-hand side of (22) is 

γ -independent at B B= , so Y  must be γ -independent. Next, the right-hand side of (22) is 

continuous across the curve B B=  when θ  is held fixed. Therefore Y  must have this same 

property, implying ( ) ( )( )2 /Y Y qNα α π= +  for all α , where again N  is the number of 

identical stellarator cells. It follows that Y  must be independent of α , and therefore Y  is a flux 

function. Had B  been chosen as the limit of integration for the integral term in (22) rather than 

B , the right-hand side of (22) would not be continuous across the curve B B=  when θ  is held 

fixed, and so Y  would need to depend on α . 

The form of the parallel flow becomes 

 ( )||

cn p
nV BY K W

B Zen

⎛ ⎞′ ⎟⎜ ′ ⎟= + Φ + +⎜ ⎟⎜ ⎟⎜⎝ ⎠
. (24) 

For ( )/ 0
B

h α∂ ∂ → , then 0W → , and (24) reduces properly to the result for a quasi-poloidally 

symmetric field. We now multiply (24) by jB  for some number j  and apply a flux surface 

average, which for any quantity Q  is 

 

2

0

2

0

 /

/

B

B

B

B

dB d Q B

Q
dB d B

π

γ

π

γ

γ α

γ α

⋅ ∇
=

⋅∇

∑ ∫ ∫

∑ ∫ ∫

B

B
. (25) 
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Note that 0W = , since the α  integral can be performed by parts, and (3) applied. The result is 

multiplied by 1/ jB B +  and subtracted from (24) to eliminate Y . For 1j = , this leaves 

 
2

||

|| 2 2
1

B V B c p B
V K W

B ZenB B

⎡ ⎤⎛ ⎞⎛ ⎞ ⎟⎜′ ⎢ ⎥⎟⎟ ⎜⎜ ⎟′ ⎟= + Φ + ⎢ − + ⎥⎜⎜ ⎟⎟ ⎜⎜ ⎟⎟⎜ ⎢ ⎥⎜⎝ ⎠ ⎟⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦

, (26) 

our final form for the parallel flow of each species in a quasi-isodynamic field. 

 The parallel current has a similar form, which can be obtained by multiplying (26) by 

Zen  and summing over species. The result is 

 
2

||

|| 2 2
1tot

B j B cp B
j K W

BB B

⎡ ⎤⎛ ⎞⎟′ ⎜⎢ ⎥⎟⎜ ⎟= + ⎢ − + ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦

 (27) 

where 
tot
p  is the sum of the pressures of each species. 

 We emphasize that (26) and (27) are valid in a quasi-isodynamic stellarator at arbitrary 

collisionality. 

3.b. Long-mean-free-path regime 

 We now show that the distribution function obtained in Ref. 13 for the long-mean-free-

path regime indeed gives a flow of the form (24). The distribution function obtained in that 

reference was 

 || ||1 0 0
0 0

xB

B
B

v ve f fcm h
f f f g K dB

T Ze B Bψ α ψ

⎛ ⎞Φ ∂ ∂∂ ∂⎟⎜ ⎟= − + + − ⎜ ⎟⎜ ⎟⎜Ω ∂ ∂ ∂ ∂⎝ ⎠∫  (28) 

where 
0
f  is a stationary Maxwellian flux function, ( )1

,  ,  ψ θ ζΦ  is the next-order correction to 

the potential, and ( )/ZeB mcΩ =  is the gyrofrequency. The / ψ∂ ∂  derivatives and the dB  

integral are performed holding the leading-order energy 2 / 2 /v Ze m+ Φ  and the magnetic 

moment 2 / 2v B⊥  fixed. Also, 

 
 if 1 /

1 /  if 1 / ,x

B B
B

B

λ
λ λ

⎧⎪ <⎪⎪= ⎨⎪ >⎪⎪⎩
 (29) 

where ( )2 2/v Bvλ ⊥= , and g  is a flux function which vanishes for trapped particles. Applying 
3

||
 d v v∫  to (28) gives 

 
||

2
||3

|| 0

5
 

2 2
xB

B
B

cnK p
nV X

B Zen
vcm p Ze mv T h

d v v f dB
Ze p T T T B Bα

⎛ ⎞′ ⎟⎜ ′ ⎟= + Φ +⎜ ⎟⎜ ⎟⎜⎝ ⎠
⎡ ⎤⎛ ⎞ ⎛ ⎞′ ′ ′Φ ∂ ∂⎟ ⎟⎜ ⎜⎢ ⎥⎟ ⎟− + + −⎜ ⎜⎟ ⎟⎢ ⎥⎜ ⎜⎟ ⎟⎜⎟⎜ ∂ ∂⎝ ⎠⎝ ⎠⎢ ⎥⎣ ⎦

∫ ∫
 (30) 

where 3
||

 X d v v g= ∫ . We can write 
1/

3

0 0
  

B

X B dv v d g
σ

π σ λ
∞

= ∑ ∫ ∫ , where ( )||
sgn vσ = , 

and the upper limit of the λ  integral is changed from 1/B  to 1/B  since g  is zero for trapped 
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particles. As g  is a flux function at fixed v  and λ , then X B∝ , so X  has the form of the Y  

term in (24). Finally, we evaluate the last line of (30), obtaining as a first step 

 
( )1/||3

|| 0 20

23
 

4 1

x xB B B

B B
B B

Bvh nTB h
d v v f dB d dB

B B m B B

λ
λ

α α λ

⎛ ⎞ ⎛ ⎞ −∂ ∂ ∂⎟ ⎟⎜ ⎜⎟ ⎟= −⎜ ⎜⎟ ⎟⎜ ⎜⎟ ⎟⎜ ⎜∂ ∂ ∂⎝ ⎠ ⎝ ⎠ −
∫ ∫ ∫ ∫ . (31) 

The contribution from the T ′  term in (30) vanishes in the v  integration. We now switch the 

order of the λ  and B  integrations, so B  ranges over ( ),  B B  and λ  ranges over ( )0,  1 /B . 

The λ  integral can then be evaluated, giving precisely the last term in (24). 

As described in Ref. 13, the g  component of the distribution function for passing particles 

is computed from the constraint ( )||
/ 0B v C = , where C  is the collision operator. If we 

consider the ions in a pure plasma, we can explicitly calculate 
i
g  and X  using the standard 

momentum-conserving model operator 

 
||

1 0

i

i i i
i

m uv
C f f

T
ν

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪= −⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭
L  (32) 

where 

 ||

||2

2v
v

v B
λ

λ λ
∂ ∂

=
∂ ∂

L  (33) 

is the Lorentz pitch-angle scattering operator, 

   

1
2

3 3
0 1 ||3

i
i i

i

m v
u d v f d v f v

T
ν ν

−⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦
∫ ∫ , (34) 

 
( ) ( )erf4 4

33/2

2 ln

2
i

i i

x xZ e n

xmT

π
ν

⎡ ⎤− ΨΛ ⎢ ⎥⎣ ⎦= , (35) 

( ) ( ) ( ) ( )2erf  erf / 2x x x x x⎡ ⎤′Ψ = −⎢ ⎥⎣ ⎦ , ( ) ( ) ( )2

0
erf 2 / exp

x

x t dtπ= −∫  is the error function, 

and / 2 /
i i

x v T m= . The analysis then closely resembles the standard tokamak calculation1, 

giving 

 
12

0
1.33

2 2 1

B
i i i

i i
i i

Km c T m v v d
g f H

Ze T T Bλ

λ

λ

−⎡ ⎤′ ⎢ ⎥= − −⎢ ⎥
−⎢ ⎥⎣ ⎦

∫  (36) 

where ( )1H H B λ−= −  is a Heavyside function which is 1 for passing particles and 0 for 

trapped particles. The final expression for the parallel in flow in the long-mean-free-path regime 

becomes 

 ( )|| 2
1.17 i i

i c
i

KcBT pc
V f K W

B ZenZe B

⎛ ⎞′ ′ ⎟⎜ ⎟′⎜= − + Φ + +⎟⎜ ⎟⎟⎜⎝ ⎠
 (37) 

where the effective fraction of circulating particles  
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1

2

0

3  
4 1

B

c

d
f B

B

λ λ

λ

−

=
−

∫  (38) 

is approximately one if the variation in B  is small. As expected, (37) has the form (24). 

Notice that the distribution function (28) was derived in Ref. 13 only for the long-mean-

free-path regime, whereas the general form of the flow (24) was derived here without any 

assumption about the collisionality. 

3.c. Computation of geometric integral 

 For any particular quasi-isodynamic field, the W  quantity (23) which appears in (24) can 

be evaluated numerically in a number of ways. One approach is to use (17) to write 

 2

3
2

B

B
B

qI K dB
W B

q B

ζ

α

⎛ ⎞∂+ ⎟⎜ ⎟⎜= ⎟⎜ ⎟⎜∂ ⎟⎜⎝ ⎠
∫ . (39) 

The function ( ),  Bζ α  can be computed from a given field ( ),  B θ ζ  or specified 

directly. The integrand in (39) can then be computed, the integral evaluated, and if desired, the 

result mapped to ( ),  θ ζ  coordinates. Figure 3 shows W  computed using this method for the 

model field of figure 1. 

In an alternative approach, we begin by transforming (23) as follows: 

 
2

2

3 3

2
2

x xB B

d dB h B B B h
W B q

qB B

ζ ζ

ζ ζ
α ζ θ

ζ ζ

ζ α θ ζ α

⎡ ⎤⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞ ⎛ ⎞∂ ∂ ∂ ∂ ∂⎟ ⎟ ⎟ ⎟ ⎟⎢ ⎥⎜ ⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟ ⎟= − = − +⎜ ⎜ ⎜ ⎜ ⎜⎢ ⎥⎟ ⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜ ⎜⎟ ⎟ ⎟ ⎟ ⎟⎜ ⎜ ⎜ ⎜ ⎜∂ ∂ ∂ ∂ ∂⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠ ⎝ ⎠⎢ ⎥⎣ ⎦
∫ ∫ . (40) 

For points between B  and 0ζ = , the integration bound 
x
ζ  is 0, and for points on the other side 

of B , 2 /
x

Nζ π= , where again N  is the number of toroidal periods of the stellarator (i.e. the 

number of B  or B  curves). Applying (16), then 

 2

3
2

x

dqI K B
W B

q B

ζ

ζ
ζ

ζ

θ

⎛ ⎞+ ∂ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜ ∂⎝ ⎠∫ . (41) 

This expression can also be obtained from (39) using (18), with θ  replaced by ζ  in the latter. 

Depending on the particular application, either the form (39) or (41) for W  may be more 

convenient to evaluate.  

Notice that the integrals throughout this section are performed along constant-α  paths. 

As the right-hand side of (23) is branch-independent, then the integrals in (39) and (41) 

must be so as well. These integrals can still be computed for a ( ),  B θ ζ  which is not quasi-

isodynamic, but the result will be discontinuous at B B= . For a nearly quasi-isodynamic 

( ),  B θ ζ , such as the one obtained in Refs. 8,9 by Fourier-filtering a perfectly quasi-isodynamic 

field, the discontinuity in W  is small. 
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4. Particle flux and radial electric field 

 We now derive an expression for the radial flux of each particle species at any 

collisionality. The neoclassical part of the flux is 

 3  
d

d v fψ ψ⋅ ∇ = ⋅∇∫ vΓ  (42) 

where ( ) ( )|| ||
/

d
v v= Ω ∇×v b  is the drift velocity. As in section 3b, derivatives throughout this 

section will hold the leading-order energy 2 / 2 /v Ze m+ Φ  and the magnetic moment 2 / 2v B⊥  

fixed. It can be shown using (8) that 
||d
vψ⋅ ∇ = ⋅∇Δv b  where 

 ||
v

K SΔ = − +
Ω

 (43) 

and 

 ||xB

B
B

vh
S dB

Bα

⎛ ⎞∂ ∂⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜∂ ∂ Ω⎝ ⎠∫ . (44) 

Using 

 ( ) ( )
1/

3 2

0 0
    

1

B d
d v B v dv

Bσ

λ
π σ

λ

∞
⋅ = ⋅

−
∑∫ ∫ ∫  (45) 

and the fact that 0Q⋅ ∇ =B  for any single-valued Q , we find 

 3 3
|| ||

  d v fv d v v fψ⋅ ∇ = ⋅∇Δ = − Δ ⋅∇∫ ∫b bΓ . (46) 

In the last equation we have also used the fact that 0Δ =  at 1/Bλ = . Substituting in the drift-

kinetic equation 

 0
|| d

f
v f Cψ

ψ

∂
⋅∇ + ⋅∇ =

∂
b v  (47) 

where C  is the collision operator, we then obtain 

 3  d v Cψ⋅ ∇ = − Δ∫Γ . (48) 

We now specialize to consider the flux of ions in a pure plasma, so ion collisions with 

electrons and the radial electron particle flux can be ignored to leading order in /
e i
m m . We also 

specialize to the long-mean-free-path collisionality regime. The model collision operator (32) is 

again employed. This operator is constructed to have the momentum conservation property 
3

||
 0d v v C =∫ , so (48) can be written 

 ||3 0
0

 ii
i i i

i

m uvf
d v S g f

T
ψ ν

ψ

⎧ ⎫⎪ ⎪∂⎪ ⎪⎪ ⎪⋅∇ = − −Δ + −⎨ ⎬⎪ ⎪∂⎪ ⎪⎪ ⎪⎩ ⎭
∫ LΓ  (49) 

where we have applied the distribution function (28).  

 We next make use of the property ( )/ 0
B

Q α∂ ∂ =  for any branch-independent Q . 

This property follows from (25) and (10) if an integration by parts is performed in α . It follows 

that any terms in (49) which contain a single copy of ( )/
B

h α∂ ∂  will vanish. For example, 
i
g  is 
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a flux function and so it does not contribute to (49). We group the nonvanishing terms into two 

pieces as follows: 

 
1 2i

ψ⋅ ∇ = Γ + ΓΓ  (50) 

where 

 { }3 0
1

i
f

d v S Sν
ψ

∂
Γ =

∂∫ L , (51) 

 ||3
2 0

 i

i
i

m u v
d v S f

T
αν

⎧ ⎫⎪ ⎪⎪ ⎪⎪ ⎪Γ = ⎨ ⎬⎪ ⎪⎪ ⎪⎪ ⎪⎩ ⎭
∫ L , (52) 

and 

   

1
2

3 3 0
0 ||3

i i
i

i

m v f
u d v f d v v S

Tα ν ν
ψ

−⎡ ⎤ ∂⎢ ⎥= − ⎢ ⎥ ∂⎢ ⎥⎣ ⎦
∫ ∫  (53) 

is the part of (34) which depends on α . Notice that upon applying (45), the 3d v  velocity integral 

in 
1

Γ  gives 

 40
1 0

i
f

dv v ν
ψ

∞ ∂
Γ ∝

∂∫ . (54) 

Also, examining (53), uα  is proportional to the same factor. Therefore 
2

Γ  and the total flux have 

the same proportionality: 

 40

0

i
i

f
dv vψ ν

ψ

∞ ∂
⋅∇ ∝

∂∫Γ . (55) 

Consequently, when ( )/
B

h α∂ ∂  is nonzero, the v  integrals can be factored out of the 

ambipolarity condition 0
i

ψ⋅ ∇ ≈Γ  to obtain 

 
24 2

0

5
0  

2
x i i

i i i

p TZe
dx x e x

p T T
ν

∞
−

⎡ ⎤⎛ ⎞′ ′′Φ ⎟⎜⎢ ⎥⎟= + + −⎜ ⎟⎢ ⎥⎜ ⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦
∫ . (56) 

We can rearrange to solve for the radial electric field, using 

 
2 2

1
4 6

0 0

5
  1.17

2
x xdx x e dx x eν ν

−
∞ ∞

− −⎡ ⎤
− =⎢ ⎥

⎢ ⎥⎣ ⎦∫ ∫ , (57) 

a number which is familiar from the banana-regime analysis in a tokamak and from (37). The 

radial electric field in a long-mean-free-path-regime quasi-isodynamic stellarator is therefore 

 1.17i i

i i i

p TZe
T p T

′ ′′Φ
= − + . (58) 

Physically, this formula shows an inward electric field ( )/
i i i
T n Zen≈ ∇E  is required to reduce 

the ion flux down to the level of the electron flux, corresponding to “ion root” confinement.  

The result (58) can be used to simplify (37), leaving the parallel ion flow in a long-mean-

free-path-regime quasi-isodynamic stellarator as 
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2

|| 2
1.17 1i

i c

cT B
V f K W

ZeB B

⎡ ⎤⎛ ⎞⎟′ ⎜⎢ ⎥⎟⎜ ⎟= ⎢ − + ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦

. (59) 

Notice that 
||i i
V T ′∝  so an ion temperature gradient is required for there to be a parallel ion flow. 

5. Bootstrap current 

In a quasi-isodynamic field, the bootstrap current can be calculated exactly as in a 

tokamak13, for although the ( )/
B

h α∂ ∂  term in the distribution function (28) does not arise in a 

tokamak, this term vanishes whenever a flux surface average is taken, as argued following (49). 

Therefore in the evaluation of 
||
j B  using the standard analytical method for a tokamak1, the 

( )/
B

h α∂ ∂  terms disappear from the analysis.  

For the long-mean-free-path regime and arbitrary ion charge Z  the result is 

 
( )

2

|| 2

2.21 0.75 2.07 0.88
1.17

2.21 0.752

i
t i e e e e

TZ Z Z
j B f Kc p p n T n

ZZ ZZ Z

⎛ ⎞′+ + + ⎟⎜ ⎟′ ′ ′⎜= + − − ⎟⎜ ⎟⎟⎜ + +⎝ ⎠+
, (60) 

where 1
t c
f f= −  is the effective trapped fraction and 

c
f  is given by (38). To obtain (60) we have 

used the Spitzer function as described on page 207 of Ref. 1, and we have used the approximate 

Spitzer function with two Laguerre polynomials from Appendix B of Ref. 22. 

The total parallel current is then obtained from (60) using (27). For example, for 1Z =  

the result is 

 ( ) ( ) 2

|| 2 2
1.64 0.74 1.17 1i et

i e e e e i

c p pf KcB B
j p p n T nT K W

BB B

⎡ ⎤⎛ ⎞′ ′+ ⎟⎜⎢ ⎥⎟⎜ ⎟′ ′ ′ ′= + − − + ⎢ − + ⎥⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎟⎟⎜⎝ ⎠⎢ ⎥⎣ ⎦

. (61) 

Due to the proportionality to K , the average parallel current 
||
j B  vanishes when the toroidal 

current is zero, as anticipated in Ref. 11,13. Note however that the parallel current before averaging 

is still nonzero even in the 0K →  limit due to W . 

6. Discussion and conclusions 

 We have shown that perfectly quasi-isodynamic fields provide an important point of 

reference for understanding transport in optimized stellarator designs. For although quasi-

isodynamic fields are generally far from quasisymmetry, neoclassical calculations are analytically 

tractable in a quasi-isodynamic field to the same extent as in a tokamak, with several modest 

modifications. 

 We have derived a general form for the flow in a quasi-isodynamic stellarator, given in 

(26). The form resembles the flow in an axisymmetric or quasisymmetric field, but a new term 

W  arises due to the deviation from symmetry. Our form of the flow agrees with the previously 

published distribution function for the long-mean-free-path regime, but the derivation here is 
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valid also at higher collisionality. We have also given a similar form (27) for the parallel current. 

For both the parallel flows and current, the variation on a flux surface is given not only by the 

usual tokamak Pfirsch-Schlüter factor 2 21 /B B− , but also by the new quantity W , which can 

be evaluated readily for a given ( ),B θ ζ  using (39) or (41). When the enclosed toroidal current 

/ 2cK  vanishes in the long-mean-free-path regime, the parallel flow and current become 

proportional to W , and their flux surface averages vanish. From (41), we can estimate 

 ~ p

t

iW B I B
K B K B i

δ δ
=  (62) 

where 
p
i  is the poloidal current outside the flux surface (roughly equal to the total current in the 

external toroidal field coils) and 
t
i  is the plasma current (the toroidal current inside the flux 

surface). As 
p t
i i  in any conceivable stellarator, the new W  terms in 

||
V  and 

||
j  which we 

have derived will dominate the “tokamak-like” terms proportional to K  even when K  is not 

strictly zero. For example, for W7-X parameters, even with a high estimate for the bootstrap 

current, / 100W K > . To a very good approximation then, 

 ( )2
a

a
a a

pc
W

Z enB
ψ

⎛ ⎞′ ⎟⎜ ⎟′⎜= Φ + ×∇ +⎟⎜ ⎟⎟⎜⎝ ⎠
V B B  (63) 

for each species a  and 

 ( )2
tot
cp

W
B

ψ
′

= ×∇ +j B B , (64) 

where both (63) and (64) are applicable at all collisionalities. 

 Due to the departure from symmetry, the radial particle flux is not intrinsically 

ambipolar. We can therefore solve for the radial electric field by imposing ambipolarity. Using a 

momentum-conserving pitch-angle-scattering model collision operator, the electric field in the 

long-mean-free-path regime is found to have the concise form (58). In the limit of quasi-poloidal 

symmetry, corresponding to ( )/ 0
B

h α∂ ∂ = , the radial ion flux (50)-(53) becomes zero even 

when the velocity integral in (55) is not, so the electric field becomes undetermined. 

These results for the flow, current, and radial electric field may be used to validate codes, 

since in a code it can be possible to specify a perfectly quasi-isodynamic field ( ),  B θ ζ . Also, in 

an optimized stellarator which is not perfectly quasi-isodynamic but nearly so, the results of this 

paper may apply approximately.  
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Appendix A: Cary-Shasharina Theorem 

Consider the longitudinal invariant for trapped particles: 

 ( ) ||
,  ,  ,   J v v dψ α λ = ∫  (65) 

where the integration is carried out along a full bounce. Using /d dB B= ⋅∇b  we can write 

 

1/

2 1
B

J v dB B
B

λ

γ

γ
λ= −

⋅∇∑∫ b
 (66) 

where the 2 arises from a sum over ( )||
sgn 1v = ± , and the integral is performed at fixed 

,  ,  ψ α λ , and v . Applying a ( )
, ,

/
vψ λ

α∂ ∂  derivative, and noting that / 0J α∂ ∂ =  due to 

omnigeneity, then 

 0  
x

CS

B

dB g x B= −∫  (67) 

where 

 ( ),  ,  
CS

B

g B
Bγ

γ
ψ α

α

⎛ ⎞∂ ⎟⎜ ⎟= ⎜ ⎟⎜ ⎟⎜∂ ⋅∇⎝ ⎠
∑ b

 (68) 

and 1x λ−= . The original definition of the longitudinal invariant (65) was valid for all trapped 

particles (i.e. for 1Bλ −>  and 1Bλ −< ), and so (67) is true for any x  between B  and B . The 

proof in the appendix of Ref. 8 then applies, and so 
CS
g  must vanish at all locations. 

Appendix B: Construction of quasi-isodynamic fields 

Here we review the procedure described in Ref. 8 for constructing a field ( ),  B θ ζ  with 

the property (19) and with B  straight in Boozer coordinates. While the original construction in 

Ref 8 was given for a field in which the B  contours may close toroidally or helically, here we 

specialize to the case where the contours close poloidally. We have also modified the notation 

slightly to account for the possibility of multiple toroidal periods. As shown in section 2, any field 

generated by the construction which follows will be quasi-isodynamic. 

We assume the stellarator has N  identical toroidal periods, with the B B=  curves 

falling along ( )02 /N Nζ π=  for any integer ( )0N . We also assume there is a single B B=  

curve in each of the N  periods, and there are no local maxima or minima in B  aside from the 

global extrema B  and B . We define ( ) ( )/ 2
r

B B Bε = −  and define η  by the relation 

 / 1 cos
r r

B B ε ε η= + + , (69) 

so contours of ( ),  B θ ζ  are contours of ( ),  η θ ζ . We stipulate that 0η =  at 0ζ = , varying 

continuously to 2η π=  at 2 /Nζ π= . Our goal will be to construct ( ),  η θ ζ  for the single 

period 0 2 /Nζ π≤ ≤ . We define 

 
CS
G Nζ η= − . (70) 
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For η  in the range 0 η π≤ ≤ , 
CS
G  is then specified to be some continuous function of θ  and η  

such that 0
CS
G =  when 0η = . For example, the model field shown in the figures was obtained 

using ( ) ( ),  0.6 0.9 sin sin / 2
CS
G θ η θ η⎡ ⎤= +⎢ ⎥⎣ ⎦ . A function ( )ζ ηΔ  is also chosen such that 

( )0 2 /Nζ πΔ =  and ( ) 0ζ πΔ = , and it must satisfy the periodicity condition 

( ) ( )2ζ η ζ π ηΔ = Δ − . For the figures we choose the inverted tent function 2 /Nζ η πΔ = − . 

While we chose ( ),  
CS
G θ η  freely in the range 0 η π≤ ≤ , in the range 2π η π< ≤ , ( ),  

CS
G θ η  

is fixed by the requirement (19). To derive the mathematical constraint which is placed on 
CS
G  

by this requirement, consider points x and y in Figure 1, two points on the same field line and at 

the same value of B  but on opposite sides of B . Suppose point x has coordinates 
0

ζ ζ= , 

0
θ θ= , and 

0
η η= . Then point y has coordinates ( )0 0

ζ ζ ζ η= −Δ , ( )0 0
/ qθ θ ζ η= −Δ , and 

0
2η π η= − . Writing ( ),  

CS
G θ η  for each point using (70), algebraically eliminating 

0
ζ , and 

dropping the subscripts, we obtain 

 ( ) ( )( ) ( ),  2 2 / , 2
CS CS
G G q Nθ η π η θ ζ η π η ζ η= − + −Δ − + Δ . (71) 

This formula, which determines 
CS
G  for 2π η π< ≤  in terms of the 

CS
G  we chose for 

0 η π≤ ≤ , ensures (19) is satisfied. Next, the relationship ( ) ( ),  , /
CS
G Nζ θ η η θ η⎡ ⎤= +⎢ ⎥⎣ ⎦  is 

inverted numerically to obtain ( ),  η θ ζ , and finally ( ),  B θ ζ  can be computed from (69).  

For the model field shown in the figures, we have chosen 0.15
r
ε = , 1.079q = , and 

5N = . 
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Figure 1. 

(Colour online.) Contours of B  for the model quasi-isodynamic field specified in appendix B. 

The dimensionless magnitude 
1/2

2/b B B=  varies from 0.88 in the center to 1.15 at the left 

and right edges. 
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Figure 2 

(Colour online.) The departure from quasisymmetry ( )/
B

h α∂ ∂  defined in 13, calculated for the 

model field of figure 1 using (16). Solid curves are positive and dashed curves are negative. The 

normalized quantity ( ) ( )1
/

B
q qI K h α

−
+ ∂ ∂  ranges from -0.15 to 0.22.  
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Figure 3 

(Colour online.) The integral W , defined by (23), which appears in the parallel flow and current. 

The calculation is performed for the model field of figure 1 using (39). Contours from -0.06 to 

0.08 of the dimensionless quantity ( )/Wq qI K+  are plotted. Solid curves are positive and 

dashed curves are negative. 
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