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Abstract

The ion side of a closed, fluid and drift-kinetic theoretical model to describe slow and macroscopic

plasma processes in a fusion-relevant, low collisionality regime is presented. It follows the ordering

assumptions and the methodology adopted in the companion electron theory1. To reach the frequency

scale where collisions begin to play a role, the drift-kinetic equation for the ion distribution function

perturbation away from a Maxwellian must be accurate to the second order in the Larmor radius.

The macroscopic density, flow velocity and temperature are accounted for in the Maxwellian, and are

evolved by a fluid system which includes consistently the gyroviscous part of the stress tensor and

second-order contributions to the collisionless perpendicular heat flux involving non-Maxwellian fluid

moments. The precise compatibility among these coupled high-order fluid and drift-kinetic equations

is made manifest by showing that the evolution of the non-Maxwellian part of the distribution function

is such that its first three velocity moments remain equal to zero.
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I. Introduction.

A closed fluid and drift-kinetic description of magnetic confinement plasmas in a low collisional-

ity regime, applicable to slow dynamics with length scales larger than the ion Larmor radius, was

introduced in Ref.1 where the electron side of the system was analyzed. The present second part of

the series completes the theory by developing its ion side. This theory relies on low collisionality and

small mass ratio orderings whereby the ratios between the ion collision and cyclotron frequencies and

between the electron and ion masses are second-order, compared to the first-order ratio between the

ion Larmor radius and the macroscopic lenght scales; it also assumes macroscopic flows of the order

of the diamagnetic drifts. Accordingly, asymptotic expansions are systematically carried out based on

uniform powers of a single small parameter:

δ ∼ ρι/L ∼ νιL/vthι ∼ (me/mι)1/2 ∼ uι/vthι " 1 , (1)

where ρι, νι, vthι and uι stand for the ion Larmor radius, collision frequency, thermal velocity and

macroscopic flow velocity, respectively, and L represents any macroscopic length or mode wavelength

without additional geometrical assumptions. These orderings (which for the ions imply a collision-

ality lower than in the conventional neoclassical banana regime) represent a best attempt towards

a realistic simulation of core plasmas in fusion-relevant tokamak experiments, as argued in Refs.1-2.

Similar orderings were proposed and argued for earlier by H. Weitzner in the context of axisymmetric

equilibrium and transport theory3,4. The present theory is fully dynamical, 3-dimensional and electro-

magnetic but, as intended to be applied to slowly evolving excursions from a well confined equilibrium

such as the ”neoclassical tearing” modes5,6, it assumes near-Maxwellian distribution functions. For

the ions, the non-Maxwellian perturbation is first-order and the distribution function is represented

as

fι = fMι + fNMι =
n

(2π)3/2 v3
thι

exp
(

− |v − uι|2

2 v2
thι

)

+ fNMι , (2)

with fNMι ∼ δfMι. The Maxwellian part, fMι, is referred to the moving frame of the ion macroscopic

flow uι, and the thermal velocity is defined as v2
thι ≡ Tι/mι ≡ pι/(mιn), where Tι and pι are the mean

ion temperature and pressure; n is the particle number density which, for the assumed quasineu-

tral plasma with a single ion species of unit charge, is the same as that of the electrons. Thus, in
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Chapman-Enskog-like fashion7−9, the density, flow velocity and temperature are carried entirely by

the Maxwellian and will be determined by the fluid equations. The 1, v − uι and |v − uι|2 velocity

moments of fNMι (which will provide the higher-rank fluid moment closures) are then required to

vanish. In addition, consistency of this near-Maxwellian form with an asymptotic solution of the ion

kinetic equation under the assumed low collisionality ordering, requires the small ion parallel temper-

ature gradient B ·∇Tι ∼ δ BTι/L [there is an inconsequential error in Eq.(5) of Ref.1 which implies

that the parallel temperature gradients are second-order in δ for both species: they are second-order

for the electrons but first-order for the ions, same as the respective orderings of the non-Maxwellian

perturbations relative to the Maxwellians]. On the other hand, the parallel density gradient remains

arbitrary.

With the adopted low colisionality and close to Maxwellian orderings, collisions begin to influence

the dynamics at the frequency scale of order

δνι ∼ δ2νe ∼ δωD ∼ δ2vthι/L ∼ δ3vthe/L ∼ δ3Ωcι , (3)

where ωD is the diamagnetic drift frequency. As with the electrons, this will be the smallest frequency

scale the analysis will be carried to. In the case of the ions, this means that the non-Maxwellian part of

the distribution function has to be accounted for to the accuracy of fNMι = O(δfMι) + O(δ2fMι) and

that the drift-kinetic equation which determines its gyrophase average, f̄NMι, has to be accurate to

the second order in the ion Larmor radius. Proper second-order drift-kinetic equations have only been

obtained recently10,11 and such derivations pose a significant analytical challenge. The derivation of

Ref.10 was carried out in the laboratory reference frame, whereas Ref.11 used the frame of the E×B

drift. Yet another independent method will be used here, based on the reference frame of the complete

macroscopic flow velocity, uι, and first devised to obtain a first-order drift-kinetic equation with sonic

flows and far-from-Maxwellian distribution functions12. The ensuing second-order ion drift-kinetic

equation is the main new result in this paper. It bears little resemblance to either of the expressions

given in Refs.10-11, but its form is more compact and explicit, involving only conventional fluid and

magnetic geometry variables and cylindrical velocity space coordinates with a simple Jacobian, which

should facilitate its coupling to a fluid simulation code. Besides, the fact that its solution for f̄NMι is

obtained in the reference frame of the macroscopic flow, allows a direct evaluation of the gyrotropic
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closure variables (i.e. the moments of f̄NMι such as the pressure anisotropy and the parallel heat flux)

avoiding cumbersome and error prone substractions of mean flows. Most important, the present form

of the second-order drift-kinetic equation makes possible the explicit proof given in Sec.V that the

evolution of f̄NMι preserves automatically the condition that its 1, v‖ − uι‖ and |v − uι|2 moments

remain always equal to zero.

The finite-Larmor-radius (FLR) ion fluid equations are given in Sec.II. There, because of the

low collisionality ordering, the non-gyrotropic closure variables (i.e. the moments of the gyrophase-

dependent part of the distribution function) are needed only in their collisionless limit. Hence, explicit

expressions for these are available from earlier FLR collisionless fluid theory13,14. The only closures

that require a kinetic evaluation are the gyrotropic moments of f̄NMι, which obeys the drift-kinetic

equation derived in Sec.III. The collision operators are discussed in Sec.IV. Again, because of the

low collisionality and close to Maxwellian orderings, they are needed only in their linearized version.

Otherwise, complete Fokker-Planck-Landau15 forms are used as was done in the case of the electrons1.

II. Ion fluid equations.

In addition to the quasineutral Maxwell and continuity equations, the fluid part of the ion de-

scription includes the momentum conservation and temperature moment equations. Expanding with

the presently adopted orderings (1) the mιv moment of the ion Vlasov-Boltzmann equation (see. e.g.

Ref.2) and retaining terms to O(δ2nmιv2
thι/L) while neglecting O(δ3nmιv2

thι/L), one gets

mιn
[
∂uι

∂t
+ (uι ·∇)uι

]
− en(E + uι × B) + ∇(nTι) + ∇ ·

[
(pι‖ − pι⊥)(bb − I/3) + PGV

ι

]
= 0 , (4)

where pι‖ and pι⊥ are the parallel and perpendicular pressures, nTι ≡ pι ≡ (pι‖ + 2pι⊥)/3 is the mean

pressure, b ≡ B/B is the magnetic unit vector, I is the identity tensor and PGV
ι is the collision-

independent gyroviscous stress tensor. The collisional friction force between ions and electrons and

the non-gyrotropic collisional ion viscosity are of the order of δ3nmιv2
thι/L, therefore neglected. After

a similar expansion of the temperature moment equation, retaining terms to O(δ2nmιv3
thι/L) while

4



neglecting O(δ3nmιv3
thι/L), one gets

3n

2

(
∂Tι

∂t
+ uι ·∇Tι

)
+ nTι∇ · uι + (pι‖ − pι⊥)(bb− I/3) : (∇uι) + ∇ · (qι‖b + qι⊥) − Gcoll

ι = 0 , (5)

where qι‖b and qι⊥ are the parallel and perpendicular components of the heat flux and Gcoll
ι is the

collisional heat source that will later be shown to account for the temperature equilibration between

ions and electrons, Gcoll
ι = (2/π)1/2νen(me/mι)(Te − Tι) = O(δ2nmιv3

thι/L). The term PGV
ι : (∇uι)

has been neglected because it is of the order of δ3nmιv3
thι/L, but it could be reinstated if one wants

to ensure an exact energy conservation law. The collisional part of the perpendicular heat flux is also

negligible within the retained accuracy.

The non-gyrotropic closure terms in Eqs.(4-5), derivable from FLR fluid theory, are the collision-

independent gyroviscosity and perpendicular heat flux. The appropriate form of the gyroviscous

stress tensor is obtained by expanding the general result of Ref.14 for the present orderings (1), to the

accuracy of O(δ2nmιv2
thι), which yields

PGV
ι,jk =

1
4

εjlmbl Kι,mn

(
δnk + 3bnbk

)
+ (j ↔ k) (6)

with

Kι,jk =
mι

eB

[

nTι
∂uι,k

∂xj
+

∂(qιT‖bk)
∂xj

+ (2qιB‖ − 3qιT‖) bjκk +
∂

∂xj

(
nTι

eB
εklm bl

∂Tι

∂xm

)]

+ (j ↔ k).

(7)

Here, qιB‖ and qιT‖ are, respectively, the parallel fluxes of parallel and perpendicular heat (such that

qι‖ = qιB‖ + qιT‖) and κ is the magnetic curvature. This form of the gyroviscous stress extends the

Braginskii form16 for high collisionality and sonic flows, which corresponds to the first term in (7). It

also extends the Mikhailowskii-Tsypin form17,18 for high collisionality and diamagnetic flows, which

corresponds to the limit qιB‖ = 3qι‖/5, qιT‖ = 2qι‖/5, such that the third term in (7) vanishes and the

second and fourth terms combine into (2/5)∂qι,k/∂xj , where qι,k are the components of the first-order

total ion heat flux. The appropriate form of the ion perpendicular heat flux to be used in (5) is

similarly obtained by expanding the result of Ref.13 for the present orderings, keeping the accuracy

of O(δnmιv3
thι) + O(δ2nmιv3

thι), which yields

qι⊥ =
b
eB

×
{5

2
nTι∇Tι +

5
6
Tι∇(pι‖ − pι⊥) + Tι(pι‖ − pι⊥)

[1
3
∇ ln(nTι) −

5
2
κ

]
+ ∇r̂ι⊥ + (r̂ι‖ − r̂ι⊥)κ

}
.

(8)
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Besides the familiar first term16, this expression has the additional terms of the order of δ2nmιv3
thι

which involve the non-Maxwellian even moments (pι‖ − pι⊥), r̂ι‖ and r̂ι⊥, the last two being the

fourth-rank gyrotropic moments whose definition is given below.

The task of closing the ion fluid system has now been left to the specification of a set of gyrotropic

moments. These, along with their required accuracies, are:

(pι‖−pι⊥) =
mι

2

∫
d3v

{
3[b · (v − uι)]2 − |v − uι|2

}
f̄NMι = O(δnmιv

2
thι) + O(δ2nmιv

2
thι) , (9)

qι‖ =
mι

2

∫
d3v [b · (v − uι)] |v − uι|2 f̄NMι = O(δnmιv

3
thι) + O(δ2nmιv

3
thι) , (10)

qιB‖ =
mι

2

∫
d3v [b · (v − uι)]3 f̄NMι = O(δnmιv

3
thι) , (11)

qιT‖ = qι‖ − qιB‖ = O(δnmιv
3
thι) , (12)

r̂ι‖ =
m2

ι

2

∫
d3v [b · (v − uι)]2 |v − uι|2 f̄NMι = O(δnm2

ι v
4
thι) (13)

and

r̂ι⊥ =
m2

ι

4

∫
d3v

{
|v − uι|2 − [b · (v − uι)]2

}
|v − uι|2 f̄NMι = O(δnm2

ι v
4
thι) . (14)

These can be extracted from a solution for the gyrophase average of the non-Maxwellian part of

the ion distribution function in the reference frame of its macroscopic flow, correct to the accuracy

of f̄NMι = O(δfMι) + O(δ2fMι). The drift-kinetic equation to provide such a solution will be de-

rived in the next Section. Notice that r̂ι‖ and r̂ι⊥ are defined here as fourth-rank moments of the

difference between the actual distribution function and the isotropic Maxwellian, whereas the vari-

ables r̃ι‖ and r̃ι⊥ of Ref.13 were defined as the corresponding moments of the difference between

the actual distribution function and a two-temperature bi-Maxwellian. Accordingly, the relationships

r̃ι‖ = r̂ι‖ − 7Tι(pι‖ − pι⊥)/3 and r̃ι⊥ = r̂ι⊥ + 7Tι(pι‖ − pι⊥)/6 must be used when deriving Eq.(8) from

the results of Ref.13.
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III. Second-order ion drift-kinetic equation.

The derivation of the second-order ion drift-kinetic equation in the reference frame of its mean flow

will follow the recursive operator method introduced in Ref.12, adapted to the present low collisionality,

slow dynamics and close to Maxwellian orderings. In the macroscopic flow reference frame, defined by

the space-time dependent Galilean transformation from the laboratory frame

t = t , x = x , v = v′ + uι(x, t) , (15)

the ion kinetic equation is19,20

∂fι(v′,x, t)
∂t

+ (v′ + uι) ·
∂fι(v′,x, t)

∂x
+

[
Ωcιv′ × b +

Fι

mιn
− (v′ ·∇)uι

]
· ∂fι(v′,x, t)

∂v′ =
∑

s=ι,e

Cιs[fι, fs].

(16)

Here, Cιs[fι, fs] are the collision operators which will be discussed in the next Section, Ωcι = eB/mι

is the ion cyclotron frequency and Fι is the force density

Fι(x, t) = en(E + uι × B) − mιn
[
∂uι

∂t
+ (uι ·∇)uι

]
(17)

which combines the electric field force in the moving frame with an inertial force that arises from

the transformation to such accelerating frame. Using the momentum conservation equation (4), it

becomes simply

Fι(x, t) = ∇ · Pι = ∇ ·
(
PCGL

ι + PGV
ι

)
, (18)

where Pι is the full stress tensor made of the gyrotropic (Chew-Goldberger-Low) part

PCGL
ι = (nTι)I + (pι‖ − pι⊥)(bb − I/3) (19)

and the non-gyrotropic (gyroviscous) part PGV
ι (6-7). So, in the favored reference frame of the ion

macroscopic flow, an exact algebraic elimination of the electric field with the momentum equation takes

place, after which only the divergence of the stress tensor remains. Then, carrying out the change of

variables to cylindrical coordinate systems in velocity space locally aligned with the magnetic field in

which b(x, t), e1(x, t) and e2(x, t) form right-handed sets of mutually orthogonal unit vectors,

t = t , x = x , v′ = v′‖ b(x, t) + v′⊥ [cosα e1(x, t) + sinα e2(x, t)] , (20)
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the ion kinetic equation becomes of the form

Ωcι

∂fι(v′‖, v
′
⊥,α,x, t)

∂α
=

2∑

l=−2

eilα
[
Λl fι + λl

∂fι

∂α

]
−

∑

s=ι,e

Cιs[fι, fs] , (21)

where Λl(∂/∂v′‖, ∂/∂v′⊥, ∂/∂x, ∂/∂t, v′‖, v
′
⊥,x, t) = Λ∗

−l are gyrophase-independent operators and

λl(v′‖, v
′
⊥,x, t) = λ∗

−l are gyrophase-independent functions, whose complete expressions are given in

Ref.12. Here they will be expanded according to the orderings (1) followed in this work as Λl =
∑

j Λ
(j)
l

and λl =
∑

j λ(j)
l , with Λ(j)

l ∼ λ(j)
l ∼ δjvthι/L. The required terms are listed in Appendix A. Those

expressions apply to general 3-dimensional magnetic geometry and, in them, Faraday’s law has been

substituted for the time derivative of the magnetic field, with the electric field eliminated algebraically

with the momentum equation (4), so they also apply to fully electromagnetic dynamics.

Introducing the Fourier series representation in harmonics of the gyrophase,

fι(v′‖, v
′
⊥,α,x, t) =

∞∑

l=−∞
eilα fι,l(v′‖, v

′
⊥,x, t) , (22)

equation (21) yields

ilΩcιfι,l =
2∑

l′=−2

[
Λl′fι,l−l′ + i(l − l′)λl′fι,l−l′

]
−

∑

s=ι,e

〈e−ilαCιs[fι, fs]〉α (23)

where the shorthand notation for the gyrophase average, 〈...〉α ≡ (2π)−1
∮

dα(...), has been used.

In the adopted asymptotic ordering scheme this system admits a recursive solution which, with the

desired second-order accuracy, has the form

fι,0 = fMι + f̄NMι = fMι + O(δfMι) + O(δ2fMι) + ... ,

fι,±1 = O(δfMι) + O(δ2fMι) + ... , fι,±2 = O(δ2fMι) + ... , ... , (24)

the ellipses indicating terms that need not be retained. Neglecting such unnecessary higher-order

terms, the l = 0, 1, 2 components of the system (23) yield

2*
{(
Λ(0)
−2 + 2iλ(0)

−2

)
fι,2 +

[
Λ(0)
−1 + Λ(1)

−1 + i
(
λ(0)
−1 + λ(1)

−1

)]
fι,1

}
+

+
(
Λ(0)

0 + Λ(1)
0

)
(fMι + f̄NMι) + Λ(2)

0 fMι =
∑

s=ι,e

〈C(2)
ιs [fι, fs]〉α (25)
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where * indicates the real part,

fι,1 =
1

iΩcι

[(
Λ(0)

0 + iλ(0)
0

) ( 1
iΩcι

Λ(0)
1 fMι

)
+

+Λ(0)
1 (fMι + f̄NMι) + Λ(1)

1 fMι +
(
Λ(0)

2 − iλ(0)
2

) (
i

Ωcι
Λ(0)
−1fMι

)]

(26)

and

fι,2 =
1

2iΩcι

[(
Λ(0)

1 + iλ(0)
1

) ( 1
iΩcι

Λ(0)
1 fMι

)
+ Λ(0)

2 f̄NMι + Λ(1)
2 fMι

]
, (27)

the latter reflecting the property that Λ(0)
2 fMι = 0. The collision operators are needed only in their

lowest non-vanishing order, C(2)
ιs [fι, fs] ∼ δ2(vthι/L)fMι and they matter only in Eq.(25). In that

equation, Λ(0)
0 fMι = (v′‖/2)(v′2/v2

thι − 3)(b · ∇ lnTι)fMι and the small parallel temperature gradient

ordering b ·∇ lnTι ∼ δ/L guarantees that there are no unbalanced terms of the order of (vthι/L)fMι.

The time derivative of the Maxwellian appears in the Λ(1)
0 fMι term of (25) which, after differenti-

ating fMι, becomes

Λ(1)
0 fMι =

{ (
∂

∂t
+ uι ·∇

)
lnn +

1
2

(
v′2

v2
thι

− 3
) (

∂

∂t
+ uι ·∇

)
lnTι − v′‖ b · lnTι −

−
v′‖
nTι

b ·
[2
3
∇(pι‖ − pι⊥) −

(
pι‖ − pι⊥

)
∇ lnB

]
+

v′2⊥
2v2

thι

∇ ·uι +
2v′2‖ − v′2⊥

2v2
thι

(bb) : (∇uι)
}

fMι . (28)

Substituting the continuity equation ∂n/∂t + ∇ · (nuι) = 0 and the temperature evolution Eq.(5) for

the time derivatives of the density and the temperature, one gets the expression

Λ(1)
0 fMι = Λ̂(1)

0 fMι +
1

3nTι

(
v′2

v2
thι

− 3
)

Gcoll
ι fMι (29)

where the collisional term has been singled out and Λ̂(1)
0 fMι contains the terms that do not depend

explicitly on the collisions:

Λ̂(1)
0 fMι =

{

− 1
3nTι

(
v′2

v2
thι

− 3
) [

(pι‖ − pι⊥)(bb − I/3) : (∇uι) + ∇ · (qι‖b + qι⊥)
]
− v′‖ b · lnTι −

−
v′‖
nTι

b ·
[2
3
∇(pι‖ − pι⊥) −

(
pι‖ − pι⊥

)
∇ lnB

]
+

2v′2‖ − v′2⊥
2v2

thι

(bb − I/3) : (∇uι)
}

fMι . (30)

9



Now, defining

Qcoll
ι ≡

∑

s=ι,e

〈C(2)
ιs [fι, fs]〉α − 1

3nTι

(
v′2

v2
thι

− 3
)

Gcoll
ι fMι , (31)

equation (25) can be rewritten as

2*
{(
Λ(0)
−2 + 2iλ(0)

−2

)
fι,2 +

[
Λ(0)
−1 + Λ(1)

−1 + i
(
λ(0)
−1 + λ(1)

−1

)]
fι,1

}
+

+
(
Λ(0)

0 + Λ(1)
0

)
f̄NMι +

(
Λ(0)

0 + Λ̂(1)
0 + Λ(2)

0

)
fMι = Qcoll

ι . (32)

The second-order drift-kinetic equation for f̄NMι is obtained by substituting in (32) the solutions

(26-27) for fι,1 and fι,2. It can be expressed in the form

dιf̄NMι

dt
= DιfMι + Qcoll

ι (33)

where the collision-independent streaming operator acting on f̄NMι is

dι

dt
= 2*

[(
Λ(0)
−2 + 2iλ(0)

−2

) 1
2iΩcι

Λ(0)
2 +

(
Λ(0)
−1 + iλ(0)

−1

) 1
iΩcι

Λ(0)
1

]
+ Λ(0)

0 + Λ(1)
0 (34)

and the action of the collision-independent streaming on the Maxwellian has been moved to the right-

hand-side as the driving term

DιfMι = −2*
{(
Λ(0)
−2 + 2iλ(0)

−2

) 1
2iΩcι

[(
Λ(0)

1 + iλ(0)
1

) 1
iΩcι

Λ(0)
1 + Λ(1)

2

]
+

+
[
Λ(0)
−1 + Λ(1)

−1 + i
(
λ(0)
−1 + λ(1)

−1

)] 1
iΩcι

[(
Λ(0)

0 + iλ(0)
0

) 1
iΩcι

Λ(0)
1 + Λ(0)

1 + Λ(1)
1 +

+
(
Λ(0)

2 − iλ(0)
2

) i

Ωcι
Λ(0)
−1

]}

fMι −
(
Λ(0)

0 + Λ̂(1)
0 + Λ(2)

0

)
fMι . (35)

It is now a matter of straightforward if somewhat lengthy algebra to work out the explicit forms of

the operator dι/dt (34) and the function Dι (35), using Eq.(30) and the expressions for Λ(j)
l and λ(j)

l

given in Appendix A. These depend on the auxiliary unit vectors e1(x, t) and e2(x, t) that establish
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the origin of the gyrophase (20), but the final result is independent of them and involves only the

intrinsic geometry of the magnetic field. Since f̄NMι = O(δfMι)+O(δ2fMι), the operator acting on it

(34) retains only the first-order accuracy, dι/dt = O(vthι/L)+O(δvthι/L). So, Eq.(34) is just a special

case of the general first-order result of Ref.12, namely its slow flow and close to Maxwellian limit:

dι

dt
=

∂

∂t
+ ẋ · ∂

∂x
+ v̇′‖

∂

∂v′‖
+ v̇′⊥

∂

∂v′⊥
(36)

where the coefficient functions are

ẋ = v′‖b + uι − uDι +
v′2⊥
2
∇×

(
b
Ωcι

)
+

(

v′2‖ − v′2⊥
2

)
b × κ

Ωcι
(37)

v̇′‖ =
b · (∇ · PCGL

ι )
mιn

− v′2⊥
2

b ·∇ lnB − v′‖(bb) : [∇(uι − uDι)] +
v′‖v

′2
⊥

2
∇ ·

(
b × κ

Ωcι

)
(38)

and

v̇′⊥ =
v′⊥
2

{
v′‖b ·∇ lnB + (bb − I) : [∇(uι − uDι)] − v′2‖ ∇ ·

(
b × κ

Ωcι

)}
(39)

with uDι = b × ∇(nTι)/(mιnΩcι), the lowest-order diamagnetic drift velocity. It is immediately

verified that (37-39) fulfill the phase-space volume conservation condition

∂

∂x
· ẋ +

∂v̇′‖
∂v′‖

+
1
v′⊥

∂(v′⊥v̇′⊥)
∂v′⊥

= 0 , (40)

so the phase-space advection of f̄NMι can be expressed in Liouville theorem form:

dιf̄NMι

dt
=

∂f̄NMι

∂t
+

∂

∂x
·
(
f̄NMιẋ

)
+

∂

∂v′‖

(
f̄NMιv̇

′
‖

)
+

1
v′⊥

∂

∂v′⊥

(
v′⊥f̄NMιv̇

′
⊥

)
. (41)

Turning now to the collision-independent driving term, the result from (35) has the desired accuracy

of Dι = O(δvthι/L) + O(δ2vthι/L). It is convenient to write Dι = Deven
ι + Dodd

ι , splitting it into its

even and odd parts with respect to v′‖. The even part is

Deven
ι =

(2v′2‖ − v′2⊥)
2v2

thι

(I/3 − bb) : (∇uι) +
1

3nTι

(
v′2

v2
thι

− 3
)

∇ · (qι‖b) −

11



−
(2v′2‖ − v′2⊥)

6ΩcιTι
(b ×∇ lnn) ·∇Tι − 1

2mιΩcι

[
(v′4‖ + v′2‖ v′2⊥)

v4
thι

−
5(4v′2‖ + v′2⊥)

3v2
thι

+ 5
]

(b × κ) ·∇Tι −

− 1
2mιΩcι

[
(v′2‖ v′2⊥ + v′4⊥)

2v4
thι

−
5(2v′2‖ + 5v′2⊥)

6v2
thι

+ 5
]

(b ×∇ lnB) ·∇Tι +

+
1
6n

[
(5v′2‖ + 2v′2⊥)

v2
thι

− 15
]

∇ ·
{

b
mιΩcι

×
[1
3
∇(pι‖ − pι⊥) − (pι‖ − pι⊥)κ

]}
+

+
1

3nTι

(
v′2

v2
thι

− 3
)

∇ ·
{

b
mιΩcι

×
[
∇r̂ι⊥ + (r̂ι‖ − r̂ι⊥)κ

]}
+

(2v′2‖ − v′2⊥)
6ΩcιTι

[
b ×

(1
3
∇ lnn − κ

)]
·∇

(
pι‖ − pι⊥

n

)
+

+
1

3nTι

(
v′2

v2
thι

− 3
)

(pι‖ − pι⊥)(bb − I/3) : [∇(uι − uDι)] (42)

and the odd part is

Dodd
ι =

v′‖
2

(

5 − v′2

v2
thι

)

b ·∇ lnTι +
v′‖
nTι

b ·
[2
3
∇(pι‖ − pι⊥) − (pι‖ − pι⊥)∇ lnB

]
+

+
v′‖
nTι

b ·
(
∇ · PGV

ι

)
−

v′‖v
′2
⊥

2nTιv2
thι

∇ ·
{

nTι

Ωcι
b × [2(b ·∇)uι + b × (∇× uι)]

}
−

−
v′‖

Ωcιv2
thι

{

(v′2‖ − v′2⊥) (b × κ) · [2(b ·∇)uι + b × (∇× uι)] +
v′2⊥
4

M× : (∇uι)
}

+

+
v′‖
Ωcι

{(

1 − v′2⊥
2v2

thι

)

[b ×∇ ln(nTι)] · [2(b ·∇)uι + b × (∇× uι)] +
(

v′2

v2
thι

− 5
)

(b ×∇ lnTι) · [(b ·∇)uι]
}

−

−
v′‖v

′2
⊥

2nT 2
ι

∇ ·
{

nTι

Ω2
cι

b × [(b ·∇ lnn)b ×∇Tι]
}

+
v′‖v

′2
⊥

4nT 2
ι

(
v′2

v2
thι

− 5
)

∇ ·
(

nTιτ

Ω2
cι

b ×∇Tι

)
+

+
v′‖
Ω2

cι

{

(b ·∇ lnn)
[

(v′2⊥ − v′2‖ )b × κ +
(

v2
thι −

v′2⊥
2

)

b ×∇ lnn +
(

v′2⊥v′2

4v2
thι

+
v′2‖
2

− 7v′2⊥
4

− 3v2
thι

2

)

b ×∇ lnTι

]

−

− τ

2

[(
v′2

v2
thι

− 5
)

(v′2‖ − v′2⊥)κ +
(

v′2⊥v′2

2v2
thι

− v′2‖ − 9v′2⊥
2

+ 5v2
thι

)

∇ lnn

] }

· (b ×∇ lnTι) −

−
v′‖v

′2
⊥

8Ω2
cι

M :
{(

v′2

v2
thι

− 5
)
Ωcι

nT 2
ι
∇

(
nTι

Ωcι
∇Tι

)
+

[(
v′4

2v4
thι

− 8v′2

v2
thι

+
49
2

)

∇ lnTι −
(

v′2

v2
thι

− 7
)

∇ lnn

]

∇ lnTι

}

.

(43)
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These explicit forms of the drift-kinetic coefficient functions (37-39, 42-43) involve only the cylindrical

random velocity coordinates v′‖ and v′⊥ (with v′2 = v′2‖ + v′2⊥), the conventional fluid variables of Sec.II

and the magnetic field geometry. So, they are well suited to be coupled to the fluid part of the system

in a simulation code. The variables that characterize the intrinsic magnetic geometry are the two

scalars ∇ ·b = −b ·∇ lnB and τ ≡ b · (∇×b), the curvature vector κ ≡ (b ·∇)b and the second-rank

symmetric tensor M which is the traceless and perpendicular (in the sense that b ·M = 0) projection

of the symmetrized ∇b tensor. Its Cartesian component representation is given in Appendix B, along

with that of the associated (”crossed with b”) tensor M×. As the consequence of including the contri-

bution of the gyroviscosity to the parallel electric field, Eq.(43) contains the term b · (∇ ·PGV
ι ) whose

explicit form based on the tensors (6-7) is also given in Appendix B. The final form of Eq.(42) includes

the contribution of the second-order perpendicular heat flux (8), that was substituted in Λ̂(1)
0 (30).

All the second-order terms in Deven
ι (42) and a good part of those in Dodd

ι (43) are so because of the

slow flow and near-Maxwellian orderings, but they are only zeroth-order or first-order in the Larmor

radius as evidenced by their inverse powers of Ωcι. Hence, they are derivable as a special limit of the

result of Ref.12 that applies to fast flows, far-from-Maxwellian distribution functions and first-order

in the Larmor radius. The only terms that require the more difficult, truly second-order analysis in

the Larmor radius are those, in Dodd
ι , inversely proportional to Ω2

cι and their final expression appears

remarkably compact and transparent here.

IV. Collisional terms.

To complete the theory, one needs to evaluate the collisional source Qcoll
ι (31) in the drift-kinetic

Eq.(33), including the moment Gcoll
ι that also enters as a source in the fluid temperature Eq.(5). Since

the collision operators are needed only in their lowest non-vanishing order C(2)
ιs [fι, fs] ∼ δ2(vthι/L)fMι

for the present low collisionality, small mass ratio and close to Maxwellian asymptotics, the ion-ion

operator can be linearized and the ion-electron operator needs to keep only the contribution of the

lowest-order Maxwellians, with comparable but distinct temperatures:
∑

s=ι,e

〈C(2)
ιs [fι, fs]〉α = 〈Cιι[fMι, fNMι] + Cιι[fNMι, fMι]〉α + 〈C(2)

ιe [fMι, fMe]〉α . (44)

Also, the mean flow difference between species |uι − ue| = O(δvthι) can be neglected in the required

13



lowest-order form of the ion-electron operator. Then, by virtue of their Galilean invariance, the lab-

oratory frame expressions of the Fokker-Planck-Landau collision operators can be trivially translated

to the moving reference frame this work uses. Finally, the small electron to ion mass ratio allows a

Taylor expansion of the electron Maxwellian for v′/vthe ∼ vthι/vthe " 1. Taking all this into account,

the following lowest-order form of the ion-electron collision operator is obtained:

C(2)
ιe [fMι, fMe] =

2νeme

3(2π)1/2mι

(
Te

Tι
− 1

) (
v′2

v2
thι

− 3
)

fMι = O
(
δ2 vthι

L
fMι

)
. (45)

By definition, the collisional heat source in the fluid temperature equation is

Gcoll
ι ≡ mι

2

∫
d3v′ v′2 Cιe[fι, fe] (46)

and, evaluating it with the lowest-order expression (45), one gets

Gcoll
ι =

2νenme

(2π)1/2mι
(Te − Tι) (47)

so that

C(2)
ιe [fMι, fMe] =

Gcoll
ι

3nTι

(
v′2

v2
thι

− 3
)

fMι . (48)

Therefore, in the definition of Qcoll
ι (31), the terms 〈C(2)

ιe [fι, fe]〉α and (Gcoll
ι /3nTι)(v′2/v2

thι − 3)fMι,

which should in principle cancel only in their 1 and v′2 moments, cancel completely within the presently

required accuracy and so Qcoll
ι reduces to

Qcoll
ι = 〈Cιι[fMι, fNMι] + Cιι[fNMι, fMι]〉α . (49)

Here, the standard linearized Fokker-Planck-Landau collision operator for like particles15,21,22 (also

reviewed in detail in Ref.1 for the electrons) is to be used. From its particle, momentum and energy

conservation properties, it follows that

∫
d3v′ (1, v′‖, v

′2) Qcoll
ι = 0 . (50)
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V. Moments of the ion drift-kinetic equation.

From the definition of v′ as relative to the ion mean flow and the adopted Chapman-Enskog-like

representation whereby the macroscopic density, flow velocity and temperature are carried entirely

by the Maxwellian, the gyrophase average of the non-Maxwellian distribution function perturbation

must satisfy the conditions ∫
d3v′ (1, v′‖, v

′2) f̄NMι = 0 . (51)

It is important to prove explicitly that the dynamical evolution of f̄NMι preserves these conditions, so

that the consistency of the hybrid fluid and drift-kinetic system is guaranteed.

Assuming (51) to hold, bringing the expressions (37-39) for ẋ, v̇′‖, v̇′⊥ to the Liouville theorem

form (41), integrating by parts and using the definitions (9-14) of the gyrotropic moments, one obtains

∫
d3v′ df̄NMι

dt
= ∇ ·

{
b

mιΩcι
×

[
−1

3
∇(pι‖ − pι⊥) + (pι‖ − pι⊥)κ

]}
, (52)

mι

∫
d3v′ v′‖

df̄NMι

dt
= b ·

[2
3
∇(pι‖ − pι⊥) − (pι‖ − pι⊥)∇ lnB

]
+

+ ∇ ·
{

b
Ωcι

×
[
∇qιT‖ + 2(qιB‖ − qιT‖)κ

]}
+

(
b × κ

Ωcι

)
·∇qιT‖ (53)

and

mι

2

∫
d3v′ v′2

df̄NMι

dt
= ∇ · (qι‖b) + ∇ ·

{
b

mιΩcι
×

[
∇r̂ι⊥ + (r̂ι‖ − r̂ι⊥)κ

]}
+

+ (pι‖ − pι⊥)(bb − I/3) : [∇(uι − uDι)] . (54)

As shown in the previous Section, the 1, v′‖ and v′2 moments of Qcoll
ι vanish. The corresponding

moments of DιfMι, evaluated after Eqs.(42-43), are

∫
d3v′ Deven

ι fMι = ∇ ·
{

b
mιΩcι

×
[
−1

3
∇(pι‖ − pι⊥) + (pι‖ − pι⊥)κ

]}
, (55)
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mι

∫
d3v′ v′‖ Dodd

ι fMι = b ·
[2
3
∇(pι‖ − pι⊥) − (pι‖ − pι⊥)∇ lnB

]
+

+ b ·
(
∇ · PGV

ι

)
− ∇ ·

{
nTι

Ωcι
b × [2(b ·∇)uι + b × (∇× uι)]

}
−

− nTι

Ωcι

{
(b × κ) · [2(b ·∇)uι + b × (∇× uι)] +

1
2

M× : (∇uι)
}

− 1
2mιΩcι

M :
[
∇

(
nTι

Ωcι
∇Tι

)]
−

− ∇ ·
{

nTι

Ω2
cι

b × [(b ·∇ lnn)b ×∇Tι − τ∇Tι]
}

− nTι

Ω2
cι

(b × κ) · [(b ·∇ lnn)b ×∇Tι − τ∇Tι] (56)

and

mι

2

∫
d3v′ v′2 Deven

ι fMι = ∇ · (qι‖b) + ∇ ·
{

b
mιΩcι

×
[
∇r̂ι⊥ + (r̂ι‖ − r̂ι⊥)κ

]}
+

+ (pι‖ − pι⊥)(bb − I/3) : [∇(uι − uDι)] . (57)

One can see that the right hand sides of Eqs.(55) and (57) are respectively identical to those of Eqs.(52)

and (54). Equation (56) has the parallel gyroviscous force term b · (∇ · PGV
ι ). After substituting the

explicit result given in Eq.(B.17), it becomes

mι

∫
d3v′ v′‖ Dodd

ι fMι = b ·
[2
3
∇(pι‖ − pι⊥) − (pι‖ − pι⊥)∇ lnB

]
+

+ ∇ ·
{

b
Ωcι

×
[
∇qιT‖ + 2(qιB‖ − qιT‖)κ

]}
+

(
b × κ

Ωcι

)
·∇qιT‖ , (58)

that is, also identical to Eq.(53).

In conclusion, assuming (51) to hold, the 1, v′‖ and v′2 moments of the second-order ion drift-kinetic

equation are satisfied identically:

∫
d3v′ (1, v′‖, v

′2)
dιf̄NMι

dt
≡

∫
d3v′ (1, v′‖, v

′2) (DιfMι + Qcoll
ι ) . (59)

This means that, if the initial value for f̄NMι satisfies the conditions (51), its drift-kinetic evolution

equation ensures automatically that those conditions remain satisfied at all times.

16



VI. Summary.

This article completes the theoretical model initiated in Ref.1 to describe slow macroscopic pro-

cesses in low collisionality, magnetic confinement plasmas. The hybrid fluid and drift-kinetic for-

mulation followed a systematic asymptotic expansion, based on small but finite Larmor radii, low

collisionality, small electron to ion mass ratio, diamagnetic scale flows and close to Maxwellian dis-

tribution functions. The analysis reached to the frequency scale where collisions begin to influence

the dynamics, which turns out to be one order smaller than the diamagnetic drift frequency scale.

This requires high-order FLR fluid and drift-kinetic equations and the chosen approach emphasizes

the precise consistency among them. The fluid part of the system evolves the macroscopic density,

flow velocities and temperatures, which are carried entirely by the Maxwellian part of the distribution

functions in Chapman-Enskog-like fashion. The moments of the non-Maxwellian parts yield only the

higher-rank fluid closures. Of these, the non-gyrotropic moments of the gyrophase-dependent distri-

bution function terms, namely the perpendicular heat fluxes and the ion gyroviscosity, are deduced

from FLR fluid results without the recourse to kinetic theory. Only the gyrophase averages of the

non-Maxwellians, which provide the remaining gyrotropic closures, require a kinetic solution and novel

forms of drift-kinetic equations for them have been derived. Key to this approach is the use of the

reference frames of the mean macroscopic flows, which facilitates naturally the rigorous treatment of

the electric field and the evaluation of the fluid closure moments. One of the main payoffs is the ex-

plicit proof that the drift-kinetic equations preserve the required conditions that the first three velocity

moments of the non-Maxwellian parts of the gyro-averaged distribution functions remain equal to zero

through their dynamical evolution. In the case of the ions, such proof is given to the second order in

the Larmor radius and hinges on the use of the appropriate second-order forms of the gyroviscosity

(6-7) and the perpendicular heat flux (8) in the coupled fluid part of the system.
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Appendix A: Coefficients in the random velocity cylindrical coordinate representation

of the ion kinetic equation.

The expression (21) of the ion kinetic equation in the random velocity cylindrical coordinates

(v′‖, v
′
⊥,α) is written in terms of the set of gyrophase-independent operators Λl and gyrophase-

independent functions λl that were introduced in Ref.12. For the purposes of the present work, they are

expanded according to the orderings (1) as Λl =
∑

j Λ
(j)
l and λl =

∑
j λ(j)

l , with Λ(j)
l ∼ λ(j)

l ∼ δjvthι/L.

The needed objects are:

Λ(0)
0 = v′‖b · ∂

∂x
−

v′⊥v′‖
2

∇ · b ∂

∂v′⊥
+

(
Tι

mι
b ·∇ lnn +

v
′2
⊥
2
∇ · b

)
∂

∂v′‖
, (A.1)

Λ(1)
0 =

∂

∂t
+ uι ·

∂

∂x
+

v′⊥
2

(bb − I) : (∇uι)
∂

∂v′⊥
+

+
{

b ·∇Tι

mι
+

1
mιn

b ·
[2
3
∇(pι‖ − pι⊥) − (pι‖ − pι⊥)∇ lnB

]
− v′‖(bb) : (∇uι)

}
∂

∂v′‖
, (A.2)

Λ(2)
0 =

1
mιn

b ·
(
∇ · PGV

ι

) ∂

∂v′‖
, (A.3)

Λ(0)
1 =

v′⊥
2

(e1 − ie2) ·
∂

∂x
+

v′⊥v′‖
2

(e1 − ie2) ·κ
∂

∂v′‖
+

1
2
(e1 − ie2) ·

[∇(nTι)
mιn

− v′2‖ κ
]

∂

∂v′⊥
, (A.4)

Λ(1)
1 =

v′⊥
2

(e1 − ie2) ·
[∇ lnn ×∇Tι

mιΩcι
− b × (∇× uι)

]
∂

∂v′‖
+

+
1
2
(e1−ie2)·

{ 1
mιn

[
−1

3
∇(pι‖ − pι⊥) + (pι‖ − pι⊥)κ

]
− v′‖

[∇ lnn ×∇Tι

mιΩcι
+ 2(b ·∇)uι

]}
∂

∂v′⊥
, (A.5)

Λ(0)
2 =

iv′⊥
4

(e1 − ie2) · [∇× (e1 − ie2)]
(

v′⊥
∂

∂v′‖
− v′‖

∂

∂v′⊥

)

, (A.6)

Λ(1)
2 = − v′⊥

4
[(e1 − ie2)(e1 − ie2)] : (∇uι)

∂

∂v′⊥
, (A.7)
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λ(0)
0 =

v′‖
2
{e1 · [(b ·∇)e2] − e2 · [(b ·∇)e1] − b · (∇× b)} , (A.8)

λ(0)
1 =

i

2v′⊥
(e1 − ie2) ·

[∇(nTι)
mιn

− v′2‖ κ
]

− v′⊥
2

b · [∇× (e1 − ie2)] , (A.9)

λ(1)
1 =

i

2v′⊥
(e1 − ie2) ·

{ 1
mιn

[
−1

3
∇(pι‖ − pι⊥) + (pι‖ − pι⊥)κ

]
− v′‖

[∇ lnn ×∇Tι

mιΩcι
+ 2(b ·∇)uι

]}
,

(A.10)

λ(0)
2 =

v′‖
4

(e1 − ie2) · [∇× (e1 − ie2)] . (A.11)

In these expressions, Faraday’s law has been substituted for the time derivative of the magnetic field,

with the electric field eliminated algebraically with the momentum conservation equation. They apply

to general space and time variations of the magnetic field.

Appendix B: Differential magnetic geometry and the parallel gyroviscous force.

For general 3-dimensional magnetic line configurations (consistent with ∇ ·B = 0 and ∇×B = j),

their differential geometry is characterized by a set of intrinsic variables which comprises the divergence

of the unit vector (b ≡ B/B)

∇ · b = −b ·∇ lnB , (B.1)

the curvature vector

κ ≡ (b ·∇)b = −b × (∇× b) , (B.2)

the ”twist” scalar related to the parallel current

τ ≡ b · (∇× b) = j‖/B , (B.3)

and the second-rank symmetric tensor M, which is the traceless and perpendicular (in the sense that

b · M = 0) projection of the symmetrized ∇b, defined in Cartesian component representation by

Mjk ≡ 1
2

[
(δjl − bjbl)(δkm − bkbm) − εjnlbnεkpmbp

] (
∂bm

∂xl
+

∂bl

∂xm

)
. (B.4)
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In terms of these, the symmetric part of the magnetic gradient tensor is

∂bk

∂xj
+

∂bj

∂xk
= (∇ · b) (δjk − bjbk) + (bjκk + κjbk) + Mjk (B.5)

and its antisymmetric part is

∂bk

∂xj
− ∂bj

∂xk
= (bjκk − κjbk) + τ εjkl bl . (B.6)

The space of second-rank, symmetric, traceless and perpendicular tensors is bidimensional and another

independent tensor in that space is M×, obtained by taking a ”cross product” of M with b

M×jk ≡ Mjl εlkm bm (B.7)

and whose Cartesian components are

M×jk =
1
2

[
(δjl − bjbl)εknmbn + (δkl − bkbl)εjnmbn

] (
∂bm

∂xl
+

∂bl

∂xm

)
. (B.8)

Besides Mjj = M×jj = bjMjk = bjM×jk = 0, these tensors have the properties

Mjk = − M×jl εlkm bm (B.9)

and

M×jk

(
∂bk

∂xj
+

∂bj

∂xk

)

= M×jk Mjk = 0 . (B.10)

The ion drift-kinetic equation involves the parallel component of the gyroviscous force, b·(∇·PGV
ι ),

due to its contribution to the parallel electric field in the momentum conservation equation. After

partial integration, it is

b ·
(
∇ · PGV

ι

)
= ∇ ·

(
b · PGV

ι

)
− (∇b) : PGV

ι . (B.11)

Moreover, since PGV
ι is symmetric and traceless and satisfies (bb) : PGV

ι = 0, recalling (B.5) one can

write

b ·
(
∇ · PGV

ι

)
= ∇ ·

(
b · PGV

ι

)
− κ ·

(
b · PGV

ι

)
− 1

2
M : PGV

ι . (B.12)
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From Eq.(6), it follows that

b · PGV
ι = b × (b · Kι) (B.13)

and, after substituting Eq.(7) for Kι and using some vector identities,

b · PGV
ι =

b
Ωcι

×
(
nTι [(2(b ·∇)uι + b × (∇× uι)] + ∇qιT‖ + 2(qιB‖ − qιT‖)κ

)
+

+
nTι

mιΩ2
cι

b × [(b ·∇ lnn)b ×∇Tι − τ∇Tι] . (B.14)

Similarly, from Eq.(6) and the properties of the tensors M and M×, it follows that

M : PGV
ι = − 1

2
M× : Kι (B.15)

and, after substituting Eq.(7) for Kι and using again the properties of M and M×,

M : PGV
ι = − nTι

Ωcι
M× : (∇uι) − 1

mιΩcι
M :

[
∇

(
nTι

Ωcι
∇Tι

)]
. (B.16)

Finally, collecting all the terms, one gets the expression of the second-order parallel gyroviscous force:

b · (∇ · PGV
ι ) = ∇ ·

{
b
Ωcι

×
(
nTι [2(b ·∇)uι + b × (∇× uι)] + ∇qιT‖ + 2(qιB‖ − qιT‖)κ

)}
+

+
b × κ

Ωcι
·
(
nTι [2(b ·∇)uι + b × (∇× uι)] + ∇qιT‖

)
+

nTι

2Ωcι
M× : (∇uι) +

+ ∇ ·
{

nTι

mιΩ2
cι

b × [(b ·∇ lnn)b ×∇Tι − τ∇Tι]
}

+

+
nTι

mιΩ2
cι

(b × κ) · [(b ·∇ lnn)b ×∇Tι − τ∇Tι] +
1

2mιΩcι
M :

[
∇

(
nTι

Ωcι
∇Tι

)]
. (B.17)
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