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Abstract

The wake behind a large object (such as the moon) moving rapidly through a plasma
(such as the solar wind) contains a region of depleted density, into which the plasma
expands along the magnetic field, transverse to the flow. It is shown here that (in addi-
tion to any ion instability) a bump-on-tail which is unstable appears on the electrons’
parallel velocity distribution function because of the convective non-conservation of
parallel energy. It arises regardless of any non-thermal features on the external elec-
tron velocity distribution. The detailed electron distribution function throughout the
wake is calculated by integration along orbits; and the substantial energy level of re-
sulting electron plasma (Langmuir) turbulence is evaluated quasilinearly. It peaks near
the wake axis. If the mass of the electrons is artificially enhanced, for example in order
to make numerical simulation feasible, then much more unstable electron distributions
arise; but these are caused by the unphysical mass ratio.

1 Introduction

Magnetized plasma wakes have attracted renewed interest recently because of new measure-
ments of the solar wind in the vicinity of the moon [1, 2], but also because of their wider
applications to space-craft, dust grains, and laboratory flow measurement probes [3, 4]. This
paper explores the effects of supersonic wakes on electron parallel-velocity distributions and
the instability that is induced.

We consider an insulating object whose size, R, is much greater than the Debye length,

λDe =
√
ε0Te/e2ne, so that with the exception of a negligible thickness sheath, the surround-

ing region can be considered quasi-neutral. We suppose that the object is moving through
a magnetized plasma in which the ion Larmor radius is also much smaller than R. The
dynamics parallel to the magnetic field can then be separated from the perpendicular for the
ions and even more definitively for the electrons (whose Larmor radius is even smaller). This
situation is very representative, for example, of the moon and other unmagnetized planetary
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bodies moving through the solar wind. The moon’s radius is 1730km; the Debye length is
of order 10m and the ion Larmor radius of order 40km[5, 6]. Although the solar wind has
ratio of plasma to magnetic pressure, β ∼ 1, and thus the wake experiences significant mag-
netic perturbations (of order 10% at 4 moon radii [2]), these will be ignored. The magnetic
field here is taken to be uniform and simply one-dimensionalizes the problem. Many other
Alfvénic phenomena must be accounted for if non-zero beta effects are to be incorporated
(see e.g. [7, 8]), but we here focus on the electrostatic phenomena, which are an important
part of the picture.

We will assume for simplicity during the development that the direction of object motion,
or equivalently, in the frame of the object, the plasma drift, is at right angles to the magnetic
field. It is shown in section 6, how the results we obtain can immediately, rigorously, be
generalized and applied to oblique field-drift alignment, which is more typical of the solar
wind.

In the rest-frame of the object, the electrons and ions sweep rapidly past under the
influence of a drift electric field perpendicular to both the magnetic field and plasma drift
velocity v⊥. Typical solar wind velocity is of order 400km/s, roughly ten times the ion sound
speed. Fig. 1 illustrates the geometry of a wake in which the spatial coordinate in the drift

Figure 1: Geometry of a wake, illustrating electron orbits (curves) tracked back from position
(1,0.5), and self similar lines (y/x = const) on which the potential is constant.

direction (x) has been divided by v⊥/cs, where cs (=
√
Te/mi for a Maxwellian) is the (cold

ion) sound speed. Thus dx is equal to csdt when moving at the constant speed v⊥. In these
units the object is foreshortened by a ratio equal to the perpendicular Mach number and its
wake x-extent is approximately equal to its radius. We will assume the drift Mach number is
large enough to justify ignoring the object’s radius of curvature at its edges. This is the only
place where the treatment is limited to supersonic cases. Subsonic flow gives rise to object
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elongation in this scaled coordinate system, and its curvature cannot then safely be ignored
(unless it starts as a flat disk rather than a sphere). Note, though, that the mechanisms we
explore are still active in subsonic cases, even though our quantitative treatment cannot be
expected to be accurate.

The physics close to the edge of the object, before particle streams from above and below
have begun to overlap, is well represented as the expansion of a plasma into vacuum, which
has been well understood for a long time [9, 10, 11]. It has also been shown more recently
[12] that the additional drifts arising from self-consistent electric field in the magnetized case
can be ignored, reducing the problem to two dimensions. Using quasineutrality, ne = ni,
the ion dynamics can be solved self-consistently, analytically by ignoring the ion pressure
or numerically in one dimension with full ion kinetics [9, 13], and taking the potential to
be given by a direct relationship with the electron density such as the Boltzmann relation
ne ∝ exp(eφ/Te), or more generally a polytropic assumption [14, 15] pe ∝ nγe .

To justify these simple electron models one invokes (1) Liouville’s theorem that, if colli-
sionless, the electron distribution function is constant on an orbit, and (2) the presumption
that all (or nearly all) the electron orbits can be tracked back to the undisturbed plasma.
One must also invoke (3) an electron parallel energy conservation equation, normally in the
form 1

2
mev

2
‖ − eφ = constant, where me is the electron mass, v‖ its parallel velocity, −e its

charge, and φ the electric potential. When the external undisturbed parallel distribution
function far from the object (where φ = 0), is a function only of v2‖, then with this conser-
vation law, the distribution at a position where the potential φ is non-zero is also of this
form, but appropriately shifted in v2‖. The result is that if the distribution starts Maxwellian
it remains Maxwellian,; and similarly that if it starts having a so-called Kappa distribution
[16]

f(v) ∝ (1 + v2‖/κθ
2)κ+1, (1)

(which can be considered a generalized Lorentz distribution) then it remains a Kappa distri-
bution with the same κ (but varying θ) [17]. A Kappa distribution gives rise to polytropic
density variation with γ = 1− 2/(2κ− 1). In any case the density is a well-defined function
of potential, not of position explicitly.

The purpose of this paper is to call out two facts about this approach to one-dimensional
(parallel) electron dynamics, and explore their consequences. The first is that energy con-
servation and Liouville’s theorem guarantee that if the distant unperturbed electron velocity
distribution is stable and symmetric (but not otherwise), then the distribution within the
wake is also stable. The second is that parallel energy conservation is an approximation, good

only to lowest order in the square-root of the electron to ion mass ratio
√
me/mi. Conse-

quently the stability properties of the electron distribution function are crucially determined
by the mass ratio, and finite mass ratio may need to be accounted for.

Moreover, theoretical models that use artificial values of mass ratio closer to unity than
in nature, which is common in PIC codes applied to the moon wake [18, 19, 20], will vi-
olate parallel energy conservation more strongly, and will lead to more unstable electron
distributions in wakes, thus failing to represent actual physics.

It is shown that finite electron mass gives rise routinely to bump-on-tail instability in
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quasi-neutral magnetized plasma wakes. The quasi-linear strength of the instability is eval-
uated for different ion to electron mass ratios. For physical values of the ratio (1835 for
protons) the energy transferred from unstable electrons to plasma waves is up to 10−3 of
the total energy of the distribution function. This level of instability is may well bear on
space-craft observations [21, 1]. For artificial ion to electron mass ratio of 25 (a value not
infrequently used in PIC simulations) instability energy fractions roughly 100 times higher
occur. These are unphysical.

2 Self-similar potential solution

We briefly summarize the standard self-similar solution arising from the ion dynamics[9, 14,
15]. It serves to set the shape of the potential variation in which the electron dynamics is
analysed. Ignoring ion pressure (which is quite well justified even when the external ion
temperature is comparable to Te because of the ions’ cooling caused by their acceleration[9])
the ion continuity and (parallel) momentum equations are sufficient. Using the scaled x-
variable, velocities normalized to the (undisturbed) sound speed, cs, and potential in units of
Te/e, the equations can be solved for Boltzmann density variation to obtain, when y/x ≥ −1:

φ = −1− y/x ; n = n∞ expφ ; v‖i = −φ . (2)

For y/x < −1, the potential is undisturbed: φ = 0, n = n∞. We use subscript ∞ to denote
the external, undisturbed values, and we have set the external parallel drift to zero, v‖i∞ = 0.
(See section 6 for non-zero v‖i∞.)

This self-similar solution, in which parameters are a function only of the ratio y/x, holds
only to the extent that ions arriving through the wake from the other side of the object can
be ignored. The form applies with the substitution y → 2R − y (where R is the object’s
half-height) to the upper limb of the wake. See Fig 1. At the axis of symmetry, the two
opposite ion streams merge. Although the equations are then not rigorously justified, the
resultant can be reasonably approximated [9] by taking the density to be the sum of the
stream given by eq. (2) plus its equivalent with y → 2R − y. The resulting potential can
quickly be shown to be

φ = −1−R/x+ ln
[
2 cosh

(
R− y
x

)]
. (3)

However, this expression does not exactly go to zero at y = −x, so it is better to subtract
from it its value at y = −x and use the resulting form:

φ = ln
[
cosh

(
R− y
x

)]
− ln

[
cosh

(
R + x

x

)]
. (4)

The difference is negligible for x <∼ 1. Fig. 2 is a 3-D rendering of this potential with spatial
units scaled so that R = 1. [In the very far wake, at distances exceeding Rv⊥/cs (x > 1),
some simulations, e.g. [18], indicate a more complicated wake potential structure. We are
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Figure 2: Approximate electron normalized potential energy (−eφ/Te) as a function of po-
sition, corresponding to eq. (4)

interested in the nearer wake where the electron instability processes are stronger and the
potential structure more robust.]

For analytic convenience, two cruder approximations have also been explored. The “linear
φ” is simply to suppose that eq. (2) applies up to the axis of symmetry and the upper
solution applies above it; the “flat-top φ” is to adopt eq (2) only until −φ reaches the value
1 + R/x − ln 2 and then flat otherwise, in the near-axis region. For these cruder forms the
orbit can be integrated analytically which is useful for verification of the numerical orbit
solution to be described in section 4.

3 Electron stability with energy conservation

The instability we consider here is that of electrostatic waves arising from the parallel elec-
tron distribution function shape. Other possible mechanisms include anisotropy-driven in-
stabilities involving the magnetic field and instability arising from the two-stream nature
of the ions, which has been characterized elsewhere[9, 10]. We ignore these other insta-
bilities and focus on the electrostatic electron instability which will be by far the fastest
growing, if it exists. The Penrose criterion states that instability arises if and only if there
is a minimum in the one-dimensional distribution function f(v) at a velocity v0 and that∫

[f(v) − f(v0)]/(v − v0)2dv > 0 [22]. It therefore suffices for stability to demonstrate that
f(v) is monotonically decreasing either side of a single maximum. Maxwellian or Kappa
distributions, even with a shift of velocity origin representing parallel drift, are stable by this
criterion.
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At any point in space, the collisionless electron velocity distribution function at any
velocity v‖ may in principle be found by tracking backwards along the (phase-space) orbit
until one arrives somewhere in the unperturbed plasma, where the distribution function at
the corresponding energy is known. If such an orbit instead tracks back until it intercepts the
object, then under the assumption the object is purely absorbing, that orbit is unpopulated.

Recall, however, that all the orbits move with a constant velocity in the perpendicular
direction (in the rest frame of the object). If the typical electron thermal velocity is much
larger than this drift velocity, then the spatial trajectory of all the electron orbits will be
dominated by parallel motion rather than by the perpendicular drift, and as a result hardly
any orbits will actually intercept the object.

In a wake, the electric potential is negative, repelling electrons. The height of the po-
tential energy hill that the electrons encounter, which peaks at the axis of symmetry of the
wake, depends upon the x-position in the wake. For a point on the negative y side of the
wake, orbits with sufficiently negative velocity at the point track backwards over the hill to
the upper side of the wake. Others are reflected by the hill (if vy < 0) and track to the lower
side, as illustrated in Fig. 1. Nevertheless, if the distant electron distribution is reflectionally
symmetric about the wake axis, and parallel energy is conserved, then it makes no difference
which side of the wake the orbit originated from. The electron distribution at the point of
interest is then equal to the unperturbed distribution shifted by energy.

If, on the contrary, the distant electron distribution is asymmetric in velocity, for exam-
ple shifted in velocity, representing a net parallel mean velocity of electrons, the electron
distribution in the vicinity of the wake will then possess a discontinuity at the marginal
velocity whose orbit only just crosses the potential hill. Higher energy electrons have orbits
that are monotonic in y and have arisen from the negative v‖ part of the distribution in the
upper region. Lower energies are reflected orbits that arose from the positive v‖ part of the
distribution function in the lower region. The distribution will have a local minimum if the
shift of velocity in the distant distribution is in the negative direction. In other words, if the
distribution of electrons that cross the hill (i.e. have negative distant velocity) is larger (at
the same energy) than those that are reflected (i.e. have positive distant velocity) instability
may arise. [Mathematically the discontinuity is an infinite gradient, but acts as if the sign
of f ′ has changed.]

Fig. 3 illustrates the effect on the distribution function, using a Kappa distribution to
emphasize that the effect is not dependent on Maxwellian distributions. The undisturbed
electron distribution is taken as f(v) = [1 + (v − vs)2/(κθ2)]−(κ+1) with θ = 1, κ = 2, and
the conserved energy is 1

2
v2 +Ep, where Ep is the potential energy in normalized units. The

presence of the potential hill forms an unstable distribution at the reflection discontinuity if
the distribution’s velocity shift vs is negative, so that reflected electrons (with v immediately
above the discontinuity) have a smaller unperturbed distribution function. Postive vs can
give rise to a dimple at the top of the distribution function (Fig. 3(a)), but this is unlikely
to be Penrose-unstable for small vs, and disappears at positions where E > 1

2
v2s (Fig. 3(b)).

Asymmetry in the electron distribution is known to arise in the solar wind especially
in the form of the “Strahl”, an energetic parallel electron tail flowing away from the sun,

6



(a) (b)

Figure 3: Distribution functions adjacent to a potential energy hill of normalized height 2,
when the external distribution has a velocity shift vS. (a) at potential zero, in the unper-
turbed region; (b) at a position where normalized potential is 0.5. The shape is unstable
(bump-on-tail) if vs < 0.

believed to arise because of magnetic-mirror force acceleration. However, this population
is predominantly at high energies and has a relatively low density; so the instability will
saturate at a modest level.

4 Instability from energy-nonconservation

We now consider an effect that can cause instability even when the external electron distribu-
tion is reflectionally symmetric. Therefore in this section only unshifted external distribution
functions are considered. The effect arises because parallel electron energy is not exactly
conserved along orbits. Energy non-conservation can be considered, in the moving frame of
the background drift, to arise from the fact that the wake potential is changing with time.
Alternatively, in the frame of the object, it comes from the convective perpendicular velocity,
and may be understood from the parallel momentum equation in steady state (∂/∂t = 0)

v⊥
∂v‖
∂x

+ v‖
∂v‖
∂y

=
e

me

∂φ

∂y
−→ ∂v

∂x
+ v

∂v

∂y
=

1

mr

∂φ

∂y
. (5)

The first form here is the dimensional equation to help the reader with familiarity, the
second is the equation expressed in dimensionless units, where mr = me/mi, and the parallel
subscript has been dropped for brevity. If the first term on the left hand side of either
of these equations were absent, then that side becomes simply 1

2
∂v2/∂y, a total derivative,

which leads immediately to the conservation of energy 1
2
v2−φ/mr = constant, in normalized
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units. The extra term means parallel energy is not conserved. The extra term is apparently
smaller than the other terms by a factor of order v⊥/ve, although we shall see in a moment
that the factor is actually cs/ve =

√
mr, but it is not immediately obvious how important it

is, and what it actually does to the distribution function.

Figure 4: Orbits that all end at the point (0.6,0.) determining the distribution function there.
Mass ratio m−1r = 25.

Heuristically one can understand how a depression in the electron distribution function
(and hence an instability) arises as follows. Figure 4 plots a series of actual orbits for
illustration. The electron orbits that are most affected by the convective drift are those which
spend longest near the peak of the potential (i.e. the symmetry axis). They do so because
their parallel velocity is near zero there. These are the marginal orbits that just barely make
it over the potential hill or are just barely reflected. They start in the unperturbed region
at a parallel speed that has to be high enough to climb the potential hill at a position where
the hill is high (because x is smaller). They drift across the field during their time near the
potential peak (not gaining parallel energy) to where the potential is lower (because x is
larger). Then their evolving parallel speed carries them down the hill to the final position,
but as it does so they gain parallel energy corresponding only to the difference between the
lower potential peak and the final position. The distribution function at the final position
and speed (f(v)) is equal to the external distribution function at the starting point with the
starting speed (f∞(v∞)), but the starting speed is higher than would be the case with energy
conservation. This effect is present for all orbits but it is much stronger for marginal orbits.
The distribution function f is therefore smaller for marginal orbits (because their starting
speed is higher) than it is for orbits further from marginal. That is, a depression is formed
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near the marginal velocity.

4.1 Analytic Orbit Solution

To quantify the effects of the energy-nonconservation, one must solve the orbit equation.
This can be done analytically when the potential has the form that arises from the self-
similar solution of the ion problem (eq 2). One should recognize that to adopt the ion
solution form of potential is only an approximation. We are calculating distributions that
are not exactly those giving the Boltzmann or polytrope relationship between φ and density,
assuming the effect on that relationship is small. An iterative approach to the solution could
of course in principle solve for the self-consistent potential incorporating the full numerical
electron distribution (and also the effect of the overlap of the ion streams). But that would
be a far greater task, and yield little extra insight for the electron distribution stability. We
will therefore be content with observing after the fact that the electron density deviates only
negligibly from its assumed relationship, at least in those regions where we have not made
other approximations of comparable significance.

We work henceforth in dimensionless terms. Writing z ≡ y/x, suppose φ = φ(z) is a
quadratic in z, so that

dφ

dz
= A+Bz, (6)

where A and B are constants. For the Boltzmann-density case, actually A = −1, B = 0.
For for the polytropic problem, arising from Kappa-distribution electrons, form (6) is also
obtained, but with B 6= 0. Also, the orbit is

dy

dx
= v

(
⇒ d

dx
=

∂

∂x
+ v

∂

∂y
and

dz

dx
=
v − z
x

)
(7)

and of course

mr
dv

dx
=
dφ

dy
. (8)

So we have

x
dv

dx
= (v − z)

dv

dz
=

x

mr

∂φ

∂y
=

1

mr

dφ

dz
= (A+Bz)/mr. (9)

When B is non-zero, the equation (v−z)dv/dz = (A+Bz)/mr can be integrated by rendering
it into homogenous form and separating the variables through the substitutions s = z+A/B,
and u = (v + A/B)/s. The final result is

[v + A/B − (z + A/B)u+]P
+

[v + A/B − (z + A/B)u−]P
−

= const (10)

where

u± = (1±
√

1 + 4B/mr)/2 , and P± = (1− ±1√
1 + 4B/mr

)/2 . (11)
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Eq. (10) is the replacement for the conservation of energy, in our convecting situation. For
the Maxwellian case, B = 0, A = −1, the integration proceeds more easily to obtain

mrv − ln(mr[v − z] + 1) = const. (12)

One can verify for either of these conservation equations (10,12) that to lowest order in
√
mr

as mr → 0 they become 1
2
mrv

2−(Az+Bz2/2) = const, which is exactly energy conservation.
For any orbit that moves only in the region where the one-sided self similar potential eq. (2)
applies, because it is directed inward towards the potential energy hill or was reflected well
away from its peak, these equations apply. In that case, the orbit at phase space position
(z, v) tracks back to some corresponding point in the lower undisturbed plasma (z∞, v∞)
and f(z, v) = f(z∞, v∞). (We discount for now orbits that might reach the object, which
are unpopulated.) Then, provided that the function v∞(v) is monotonic, if f(z∞, v∞) has
no minimum then neither does f(z, v). This part of the electron distribution is stable.
[This point contradicts the heuristic arguments of [20] which claimed that “time-of-flight
processes” form “an inward directed ... electron beam”. No inward “beam” in the sense of
a secondary maximum of the electron distribution function can form by such processes.]

However, for orbits that move close to the axis of symmetry, or over the potential energy
hill from the top to the bottom, more elaborate analysis is required, because eq. (2) does
not apply. It proves possible to extend the analytic treatment for the two cases described in
section 2, by joining solutions in different regions: above and below the symmetry axis, or
at the edge of the flat potential region.

To accomplish the joining, one must integrate the orbit in x and y (not just the self-
similar coordinate z). The orbit can be expressed as a single (complicated) quadrature for
the polytrope case. But since the form of the distribution does not qualitatively alter the
effect, only the analytically simpler solution for a Maxwellian distribution is given here.
In that case the orbit eq. (8) is simply mrdv/dx = −1/x, with the immediate integral
mrv + lnx = const. Integrating again and requiring the velocity to be v0 at the final point
(x0, y0) we find the solution

y = y0 + x ln(x0/x)/mr + (v0 + 1/mr)(x− x0). (13)

For the “linear” and “flat-top” potential forms, the full orbit can then be constructed by
joining solutions like this (eq. 13) with straight-line sections in which the potential gradient
is zero. They give rise to unstable electron distributions.

4.2 Numerical Orbit Solution

For the potential form of eq (4) it is not possible to solve for the orbit analytically. So
instead, a computer program has been implemented to solve for the orbit y(x) by integrating
backward from the end-point using a fourth order Runge-Kutta integrator. This integrator
has been benchmarked against the analytic solutions (using the appropriate potential forms)
giving negligible systematic error, though noise arising from rounding errors is slightly worse.
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All subsequent results shown use eq. (4) for the potential, as the appropriate approximation
for interpenetrating ion streams.

Tracking back many such orbits for different end-point velocities provides the electron
velocity distribution function at the end-point of interest (x0, y0). The parameters that
govern the result are just that point position and mr. It is convenient to measure y in units
normalized to the object half-height, R. Then the units of x are Rv⊥/cs: i.e. larger by the
drift Mach number.

Fig. 4 illustrates with a restricted number of velocities a case with end-point closer to
the object (x0 = 0.6) and deeper into the wake (y0 = 0) than Fig. 1. And Fig. 4 has a mass
ratio m−1r = 25, characteristic of a non-physical calculation with enhanced electron mass.
The electron orbits extend backwards most of the way to the object. The orbits bifurcate
when they make the transition from crossing the symmetry axis to being reflected before it.
Since the bifurcation occurs at the marginal orbit, we can graphically summarize the orbit
behavior for the far larger number (typically 500-1000) of orbits actually used for distribution
function evaluation simply by plotting two marginal orbits.

(a) (b)

Figure 5: (a) Marginal orbits for a range of mass ratio mi/me = m−1r = 25, 50, 100, 200,
400, 800, 1600, 3200. (b) Electron distribution functions at the final point (0.25,0.4), for
these parameters. The insert expands the display of the unstable region of velocity space,
plotting f(v) on a linear scale.

In Fig. 5 are shown marginal orbit examples for a range of m−1r values. The reduction
of mass ratio leads to increasing drift effect. Tracking back the marginal orbits, their starts
are increasingly closer to the object. The resulting distribution functions are plotted in Fig.
5(b). Lower mass-ratio cases show wider and deeper distribution minima. Formally, all the
distributions of Fig. 5 are Penrose unstable. The linear inset close-up of the marginal velocity
region clearly shows a minimum in f(v). Although it arises from effects that cause a difference
between reflected and unreflected orbits its occurrence requires no asymmetry in the distant
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distribution. The bump-on-tail of the case corresponding to nature (mi/me ∼ 1600) is fairly
small and the minimum narrow, compared with the enhanced-electron-mass cases.

(a) (b)

Figure 6: Velocity distributions for a range of mass ratio mi/me = m−1r = 25, 50, 100, 200,
400, 800, 1600, 3200 . (a) Final point (1.0,-1.05). (b) Final point (0.15,-0.05).

If we choose a point out on the edge of the wake region or even outside it, such as is
shown in Fig. 6(a) for position (1.0,-1.05), then there is no suppression of the peak of the
distribution. It is equal to unity, the normalized value in the external plasma. At this
position, while a deep hole is present in f(v) for large electron mass, the distribution at
physical mass ratio is practically stable within the noise level of the calculation.

In contrast, when the point of interest moves closer to the object (smaller x) as in Fig.
6(b), the marginal velocity is further out on the tail of distribution function. An unstable
minimum is present; but it is at a distribution height that is very small, ∼ 10−4 of the peak.
As x is decreased still further the instability strength is eventually actually reduced to a
negligible level as the gaussian tail decay becomes predominant.

These velocity trends arise, of course, because the height of the potential hill at posi-
tion (x, 1) is equal to ln(cosh(1 + 1/x)), which approximately determines the corresponding

marginal (f -minimum) velocity v ≈ 2
√

(Te/me) ln(cosh[(1− y)/x]).

5 Nonlinear perturbation magnitude

To quantify the instability’s significance for unstable electron distributions it is helpful to
use a quasilinear estimate of the final state of the distribution function after the instability
has grown and saturated. This is based upon the approximation illustrated in Fig. 7. The
distribution is presumed to flatten in its unstable region by quasilinear diffusion, conserving
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(a) (b)

Figure 7: (a) Quasi-linear evolution of the distribution function is assumed to be from the
initial state, f , to a final distribution, fnl, where the unstable region is flattened by mixing.
That flat region is taken to connect continuously to the initial distribution at its ends, and
to conserve particles. (Area a = Area b.) (b) A plot of the actual numerical flattening
process for distributions with mi/me = m−1r = 25, 50, 100, 200, 400, 800, 1600, 3200, and
final position (0.6,0). The flattened plateau is shown by the dashed line. Individual velocity
points are shown for the uppermost case (3200) to indicate resolution.
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particles. It is taken to connect continuously to the unperturbed distribution at the edge of
the region of flattening. This specification uniquely defines the final state, whose energy is
lower than the initial state. The energy loss from the resonant particles (∆E) can readily be
evaluated by integration. It generally goes equally into wave energy and heating of the bulk
electron distribution[23]. So it represents approximately twice the saturated turbulent wave
energy expected to be induced by the instability. The ratio of the resonant particle energy
loss to the total thermal energy (E0) of the pre-flattening electron distribution, gives a useful
quantitative measure of the strength of the instability. The rounding error of the present
calculations becomes increasingly dominant below ∆E/E0 <∼ 10−6, so distributions giving less
than that cannot be accurately assessed here. The background Langmuir turbulence present
in the solar wind is observed to be up to ∼ 10−6 of E0 [24], so where numerically significant
resonant energy loss is found, it is well above levels in the unperturbed solar wind.

For each distribution function, of the type illustrated in Figs. 5, 6 (but for a single specific
mass ratio, mr) the values of ∆E and E0 are calculated using direct numerical integration.
We perform a large number of such calculations over a 20 by 20 grid of positions throughout
the xy-plane and display the results as a contour plot of log10(∆E/E0) in Fig. 8.

(a) (b)

Figure 8: Contours (spaced by 0.2) of the relative instability strength log10(∆E/E0) over the
wake xy-plane. (a) mi/me = 25, (b) mi/me = 1835. Geometry as in Fig. 1. The y-units
are object-radii, and the perpendicular distance in object-radii is equal to the perpendicular
Mach number (v⊥/cs) times x.

We observe that with artificially enhanced electron mass, so that mi/me = 25, most of
the wake region is unstable (Fig. 8(a)). Indeed, that instability extends into the external
region where potential is undisturbed (i.e. to y < −x). The only positions that are not
unstable are at very small x. There the distribution function is completely depleted at the
marginal velocity, in the way illustrated by Fig. 6(b). The strongest instability occurs near
the wake symmetry axis (y = 1) where a substantial bump-on-tail occurs like that illustrated
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in Fig. 5. The total electron density (and energy density) itself is also substantially depleted
there, which contributes to the enhancement of the relative resonant energy loss by lowering
E0.

In contrast, for realistic mass ratio mi/me = 1835 (Fig. 8(b)) the instability strength is
greatly reduced: by roughly two orders of magnitude. (Fig. 8 is of the logarithm of instability
strength.) The qualitative spatial distribution of instability strength is fairly similar to Fig.
8(a) but because it is quantitatively so much smaller, it reaches approximately the noise
level at the edge of the wake’s perturbed potential region. Roughly speaking, the instability
is significant for y > 0, i.e. throughout the geometric wake.

Intermediate mass ratios give contour plots intermediate between the two shown. The
trend is illustrated in Fig. 9 for the instability strengths at several fixed points. The curves

Figure 9: Variation of instability strength, ∆E/E0, with mass ratio for several end-points.

of ∆E/E0 versus mi/me fall almost linearly in this logarithmic plot as mi/me increases,
with slope slightly steeper than -1. There is no reduced threshold at which a mass ratio is
sufficiently large to give quantitative results comparable to nature. One simply has to use
the correct mass ratio.

The analytic potential approximations of “linear φ” and “flat-top φ” have also been
explored to determine their instability strength. It is found that the linear φ gives substan-
tially weaker instability, and the flat-top gives substantially stronger instability (by factors
between 10 and 100). This observation demonstrates that the spatial profile shape of the
potential plays a major role in determining the strength of the instability. Flat-top is more
unstable because the marginal orbits spend more time near the potential peak. Linear is
less unstable because they spend less. This effect is sufficiently strong that the uncertainties
in the potential profile shape arising from the various approximations of the ion problem
solution may significantly affect the numerical values of the instability strength. Therefore
while the contour plots shown give a correct order of magnitude instability strength, they
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cannot be considered precise.
One should note that, because it is expressed in scaled units, Fig. 8 is essentially a uni-

versal figure. The value of the instability strength is not dependent upon plasma parameters
such as density or temperature so long as the Debye length and Larmor radius are small
compared with the object. Nor does it depend on object size or drift Mach number. It does
require the external electron distribution to be well represented by a Maxwellian. Natu-
rally non-thermal external electron velocity distributions such as might be represented by
kappa-distributions, will affect the instability strength. However, the mechanism by which
instability arises is the same no matter what the external distribution is; and, notably, it
does not require non-thermal electron distributions.

For comparison, the values of the fractional quasi-linear energy loss ∆E/E0 for the unsta-
ble distributions arising in the energy-conserving case with external distribution shift, Fig.
3, are (a) 8.5× 10−4, and (b) 1.8× 10−3. Thus, inside the wake, the instability arising from
energy non-conservation is of the same order of magnitude as would arise from a major ex-
ternal electron velocity shift: 0.2 times thermal. The level of electric field fluctuation energy
in thermal equilibrium is E0 multiplied by a factor ∼ 1/(neλ

3
De). That factor, for the solar

wind, is of order 10−10. So all the turbulent energy levels discussed here are many orders of
magnitude higher than thermal.

6 Oblique magnetic-field/drift

When the magnetic field and the drift velocity (of the plasma past the object) are not
perpendicular, the solutions we have presented still apply immediately when interpreted in
a way that this section describes. We continue to use coordinates in which the magnetic
field is in the y-direction. The drift velocity is now oblique in the xy-plane. (This is a
different choice of coordinates from what is generally adopted in the space-physics community
when discussing wakes; they take the x-axis along the drift velocity). In these magnetic-
field coordinates, an oblique external drift is completely equivalent to prescribing that in
addition to the fixed perpendicular drift velocity v⊥ (in the x-direction), the ions in the
external region have a non-zero parallel velocity relative to the object v‖∞ [25, 12]. Since the
quasi-neutral equations are entirely hyperbolic, as we have noted earlier, the x-coordinate
is equivalent to the time, t. In effect, the abscissa of our plots can be considered either the
distance from the object in its frame of reference, or the time since passing the object in the
frame of the perpendicularly drifting plasma. In a frame of reference moving at speed v‖∞
in the y-direction with respect to the object, the external parallel (y) velocity is zero. The
solution of the wake problem in this plasma-frame is of precisely the form we have considered
above, except that the object is moving with y-speed −v‖∞. Because we are approximating
the object as foreshortened in the scaled coordinates so that its edge radius of curvature
is negligible, the fact that it is moving is irrelevant to the solution. When the x-axis is
interpreted as the time cst since the particular vertical slice of plasma passed the object,
the graphs we have plotted previously apply without alteration. If, instead, one were to plot
a snap-shot of the 2-dimensional spatial variation at a particular instant of time, however,
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the xy plane would be sheared by the −v‖∞ motion. This shearing is purely geometrical. It
amounts to the replacement of the y spatial coordinate with y′ = y− v‖∞t = y− (v‖∞/cs)x.
Although this shearing may be large (because of high Mach number) in the coordinates we
have been using, it does not affect the equations for the ion or electron dynamics.

Therefore, the solutions we have obtained above apply directly to cases with finite exter-
nal parallel ion drift, provided that they are interpreted as being the solutions as a function
of time, in the plasma frame of reference.

The question then arises as to what the external electron velocity distribution actually is,
in this plasma reference frame. Is it symmetric or not? Since v‖∞ is typically ∼ 10cs for the
moon in the solar wind, the frame’s velocity is a significant fraction, ∼ 0.2, of the electron
thermal velocity. If, then, the electron parallel distribution were a stationary Maxwellian in
the rest frame of the moon, it would be substantially shifted in the moving frame and the
effects of section 3 would immediately apply. However, it can be shown from considerations
of magnetic field gradient that the total electric current density in the solar wind must be
far less than would be implied by a relative velocity of electrons and ions of 0.2ve. Therefore,
in fact the mean electron and ion speeds are very nearly equal in the external wind. That
means the electron distribution is unshifted in the parallel-moving reference frame, and the
effects discussed in section 3 do not arise from parallel drift (though they might arise from
higher-order electron distribution asymmetry such as skewness).

7 Summary

Two mechanisms by which unstable parallel electron velocity distributions can arise in a
magnetized plasma wake have been explored. First (section 3) substantial asymmetry of
the external velocity distribution, for example an overall parallel drift, can be turned into
instability by the wake’s potential structure. However, limits on electric current density
in the solar wind near the moon (for example) prevent average electron drift alone from
being large enough to generate major instability. Second (section 4) the non-conservation
of electron parallel energy in the perpendicular drift also gives rise to unstable distribution
minima near the marginal electron velocity that only just traverses the potential energy hill
of the wake. The electron distributions have been calculated for collisionless orbits, and the
turbulence energy density to which they would give rise has been evaluated quasi-linearly.
The instability is found to be everywhere in the wake quite significant, and fairly strong
near the wake axis. If artificially large electron mass is used, as is frequently the case in
simulations that treat both electrons and ions by PIC techniques, then this instability effect
is greatly enhanced; so their results will not be in quantitative agreement with nature.

Hybrid PIC simulations which proceed to the opposite extreme — infinitesimal electron
mass (e.g. [7, 8, 2])— obviously omit the parallel electron instability completely; but since
they make no pretence of treating the details of the electron dynamics, they will perhaps be
less likely to be misleading. There are of course many other ion and anisotropy instability
mechanisms that will perturb the electrons. The present work establishes the approximate
Langmuir turbulence level arising from the electron parallel distribution, with which these
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other mechanisms will compete.
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