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Abstract

We present a numerical solution of the drift kinetic equation retaining the linearized Fokker-

Planck collision operator which is valid for general axisymmetric magnetic geometry in the low

collisionality limit. We use the well-known variational principle based on entropy production

and expand in basis functions. Uniquely, we expand in pitch-angle basis functions which are

eigenfunctions of the transit-averaged test particle collision operator. These eigenfunctions, which

depend on the geometry, are extremely well suited to this problem, with only one or two basis

functions required to obtain an accurate solution. As a simple example of the technique, the

neoclassical ion heat flux and poloidal flow are calculated for circular flux surfaces and compared

with analytic approximations for arbitrary aspect ratio.
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I. INTRODUCTION

Neoclassical transport is concerned with the transport of particles, heat, momentum, and

current due to collisional relaxation in an inhomogeneous magnetic geometry [1, 2]. Usually,

neoclassical cross-field transport is overwhelmed by turbulent transport. However, under

enhanced confinement conditions such as within an internal transport barrier, turbulence

can be suppressed and ion thermal transport can be reduced to neoclassical levels [3]. As a

result, there has been a revival of interest in accurate calculations of neoclassical transport.

Numerical solutions of the drift kinetic equation (DKE) have been carried out previously.

The NEO code by Belli and Candy calculates neoclassical transport for arbitrary collision-

ality including multiple species [4]. In that work, collisions are incorporated through the

Hirshman-Sigmar approximation [5] to the linearized Fokker-Planck collision operator. Re-

cently, Wong and Chan have solved the first order DKE for a single ion species and arbitrary

collisionality using the full linearized Fokker-Planck collision operator [6]. However, their

technique converges too slowly in the limit of low collisionality and large aspect ratio to

compare with the available exact results.

In this work we solve the first order ion DKE for a single ion species in the low colli-

sionality limit using the full linearized Fokker-Planck operator. Our solution method uses

a variational principle [7] for the first order DKE and is valid in arbitrary axisymmetric

magnetic geometry. Uniquely, we use an expansion in pitch-angle basis functions which are

eigenfunctions of the transit-averaged test particle collision operator [8–10]. These eigenfunc-

tions, which depend on the geometry, turn out to be extremely well suited to this problem.

Because we are considering weak collisionality, and not considering finite orbit width effects

or coupling with electrons or impurities, our work should be viewed as a study of the impor-

tance of keeping the linearized Fokker-Planck collision operator without approximation. For

concentric circular flux surfaces, we find that at intermediate aspect ratios, the well-known

approximate analytic expressions accurately calculate the ion heat flux, but there are small

corrections required for plasma flow. Our solution easily converges to the known results in

the limit of large aspect ratio and unit aspect ratio.
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II. VARIATIONAL PRINCIPLE

To examine the consequences of retaining the full linearized Fokker-Planck collision oper-

ator we work in the limit of small gyroradius and small normalized collisionality and retain

a single ion species. The starting point for the theory is the drift-kinetic equation for the

gyroaveraged ion distribution function f [1]. The primary ordering parameter is δ ≡ ρ/L,

where ρ = vT /Ω is the gyroradius, L is the macroscopic scale length, vT = (2T/m)1/2 is the

thermal speed, Ω = ZeB/mc is the gyrofrequency, T is the ion temperature, Z and m are

the ion charge number and mass, respectively, B is the magnetic field, and c is the speed

of light. The equilibrium magnetic field is B = ∇ζ ×∇ψ + I(ψ)∇ζ where ζ is the toroidal

angle, ψ is the poloidal flux divided by 2π, I = RBζ , and R is the major radius.

After expanding in small δ, H-theorem arguments show that the lowest order distribution

is Maxwellian on each flux surface, fm = n/(π3/2v3T ) exp(−v2/v2T ), where n is the ion density

[1]. The small δ ordering implies behavior is local in ψ. Subsidiary expansion is performed

in the limit of small normalized collisionality ν∗, where ν∗ = νeff/ωb, νeff is the effective

scattering frequency of trapped particles, and ωb is the bounce frequency of trapped particles.

One obtains the “collisional constraint equation” for the perturbed distribution function f1

[1, 7, 11] 〈
B

v‖
C(f1)

〉
= 0, (1)

where f = fm + f1 and C is the linearized like-species Fokker-Planck collision operator. We

neglect ion-electron collisions. The angle brackets denote a poloidal transit average, given

by 〈y〉 =
(∮

dθ y/B · ∇θ
)
/
∫ 2π

0
dθ/B · ∇θ, where θ is the poloidal angle. The integral in

the numerator goes from 0 to 2π for untrapped particles and is a closed orbit between the

turning points for trapped particles. We decompose f1 as

f1 ≡ F + g, (2)

where F is a known function and acts as a source term, and is given by

F = −Iv‖
Ω

∂fm
∂ψ

∣∣∣∣
E

= −Iv‖
Ω

[
p′

p
+
qΦ′

T
+

(
v2

v2T
− 5

2

)
T ′

T

]
fm. (3)

Here the ψ derivative is taken at constant total energy E = mv2/2 + ZeΦ, Φ is the electric

potential, p is the ion pressure and a prime denotes d/dψ. The unknown function to be

solved for is g, which depends only on constants of the motion and not on θ [7]. The
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homogeneous solutions of Eq. (1) which may be added to g amount to a shift in the density

or temperature of the full distribution function, so such homogeneous solutions are ignored.

The integral in Eq. (1) annihilates the drive term F in the trapped region of phase space, and

so g is zero in the trapped region. A consequence of the above is that g has a discontinuous

derivative at the trapped-passing boundary. It has been shown that if one goes to next

order in collisionality ν∗, in actuality a boundary layer exists, and the discontinuity can be

resolved [12].

A variational principle for the collisional constraint equation is given by the minimization

of the entropy production integral [1, 7, 11]

S = −
〈∫

d3v
f1
fm
C(f1)

〉
. (4)

To solve the collisional constraint equation, we can in principle evaluate Eq. (4) for many

different trial functions f1 subject to the constraints. If the trial functions are chosen well,

the f1 which gives the lowest value for S is closest to the true solution and presumably a

good approximation. The constraints are Eq. (2) and the vanishing of g in the trapped

region. Because the drive term is odd in v‖, it is also clear that g will be odd in v‖.

One way to parameterize the search space of all allowable functions g is to write g as

an expansion in basis functions. For this purpose we use the velocity coordinates (v, λ, σ),

where λ ≡ v2⊥B̄/v
2B, σ ≡ sign(v‖), and B̄ is the maximum magnetic field on a flux surface.

We write g and f1 in the following normalized form:

g = Afm
∑

i

aiBi(x, λ, σ), (5)

f1 = A

(
∑

i

aiBi(x, λ, σ)− hx3ξ

)
fm − Iv‖

Ω

[
p′

p
+
qΦ′

T
− 5

2

T ′

T

]
fm, (6)

where x ≡ v/vT is the normalized speed, ξ = v‖/v, A ≡ IvTT
′/Ω̄T , Ω̄ ≡ ZeB̄/mc, κ ≡

n/(π3/2v3T ) is defined through fm = κe−x2

, and h(θ) ≡ B̄/B(θ). The basis functions Bi

satisfy the same constraints as g, namely, they vanish in the trapped region and are odd in

σ. The ai are the unknown coefficients. Equation (4) becomes

η−1S = −
〈∫

d3x
f1
fm

C(f1)

A2κνB

〉
, (7)

where η ≡ A2π−3/2nνB and νB = 4
√
πZ4e4n ln Λc/3

√
mT 3/2 is the Braginskii collision fre-

quency. We substitute Eq. (6) into Eq. (7) and recognize that due to the conservation
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properties of the collision operator, the terms in square brackets in Eq. (6) are annihilated

by the integral. We obtain

η−1S = −
∑

i,j

aiajMij + 2
∑

i

aibi −
〈
h2
∫
d3xx3ξĈn

(
x3ξ
)〉

, (8)

where Ĉn ≡ Ĉ/(κνB) is the normalized collision operator, Ĉ(χ) ≡ C(χfm), and self-

adjointness has been used. The matrix elements are given by

Mij ≡
〈∫

d3xBiĈn(Bj)

〉
, (9)

bi ≡
〈
h

∫
d3xBiĈn

(
x3ξ
)〉

= h

∫
d3xBiĈn

(
x3ξ
)
, (10)

whereM is a symmetric matrix as a result of self-adjointness. The second form of bi without

an explicit flux surface average holds because there is no θ dependence left over when the

velocity integral is done first. In matrix notation,

η−1S = −aTMa + 2aT b+ η−1S3, (11)

where

η−1S3 ≡ −
〈
h2
∫
d3xx3ξĈn

(
x3ξ
)〉

= π3/2
〈
h2
〉
. (12)

In evaluating Eq. (12) we used

d3x = dx dλ dϕ
∑

σ

x2/2h|ξ| (13)

and
Ĉn(x

3ξ)

ξ
= −30xe−2x2

+ 3e−x2√
π(−5 + 2x2) erf(x)√
2x2

, (14)

the latter of which is independent of ξ due to the rotational symmetry of C.

We can minimize S in Eq. (8) with respect to each of the ai by taking the partial derivative

∂/∂ai and setting it equal to 0, which yields a matrix equation for the coefficients aj ,

Ma = b. (15)

While we have derived this matrix equation from the variational principle, it can also be de-

rived directly from the collisional constraint equation. The same matrix equation is obtained

from Eq. (1) by substituting in Eq. (6) and applying
∑

σ σ
∫
dv dλ v2Bj.
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III. BASIS FUNCTIONS

We now turn to the question of exactly what basis function Bi(v, λ, σ) to use for our

expansion. We let i→ {l, n} and use the separable form

Bln = σVl(x)gn(λ) (16)

where l = 0, . . . , L and n = 1, . . . , N .

In the Spitzer problem, a Laguerre polynomial expansion is used and only the source

terms b0 and b1 are nonzero; all the others vanish by orthogonality. This procedure leads to

a rapid convergence of the coefficients as one increases the number of polynomials retained

[11]. In the Spitzer problem, however, the source term was a polynomial in speed. In

contrast, for our neoclassical problem the source term is ĈN(x
3ξ)/ξ which is a complicated

function of x involving error functions and exponentials in the definition. It is too much

to hope that all the source terms are zero except for a finite number. However, it would

be convenient if the source terms bi decayed quickly as i increased. Then, perhaps the

coefficients would converge rapidly. Then using Eqs. (16) and (14) in Eq. (10) gives

bi → bln = 2π

∫ ∞

0

dx x2Vl(x)
Ĉn(x

3ξ)

ξ

∫ hmin

0

dλ gn(λ). (17)

The two integrals in bln, x and λ, are independent. Ideally, the λ integral tends to zero for

large n, while the speed integral tends to zero for large l. This behavior will be used as a

criterion for determining appropriate basis functions for expansion. For convenience let

Xl ≡
∫ ∞

0

dx x2Vl(x)
Ĉn (x

3ξ)

ξ
, (18)

βn ≡
∫ hmin

0

dλ gn(λ). (19)

A. Basis function in x

For the speed basis functions a common choice is to involve the set of Laguerre polyno-

mials L
(3/2)
l (x2). We use

Vl(x) = xL
(3/2)
l

(
x2
)
. (20)

A generating function for the generalized Laguerre polynomials is [13]

s(x, z;α) =
e−xz(1−z)

(1− z)α+1
=

∞∑

l=0

L
(α)
l (x)zl, (21)
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which implies

L
(α)
l (x) =

1

l!

∂ls

∂zl

∣∣∣∣
z=0

. (22)

The generating function can be used to calculate the Xl. For α = 3/2, we use Eq. (14) to

find

q(z) ≡
∫ ∞

0

dx x3s(x2, z; 3/2)
Ĉn (x

3ξ)

ξ
= 3

√
π

2
z(2 − z)−3/2 (23)

and

Xl =
1

l!

dlq

dzl

∣∣∣∣
z=0

=
3

2l
Γ(l + 1/2)

Γ(l)
, (24)

where Γ(x) is the gamma function. Observe that Xl decays as 2
l for large l.

B. Basis function in λ

The primary requirement for the λ basis functions is that they are 0 in the trapped

region. The passing region is given by 0 < λ < 1, while the trapped region is given

by 1 < λ < hmax. We will use eigenfunctions of the transit-averaged test particle collision

operator. The eigenfunctions are defined through a Sturm-Liouville problem as the solutions

of [8–10]

d

dλ
p(λ)

dgn
dλ

+ µnw(λ)gn = 0, (25)

where

p(λ) ≡ λ〈|ξ|〉, (26)

w(λ) ≡
〈

1

h|ξ|

〉
, (27)

with boundary conditions g(λ = 1) = 0, and at the lower boundary λ = 0 we need only

require that gn and its derivative be finite. The µn are the eigenvalues. This differential

equation is a singular Sturm-Liouville problem with a complete set of orthogonal eigenfunc-

tions satisfying the boundary conditions. We additionally normalize the eigenfunctions such

that gn(λ = 0) = 1.

The gn must be found numerically by solving the Sturm-Liouville problem. We obtain

a set of orthogonal eigenfunctions gn(λ), n = 1, 2, . . . for which we define the following
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integrals:

Mnδnm =

∫ 1

0

dλw(λ)gn(λ)gm(λ), (28)

βn =

∫ 1

0

dλ gn(λ). (29)

From the properties of Sturm-Liouville equations, each gn has n zeroes. Therefore, as

n increases the gn become more oscillatory, so βn tends to decrease to 0 for large n, as

desired. In the ǫ → 0 limit, the eigenfunctions are gn(λ) = P2n−1(
√
1− λ) with eigenvalues

µn = 2n(2n − 1)/4, βn = 2δn1/3 and Mn = 2/(4n − 1), where the Pn are the Legendre

polynomials [10].

These pitch-angle eigenfunctions have the advantage that they depend on the magnetic

geometry, which removes the explicit geometric dependence from other parts of the calcu-

lation. In particular, the integrals involving the test part of the collision operator can be

performed easily. In addition, in the large aspect ratio limit, the g1 term dominates in an

ǫ1/2 expansion, making the large aspect ratio limit easy to solve.

Figure 1 shows the first few eigenfunctions for the circular flux surface geometry described

in Eq. (30) with ǫ = 0.3. The first eigenfunction g1(λ) (blue solid line) can be compared

with the λ dependence obtained when solving the collisional constraint equation with only

the pitch-angle scattering collision operator. In that case the lambda dependence is given by

the solution of the differential equation (pg′)′ = constant, or gR(λ) = N0

∫ 1

λ
dλ′/〈

√
1− λ′/h〉

(blue dashed line), where N0 is a normalization constant. The two functions g1(λ) and gR(λ)

are fairly close, and it can be shown they differ by O(ǫ1/2) in the large aspect ratio limit.

IV. SOLVING THE MATRIX EQUATION

A. Model Magnetic Field

The technique as described is valid for arbitrary magnetic geometry. However, to compare

with previous results, and as a particular example, we next consider a model magnetic field

with concentric circular flux surfaces.

B =
B̄(1− ǫ)

1 + ǫ cos θ

ϕ̂+ kθ̂√
1 + k2

, (30)
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−0.5
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λ
g
n
(λ
)

FIG. 1. Pitch-angle eigenfunctions (solid lines) gn(λ) for n = 1, . . . , 5, using the circular flux

surface geometry with ǫ = 0.3. The first eigenfunction g1(λ) is close to gR(λ) (dashed line), the

pitch-angle dependence obtained when the collisional constraint equation is solved retaining only

the pitch-angle scattering operator.

where k is only a function of radius. Then

h(θ) =
1 + ǫ cos θ

1− ǫ
(31)

and the flux surface average of a quantity y is given by

〈y〉 = 1

2π

∫ 2π

0

dθ y(1 + ǫ cos θ). (32)

B. Matrix Elements

The computation of the source terms bi has been described already in Section III. We

now describe the procedure to compute the matrix elements Mij in Eq. (9). We begin by

decomposing the collision operator into the pitch-angle scattering, energy diffusion, and field

terms.

Ĉn ≡ Ĉp
n + ĈE

n + ĈFa
n + ĈFb

n , (33)

where

Ĉp
n(χ) = e−x2 |ξ|hν̄⊥

∂

∂λ
λ|ξ|∂χ

∂λ
, (34)

ĈE
n (χ) =

1

2x2
∂

∂x
e−x2

x4ν̄‖
∂χ

∂x
, (35)

ĈFb
n (χ) = 3

√
2e−2x2

χ. (36)
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The remaining part of the field operator ĈFa
n is more complicated and is given shortly.

Here ν̄⊥(x) ≡ ν⊥(x)/νB, ν̄‖(x) ≡ ν‖(x)/νB, ν⊥(x) = νB3
√
2π[erf(x) − Ψ(x)]/2x3, ν‖(x) =

νB3
√
2πΨ(x)/2x3, erf(x) is the error function, and Ψ(x) = [erf(x) − x erf ′(x)]/2x2 is the

Chandrasekhar function. The matrix elements involving Ĉp
n, Ĉ

E
n , and Ĉ

Fb
n can be calculated

analytically. Decomposing the Mij as in Eq. (33) and using Eqs. (16), (20), and (34)–(36)

in (9), we obtain after some algebra

Mp
ij = (−µnK

p
ll′) 2πδnn′Mn, (37)

ME
ij =

(
KE

ll′/2
)
2πδnn′Mn, (38)

MFb
ij =

(
3
√
2KFb

ll′

)
2πδnn′Mn, (39)

where

Kp
ll′ ≡

∫ ∞

0

dx e−x2

x4ν̄⊥L
(3/2)
l

(
x2
)
L
(3/2)
l′

(
x2
)
, (40)

KE
ll′ ≡

∫ ∞

0

dx xL
(3/2)
l

(
x2
) d

dx
e−x2

x4ν̄‖
d

dx

[
xL

(3/2)
l′

(
x2
)]
, (41)

KFb
ll′ ≡

∫ ∞

0

dx e−2x2

x4L
(3/2)
l

(
x2
)
L
(3/2)
l′

(
x2
)
. (42)

An integration by parts could be applied to Eq. (41) to make the integral manifestly symmet-

ric in l and l′. The speed integrals can be computed directly. Alternatively, the generating

function technique used in Section IIIA can simplify the calculations somewhat. It is diffi-

cult to find closed-form expressions for Kp
ll′ and K

E
ll′, but it is relatively straightforward to

use the generating function to find

KFb
ll′ =

1

27/2
Γ(l + l′ + 5/2)

l! l′! 2l+l′
. (43)

The contribution to Mij from the final piece of the collision operator, ĈFa
n , must be

calculated numerically. ĈFa
n is given by [14]

ĈFa
n χ =

3

π
√
8
e−x2

[
2v2

v4T

∂2G1

∂v2
− 2

v2T
H1

]
, (44)

where the Rosenbluth potentials are

G1 =

∫
d3v′ fm(v

′)χ(v′)u, (45)

H1 =

∫
d3v′ fm(v

′)χ(v′)u−1, (46)

u = |v− v′|. (47)
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In normalized variables with y = v′/vT , this becomes

ĈFa
n (χ) =

3

π
√
8
e−x2

∫
d3y e−y2χ(y)U(u), (48)

where now u = |x− y| and

U(u) ≡ 2x2
∂2u

∂x2
− 2

u
(49)

=
x2 + y2 − 2

u
− u

2
− (x2 − y2)

2

2u3
. (50)

Substituting into Eq. (9) gives

MFa
ij =

3

π
√
8

〈∫
d3x d3y σxσye

−(x2+y2)gn(λx)gn′(λy)Vl(x)Vl′(y)U(u)

〉
. (51)

This expression is symmetric in swapping (l, l′) or (n, n′) independently. That is, we not

only have Mlnl′n′ =Ml′n′ln from self adjointness, but we also have Mlnl′n′ =Mln′l′n.

In the Appendix, we simplify Eq. (51) into a form appropriate for numerical integration.

C. Calculation of Neoclassical Quantities

Once the matrix coefficients Mij have been calculated, Eq. (15) can be solved for the

coefficients ai. With the ai known, the distribution function f1 is given by Eqs. (2) and (3)

or equivalently by Eq. (6), and the neoclassical quantities of interest can be computed. We

demonstrate the calculations of ion heat flux and plasma flow. We can relate S to the heat

flux through

S = − 1

T 2

dT

dψ
〈q · ∇ψ〉 . (52)

After some manipulation, this yields

(
nI2

mΩ̄2
TT ′νB

)−1

〈q · ∇ψ〉 = − 2

π3/2

(
−aTMa + 2aT b+ π3/2〈h2〉

)
(53)

= − 2

π3/2

(
aT b+ π3/2〈h2〉

)
. (54)

The second line would have been obtained if we used the collisional moment expression for

heat flux directly.

The poloidal flow is calculated from [11]

niviθ = K(ψ)Bθ, (55)
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where

K(ψ) ≡ 1

B

∫
d3v v‖g. (56)

We obtain (
nIT ′

mΩ̄B̄

)−1

K =
3

2

∑

n

a0nβn. (57)

The parallel flow is given by

nivi‖ =

∫
d3v v‖f1 = − I

mΩ

(
dp

dψ
+ Zen

dΦ

dψ

)
+
KB

n
. (58)

D. Previous Approximate Analytic Results

For later use in comparing with our results, we quote some previous analytic results

which have been obtained approximately. The Chang-Hinton formula for ion heat flux is an

interpolation between large aspect ratio and unit aspect ratio using a single approximate

result at intermediate aspect ratio. Simplified to circular flux surface geometry it is [15]

α−1
q 〈q · ∇ψ〉 = 2ǫ1/2

(
0.66 + 1.88ǫ1/2 − 1.54ǫ

) (
1 + 3ǫ2/2

)
, (59)

where αq ≡ (nI2TT ′νB/mΩ2
0), and Ω0 ≡ ZeB0/mc uses the magnetic field at θ = π/2. The

two field strengths B0 and B̄ are related by B̄ = B0h(π/2).

Taguchi’s method involves assuming a particular form for the pitch-angle dependence of g

and expanding the speed dependence in Laguerre polynomials. The pitch-angle dependence

is assumed to be the gR(λ) shown in Figure 1. The Taguchi formulas for ion heat flux and

poloidal flow keeping 2 Laguerre polynomials are [11, 16]

α−1
q 〈q · ∇ψ〉 = 2

( 〈h2〉
h(π/2)2

− B2
0

〈B2〉
fc

fc + 0.462ft

)
, (60)

α−1
K K =

B2
0

〈B2〉
1.17fc

fc + 0.462ft
, (61)

where αK ≡ (nIT ′/mΩ0B0),

ft ≡ 1− 3

4

∫ hh
min

0

λ dλ

〈
√

1− λ/hh〉
, (62)

hh(θ) ≡ 〈B2〉1/2/B, and fc ≡ 1− ft. For the model magnetic field, 〈B2〉1/2 = B0(1− ǫ2)−1/4

and hh = (1− ǫ)(1 − ǫ2)−1/4h.
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FIG. 2. Convergence of the (a) heat flux and (b) poloidal flow at ǫ = 0.3 as a function of the number

of pitch-angle eigenfunctions kept, N . Here we use L = N , i.e. one more Laguerre polynomial than

pitch-angle eigenfunction.

V. RESULTS

We present the results of the numerical solution using the model magnetic field with

circular flux surfaces. First we show the convergence results vs. the number of pitch-angle

eigenfunctions kept, N , using ǫ = 0.3. For these results, the number of Laguerre polynomials

kept is N + 1, i.e. L = N . The results are presented in Figure 2. To get within 1% and

0.1% of the N = 6 solution (taken to be correct) requires N = 2 and N = 5 respectively.

As required by the variational nature of the problem, the heat flux decreases monotonically

as N is increased. The behavior is similar at other ǫ.

We show the heat flux and poloidal flow for several values of ǫ computed with N = 1

and N = 2 (again L = N). In Figure 3(a) the heat flux is compared with the formulas

of Chang-Hinton and Taguchi (we normalize our formulas to use B0 instead of B̄). Those

approximate analytical formulas are in good agreement with our exact solution even at

finite aspect ratio. In Figure 3(b) our poloidal flow is compared with the analytic formula

derived using Taguchi’s method [11]. The analytic formula does reasonably well but can

have errors of up to 20% at intermediate aspect ratios. We also observe that our poloidal

flow value α−1
K K agrees with Figure 8 of Ref. [6] when those results at finite aspect ratio are

extrapolated to zero collisionality.

We have fit our heat flux and poloidal flow curves to polynomials in ǫ1/2 which interpolate
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FIG. 3. (a) Heat flux and (b) poloidal flow at several values of ǫ, using N = 1 and N = 2. Here we

use L = N , i.e. one more Laguerre polynomial than pitch-angle eigenfunction. The exact numerical

solutions are compared with the Chang-Hinton and Taguchi formulas.

over finite aspect ratios. It is quite adequate to include four terms in each:

α−1
q 〈q · ∇ψ〉 = 1.34ǫ1/2 + 2.60ǫ− 2.13ǫ3/2 + 3.18ǫ2, (63)

α−1
K K = 1.17− 1.22ǫ1/2 − 0.68ǫ+ 0.72ǫ3/2. (64)

VI. SUMMARY

We have developed a method for evaluating neoclassical transport in the core of a tokamak

with general magnetic geometry in the low collisionality limit. We have demonstrated that

analytic methods which approximate the collision operator are accurate at intermediate

aspect ratios for estimating the ion heat flux but can be off by up to 20% at intermediate

aspect ratios for estimating the poloidal flow. While we have used circular flux surfaces here,

it is straightforward to apply the method to more general geometry. Multiple species could

in principle be used as well.

The variational principle we use only applies in the limit of small collisionality and orbit

width. When these restrictions are lifted, our technique cannot be used directly in those

more general situations where finite collisionality or finite orbit width effects are retained.

These important cases must be studied using other means. However, our work efficiently

describes the effects of retaining the exact linearized Fokker-Planck collision operator as

14



opposed to common approximations to the collision operator to make the calculations more

analytically tractable.

The effectiveness of our calculation is a direct result of using the pitch-angle eigenfunctions

associated with the transit-averaged test particle collision operator. These eigenfunctions,

which depend on the magnetic geometry, are extremely well suited to this problem, with

only one or two basis functions required to obtain an accurate solution.
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Appendices

Appendix A: Evaluation of MFa
ij

We simplify Eq. (51) into a form suitable for numerical integration. The integral is written

in coordinates using Eq. (13). The gyrophase integral over ϕy can be done analytically [14]:

I ≡
∫ 2π

0

dϕy U(u) =
4(x2 + y2 − 2)

Λ
K(κ)− 2ΛE(κ)− 2(x2 − y2)2

Λ3

E(κ)

1− κ2
, (A1)

where here K and E are the complete elliptic integrals of the first and second kind with the

modulus as argument, and

Λ2 ≡ x2 + y2 + 2x⊥y⊥ − 2x‖y‖, (A2)

κ2 ≡ 4x⊥y⊥
Λ2

, (A3)

x‖ ≡ σxx
√

1− λx/h, σx ≡ sign(x‖), x⊥ ≡ x
√
λx/h, and similarly for y‖ and y⊥. Then let

∑

σy

σyI = σxI1(x, λx, y, λy, θ), (A4)
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where I1 ≡ I(σx = +1, σy = +1)− I(σx = +1, σy = −1). We have pulled out a factor of σx

and evaluated at σx = +1 because the expression is odd in σx. Explicitly,

I1 = 4(x2+y2−2)

[
K+

Λ+
− K−

Λ−

]
−2 [Λ+E+ − Λ−E−]−2(x2−y2)2

[
E+

Λ3
+(1− κ2+)

− E−

Λ3
−(1− κ2−)

]
,

(A5)

where

Λ2
± ≡ Λ2(σx = +1, σy = ±1) = x2 + y2 + 2xy

[√
λxλy
h2

∓
√(

1− λx
h

)(
1− λy

h

)]
, (A6)

κ2± ≡ 4xy
√
λxλy

hΛ2
±

, (A7)

K± ≡ K(κ±), (A8)

E± ≡ E(κ±). (A9)

The σx sum may be performed to gain a factor of 2. Equation (51) becomes

MFa
ij =

3√
8

〈
1

h2

∫
dλx dλy

gn(λx)gn′(λy)

|ξx||ξy|
All′

〉
, (A10)

with

All′(λx, λy, θ) ≡
∫ ∞

0

∫ ∞

0

dx dy e−(x2+y2)x3y3L
(3/2)
l (x2)L

(3/2)
l′ (y2)I1. (A11)

One more integral may be performed analytically by converting to polar coordinates, x =

r cosφ, y = r sin φ. Then

∫ ∞

0

dx

∫ ∞

0

dy =

∫ π/2

0

dφ

∫ ∞

0

dr r. (A12)

Importantly, κ± does not depend on r and the r integral is elementary. After some algebra,

we have

All′ =

∫ π/2

0

dφ sin3 2φ [cCll′ + dDll′] , (A13)
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where

Cll′ ≡
1

23

∫ ∞

0

dr e−r2r6
[
4
(
r2 − 2

)]
L
(3/2)
l

(
r2 cos2 φ

)
L
(3/2)
l′

(
r2 sin2 φ

)
, (A14)

Dll′ ≡
1

23

∫ ∞

0

dr e−r2r6
(
−2r2

)
L
(3/2)
l

(
r2 cos2 φ

)
L
(3/2)
l′

(
r2 sin2 φ

)
, (A15)

c ≡ K+

L+
− K−

L−
, (A16)

d ≡ (L+E+ − L−E−) + cos2 2φ

[
E+

L3
+(1− κ2+)

− E−

L3
−(1− κ2−)

]
, (A17)

L2
± ≡ Λ2

±/r
2 = 1 + sin2 2φ

[√
λxλy
h2

∓
√(

1− λx
h

)(
1− λy

h

)]
, (A18)

κ2± =
2
√
λxλy sin 2φ

hL2
±

. (A19)

After putting the θ integral in explicitly, we finally have

MFa
ij =

3√
8

∫
dλx dλy gn(λx)gn′(λy)γll′(λx, λy), (A20)

where

γll′(λx, λy) ≡
(∫ 2π

0

dθ

B · ∇θ

)−1 ∫ 2π

0

dθ

∫ π/2

0

dφ
sin3 2φ [cCll′ + dDll′]

h2(B · ∇θ)|ξx||ξy|
. (A21)

This form is used for numerical integration. The four-dimensional integration is performed

using the NAG C Library. The θ and φ integrals are computed using two-dimensional adap-

tive quadrature on a discrete (λx, λy) grid to give γll′. The eigenfunctions gn are computed

on this grid, and a discrete integration method is used to perform the two λ integrals.
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