
NONLOCAL HYBRID-KINETIC STABILITY ANALYSIS OF THE

DRIFT-CONE INSTABILITY

Ronald C. Davidson and Han S. Uhm*
Plasma Fusion Center, M.I.T.

Cambridge, Massachusetts 02139

Richard E. Aamodt
Science Applications, Inc.

934 Pearl St., Boulder, Colorado 80302

PFC/JA-79-3

Submitted to Physics of Fluids,
February 1979

* Also at Naval Surface Weapons Center, Silver Spring, Md. 20910.



NONLOCAL HYBRID-KINETIC STABILITY ANALYSIS OF THE MIRROR

DRIFT-CONE INSTABILITY

*
Ronald C. Davidson and Han S. Uhm

Plasma Fusion Center, Massachusetts Institute of Technology
Cambridge, Massachusetts 02139

Richard E. Aamodt
Science Applications, Inc.,

934 Pearl St., Boulder, Colorado 80302

ABSTRACT

A hybrid-kinetic model (Vlasov ions and cold-fluid

electrons) is used to develop a fully nonlocal theory of

the mirror-drift-cone instability. The stability analysis

assumes electrostatic flute perturbations about a

0
cylindrical ion equilibrium f (Hwi- Pe, v ), where w =

const.=angular velocity of mean rotation. The radial eigen-

value equation for the potential amplitude $(r) is solved

0
exactly for the particular choice of f. corresponding to a

sharp-boundary (rectangular) density profile. The resulting

dispersion relation for the complex eigenfrequency w is

investigated numerically for a broad range of system

parameters including the important influence of large ion

orbits and ion thermal effects. It is found that the

instability growth rate is typically more severe for fast

rotational equilibria (w.=i.) with axis encircling orbits
1 2.

than for slow rotational equilibria (w.=G.). Stability
2. 1

behavior is investigated for the entire range of jLi P

allowed by the equilibrium model (0<2t Li/R < 1).

Also at Naval Surface Weapons Center, Silver Spring, Md. 20910
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I. INTRODUCTION

One of the most basic instabilities that characterizes a

mirror-confined plasma is the mirror drift-cone instability.1-3

In cylindrical geometry (Fig. 1), the instability results from the

relative mean azimuthal motion between ions and electrons in the

presence of spatial inhomogeneities. Conventional theories of this

instability for both weak-gradient1,2 and strong-gradient3 configurations

are usually based on the local approximation, which assumes short

azimuthal wavelengths and that the radial eigenfunction is localized

over a radial distance much shorter than the characteristic inhomo-

geneity length. The purpose of this paper is to develop a fully

self-consistent nonlocal theory of the mirror-drift-cone instability

with emphasis on the influence of large ion Larmor radius and axis-

encircling orbits5 on stability behavior.

The analysis is carried out within the framework of a hybrid

Vlasov-fluid model. The electrons are described as a macroscopic,

cold (T +0) fluid immersed in a uniform axial magnetic field BO z'

On the other hand, we adopt a fully kinetic model for the ions in

which the ions are described by the Vlasov equation. This allows

for the possibility of large ion orbits with characteristic thermal

Larmor radius (k-Li) comparable to the radius of the plasma column

(R P). Such hybrid models have also proven quite tractable for

nonneutral plasma, 6,7 theta-pinch,8 and ion-layer9 applications.

Indeed, the present analysis of the mirror drift-cone instability

closely parallels the nonlocal formalism developed by Davidson

and Uhm6 for investigation of the ion resonance instability in a
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nonneutral plasma column. Therefore, the description of the

theoretical model in Secs. II and III is appropriately brief.

The outline of this paper is the following. In Sec. II,

we describe the hybrid Vlasov-fluid model (Sec. II.A) and

summarize the equilibrium formalism (Sec. II.B) for ion distribu-

tion functions of the form

f 0( ,Z)=f (HL-w P6,vz

where vz is the axial velocity, H1 is the perpendicular kinetic

energy, P6 is the canonical angular momentum, and w.=const. is the

angular velocity of mean rotation. The analysis assumes equilibrium

charge neutrality [Eq. (5)] with

0 0
n (r)=n (r)
e

0
and zero equilibrium radial electric field, i.e., E (r)=0. In

r

Sec. II.C, equilibrium properties are calculated for the case where

the ion and electron density profiles are rectangular (Fig. 2)

and the ion distribution function is specified by [Eq. (10)]

f 0(,,n) = m 6(H,-w P -±)G(v '
i 27r z

where n0 and T are positive constants. Electrostatic stability

properties are calculated in Secs. III and IV, assuming flute pertur-

bations (3/3z=0) about a cylindrically symmetric equilibrium.

The general eigenvalue equation [Eq. (16)] is formulated in Sec. III.A

for arbitrary f (H iPe, vz)., In Secs. III.B and III.C, assuming

0
rectangular ion and electron density profiles and f. specified by

Eq. (10), the eigenvalue equation (16) is then solved in circum-
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stances where the perturbed charge density corresponds to a surface-

charge perturbation (at r=R p). A remarkable feature of this analysis

is the fact that the required orbit integral i [Eq. (17)] can be

evaluated in closed form [Eqs. (18) and (20)] for general values of

2 2
the parameters i /R , C 2 / i, etc. Moreover, the resulting

Li p pi ci,

eigenvalue equation (19) for the perturbed potential 9 (r) can be

solved exactly to give a closed algebraic dispersion relation (24)

for the complex eigenfrequency w.

The general dispersion relation (24) is an algebraic equation of

order Z+2, where Z is the azimuthal mode number. In Sec. IV, a

detailed numerical analysis of Eq. (24) is presented for a broad

range of system parameters. It is found that the growth rate

of the mirror drift-cone instability exhibits a sensitive dependence

on i i/R , R p/Rc , etc. Moreover, the instability growth

rate is typically more severe when the ions are in a fast rotational

equilibrium (w.= +) rather than a slow rotational equilibrium (w =6)

The reason is simply that the relative drift between the ions and

electrons is larger ( Ie >I|0), and hence more free energy is

available to drive the instability. [See also Eq. (13) and Fig. 3.]

In conclusion, we emphasize that the present sharp-boundary

calculation of the mirror-drift-cone instability represents a

"worst-case" stability analysis. The stability behavior for diffuse

equilibrium profiles is currently under investigation, making use of

the hybrid-kinetic eigenvalue equation (16) derived for general

0
f (H,-w Pe, v)
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II. THEORETICAL MODEL AND EQUILIBRIUM PROPERTIES

A. Theoretical Model

The present analysis is carried out within the framework of

a hybrid Vlasov-fluid model in which the electrons are described as

a macroscopic, cold (T -0) fluid immersed in a uniform axial magnetic

field B A , and the ions are described by the Vlasov equation.

Within the context of the electrostatic approximation ( ~Bokz

and Vxg=O), the equation of motion and continuity equation for the

electron fluid can be expressed as

+ .L- v ::-i (-v$ + gexBOz

3 + L- n --n -V , (2)
a9t e 3 e e 3 e

where ((g,t)=-V$(5,t) is the electric field, ne(g,t) is the

electron density, V (,t) is the mean electron velocity, and -e and

m are the electron charge and mass, respectively. In Eq. (1), the

spatial variation in B0 is neglected (low-beta approximation).

To allow for the possibility of large ion orbits with thermal Larmor

radius comparable to the radius of the plasma column, we adopt a

fully kinetic model in which the ion distribution function f (;,,V't)

evolves according to the Vlasov equation

+ v .L+ e -? + z - (,,t),()

where +e and mi are the ion charge and mass, respectively, and the

electrostatic potential in Eqs. (1) and (3) is determined self-

consistently from Poisson's equation

S2=-47re( jd3v f i-n e) . (4)
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Equations (l)-(4) constitute a closed description of equilibrium

and stability properties, and form the theoretical basis for the

subsequent analysis.

B. General Equilibrium Properties

An equilibrium analysis of Eqs. (l)-(4) for general steady-

state (a/3t=O) profiles proceeds in the following manner. We

consider an infinitely long plasma column with equilibrium

properties characterized by a/6=0=3/3z. Here, cylindrical

polar coordinates (r,Oz) have been introduced, where the z-axis

coincides with the axis of symmetry, r is the radial distance

from the z-axis, and 6 is the polar angle [Fig. 1]. For cylindrically

0 0 0
symmetric electron equilibria described by n (r) and V ()0 (r) e,
it is straightforward to show from Eq. (2) that the functional form

0
of the electron density profile n (r) can be specified arbitrarily.e

For present purposes, it is assumed that n (r) corresponds toe

equilibrium charge neutrality, i.e., we choose

0 0
n (r)=n (r) (5)

where n (r) is the equilibrium ion density profile calculated from
1

n0(r)= d3v f0. Consistent with Eq. (5) and the steady-state

(3/3t=O) versions of Eqs. (1) and (4), it is also assumed that the

0
equilibrium radial electric field is'equal to zero, i.e., E (r)=r

-ap 0/ar=O, and that the equilibrium electron motion is stationary,

with V0 (r)=w (r)r=0.

0
For the ions, any distribution function f 0,v) that is a

function of the single-particle constants of the motion in the

equilibrium fields is a solution to the steady-state (3/3t=0)

ion Vlasov equation. For present purposes, we consider the class
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of rigid-rotor ion Vlasov equilibria described by6,7,
10

0 0
f =f 0(H-wPv) , (6)

where w.=const., v is the axial velocity, H±=(m /2)(v 2 +v ) is the

0
perpendicular energy (with $ =0), P=m ir(v 0+rwci/

2 ) is the canonical

angular momentum, and wci=eB0 M ic is the ion cyclotron frequency.

An important feature of Eq. (6) is that the mean azimuthal motion

corresponds to a rigid rotation with angular velocity w =const.

Defining the mean azimuthal velocity by V 0 (r)=( d3v v f )/( 3v f ),

it is straightforward to show that V (r)=w r for the class of ionVie r.ir

equilibria described by Eq. (6). In the equilibrium and stability

analysis that follows, it is useful to introduce perpendicular

velocity variables appropriate to the rotating frame of the ions.

Defining V =v +w y and V =v -W x (or equivalently Vr=vr and V =v6-W r),

we find

HiWi P e(mi/ 2 )V2+(r) , (7)

where V2=V +V2 2+Ve and p(r) is defined bywhreV. x y Vr 6e

2 2
(r)=(m /2)sl r,

where Q2=-W (W +W )>0 by assumption. Note in Eq. (7) that m V /2
1 1 ci 1 /

is the perpendicular ion kinetic energy in a frame of reference

rotating with angular velocity w , and p(r) is the effective potential

in the rotating frame. Substituting Eq. (7) into Eq. (6), the

0 3 0
equilibrium ion density profile n i(r)=fd v f can be expressed as

n (r)= d3V f I(m- V2 + (r), v (8)

LI



8

where d3V=2ir dVV f dvz. Moreover, it can also be shown that

the equilibrium pressure tensor in a plane perpendicular to (
0 0 0

is isotropic with perpendicular pressure P. (r)=n (r)T0 (r) given by
U. 2. ii.

n (r)T9 (r)= d3 2f V + $(r), v) (9)

Equation (9), in effect, determines the perpendicular ion temperature

profile T 0(r) in terms of f 0
LL i*

C.. Sharp-Boundary Equilibrium

As a simple equilibrium example that gives a rectangular density

profile, we consider the ion equilibrium specified by

f 0 (n0 /2i)6(H P )G(vZ) (10)

where n0 and T i are positive constants, and G(v z) has normalization

I dv zG(v z)-l. Substituting Eq. (10) into Eq. (8) readily gives

the sharp-boundary density profile

0 n0 =const., r<R ,
n . (r)=(11)

0 , r>R
p

where the column radius R is determined self-consistently from

(R p)=(m /2)Q R =i , or equivalently R =(2t /m 2 ), where 02 =
p pi p i

0
-W (W +W .)>0. The electron density profile n (r) is assumed to
i i cie

have the same form as in Eq. (11) (see Eq. (5)]. We make use of

0
Eqs. (9)-(11) to determine the perpendicular ion temperature T. (r).

This gives the parabolic profile

0 A 2 2
T. (r)=T . (1-r /R ) (12)
fIo 2. p

for 0<r<R . The equilibrium profiles in Eqs. (11) and (12) are
p

11
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illustrated in Fig. 2.

For future reference, it is useful to introduce the ion dia-

magnetic frequency defined by wdi=(c/eBOn r) (3/ar)(n0 T ). Making

use of Eqs. (11) and (12) gives the constant value w (c/eB )(2/R )=di i . 0 p
2

const. Moreover, making use of R =-2T./m.& .(i .+W .) gives the identity
p 1 11 1 i

2
i i ci ci di

which is simply a statement of radial force balance (of centrifugal,

magnetic, and pressure gradient forces) on an ion fluid element

for choice of equilibrium distribution function in Eq. (10). For

2
specified values of R and T (and hence w di), the relation 2 +

W "ci=ci di can be used to determine the rotation velocity w.

We find that both slow (Co) and fast (w+ ) rotational solutions

exist with

(2 / 2,

1 . - 1 1-4 . (13)Wi =0 2 R2(3

p-

In Eq. (15), i =(2T /m 2 ) 1=(-w R 2/w ) is the thermal ion
Li i i ci di p ci

Larmor radius associated with the on-axis (r-0) ion temperature T.

Note from Eq. (13) that equilibrium solutions exist only for 2i L<Rp

for the choice of ion distribution function in Eq. (10). Figure 3

+ 2 2 2 2
shows a plot of C. versus 4i /R for the allowed range 0<4 i /R <1.

i Li p Li p
2 2

Evidently, for 4i .<<R , the slow rotational equilibrium (w.=G )
Li p i

corresponds to a rotation at the ion diamagnetic frequency with

.2 2 _
W. .=Wdi-w .i /R . Moreover, w.=w corresponds to a fast rotational

i i ciLi p 1 1

equilibrium with axis-encircling orbits.

For use in the subsequent stability analysis, we record here

the ion trajectory x'(t') that satisfies dx'(t')/dt'=v'(t') and

dv'(t')/dt'=(e/m c)v'(t')xB subject to the "initial" conditions
Ad i 011,z'
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x'(t'=t)=x and v'(t'=t)=v. In terms of the rotating frame variables

(v +Wiy, v -c &x)=(V ,V )=(Vjcos4, Vjsin$) and (x,y)=(rcose, rsin8),

it is readily shown that

x'(T)=-W}1{V[sin(O-wcT)-sino]

+rw.cos(e-w .-)-r(. +Wc )cos},
3. ci 1 ci

(14)

y'(r)=-o {V1 [coso-cos($-W T)ci ci

+rw sin(e-wci T)-r(w +W ci)sin6}

where T=t'-t, and w =6 for a slow rotational equilibrium, or w =W

for a fast rotational equilibrium.
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III. ELECTROSTATIC STABILITY PROPERTIES

A. General Eigenvalue Equation

In this section, we linearize Eqs. (l)-(4), assuming electrostatic

perturbations about the general class of axisymmetric equilibria

described by ion distribution function f =f (H1 -W P,v ) [Eq. (6)]
1 3. i z

0 0
and electron density profile n (r)=n (r) (Eq. (5)]. The present

analysis assumes flute perturbations with 3/3z=O, so that

all perturbations have spatial dependence only on g1=(x,y), or

equivalently gz(r,0). In the electrostatic approximation the

perturbed electric field is 6 Substituting

6$(x,,t)=6$(gi)exp(-iwt) (with Imw>0) in the linearized version of

Eq. (3), the perturbed ion distribution function6 can be expressed

as 6f i( 'Z't=6 ( ,v)exp(-iwt), where

0
af.

af (gi,q)=e 9H gi

(15)

+ F dTexp(-iwt)(iw-wi L-)6()l

In Eq. (15), j(t')=[x'(t'),y'(t')] is the ion trajectory defined in

Eq. (14), and use has been made of 3f /aP 8-W3f /3H, for the

class of ion equilibria with f =f (HL-w P0 ,vz). We consider

perturbations of the form (()= (r)exp(ize), sn (X1 )m 2 (r)exp(iZe),

etc., where k is the azimuthal harmonic number. After some straight-

forward algebra6 that makes use of the linearized versions of Eqs.

(1) and (2), the perturbed electron density i (r) can be expressed

directly in terms of the potential amplitude $, (r). Then, making use of

Eq. (4) with 6f i( 'V) specified by Eq. (15), the linearized Poisson

L
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equation for ;(r)=P (r) can be expressed as

222

1r \-122 ) r 2/(r)
ce - r W ce

ZA(r) wce 32() (16)
r ( 2 _ 2 )Dr pe

ce

22 0f
A 1 [;(r)+(w-ZW )I],m V. V

where w (r)=47n (r)e 2/m d 3V=2rG dV V C dv, and use has been
pe 0 e 1e00010 J-02Z

made of 3f /9H1=(m V ) kf /3Vi for f f [M VS/2+ (r),vz The ion

orbit integral I occurring in Eq. (16) is defined by

27r 0
i i At dt(r')exp(i9.(e'-e)-iwt ] , (17)

where the trajectories r'(T) and e'(T) satisfy r'(T=0)=r and e'(T=0)=6.

B. Eigenvalue Equation for Sharp-Boundary Equilibrium

We now consider the case where the equilibrium ion distribution

function is specified by Eq. (10), and the electron and ion density

profiles are rectangular [Eq. (11)]. It is evident that the perturbed

electron contribution on the right-hand side of Eq. (16) [the term

0
proportional to 3n /3r=-n06(r-Rp)] is zero except at the surface of

the plasma column (r=R p). Moreover, it can be shown that Eq. (16)

supports a class of solutions in which the perturbed ion density

[the term proportional to d 3V V 1 3f 0/3VI... in Eq. (16)] is also

equal to zero except at r=R . In this case, it follows from the

linearized Poisson equation (16) that the electrostatic potential

has the simple form ;(r)=ArZ inside the plasma column (0<r<R ),

where A is a constant. We substitute c(r)=Ar'k in Eq. (17) and

make use of [r'exp(ie')]Z=[x'+iy'], where x'(T) and y'(T) are
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specified by Eq. (14). This readily gives

i=i(-1) ;(r) dexp(-iw- ) [ exp (-ic i +W

ci 
(18)

where ;(r)=Ar . An important feature of Eq. (18) is that the orbit

2
integral i is independent of perpendicular energy m V,/2. This is a

consequence of the particularly simple form of ;(r) within the plasma

column. Finally, after some straightforward algebra that makes use

of Eq. (10), the ion velocity integral in Eq. (16) can be carried

3 -1f0 0
out to give d V V±i~f /DV±=(m R /2T )x3n /3r=-n0 (m iR p/2i )6(r-R p).

2 ^ 2
Substituting into Eq. (16), and making use of @w2 /3r=- 6(r-R )pe pe p

2 2
where wp e 4 rne /m , the linearized Poisson equation for perturbations

about the sharp-boundary equilibrium described by Eqs. (10) and (11)

can be expressed as

2 2
1 D 'pe~r (r)(r
r r 2 2 $(r) -2 2 2

ce ce (19)

ce pe + PR r () 6(r-R)
r W 2 2 ^

ce i
22 ^2 -

where =4rn 0 e /mi, and v =
2T /m . The orbit integral I [Eq. (18)]

occurring in the definition of P (W)=-l-(w-Zwi)I/(r) can be

evaluated explicitly to give

r (w)=-l+ (1 + .Z! W ( ) (20)
ci m=O ci i ci

In Eq. (20), w.=w for a fast rotational equilibrium with axis-

encircling orbits, or w =W for a slow rotational equilibrium [Eq. (13)].

C. Dispersion Relation for Sharp-Boundary Equilibrium

The right-hand side of the eigenvalue equation (19) is equal

to zero except at the surface of the plasma column (r=R ). Moreover,
p
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since the density is uniform for O<r<R , and zero for r>R,, the

eigenfunction ;(r) satisfies the vacuum Poisson equation r1 (a/ar) x

2 2
[r3a/3r]-(k /r );=O, except at r=R . Therefore, the solution to

p

Eq. (19) can be expressed as

O (r)=Ar , <r<R , (21)

inside the column, and

(1-R /r )
;o(r)=Ar 2 , R <r<R , (22)

(1-R /R ) p -c
c p

in the outer vacuum region between the surface of the plasma column

and the conducting wall (r=R c). Note that c(r) is continuous at

r=R , and that ;0 (r=Rc)=O. The dispersion relation that determines

the complex eigenfrequency w is determined by multiplying Eq. (19)

by r and integrating from R (1-e) to R (1+c) with e-O+. This gives
p p

(A 2

R ---3 ro) - R P1 - 3r =

S r 2=2 (23r=R)

pce pe

1 W 2 2 .2 Z

2 2 2

(- + (2 r (4)) .

S 22 2 2wwc )p2 2

1-(R /R) 2~- ce 2Z2.v.
p c 1

where r (w) is defined in Eq. (20).
2.
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IV. ANALYSIS OF DISPERSION RELATION

A. Introduction

The dispersion relation (24) is an algebraic equation of

order Z+2 for the complex eigenfrequency w. In this section, we

make use of Eq. (24) to investigate stability properties for a

broad range of system parameters r /R , W/.c, etc. For

present purposes it is useful to express Eq. (24) in the equivalent

form

1 = Xe ( ()+X (), (25)

1-(R /R )
p c

where the effective electron and ion susceptibilities are defined by

2

X (w) M 2 e (26)
e 2w(w-w ce

and

2.2

Xi = 2 2 (W) , (27)

2 ^r.

where r (w) is defined in Eq. (20).

29. -l
The term [1-(R /R ) ] in Eq. (25) includes the vacuum

p c

contribution from the linearized Poisson equation (19), as well as

the influence of the conducting wall (finite R c/R ). In this

regard, the conducting wall has a weak stabilizing effect which is

most pronounced for small 2. For example, for R /ReO0.75,we find

[l-(R /RC 22 ]=0.4375, 0.9437, 0.9968, for 2=1,5,10, respectively.

We therefore examine Eq. (25) for a fixed value of R /Rc in the

remainder of this section.

In addition, the mirror-drift-cone instability is usually

investigated for low-frequency perturbations satisfying wl <<wce'

In this case, the electrons are strongly magnetized and the electron

k
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susceptibility can be approximated by

2

Xe ()= _ - (28)
ce

For Xe (w) given by Eq. (28), note that the dispersion relation (25)

is an algebraic equation of order Z+l for the complex eigenfrequency w.

For sufficiently low Z-values (Secs. IV.B and IV.C], Eq. (28) is

a completely adequate approximation for the electron susceptibility

Xe (w). Only for very large Z-values is it necessary to use

the more accurate expression for Xe(w) given in Eq. (26) [Sec. IV.D.

Since Eq. (25) is an algebraic equation for w, several general

(but precise) statements can be made regarding the solutions and

conditions for instability. We summarize here these general

results, before a detailed numerical analysis of Eq. (25). The proof

of the following statements is left as an exercise for the reader:

(a) For given k, when instability exists, Eq. (25) permits

only one unstable solution with Imw=y>O.

(b) For Z=l, the system is stable (Imw=O) for both fast (w )

and slow (w =O ) rotational equilibria.

(c) For w =C, the onset of instability occurs for Z=2.
i i

(d) For w.=0., the system is stable for Z < -W ./ 6. That is,
1 a. cl 1

Imw=O for
1/2 -1

j < 2 -r. (29)

p
2 2

For sufficiently small values of ion Larmor radius that 4r i << R ,Li p

Eq. (29) implies that the system is stable for a substantial range of

azimuthal mode numbers satisfying 2 < R 2/r
p Li*

I
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We now examine the detailed stability results predicted by

Eq. (25). In Secs. IV.B and IV.C, Eq. (25) is solved numerically

for mode numbers Z < 20. The two cases, fast rotational equilibria

with w.=w. [Sec. IV.B], and slow rotational equilibria with w =

[Sec. IV.C], are treated separately. In Sec. IV.D, we investigate

stability behavior for sufficiently high-frequency perturbations

(large Z-values) that the ions can be treated as unmagnetized.

This leads to a simplified expression for the orbit integral I

[Eq. (18)] that occurs in the definition of r' ()=-1-(W-kW I

Finally, in Sec. IV.E, we investigate the range of validity of the

cold -electron approximation.

As a general remark, the reader should keep in mind that the

dispersion relation (25) is fully nonlocal, and is valid for the

entire allowed range of the equilibrium parameter 2r /R , i.e.,

0 < 2r /R < 1, as well as for fast rotational equilibria

(W =w ) and slow rotational equilibria (w.=) ).

B. Fast Rotational Equilibrium (w =W )i

We first analyse the dispersion relation (25) for the class of

2 2 1/2
fast rotational equilibria with w =6 =-(Wci/2)[l+(1-4tLi/R ) ].

In this case, Eq. (20) reduces to

- 9 + _+ m

'(W)=-l+ ci ! -- (-) (30)

Sci M= ci W

Typical numerical results are summarized in Figs. 4 and 5

for w2 /W 2 =10 and R /R =0.5, and azimuthal mode number in the
pe ce p c

range 2 < Z < 20. Apart from the slight decrease in growth rate

for Z=4 and r Li/R p=0.5, we note from Fig. 4(a) that the growth rate
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y=Imw is a monotonic increasing function of mode number Z. Moreover,

for each k, the growth rate decreases as Li /R is increased.

Similarly, from Fig. 4(b), we find that the real oscillation frequency

wr=Rew is an increasing function of Z, and a decreasing function of

rLi/RP. This is further illustrated in Fig. 5, where y/wci [Fig. 5(a)]

and wr /W [Fig. 5(b)] are plotted versus rLi/R P for several values

of Z. Indeed, for large enough values of 2, it is evident from Figs.

1/2
4 and 5 that the growth rate y scales as Z , and the oscillation

frequency scales as k. As a general remark, for a fast rotational

equilibrium with w. W., the growth rate and oscillation frequency

tend to exhibit a smooth, monotonic dependence on Li/Rp and mode

number Z. Moreover, for the sharp-boundary equilibrium considered

here, the instability growth rate can be substantial (several times w .)
ci

C. Slow Rotational Equilibrium (w = )

We now examine Eq. (25) for the. class of slow rotational

equilibria with .=^~=-(w /2)[1-(1-4r /R ) 1/2. In this case1 i ci Li p

Eq. (20) reduces to

W ()=-J+ - (-+ (31)
) + ci m=O ml (zm)! - i

~2 2 - ~2 2
For 4ri /R << 1, we note that ^ -( /R )ci diw which corresponds

Li p i rLi p ci di'

to a slow diamagnetic rotation of the ions. On the other hand,

~2 2 -
for 4r /R =1, the rotation frequency w reduces to w?- ci/2

Li p ci

[Fig. 3]. Typical numerical results are summarized in Figs. 6 and

7 for 2 /w2 =10 and R /R =0.5, and azimuthal mode numbers up to Z=20.
pe ce p c

Figure 6 shows a plot of y/w ci [Figs. 6(a)-6(d)] and wr W ci [Fig. 6(e)]

versus mode number 2 for several values of Li /R P. The real frequency wr

is plotted in Fig. 6(e) only for the unstable modes with Y>0.
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Several points are noteworthy from Fig. 6. Evidently, the mode

structure is far more complicated than in the fast rotational case

(Fig. 4). For example, from Figs. 6(a)-6(d), the growth rate y

exhibits an oscillatory dependence on k, although the growth rate,

on the average, does increase as a function of X. This is in

contrast to Fig. 4, where y is a monotonic increasing function of Z.

Moreover, the threshold value of Z for instability is a decreasing

function of rLi/Rp in Fig. 6 [see also Eq. (29)]. For example, for

rLi /R p=0.3 [Fig. 6(d)] the onset of instability occurs for Z=12, and

for r Li/R p=0.45 [Fig. 6(a)] the onset of instability occurs for Z=4.

This is in contrast to Fig. 4, where the onset of instability always

occurs for Z=2. For a specified value of Li /R p, we note from Fig.

6(e) that the oscillation frequency wr is an increasing function of Z.

Figure 7 shows a plot of y/wci [Fig. 7(a)] and wr w ci [Fig. 7(b)]

versus rLi/R for several values of Z. It is evident from Fig. 7(a)

that the growth rate y exhibits an oscillatory dependence on VLi Rp

For a specified Z, maximum growth tends to occur in the limit of

large Larmor radius (2 Li/R =1).

D. High-Frequency Perturbations (Iw>>w ci)

For sufficiently large values of Z., it is evident from Secs. IV.B

and IV.C that the unstable solution to Eq. (25) satisfies w|>>wci.

This implies that the ions are essentially unmagnetized on the time

scale of the instability. We make use of this fact to obtain a

simplified representation of P (w), valid for large 2-values. From

Eq. (18) and the definition, r (W)=-l-(W-kWo )I/P(r), the quantity

Sz (w) can be expressed as
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r (z)-1-i(-k . ) dTexp(-iT)[ exp(-ici i ci
ci. 

(32)

2 2
Expanding exp(-iwcit) for wci << 1, we find [w exp(-ioc i)(.o .)i

(-l)w [l+iw T + w c T +...]. Representing [l+iw T +2w i wT +...] 

C 1 2 1 ci 1 2 i
exp[2.2n(l+io T + 1 2ci +..]eptioT+ ooi 122T+..

the expression for F (w) in Eq. (32) can be approximated by

22

r (W)=-l-i(W-zW1 )f drexp(i(w-Zwi)Tlexp i - , (33)

p

where use has been made of the equilibrium constraint w ( +Wci W dici
-r/R 2. We introduce the Z-function representation (for ImE>0)
i p

2
Z(g)if dVexp(itt2 dx .x- & (34)

Making use of, Eqs. (27), (33), and (34), the effective

ion susceptibility for large 2-values can be expressed in the

convenient form

w .R
xi(w)= - 2 [l+Z(E)],

22.
(35)

where

Substituting Eq. (35

(w-zwi) -(36)
-= 2 2 1/2 .(6

(2tv /R p)
i p

) into Eq. (25), the dispersion relation reduces to

S2 2 2
1 - -pe _Pi [l+Z( )] , (37)

1-(R /R ) 2 w - ce) 2V 2
p c i

where E is defined in Eq. (36).

Equation (37) can be used to investigate stability properties

for 2-values sufficiently large that Jj >>Wci. As evident from

Figs. 4 and 5, this is a particularly easy inequality to satisfy

for fast rotational equilibria with w i .* In fact, for purposes
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of numerical analysis, the Z-function representation of the ion

susceptibility in Eq. (37) represents a considerable simplification

(for large Z-values) over the series representation in Eqs. (30)

and (31).

As a simple limiting case, we consider Eq. (37) in the limit

where

2 21/ 1 . (38)
(2zi 2/R )1/2

i p

In this case 1+EZ( )~-1/2E 2 , and Eq. (37) reduces to

2 2
1 W pe + - . (39)

1-(R /R ) ce 2(w-tw.)
p c

Equation (39), which is somewhat similar in form to the dispersion

relation for the two-stream instability, has been solved numerically

for the growth rate y=Imw and real oscillation frequency wr=Rew.

Typical results are summarized in Fig. 8 where y/wci [Fig. 8(a)]

and wr /Wci [Fig. 8(b)] are plotted versus 2fwil/wci for hydrogen

plasma with RP/Rc=0.5 and 2 /W =10. The dashed curves in Fig. 8
pe ce

are obtained by solving Eq. (39) with the electron susceptibility

Xe(w) approximated by - e /2ww ce. Note- that this approximation
pe c

breaks down for Z w /wc %2500 in the plot of oscillation frequency

Wr [Fig. 8(b)], and for w i I/Wcis'400 in the plot of growth rate y

[Fig. 8(a)]. Note also that the more precise dispersion relation

(25) predicts that stabilization (y=O) occurs for .ZwtI/w / 1i3800
1 ci-'

(the solid curves in Fig. 8).

A careful examination of Fig. 8 shows that the inequality

in Eq. (38) is marginally satisfied for fast rotational equilibria

(i.e., |( >l for w + ), and is not satisfied for slow rotational

equilibria with w.=t.. Therefore, strictly speaking, Eq. (39)

should only be used to investigate qualitative features of large-Z
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stability behavior for fast rotational equilibria. In general,

the more precise dispersion relation (37), which includes the plasma

dispersion function Z( ), can be used to investigate detailed

stability properties.

E. Influence of Electron Thermal Effects (T #0)

Throughout the previous sections, the electrons have been treated

within the framework of a macroscopic cold-fluid model. Since

i(r)=A(r/R ), for sufficiently large 2-values the characteristic

half-width of the eigenfunction may easily be comparable with the

thermal electron Larmor radius. In this section we make use of a

simple kinetic model for the electrons to determine the importance

of electron thermal effects. In particular, we assume f0.(n m /27r)x
e 0 e

6(H-( P 6-e)G (v z), which is similar in form to the ion distribution

function in Eq. (10). This choice of distribution function readily

gives a rectangular density profile for n (r) analogous to Eq. (11),e
0 2 2and a parabolic temperature profile T (r)='T (1-r /R ) analogouse.L e p

to Eq. (12). Moreover, it is straightforward to show that w (W -Wce

~2 2
-W de-_v /R , which is simply a. statement of equilibrium force

balance on an electron fluid element. [Here w =eB /m c and
ce 0 e

^2 2 ^2 2Wde=(r /R )wce.] For present purposes, we assume r Le<< R ,

and consider a slowly rotating electron equilibrium with

2
r Le

e ede R2 wce (40)

p

If we parallel the kinetic stability analysis in Sec. III,

treating the electrons in the same manner as the ions, then the

electron susceptibility that occurs in the dispersion relation (25)

can be expressed as
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Co2 R 2 W W-Wm

X (W) = P6 P e ) Z Z! ce e e
e ce m0m!(Z-m)! W-mw (W W-2 222 oce M=O 6 -ce "ce e

ece ee (41)

or equivalently,

2 2 2 2I. / rL Z ~. mw _k.w 2R
1 pe ce ( Le I Z! ce cerLe p

e 2U k2 /R2  R 2 ) m-0 m ! W-M
Le p p 

L 2 2 m (42)

x /R p
1 2 21'

1-2 /R 2
Le p)

where use has been made of Eq. (40). For wI< Wce, it is evident

from a comparison of Eqs. (26) and (42) that the cold electron

response in Eq. (26) is a good approximation to Xe (w) for azimuthal

^2 2
harmonic numbers satisfying 2 < 2., where k. r /R ,l, or

T m MLe pv
2 2) e.,e ^2 2equivalently, Z (2i /R ) 1. As an example, for 2r /R =1M Li p T imi kLi p

(the maximum allowed value), the cold-electron approximation is valid

for k < kM-1836 T./TM i e

One of the reasons that the cold-electron approximation is valid

for such large 2-values in the present analysis is that the local

electron temperature (and hence the local electron Larmor radius)

is very small near the plasma boundary (where the eigenfunction is

0
highly peaked) for the choice of distribution function f (n 0m /2r)x

0 2 2
5(H-w P )G(v ). This follows since T (r)=T (1-r /R )-T 26r/R << T

for a small distance Sr << R from the plasma boundary. Needless

0 0to say, if fo were chosen so that T 0 (r) were approximately uniforme el.

over the plasma cross section, then the electrons would provide a

stabilizing influence at 2-values much smaller than ZM'
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V. CONCLUSIONS

In this paper we have made use of a hybrid-kinetic model (Vlasov

ions and cold-fluid electrons) to develop a fully nonlocal theory of

the mirror-drift-cone instability. After a brief description of

equilibrium properties (Sec. II), the electrostatic eigenvalue equation

was derived (Sec. III.A) for flute perturbations about a general

0
ion equilibrium f (Ht-wiP , v ). In Sec. III.B, we specializedi e z

0
to that particular choice of f [Eq. (10)] that gives a rectangular

1

density profile [Eq. (11)] and parabolic temperature profile [Eq. (12)].

The resulting eigenvalue equation [Eq. (19)] was then solved exactly

to give a closed algebraic dispersion relation [Eq. (24)] for the

complex eigenfrequency w. Equation (24), which is valid for both

slow rotational equilibria (i =6) and fast rotational equilibria

(W.+(w.Gw.) with axis encircling orbits, was solved nufierically
1 1

in Sec. IV for a broad range of system parameters. For low I-values

(Secs. IV.B and IV.C), the mode structure is macroscopic, and it is

found that stability properties are significantly different for w =w

(Figs. 4 and 5) and o.=w (Figs. 6 and 7). In Sec. IV.D, a simplified
1 1

form of the dispersion relation was derived for large 9-values

[Eq. (37)], and finally, in Sec. IV.E, the influence of electron

kinetic effects on stability behavior was investigated.

In conclusion, we emphasize that the present sharp-boundary

calculation of the mirror-drift-cone instability represents a

"worst-case" stability analysis. The stability behavior for diffuse

equilibrium profiles is currently under investigation, making use

of the hybrid-kinetic eigenvalue equation (16) derived for general

0
f (H±-w P, vz).
1 iO
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FIGURE CAPTIONS

Fig. 1 Equilibrium configuration and coordinate system.

Fig. 2 Plot of equilibrium density profile (Eq. (11)] and perpendicular

temperature profile (Eq. (12)] versus r for choice of ion

distribution function in Eq. (10).

Fig. 3 Plot of equilibrium rotation velocities &Z versus 42 /R2
i Li p

[Eq. (13)].

Fig. 4 Plots of (a) normalized growth rate y/w ci and (b) real

frequency wr Wci versus harmonic number k for several

values of f /R [Eqs. (25) and (30)] and w.=6.
Li p i i

Fig. 5 Plots of (a) normalized growth rate y/wc and (b) real
ci

frequency wr C, versus L /R for several values of 2

[Eqs. (25) and (30)] and W =W .

Fig. -6 Plots of (a)-(d) normalized growth rate y/w ci and (e) real

frequency wr w ci versus harmonic number k for several

values of Li /R [Eqs. (25) and (31)] and wO =.*

Fig. 7 Plots of (a) normalized growth rate y/w . and (b) real

frequency wr / ci versus iLi /Rp for several values of Z

[Eqs. (25) and (31)] and W.=.

Fig. 8 Plots of (a) normalized growth rate y/wci and (b) real

frequency wr /WL versus Z jWj/Wci obtained from

Eq. (39) (solid curves). The dashed curves correspond to

2solving Eq. (39) with X (w) approximated by - e2 /2c.
e pe ce
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