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A BSTRA CT.

Launching of the fast wave in the lower hybrid frequency range is described. This wave is

excited at the plasma edge by RF electric field's perpendicular to those required for the lower-hybrid

wave. In high temperature plasmas, where the lower hybrid wave may not penetrate because of

Landau damping or other effects near the edge, the fast wave might provide an alternative for

heating and/or current generation in the central portion of the plasma. In addition, for high density

plasmas this has the advantage that lower frequencies than those required for the lower hybrid

excitation can be used. Thus wayeguides of convenient dimensions for maximum power transmission

and ease of fabrication can be employed. Coupling from a waveguide array into an inhomogeneous

plasma is analysed. Power reflection in the waveguides is found as a function of array design and

density gradient at the edge. This reflection is fairly large (> 20%). Propagation into the plasma is

then considered and the field structure and dispersion of the fast waves are found as a function of

distance of penetration. Unlike the lower hybrid waves, fast waves do not form resonance cones and

energy is dispersed over a large volume.

*This work was supported by U.S. Department of Energy Contract ET 78-S-02-4682.
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1. INTRODUCTION

Much attention has been focused in past years on the excitation of lower hybrid waves for

plasma heating and/or current generation. These waves can be excited, for instance, by a waveguide

array which imposes at the edge of the plasma an electric field parallel to the confining magnetic

field[ 1-3). However, in the same frequency regime (Qg<< o<< 1,) there is another possibility for RF

plasma heating and/or current generation. This is through the waves which propagate on the smaller

k-branch ("fast" branch) of the. cold plasma dispersion relation and are excited by a field

perpendicular to the magnetic field. We consider in: this paper coupling and propagation of these

"fast" waves which, in the plasma interior, have the dispersion characteristics of Whistler or high

frequency Alfven waves.

Both the coupling and the propagation of the lower hybrid ("slow") waves have been studied

extensively. Depending on density; magnetic field strength and wave number kr parallel to the

magnetic field, these waves can convert linearly to a warm pLasma mode ("thermal turnaround") or

to the cold fast wave[4). Both processes are to be avoided in the outer layers of the plasma, as they

reflect the incident power. To avoid conversion to the fast wave, the parallel wave number must be

sufficiently large; this is expressed by an accessibility condition, nr> nza ( n. = ckr/c)[5,61. On the

other hand, to avoid thermal mode conversion before reaching the center, the lower hybrid waves

must be excited at frequencies above lower hybrid resonance at the center. At these frequencies na,

which increases with frequency, is above 1, say in the range 1.2< nra <2 . In reactor-grade plasmas,

with temperatures near ignition and beyond (T,=l.0-l.5KeV), even n,=3-4 will be strongly electron

Landau damped at the edge. In such cases, the range of lower hybrid waves which are neither

wave-converted nor Landau damped at the edge will be narrow.

For instance, consider a deuterium plasma with toroidal magnetic field B0 - 5 T, center

density no= 1014 cm-3 and temperature in the outer layers T, 2 .KeV. The spatial damping of

lower hybrid waves is ( Eqs.(1-3) are summarized in ref.(4) )
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1/2 3 exp(- 2) = C
/2 nz VTe

where k., is the perpendicular wave number, obtained from warm plasma theory. With T,- 2 KeV,

we have tI I/n. To keep z-integrated damping at the edge small, [ must be fairly large. Roughly,

we need (> 4 or, for this example, nz< 3. To avoid early thermal mode conversion of the spectrum

in nz< 3 we must choose a sufficiently high operating frequency. For each nz in this range we need:

6) 2 l W 2) (1+2/3 nz ) ~ (2)

where WL,;( a) is the lower hybrid resonance frequency midway into- the plasma. The maximum

lower bound occurs for n.. 3 and the minimum allowed frequency is then o- 12 5WLH = 27r 85

GHz. At this frequency, to avoid fast wave conversion we need:

nz> nza= (I- -)~12 1.2 (3)

where f,,; are the cyclotron frequencies. Thus, the accessible spectrum is fairly narrow: 1.2< nz <3

Furthermore, for high-magnetic field, "compact" reactors operating at high densities, the

lower hybrid frequency reaches into the high microwave regime. At these frequencies waveguides are

of small cross-section. With the high power levels required for RF heating, intricate arrays

containing many waveguides will be necessary. For instance, with center density no= 10'1 cm-3 and

Bo= 10 T, we find f 6. GHz, for which the waveguide width is 1:2 cm. Large arrays of such

narrow waveguides, carrying large amounts-of RF power, may present difficult technical problems.

As noted before[4,6), this suggests that the fast wave be investigated as an alternative for

plasma heating. As it does-not suffer thermal turnaround, lower operating frequencies can be used.

As nza is closer to I at these frequencies, this broadens the accessible spectrum. Secondly, because

waveguides are larger, simpler arrays with fewer elements can be used. Finally, because the

feasibility of lower hybrid heating at high temperatures and densities may be marginal, fast.wave

heating deserves a more detailed look, despite (as will be seen) greater technical difficulties in

achieving coupling. When in the future all effects are accounted for (toroidal, nonlinear, etc), the fast

wave scheme may appear equally viable.
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Though some authors have studied propagation of the fast wave in connection with coupling

to the slow wave[2,71, no detailed study of coupling to the fast wave has been made. The absence of

a resonance also rules out thermal mode conversion as an energy transfer mechanism in the plasma

center. However, other processes, also studied in connection with the slow wave, could perform the

transfer: parametrics, stochastic heating or even Landau damping in the interior. In the plasma

interior, the dispersion relation of the fast wave and its electron Landau damping are given by:

2

nxT = Pe (n2 -K.- )1/2 0ia)
e

7r 1/2 3e_2
e k(4b)

1 ( 2 2
Wenz

where k , kz are the wave numbers perpendicular and parallel to the magnetic field and n,, n. their

indices of refraction ( p,, f2, and K are, respectively, the plasma frequency, cyclotron frequency

and dielectric tensor element, eq.(l I) ). These equations are obtained, respectively, from the

cold-plasma dispersion relation and from a perturbation of the Vlasov dispersion relation. They

assume << , a condition generally valid in high magnetic fields ( BO= 10 T), and at lower

densities, near the plasma edge. The damping term is similar to that of the slow wave, it has the

same exponential character, but the coefficient is smaller (as kx, is smaller for the fast wave and the

denominator is large). From the equation for n., we can show that for n >> JKJ= I the dispersion

relation is that of a Whistler wave:

wPec2-kxkz .(5)Qr

For a narrow range near n,= 1, the dispersion relation is that of a "high frequency Alfven" wave:

W = kB c C= B / (6)= k~ A CA=(nojiomj)1I2

For intermediate values of nr, the wave is of a "mixed" character.

In what follows we first consider coupling to the fast waves from a waveguide array and

find power reflection as a function of array design and density gradient at the edge. In this we
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parallel the treatment of Brambilla[l] and Krapchev and Bers[3] for a two-dimensional slab

geometry. We then calculate the field structure inside the plasma by evaluating the integral of

Fourier components which have penetrated. We shall not consider the problem of energy transfer to

the medium.
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2. FORMULATION

We consider a simple slab model for coupling and propagation (see fig.(l)). The coupling

structure is like the "grill" array of waveguides sketched in fig.(l)[8). Because we want to excite fast

waves, with E in the fundamental mode perpendicular to B0, the waveguides are placed with their

long edge parallel to the magnetic field. In our model the array is taken as infinite in y,. an

idealization of a large array of stacked waveguides. Magnetic field is along z (and assumed

constant), the density gradient is in x. We assume no vacuum layer, the plasma edge is flush with

the waveguide mouthes.

We shall evaluate the reflection coefficient for an array of arbitrary extent in z. As a first

step, we obtain the "input admittance" of the plasma, the admittance (Hz/ES) for an infinite, single kz

excitation at the edge. We isolate these k, components by considering a Fourier transformation:

E Y(x,z)= E, EY(x,n,) einzz dn, (7)

Here, nzrkz/ko and similarly x and z are normalized b multiplication by ko (ko-wc). The contour

C (fig.(2)) is chosen so that EY(xz) satisfies causality: it passes below any singularities in the right

half plane and above singularities in the left hand plane. As will be seen, this choice insures that

only outgoing waves propagate at z-+o. The basic equation for wave propagation in a cold plasma is:

V x V x E = K E - (8)

where K = K(w, x) is the dielectric tensor. Eq.(8) contains both slow and fast waves. Near the edge,

where w2, (x)<<1 , the waves are uncoupled by assuming E =0 for the slow and Er~O for the fast

waves[2). For the fast wave, the transformed equation for E Y(x,nz) is then:

+ n (x,n,)E, .0. 
(9)

-where nX is the "local" normalized k :
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2 K2 2
n 2 K -(n. -K ) (10)

K 1 and KX are the usual elements of the cold plasma dielectric tensor. In the plasma center, where

K,>>] and K- 0(1), eq.(l0) is the dispersion relation of a Whistler wave. Assuming a linear

density profile, and constant BO, we write:

KX= Ox K1 - l-yx (1)

where (fl<« W<<Qd

( - )x0 - y d x =0 (12)

If the scale length near the edge is of order a:

_ pg(a) j(a)I
0~ o (13a)

(I 3b)

For instance , consider no(a)=101 cm-, BO= 5T and a=10 cm. Choosing the operating frequency

well below lower hybrid, f= 0.6fL;;(a), we find 0=* 10, y= 0.6 and f- 1.4 GHz. The normalized x

in eq.(9) varies from 0 to 2.8 over the width of the density gradient. The accessibility condition is

n,> n.= 1.1 . Finally, 2 (a)/ =0.4<1, so that eq.(9) is roughly valid even in the center.

We solve (9) in a region which extends from the wall (x=0) to a point where n2 >>1 (where

we can connect to the WKB solution). This region is: Osx< a few(1/0) . Eq.(9) is greatly simplified

when In2 -11>>I /= l/, : in this domain we neglect yx in the region of integration (so that K =)

and obtain:

d-E 02X2
-( 2 -(1-n ) E 0(14)

dx .-n.

As ni<<4, eq.(14) is valid for all but a very narrow part of the n. spectrum. For instance, with the

parameters given above, we have SgI/c=1/25, and eq.(14) ceases to be valid in the range In,-1l<0.02.

In what follows, we assume eq.(14) to be valid for the entire n. spectrum, neglecting the effects of the
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small region near n,=l. Eq.(l4) has a solution in terms of parabolic cylinder functions. We write:

E (x,n,)=E (On ) U(a,,) (15)y y Z U(a,O)

where:

(2#)12 (2- )((-n2 )1/4)2
x a=---- (16)

(1-n )1/.20-

where U is the parabolic cylinder function[9]. The branch cuts of the function 2-n ) are shown

in fig.(2). They are chosen so that, when C is close to the real axis, (I-n2 ) -1l-n2 1 when InrikI

on C and (1-n2 ) ein/4 " l-n2 i4 when InjI>l. The solution of eq.(14) satisfies two boundary

conditions: first a condition at x=O, E,(x-+Onr)=Ey(Onr) where Ey(Onr) is the spectrum of the

excitation; secondly a radiation condition for large x: only evanescent or outgoing waves are allowed.

Waves with In 11> are cutoff near the plasma edge, .5ut can "tunnel through" to higher

densities where they are propagating. For instance, for large in-1 and large x we find:

E (x,n= P X 1/2 21/ 1 1 e-aln/2 (17)

where the exponential "tunnelling factor" e-Ma/2= exp(-7r(n -l)2/40) accounts for the large cutoff

layer. Waves with inzI<I propagate near the edge but are cutoff further on. For these waves we have

for large x:

E (x,n,)= exp(- ) x)l 2 ( )(8 alI) (18)

where jail. The first term is evanescent: for 0=1 the waves decay rapidly for x>l . The gamma

function may have singularities for real nr. These singularities correspond to multiple reflections

between the edge and the cutoff. A finite number of resonances occur when In. 1<l and:

n =(0) 2  ,( 5.) ,. 1-((2p+l)), . . . p=O, 1, 2,... (19)

A necessary condition for resonance is that the cutoff layer (for n,<l) be large enough: O<1/3.

The input admittance Yin is evaluated from Faraday's law:
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d E,(x~fn)
Hz(O,nz)- -i dx x=O (20)

dx =

and from eq.( 10) we get:

3 a
H (0,n,) 201/2 r( (21)

Y; (nz)= = (21)
n 1 E,(,nz n(2- )i 1/ r( I

where a is complex.

To evaluate coupling we use Brambilla's method[l). The waveguide fields are:

E (xz)= m, En(z) (AmeinrMn+Be-inmX) (22)

H (x,z)= m Y' Em(Z) (Amez"m"-Bme~ nm") (23)

where Y =nm is the admittance of a given mode in a given waveguide and nm (I - (m 7r/b)2u 1

its wavenumber (b is the waveguide width). The modes have a sinusoidal dependence on z: Em(z)

sin(m7rz/b). Am and Bm are the amplitudes-f incident modes (known) and reflected modes (to be

determined). All modes are. of the TEo type, with E,=O. Eq.(18) relates H,(x=0) to E,(X-0).

Another relation is found with the plasma admittance:

H,(O,z)= f, Yi,(n,) E (On, )e"zz dnZ (24)

Fourier transforming (22), substituting it in the right hand side of (24), putting (23) on the left hand

side and using mode orthogonality we obtain for each s:

YW (,4,-Bj)= F-M s ('4 M+Bm) =1, 2, 3,. ... (25)

where:

Y = f E* (n,)Yin(nz)Em(flz) dnz (26)

We assumed the normalization:

f E,(z)E* (Z) 6 (27)

We shall simplify (25) by retaining only fundamental modes in the expansion.
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Y., can be evaluated by collapsing C onto the real axis:

Y"m I Y (n,) 2 Rc[E* (nr)E,(n)] dn,

- + fi Yi(nr) 2 Re[E* (n,)Em(nr)) dn

+ 16 2 Re[E* (nrp)Em(nr.p). (28)
P Trnzp(4p+3)Y S

The first integral above is always a reactive term: it accounts for reflection by the cutoff layer of

Inx< I waves. We have from eq.(2 ):

2012 r( Ia\) 1 n /2 .

in zf<l sZr . Ja (29)
O-n 2)1/ r( 1- 1 'al)2F

For 0 large (steep gradient) and nz.moderate (nZ<0"' 3) we-get:

Y( - 0.680 112 (30)
Yin(nzT (320)/

(-n )

The second integral in eq.(28) is a mixed term containing both a reactive part (impedance

mismatch) and a real part (radiation into the plasma). We have:

201/2 r( +i ) In l/2
Inj> Y(n,)=e 2 T ja= (31)

(n -l) 1 r( 1+i )

We saw in eq.(17) that for waves with In.>l, Jal is a "tunneling" factor: when IaI>>l there is

complete reflection of incident power. The admittance reduces to its free-space value:

Yin(nz)~ 02n _1)1/ (32)

Thus evanescence imposes a .second accessibility condition on n: n. must not be too large, Inrk0 -

For small lal (0 large or InI lI) we have:

" 0.6801/2
Yh (n er T cor (33)

-The last term in Eq.(28) comes from the poles of the admittance, which lie on the real axis
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in Inj< I ( Eq.( 19) ). This contribution is purely resistive: it accounts for power loss to surface waves,

and can be comparable to the two other terms. Note that surface waves are excited only for small 9,

1/3.

3. NUMERICAL RESULTS FOR COUPLING

Eq.(28) suggests the kind of excitation which optimizes coupling: to minimize the reactive

part of the admittance there must be little energy in Jnj<l and inzi>>& . The first condition is a

stringent one: remember that for a vacuum filled waveguide operating above cutoff, we have, at

fixed frequency, b>7r. This keeps most of the spectrum in Inz<l. To broaden the spectrum, we must

artificially decrease the cutoff widith: ridge waveguides or waveguides filled with dielectric are

possibilitiestl). We illustrate what follows with such waveguides filled with dielectric E- To further

improve the spectrum, we narrow it about some value of n> I by using. a phased array.

In fig.(3) we consider coupling of a four-waveguide array. Only fundamental modes were

included in the calculation. The incident fields are *of equal amplitude and phased 180P. The

individual waveguides are each of normalized width b. The dielectric is ,.=4.0, for which the cutoff

b is 7r/2. Total power reflected JR12 is plotted against b with 0 as a parameter (for a given c,, these

two variables determine entirely 1R12). First, for small 0, coupling deteriorates as 0-+1/3: we

approach one of the resonances of eq.(19) and 1R1 2-+. For a series of values 0<1/3 (not shown on the

figure) IR12 has a series of peaks where it takes the value IR12=1 irrespective of b. These peaks occur

whenever a new resonance in eq.(14) is excited by nz=0. Thus, when 0<1/3, power is also coupled to

surface waves, an undesired effect. For larger 0, coupling improves: a minimum 1R12 is obtained for

0~10. and b~2.5. Power reflected is then about 35% and the VSWR in each waveguide about 3

For larger 0, coupling deteriorates again because of the impedance mismatch between the short

plasma waves and the longer waveguide waves (which have an impedance comparable to that of

free space). Finally, 1R12= 1 at the cutoff b= 7r/2 and for b-+

,In fig.(4), we consider an infinite array of waveguides phased 1800. Again, cr4.0. This

array produces a delta-function spectrum at nz=7r/b. We plot IR12 against n.. for some values of 0.
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Coupling is improved moderately over the previous case of four waveguides.

In the previous examples we chose Yr= 4 . For smaller Er (1: r 4) coupling worsens for all

#. This is because to get a sizeable part of the spectrum in InzI> I we need b<7r and for these values

of b the waveguide admittance, (Cr-(7r/b) 2)" 2 , i.s small: this means larger admittance mismatch and

more reflection. For large tr (Ir" 1) we. can estimate more quantitatively the reflection: consider a

large array, phased by l80f, with- a narrow spectrum centered about some nzo. For this array,

reflection is approximately:

IRj 2 _)Yin(flr 0  2 yW 2 ~ (31)I I )"IV 1 (Cr- n Z) (34)

where Y is the waveguide impedance of the fundamental mode (Eq.(23)) and Yi,(n,) the plasma.

impedance (Eq.(21)). If Inz -.l<< 2I we can use eq.(33) as an approximation to Yin(nz). Also, with

E,>> , YW C 1 . Using these approximations we find a relatively simple expression for R12. This

has a minimum when:

n = 1 + 0.7 for Er> 0.45 0 (35)

for which:

lR(nzo)12 = 0.18 (36)

Eq.(35) is consistent with the curves of fig.(4), at least for O< 10. . We obtain roughly the

minimum predicted above, RI2= 20%. When O> 10., eq.(35) is no longer valid. n.o as predicted from

eq.(35) becomes large and approximation (33) does not hold. In fact, Yin(nz) is more reactive than

predicted by eq.(33) (there is -more tunnelling through the cutoff layer), and the minimum 1R12

worsens. For 0-+ 0 the minimum of (6) is reached very near to nro= 1, but worsens for all other n,>

nzo because the cutoff layer has become large. In fig.(3), the finite width of the excitation spectrum

tends to worsen both impedance mismatch and tunneling, and the transmission is correspondingly

poorer. The minimum of eq.(36), RIR 2= 18%, appears to be a minimum for all array designs.

Having obtained reflection coefficients, we can predict the power spectrum of waves excited
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in the plasma. Total power transmitted into the plasma is given by:

I.
Pt = f< Re E (n )H* (n) dn

,'I Re[}'p(n.) IE(n)| 2) dn, + p 03(7 + p)2

where we used the symmetry of Y,. and E(nz) to reduce the integration to one over only positive nr-

E(n.) is obtained from eq.(22). The integral on n,,l gives the power which actually penetrates into

the plasma. The second term is the power coupled into surface waves (right and left-going pairs).

This latter term is present only- if 0<1/3, in which case power coupled into surface waves may be

considerable and comparable to the power coupled into Whistler waves. For the curves of fig.(3)

however, 0>1/3 and no surface waves are excited. We plot in fig.(5) the function:

P,(n,)= Re EH* = Re (Yin(nz)E(nz ) (38)

with 0-10. and b=2.5 . For comparison, incident power with no reflection is also shown. Incident

power is infinite'near nz=l, but this is an integrable singularity. A narrow range of n, close to I is

below accessibility (n<Ll.1), and power in this range does not reach the plasma interior, but this

range is narrow so that despite the singularity, the integrated power is not too large (< 25.).

We have not mentioned the effect of varying the relative amplitudes of fields in inner and

outer waveguides. For the four waveguide array, this decreases somewhat the coupling but could

reduce the energy in the range below accessibility, so that overall power penetrating to the plasma

center would be increased(3]. However, as we are interested in regimes where n., is close to 1, the

energy below accessibility will be small to start off with, and so will be any improvement in overall

coupling.

To summarize, an array for coupling fast waves might be designed as follows: first, given

the plasma properties (maximum density, magnetic field) a range of operating frequencies is chosen.

These frequencies are fairly low,-to insure nza~ I and reasonable waveguide dimensions. Secondly,

this range is narrowed, both in consideration of whatever heating mechanisms are to be used and
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also so as to insure that the gradient parameter 0 is in the range 1-10 where optimum coupling takes

place. The density scale length, which in part determines 0 might also be adjustable, through the use

of plasma limiters for instance. Fair coupling (1R12< 40%) can then be achieved with a modest

dielectric c,. 3-4. E,. is an "effective" dielectric: it could be obtained, for instance, with ridge

waveguides. Finally, the fairly large reflection can, in principle be tuned out, so that all of the

generator power ends up in the plasma. However,on account of the large standing wave ratios there

will be a lot of stored energy in the tuner and waveguides.

4. FIELD STRUCTURE

Field structure is found by evaluating the Fourier integral (7) which now reads:

E,(x,z)= f. E (0,n,) U(at) inzr dnz (39)Y Y FU-a, 0)

This is valid as long as K ±rl, that is not too large densities (we extend eq.(39) shortly) We

evaluate (39) for fairly large x and z (as compared to the source dimensions), by using stationary

phase. For z>0 we deform the contour as shown in fig.(2), picking up (if 0 is small enough) the

residues from the poles on'the real axis (the field structure for z<0 is a mirror image):

E (x,z)= E T-l 2~- (p+ T Izp(~ H2p Qp/d2o)

0(a0) labowe r(0

where:

S21 (4p+3)~ x (41)

and where the H2p+1 refer to Hermite polynomials. In eq.(40) "above" and "below" refer to ( being

evaluated above and below the branch cut. The first term in (40) is the surface-wave contribution:

these waves propagate away from the source by multiple reflections between wall and cutoff layer.

They decay rapidly inside the plasma, where their contribution May be neglected. As for the

integral, in doing a stationary phase estimation for z>0, it is found that the contributions from above

the.branch cut phase mix and may be neglected. This leaves us with:
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Ey(x,n )~f' EY(O,n,) einzzU t) lbdow dn, (42)

We extend eq.(42) to regions where K1# I by using the WKB solution of eq.(3):

Y( E X(nr) n exp( i(nz+fJ n,(u,n,)du) ) dn. (43)

where, to within "slowly" varying phase terms:

EO(n,)= 2' ( -) (a,) Y

Stationary phas.e integration yields:

1/2
E~(.) E(no) n,(no)-1/2 e~lZ (270)(5

An urz"".

where the no, the n. for which the phase is stationary, is determined from the ray condition:

nX
(x,nc)= z zR(x,n,)= -fo (u,n.) du (46)

Note that z=zR(x,no) is the ray trajectory of a wave packet centered at nz=no. Approximating nx=

KX/(n2 -Ki)/2 (neglecting the cutoff) we can find an analytic expression for zR. In particular:

zlz(x,no) 0 0X2 n> (4 7a)

~ (Yx)/ 2  no=l (47b)

Eq.(47) indicates how much the rays spread. The other field components are evaluated in a similar

fashion, using the local polarizations in the WKB solutions. Inside the plasma, where n,>>l, E. is

the dominant component (Ex>> tE Y~ IEI).

We show in fig.(6) the far field evaluated from (45) (shown for z>0 only, the fields fqr z<O

are a mirror image).. In this example the source is the four-waveguide array of fig.(5), with b-2.5,

A- 10 and phasing of, 1800. We took Bo= 5T, no(a)= 1014 cm 3 , a= 10- cm and f. 0.6fLj. 1.4

GHz, for which 0 = 10 and y = 0.6 . With these parameters, the total width of the array is about

35 cm. Power reflection in the waveguides, as read from fig.(3), is about 40%. The maximum

amplitude in each guide, including reflection, is taken as 1: E (z)= ±sin(7rzlb). In fig.(6) we plot the

Iy
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field amplitudes, IE x,z), as found from eq.(45). The radial distance x is fixed, x= 10 cm, so that

we are looking at the fields near the center of the plasma. The amplitudes are modulated by

exp(ino(z)z), where n is determined from eq.(46). For much of the field extent, n0 =1.

Note that there are no resonance cones as found for slow wave penetration: the rays have

spread and dispersed power. This dispersion reduces the amplitudes of E and' Er For E., the

dominant component, the change in impedance of the medium more than compensates for dispersion,

and the field amplitude is quite large. We haven't mentioned the effects of confluence of slow and

fast waves . The confluence layer reflects waves with n,<n,,, where n,,~ 1.1 is the accessible wave

number ( Eq.(3)). This cuts off the part of the spectrum which contributes to much of the spreading

of the fields in real space. This effect is indicated qualitatively in the figure: the dashed line

indicates roughly the maximum extent of the fields when that part of the spectrum which is below

accessibility is removed from the integration in eq.(43) (we simply cut off the fields in z> zR(nza) )-

Everything to the right of the line would in fact be converted, to slow waves, with possible multiple

reflections in the outer plasma layers. These "surface waves" (different from those excited near the

edge when 0< 1/3) carry about 25% of the transmitted power (fig.(5)).

5. CONCLUSION

Fast wave coupling by a waveguide array appears at least marginally possible.The array

may need to be fairly large, to concentrate the spectrum at low n values for which the cutoff layer is

small, and also to avoid Landau damping which in a hot plasma will damp both slow and fast

waves with even moderate nr To avoid in addition the In,<l evanescence, the complication of ridge

waveguides or waveguides filled with dielectric must also be considered. Also, some tuning system

will be needed to compensate the fairly large reflection (1P 2 20-40%), and large standing wave

ratios will exist in the waveguides. Finally, for very gentle density gradients (0<1/3), there is the

danger of resonance effects which couple energy to surface waves.

Fast waves do not form resonance cones. Rather, energy is dispersed in a large. region of

plasma and the amplitude of the waves is diminished in proportion. This feature is an advantage in
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avoiding too localized heating and may also prevent nonlinear effects such as filamentation. The

other advantage was pointed out in the introduction: fast waves can penetrate with n. very close to 1,

and may avoid excessive Landau damping in very hot thermonuclear plasmas.

Our analysis of the coupling problem was greatly simplified by ignoring finite y dimension,

higher order modes, etc. Also, nonlinear effects, always present at the high power levels needed to

heat plasmas, may modify considerably the linear picture. Finally, with their large spatial dispersion,

fast waves may fill the entire toroidal cavity. A proper treatment would then require us to find the

coupling to the cavity modes and in effect solve a resonator problem.
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7. FIGURE CAPTIONS

FIG.(1): Geometry for the Fast Wave Excitation.

FIG.(2): Contour for the Fourier Integral. Here 1/7< O< 1/5 so that there are two resonances in 0<

n,< 1.

FIG.(3):- Power reflection 1R12 for a four-waveguide array. 0 is the gradient parameter, eq.(7). The

waveguides are filled with dielectric c,=4, which reduces the cutoff width to b = 7r/2. Phasing is

1800.

FIG.(4): Power reflection IR12 for an infinite array. The array produces a single n,,-7r/b. The

waveguides are filled with dielectric E,=4 and phasing is 1800.

FIG.(5): Power spectrum for a four-waveguide array. We have O= 10 and b=2.5 . The dashed

line (Pi) is power in the absence of reflection, the full line (P,) power transmitted with reflection.

Total power reflected is about 35%.

FIG.(6): Field structure for a four-waveguide array. Here BO= 5T, no(a)= 1014 cm 3 and f- 0.6

fLI(a): 1.4 GHz, b- 9 cm. We are looking at the fields in the center, x= 10 cm. The rays to the

right of the ray z= zR(nr,) have converted to slow waves.
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