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ABSTRACT

Some methods for determining the number of branches of multivariable

root loci which are located on the real axis at a given point are obtained

by using frequency domain methods. An equation for the number of branches

is given for the general case, and simpler results for the special cases

when the transfer function G(s) has size 2 x 2, and when G(s) is symmetric,
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1. Introduction

It is generally very difficult to plot root loci precisely for finite

gains. Exact analytical expressions for the various branches are usually

difficult or impossible to obtain, and attempts to construct the locus by

actually plotting the closed-loop poles for various values of the scalar

gain k tend to be onerous at best. These difficulties hold even in the

single-input-single-output (SISO) case; they are considerably greater in the

multivariable case.

There is, however, one part of the root locus that can be plotted easily:

the portion that lies on the real axis. The form of the locus on the real

axis is of course known exactly, and, in addition, the number of branches of

the root locus on the real axis can change only at a finite number of points.

Thus a relatively small amount of work may yield an exact plot of a sizable

portion of the root locus, and in some cases all of it (see Example 2 below).

The knowledge of the asymptotes and of the angles of arrival and departure

is often sufficient to sketch the rest of the locus.

In the SISO case the rule for the location of root loci on the real axis

is very simple (see, e.g., D'Azzo and Houpis 1975): for positive gains, there

is a single root-locus branch at a point s on the real axis if and only if

there is an odd number of real poles and zeros located to the right of s. The

simplicity of this rule is due to the fact that only one branch of the root

locus can lie on the real axis at any given point. However, in the multi-

variable case, several branches can lie on the real axis at a given point,

Thus the problem is not only one of determining whether a branch is present,

but also one of determining how many branches, if any, are present. More-

over, since multivariable root loci are branches of an algebraic function



(_see Postlethwaite and MacFarlane 1979), their behavior is much more unusual

than that of SISO root loci. In particular, a branch lying on the real axis

can turn around at a branch point and double back on itself. This behavior

will be exhibited in Example 2 below; for more details see Yagle (1981).

The root locus problem that will be considered here is the standard one,

where we assume that G(s) is a proper, rational transfer function matrix of

size mxm. In addition, we assume that G(s) has full rank (det G(s) I 0). Then,

the root locus problem consists of plotting the evolution of the system closed-

loop poles as k varies for a negative output feedback matrix K = -kI , O<k< e°

(the same gain multiples all channels). The closed-loop poles are given by

det(I + kG(s))=O (1)

or equivalently if g=-k , by

det (gI - G(s))=O. (2)

We note first that, unlike in the SISO case, the knowledge of the pole

and zero locations alone is not sufficient for determining the number of loci

on the real axis. The following example makes this clear.

Example 1. Consider the root loci of

*Mo 00-2 
+2 s+2

G1(S) 
= and G2(s) =

1s2
s-2 +

Since each of these represents two decoupled SISO systems, we may immediately

plot the root loci as shown in Figure 1. Note that although Gl(s) and G2(s)

have the same poles and zeros, the number of loci on the real axis between -1

and 1 is different.
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Despite this difficulty, some equations for the number of branches of

the root locus on the real axis at any given point may be found, Also, these

equations are not too complicated to be useful, We consider first the case

when m=2, then the general case, and finally the case when G(s) is symmetric,

2. The case of two input-two output systems

When G(s) has size 2 x 2, the following theorem provides a step-by-step

procedure for determining the number of branches of the root locus on the

real axis

Theorem 1. If m=2, define

A(s)=(trG(s)) - 4 det G(s) (3)

where s is real. Then, we have

(i) If det G(s)<O, exactly one branch lies on the real axis at s

(ii) If det G(s)>O, two or zero branches lie on the real axis at s:

(a) If A(s)<O, zero branches lie on the real axis at s;

(b) If A(s)>O and tr G(s)>O, zero branches lie on the real axis at s;

(c) If A(s)>O and tr G(s)<O, exactly two branches lie on the real axis

at s.

Proof Note that the closed-loop poles are given by

det(gI-G(s)) = g2 - tr G(s) g + det G(s) = 0 (4)

and that the root loci are obtained by letting g vary from ->to 0. This

means that the number of branches at a point s on the real axis is equal to

the number of negative real roots of (4)with s=s . Since the roots of (4) are
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given by

g (trG(s)+ A(s)) (5)

we need only to find how many negative real values of g we get for various

values of A(s), tr G(s) and det G(s). If A(s)<O the two values of g are

complex, and there are no branches on the real axis at s. But if det G(s)<O,

then A(s)>O and

Itr G(s)I<((tr G(s))2-4 det G(s)) (6)

and the two values of g are real and of opposite sign. Hence there is exactly

one branch on the mal axis at s. The other rules follow similarly.

The following comments illustrate the main features of this theorem:

1. The number of branches on the real axis changes by one whenever det G(s)

changes sign. This makes sense since branches start at poles and end at

zeros and since det G(s) changes sign at poles and zeros of odd order.

2. The number of branches on the real axis may change by two when A(s)

changes sign, This behavior is related to the existence of branch points

(cf. Postlethwaite and MacFarlane 1979) for the algebraic function g(s)

defined by (4), The branch points are the points s where (4) has multiple

roots, and they are given by A(s)=O. At such points A(s) changes sign'and

a branch of the root locus turns around (see Example 2), so that the

number of branches on the real axis changes by two.

-4-



3. The number of branches on the real axis will occasionally change by

two at points where trG(s) changes sign. This happens when there is a

double pole or zero with both branches departing or arriving on the same

side. For example, consider

GC(s) = s+l
s-2

Clearly there will be two branches both departing from the pole at -1 in

the positive direction, and it may be seen that

2s-3
trG(s)= 2s3s+l

changes sign at -1.

The following example which is taken from Postlethwaite and MacFarlane

(1979) illustrates the implementation of Theorem 1.

Example 2 Let

G(s) (s+l)(s+2) 1 6 S-

Then, one has

1
detG(s) = (s+l)(s+2)

so that det G(s)<O for -2<s<-l, and consequently there is one branch on the

real axis for -2<s<-1. We also have

2s-3
trG(s) = (s+l) (s+2)

and

A(s) = 1-24a
(s+1)2 (s+2) 2
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This shows that A(s)<O for s>1/24 and therefore there are no branches on the

real axis for s>1/24. Finally, if we consider the values of s not already

discussed, we have tr G(s)<O for s>-l or s<-2, so that there are two branches

on the real axis everywhere else.

The root locus, branches on the real axis are plotted in Figure 2. Note

how one branch turns around at the branch point at s=1/24. Note also that

since there are two poles, no zeros and two asymptotes on the real axis, this

is the complete root locus.

3. The general case

The general case when m>2 is more complicated than the case when m=2,

However, provided that we assume that the poles and zeros of G(s) on the

real axis are simple, the number of branches on the real axis can be deter-

mined easily by evaluating only a few quantities,

Ini(s)a
Definition: Let the Smith-McMillan form of G(s) be diag i(s and let

p be a pole of order n of G(s). Then, the pole p is simple if (s-p)nldl (s)

and if di(p) O for i>l. Similarly, z is a simple zero of order n of G(s)

if (s-z)n]nm(s) and if ni(z) 0 0 for i<m.

A characterization of simple poles and zeros that will be euseful in

the following is given by:

Lemma 1. Let p be a pole of order n of G(s). Then, p is a simple pole if
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and only if the Laurent series expansion

G(s) = -n + ... + -1 +G +... (7)
(s-p) s-p

at s=p is such that

rank G = 1 . (8)
-n

Furthermore, if G has a simple null structure, i.e., if the rank of G
-n -n

is equal to its number of non-zero eigenvalues, the condition (8) is

equivalent to

tr Gn = (s-p)n tr G(s)s s=p 0. (9)

Similarly, if z is a zero of order n of G(s), z is simple if and only if the

Laurent series expansion

-1 H HG (s) = -n ... + 1 +H + , (10)
(s-z) S'z

at s=z is such that

rank H = 1. (11)
-n

Also, if H has a simple null structure, (11) is equivalent to-n

tr H = (s-z)n tr Gl(s)ls=z . (12)

Proof: see Appendix.

In the following, in addition to assuming that the poles and zeros of

G(s) on the real axis are simple, we will also assume that the leading co-

efficient matrices in the Laurent series expansions of G(s) and G l(§) at these

points have simple null structure, so that (9) and (12) will be assumed to

hold throughout. Note that the simple null structure assumption plays an



important role in the results of Kouvaritakis and Shaked (1976), Owens (1978)*

and Sastry and Desoer (1980). This property was also shown by Byrnes and

Stevens (1981) to be generic, so that there is little loss of generality in

assuming it holds.

Finally, we will assume that there exists no single point loci on the

real axis (see Postlethwaite and MacFarlane 1979 for a description of such

points). The significance of these assumptions appears more clearly if

we note that:

Lemma 2. Let p be a simple pole of order n of G(s) such that (9) is satis-

fied. Assume also that p is not a single point locus. Then the n branches

of the root locus leaving p form a single Butterworth pattern with angles of

departure

depart(Arg[- tr G 1]+ k 3600) k=0,1, ,, l nl, 13)
(depart n

Similarly, if z is a simple zero of order n of G(s) such that (12)

holds, and such that z is not a single point locus, the n branches of the

root locus arriving at z form a single Butterworth pattern with angles of

arrival.

arrival (Argltr H n]+ k360 °) , k=0,l, .n-l (14)
Proof:arrival n -

Proof: see Appendix,
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Another result that will be needed in our derivation of the main theorem

deals with the description of the effect of branch points on multivariable

root loci. We recall that if

~(g,s) = A (s) det (gI G(s)) (15)

m m-l
=A (s) g + A (s) g .. A(s)

m 0

is the polynomial obtained by multiplying det (gI - G(s)) by the pole poly-

nomial A (s) of G(s), then s is a branch point (see Yagle 1981) if
m o

dgs °= 0 (16)
0

or, equivalently, if (go,S) is a common solution of

'Z(g,s)=O and ax (g,s)=O . (17)
ag

But (16) implies that s is a stationary point of the root locus - a
0

point where a branch turns around and doubles back on itself. We show now

that it is possible to determine on which side of a branch point a branch of

the root locus will approach, reach the branch point, and turn around.

Lemma 3. Given a branch point s on the real axis, the root locus will

approach it, turn around, and depart from it on the left side (respectively

on the right side) if

ssgn ( * ) = 1 (respectively - 1) . (18)

Proof: see Appendix.
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Given these preliminary results, we can now prove the main theorem

Theorem 2. The number N of branches of the root locus at a point s on
0

the real axis is given by

_ _ (\ number of\
N = L________ sgn (pi )n i tr G(s) + asymptotesj

poles Pi of isp i bat + /

odd order to
right of s

+ E sgn (s-z.) i tr G (s) (19)
zeros zi of S=Z

odd order to
right of s

0

+2 E sgn a .
branch points b. ag2 as1 s=b
to right of s 1

where

(i) the n. are the orders of the poles and zeros;

(ii) the summations are taken over the poles and zeros of odd order, and

branch points, on the real axis to the right of so

(iii) it is assumed that the poles and zeros on the real axis are simple and

satisfy the simple null structure assumption, and that there are no single

point loci on the real axis.

Note that in order to apply Theorem 2 it is only necessary to evaluate the

sign bf a quantity at each pole and zero of odd ordeT and each branch point on

the real axis. Once this has been done the number of branches on the real

axis may be determined immediately for all points.

Proof; We use a conservation of loci argument: each branch must start

somewhere, end somewhere, and be continuous in between. We claim first

that if there are only first-order poles and zeros on the real axis, then
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number of poles to right of s

with a branch departing at 180°

number of zeros to right of s

with a branch arriving at 1800

number of zeros to right of s (20)
+ ( with a branch arriving at QP 0)

_ number of poles to right of s
with a branch departing at 0° °)

This is easy to see, since the first two terms give the number of branches

moving in the negative real direction and the last two terms give the number of

branches moving in the positive real direction at s .

We now extend this to higher-order poles and zeros that are simple. Re-

call that the loci departing from or arriving at a simple pole or zero do so

in a single Butterworth pattern. By symmetry, it is clear that a simple pole

or zero of even order can have no effect on the number of branches on the real

axis, while one of odd order must have exactly one branch departing or arriving

at either O0 or 180u. The angle may be determined by using Lemma 2, and since

all quantities are real, we may use sgn instead of Arg in (13) and (14).

It should be evident that break-in and break-out points have no effect* on

the number of branches on the real axis, while asymptotes on the real axis at

+ o should be added in (consider them as infinite zeros),

Finally, we must introduce branch points since we have seen that at

these points a branch can turn around and double back on itself. The side

from which a branch approaches a branch point bi, turns around, and departs

*It is shown in Yagle (1981), p.76, that the branches approaching and leaving
a break point are evenly distributed over 360 ° and are interleaved (they alternate).



from it is given by Lemma 3. Depending on whether the locus is to the left

or right side of bi, we should add or subtract two to the number of loci as

s moves to the left of bi. By using Lemma 3, this yields the final term

in (19). *

The following corollary is interesting, primarily because it is the

closest we can come to generalizing the SISO rule for loci on the real

axis to the multivariable case. It may also be used as a check when applying

Theorem 2, and may even provide sufficient information by itself for some

applications.

Corollary 1. Assume that there are no asymptotes on the real axis at + 00,

and that the assumptions of Theorem 2 are valid, Then, counting multipli-

cities, at least one branch (in fact, an odd number of branches) of the root

locus lies on the realaxis at a given point s if there is an odd number of

poles and zeros to the right of s 

Remark: If there is an even number of poles and zeros to the right of so,

then there is an even number of branches on the real axis at s , Unfortu-

nately, zero is an even number.

Proof: Note that by making obvious substitutions, (20) can be written as

N = x1 - x2 + x3 - X4. The total number of poles and zeros to the right of

s counting multiplicities, is xl + + x3 + x4 and it is clear that N

will be odd if and only if this quantity is odd, guaranteeing at least one

branch on the real axis at s . Recalling that break points have no effect

on the number of branches on the real axis, and that branch points can only

change the number of branches by an even number, completes the proof,
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To illustrate Theorem 2, we consider the following example:

Example 3. Let

2 s

2 2s1s -3 s + s 6 s + 7s +
1 -6s - 18 s2 + s - 6 s + 7s + 12G(s)

(s+l) (s+2) (s+3)
O ~0 s + 3s + 2

There are first order poles at s = -1, -2, -3; no finite zeros; and a branch

point at s=1/24. It is easy to see that all the eigenvalues of G(s) as s +

+ ~ are positive, so that there are no asymptotes at + a. We have

(s+l)tr G(s)1 =-5
s = -1

(s+2)tr G(s)s =-2 = 7

(s+3)tr G(s)js =-3 1

and the corresponding signs of these quantities are respectively -1, 1 and 1.

Also, one gets

D(g,s) = (s+l)(s+2)(s+3) g3 - (3s2 + 6s 7)g2 + 3sg -1.

The gain at the branch point s = 1/24 is go = -24/35, and
0

sgn 1 , ) sgn (E6(s+l)(s+2)(s+3) g - (6s2 + 12s 14)]

3s2 + 12s + 11) g3 - (6s +6) g + 3gA5g

where, by inspection, it is clear that both terms being multiplied are

negative, so that the entire quantity is positive. Using (19), we find that

N = 0 for 1/24<s

N = 2 for -1<s<1/24

N =-I + 2 = 1 for -2<s<-1

N =-1 + 1 + 2 = 2 for -3<s<-2

N =-1 + 1 + 1 + 2 = 3 for s< -3
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The corresponding root locus is plotted in Figure 3,. Note that once again

the entire root locus is on the real axis,

4. The case of symmetric G(s)

In this section we consider the case when G(s) is symmetric, Since

GC(s) is symmetric for reciprocal networks, this case does have some practical

applications. The motivation for considering this class of systems is that

in this case the results of the previous section simplify considerably, and

no assumptions are required on the poles and zeros of G(s), Since our final

result depends on matrices obtained from G(s) by several transformations, we

will first construct these transformations, and then state the results as a

theorem at the end of this section,

We observe from (2) that the number of branches of the root locus at a

point s on the real axis is the number of negative real eigenvalues of G(s),

However, if G(s) is symmetric then all its eigenvalues are real, and we need

only to determine how many of them are positive and how many of them are

negative. To do so, we will use the signature of G(s).

Definition: Let M be a nonsingular real symmetric matrix, and define

m+ = number of positive eigenvalues of M

m = number of negative eigenvalues of M,

Then, the signature cr(M) of M is defined as

(M) = m+ m (21)

Remark Since M is nonsingular, we have m+ + m = m where m is the size.of

M,. Therefore, we may determine 'm+ and mi from o(M).
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An important property of the signature of a matrix is that it is in-

variant under congruency transformations. Thus, if L is a nonsingular real

matrix and if

P = L M L' , (22)

then o (P) = o(M).

Now, consider a left matrix fraction description

G(s) = D-l(s) N(s) (23)

where D(s) and N(s) are left coprime polynomial matrices. The poles and zeros

of G(s) are, respectively, the zeros of det D(s) and det N(s). Since the product

of the eigenvaluesgi(s) of G(s) is given by

n gi(s) = det G(s) = det N(s (24)i i det D(s)

the eigenvalues gi(s) can only change sign at the real poles and zeros of

G(s).

For all points on the real axis that are not poles of G(s),

D(s)G(s)D'(s) = N(s)D'(s) AP(s) (.25)

is a congruency transformation of G(s), so that

a(G(s))= (P(s)). (26)

Since: (i) the number of loci on the real axis at s is the number of negative

real eigenvalues of G(s); (ii) the number of negative real eigenvalues of

G(s) may be determined from cx(G(s))=a(P(s)); and (iii) C(P(s)) = (G(s)) can only

change at a pole or zero s of G(s), we now investigate how a(P(s)) changes
0

near a real pole or zero s
O



Near such a point, P(s) can be expanded as

P(s) = + P1 (S-SO)+ ... + Pd(s-S )d (27)

where P is singular, and where the matrices P. are real and symmetric. Then,

we note that

Lemma 4. If x = s-s , there exists a sequence of congruency transformations

that transforms P(s) into

Q + O(x)

0 QiX + O(x ) + o(xl (28)

Qxk,

where the matrices Qi , i=l '.. k, are real, nonsingular and symmetric.

Proof: The proof is similar to one that appears in Bitmead and Anderson (1977)

and Owens (1978). Since P is singular, there exists a real nonsingular matrix
0

T such that
0

T' P T 
whr [o :

where Qo is real, symmetric and nonsingular. Then we introduce

[Q. i [A- Bi i
w(s)h=T P(s)To + x

where p(s) is congruent to P(s). The matrix B1 can be eliminated by using
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another congruency transformation. To do so, we define

-1
V1 = Qo B1

and(l)( ) = I 5 p(S{ -Vx

_V x I I

and we note that P (s) can be written as

(1) (1)

where C(1) is real and symmetric. If C has full rank, (29) has the desired1 1

form given in (.28), and the result is proved.

If C 1 does not have full rank, the previous procedure may be repeated

with C(1) taking the place of P . This means that there exists a real non-

singular matrix T1 such that

T1 C)T = [1Q

where Q1 is real, symmetric and nonsingular. Now define the congruency trans-

formation

P(1) (s) = ( 1 )
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and write

P(1)(s) = [ G I 1 + G1 0 x+ ) I IG ,+ C A[o, II i

The matrix B( 1 ) can be eliminated by using a congruency transformation of the

type

P(2)(s) = T(l (s)P( l )(s)T (1) (s)

where -(1) x

,(-v~1) x
(1

T (s) = I _-V2

and the off-diagonal blocks of A2 can be eliminated in the same way. Then,

depending on whether the resulting C( ) has full rank or not, the construction

(28) terminates, or we need to run the previous procedure another time. Note

however that in the end we obtain a polynomial matrix of the form given in

(28).

We may now investigate how a(P(s)) changes near s . Since Q(s) was
0

obtained from P(s) by a sequence of congruency transformations, we have

c(Q(s)) = (P(s)). In the vicinity of so, Q(s) can be approximated by

Q(s) = diag(Qi xi) (30)

and the eigenvalues of Q(s) are approximately the eigenvalues of Q , Q1x, ...

k
and Qkx
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Now consider what happens to the signs of the eigenvalues of Qix if x

changes sign from positive to negative, If i is even the signs do not change;

but if i is odd, all the positive eigenvalues become negative, and vice-versa.

Then Y(Qi x i) changes sign, so that the change in c(Qixi) is - 2a(Qi). (Note
i i i

that if x is positive, a(Qix )=a(Qi).) It follows immediately that the change

in ((Q(s)) is

Ao(Q(s))= - 2 o (Qi (31)
i.odd

Since we have

m (Q(s))= 1 (m -o(Q(s))) (32)

where m (Q(s)) is the number of negative eigenvalues of Q(s) and where m is

the size of Q(s), the change in the number of negative real eigenvalues is

Am_(Q(s))= - 1 A(Q(s))= d (Qi) * (33)

Now let s vary along the real axis from + X to-o o, and assume that

G(.+t) is positive definite (this is equivalent to assuming that there are

no asymptotes on the real axis at +o) . For each pole or zero sj on the real

0))
axis, we can compute a set of matrices QiJ) by using Lemma 4. Then, recalling

that a(Q(s)) = (P(s)) = o(G(s)) and that the number of branches on the real

axis at s is the number of negative real eigenvalues of G(s), we obtain:

Theorem 3. Assume that there are no asymptotes on the real axis at + -, and

that G(s) is symmetric. For each pole and zero sj on the real axis compute

(j)
the matrices Qi, using the procedure of Lemma 4, Then the number N of
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branches on the real axis at s is given by

N = E _ I ( (34)

all poles and oQdd
zeros sj to

right of s

There is an interesting observation that may be made on the procedure for

generating the matrices Qi' Consider the set of Toeplitz matrices

Pi-. 1Po

It was shown by VanDooren,-Dewilde and Vandewalle (1979), and by Kailath and

Verghese (1981) that the zero structure of P(s) at s can be obtained by

computing the ranks of the matrices T . If r. denotes the number of McMillan
i 1

indices {k.} of P(s) at s which are equal to i, we have
J 0

rank Ti = ir 0 + (i-l)rl+ . + ri. (36)

However., it may also be shown that the congruency transformations used to

generate the matrices Qi may be applied to the Ti, yielding matrices of the

form
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Q 0Q. 0 I I

I

O I I I0 I

0' 0 II | II O I I
A I

0 QI 0 I o I o o I 

.I~ 1 .~0I 0 0I

rank' Qi= ri i =-,l, * d . (37)

Therefore, the zero structure of P(s) at so is determined by the ranks

5. Conclusion .I I

I -I -I

A2 1 I

_0 01 I

ran'"rj i,1 *.. d.. (37)

by the signatures of the Q i.

5. Conclusion
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requiring only the solution of three polynomial inequalities. The general

case was found to be much more difficult due to the possible presence of

branch points and the possibility of several branches on the real axis at

the same point. Nevertheless, an equation was exhibited that required only

the evaluation of the sign of a quantity at each pole and zero of odd order,

and branch point, on the real axis. Finally the case when G(s) is symmetric

was found to be solvable by computing the signatures of certain matrices

formed by congruency transformations of G(s). More work needs to be done

in finding other special cases that admit to simple solutions, and in

finding ways of simplifying the general equation (19),
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Appendix

Proof of Lemma 1

According to the definition given in section 3, a pole of order n is simple

if its McMillan indices [kl, k2, ... k ] are such that kl -n and O4k 2 ...4kn

(note that G(s) may have some zeros at p). Then, the characterization of the

McMillan indices given in VanDooren, Dewilde and Vandewalle (1979) implies that

rank G = 1 . (A.1)-n

Conversely if (A.1) holds we must have kl = -n, and since the total polar order

at p is n, the other structure indices ki must be >0 so that p is simple.

If in addition we assume that G has simple null structure, (A,1) implies
-n

that G must have exactly one nonzero eigenvalue, so that-n

tr G - O . (A.2)

To show the converse, we note that if (A.2) holds, then rank G >1; and since
-n-

the total polar order at p is only n, we must have (A.1),

Proof of Lemma 2

If s belongs to the root locus, we have

det(I+k G(s))= l+k tr G(s)+ .,. + km det G(s) = 0 (A.3)

for some k real and positive. By multiplying (A.3) by the pole polynomial

A (s) one gets
m

A (s) - k A l(s)+ ... + (-k)m A (s) = 0 ,4)m m-l o

-23-
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where we note that, since p is a pole of order n of G(s),

A (s) = (s-p)n A (s)
m m

with i (p) # 0. Using a Newton diagram (see Yagle 1981), it maybe shown

that the branches of the root locus leaving p can be approximated by

s-p ckl/n (A.5)

and by substitution in (A.4) one finds

( (p) mA (p))k + 0 (k2 ) = 0

Neglecting the higher-order terms in k gives

A (p)
n = - (s-p)n tr G(s) = tr G (A.6)

A (p) -n
m sp

and since by assumption tr G 0O, it is clear from (A.6) that the branches

of the root locus leave p in a single Butterworth pattern with angles of de-

parture

Arg c = n [Arg[- tr G_ + k 3600] (A,7)

with k=0,1, ... n-l .

For the angles of arrival at a simple zero z, make the substitution

h=l/k in (A.4). Again using a Newton diagram (see Yagle 1981), it may be-

shown that the branches of the root locus arriving at z can.be approximated

by
1/n

s-z bh (A,8)
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and substitution in (A.4) as before yields

bn= (s-z) n A1(S) n I principal minors of 
Ao (s) sz) det G(s) (E order mnl of G(s) s=z

(s-z)n tr G-l(s) . (A.9)

The last equality follows from the familiar equation

G-1(s) adj G(s)
G(s) = det G(s)

The rest of the argument parallels the one given above for the angles of

departure.

Proof of Lemma 3

In the vicinity of a branch point so, define Ss = s-so Then for a small

perturbation 6g in g, write the Taylor series expansion

s ds = ds dIg + .. d2 (A.10)
dg s 2 dg2 s

0

The first term is zero, so that we have

sgn 6s = sgi dS (A.ll)

This means that regardless of the sign of Sg (i.e. regardless of whether the

locus arrives at or departs from so) the sign of 5s is the same. Thus, s is

always on the same side of s.

By using the identity 0(g,s)-O, we find that

ds _ a / (A.12)
dg - g Us

and by differentiating (A.12) with respect to g, we get

d2s ~(is d ~_~g)() d/ (d ) (A.13)
dg2 \ a dg O g s A\s)
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Then, if we note that at a branch point (go,So) one has 9_ (go,so) = 0, we
ag

obtain

d2s a2 / 3 (A.14)

day s Dg2 9s-g2 a'S -)g2 sS So , .S..

so that

'n 6ss = sgn 2 1\
yg * sls s= s '(A.15)
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