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ABSTRACT

A service provider who provides users access to a communication network is constrained in
the system by the limited amount of bandwidth that can be offered to users. We will discuss
congestion-dependent pricing, a2 method of pricing connection access to the network that
accounts for this bandwidth constraint. Different models for the system are analyzed and
simulated. The case of multiple classes of users as well as the case of a probabilistic demand
function are analyzed in detail. The dynamic congestion-dependent pricing policy that
maximizes performance will be determined using dynamic programming. The steady state
revenue generated for the service provider will be used as the measure of system
performance. Additionally, approximation and estimation techniques to simplify analysis and
implementation of different systems are analyzed.
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Chapter 1

INTRODUCTION

We propose to formulate different pricing strategies for a service provider that
provides access to a communications network. An example of a communications network
would be a network that provides users access to the Internet. The service provider provides
bandwidth to users to connect to the infrastructure of the Internet. However, the service
provider has a limited amount of bandwidth that it can offer its users. In certain cases
(especially the dominant flat monthly fee pricing scheme currently used by most internet
service providers), the service provider can experience congestion caused by too many users
simultaneously demanding access to the network. This can result in a loss in quality of
service or the inability to provide any services to incremental customers. The flat fee price
scheme results in an inefficient allocation of limited resources among users and an inefficient
revenue maximization policy for the service provider. Congestion-dependent pricing, which
is analyzed in this thesis, is a method the service provider can use to set prices taking the

bandwidth constraint into consideration.

Different pricing strategies can be developed to optimize the performance of the
system. Two possible performance measures are revenue generated for the service provider
and total social welfare generated for the system. In this thesis, revenue will be used as the

performance measure for the most part. However, a strategy that increases revenue can



sometimes also allocate resources more efficiently, increase social welfare, and reduce
congestion in the system. An analogous system that uses total social welfare as the
performance measure can be constructed in a similar manner to a system that uses revenue

as the performance measure.

The system becomes congested because the service provider has a limited amount of
bandwidth that it can provide its users. By setting prices based on demand for bandwidth
and the amount of congestion in the system, the service provider can manage its limited
resource of bandwidth more efficiently. This can result in an increase in user service quality
(by reducing congestion in the system), a more efficient allocation of resources among users,

and an increase in revenue.

Example: A situation where congestion pricing would be useful

An example of a situation where a poor pricing strategy resulted in problems for a
service provider is the case of America Online in early 1997. The service provider had a flat
fee per month that enabled users to have unlimited Internet access. The system had a large
number of users and not enough bandwidth to provide users during peak usage hours. As a
result, it was difficult to connect to the system during peak hours and the system was slow.
Also, a flat fee price strategy results in an inefficient allocation of bandwidth during peak
hours. The perceived service quality suffered and the brand image of the firm, a large selling

point, deteriorated rapidly.
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As a result of this, America Online eventually changed their pricing scheme to a flat
fee in addition to a connection time fee. The firm also drastically increased the amount of
available bandwidth in the system. The change in the pricing scheme may have helped to
reduce some of the congestion during peak hours. However, a congestion-dependent pricing
strategy may have helped to further reduce congestion during peak hours. Also, recognizing
congestion trends .in the system might have allowed the America Online to change pricing

strategies or increase bandwidth earlier.

After the large increase in bandwidth available to users, America Online went back
to charging users a flat-fee price per month. Although the revenue per customer is
approximately the same as it was during the connection time fee price strategy, the average
usage has gone up from about 5-6 hours per user per month under the old pricing policy to
20 hours under the flat fee pricing policy. America Online expects a large amount of growth
in demand and is therefore currently not worried about the expenses of setting up a system
with a large amount of excess bandwidth. However, as the growth rate slows, the firm will

need to revisit its pricing policy in order to remain competitive.

Justification for Research

As the government reduces Internet funding, it is inevitable that bandwidth will
become an expensive commodity for service providers and that some method of more
direct pricing of bandwidth for users will be necessary. There are several proposals to price
Internet services by charging for sending packets of information on the Internet, such as

Paris Metro Pricing, tariffs, and auction protocols. If one such pricing scheme does become
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a reality, service providers will have to pass these costs onto consumers. Congestion pricing

may be a simple and effective method to do so.

As the industry matures and competition increases, firms will be forced to find a
more efficient means of managing bandwidth other than increasing the total available
bandwidth in the system. Service providers will compete against one another based on price,
types of services provided, and quality of service. In a mature competitive environment,
increasing bandwidth to compensate for congestion at peak usage hours while maintaining a

flat fee pricing policy will result in an excessively large, high cost system.

Objectives
There are two main objective we hope to accomplish:
1. To dewelop an optimal pricing policy that maximizes performance for a network under various system

models.

We hope to build and analyze different system models in order to understand how
systems with different assumptions react. The optimal pricing policy for each model will be
determined using dynamic programming. This policy assumes we have full information
about the state of the system and the system parameters. The optimal pricing policy will be a
dynamic congestion-dependent pricing policy. A dynamic policy means that the price

charged an arriving customer depends on the current level of congestion in the system. If a

12



user enters the system when it is highly congested, they will be charged a higher price

compared to a user who enters the system when the system is empty.

The models will also be built and simulated in a system dynamics application to
determine how well the optimal pricing policies calculated by the dynamic programs work in

simulation and how well approximations for the optimal pricing policies work.

There are two main differences between the various models:
a) Segmenting the user population:
The single user-class assumption versus the muliiple user-classes assumption.

If a service provider models the entire user population as being homogenous
and all users have the same bandwidth requirements, demand function, and
departure rate, the system can be modeled as a single user-class system. However, a
service provider may offer different products and services or may segment the user
population into different categories. In this case, each class has its own
characteristics but they all use the common limiting resource of bandwidth. A
multiple user-class model was built to deal with this assumption. In a multiple user-
class model, each user-class has its own bandwidth requirements, demand function,
and departure rate. This setting has been analyzed in the work of Paschalidis and

Tsitstklis [7]. In this thesis, we hope to extend some of the work done in their paper.

b) Fixed and probabilistic demand functions:

13



The single state assumption versus the multiple state assumption.

If the demand function for a user-class is assumed to be fixed and does not
change over time, the system is called a single state system. However, the demand
function may vary over time. This can occur from the system being shocked
occasionally by a large increase or decrease in the demand rate or could simply occur
from the demand rate drifting over time. This assumption causes the demand
function to become a probabilistic function. The probabilistic function is modeled as

a multiple state Markov chain in this thess.

2. To develop insight from the optimal pricing method that a service provider could use in developing a

practical congestion-dependent pricing poliey.

As we will show, the optimal pricing policy is a dynamic policy that is complicated to
calculate and may be difficult to implement. Various approximation and estimation
techniques can be used for the system model, the system parameters, and the pricing policy

in order to make systems easier to implement.

An example of an approximation is to use a static congestion-dependent policy
instead of a dynamic policy. A static congestion-dependent policy sets the price constant
regardless of how many users are currently in the system. Therefore, a user who enters the
system when there are several users will be charged the same price as 2 user who enters the

system when it is empty. This assumption is analyzed by Paschalidis and Tsitsiklis and
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shown to be an accurate approximation that causes only a modest loss in performance, but

simplifies the implementation significantly. [7]

Similar to this example, other approximation and estimation techniques will be
evaluated in this thesis. One such estimation is determining which Markov state the
probabilistic demand function of a multiple state system is in. The dynamic pricing policy
assumes we have full information about the system but in practice, the current Markov state
of the demand function may be unknown. Estimation techniques will be determined,

simulated, and analyzed for performance in different multiple state systems.

Layout

There are four additional chapters. The next section (chapter 2) will introduce the
various models and assumptions in detail and the dynamic programming algorithms used to
solve for the optimal dynamic congestion-dependent pricing policies. Chapter 3 will
introduce the results from the dynamic programming algorithms and the system dynamic
simulations for the different models. It will also note interesting observations about the
systems and analyze some of the approximations for the systems. Chapter 4 will discuss
estimation techniques for single state and multiple state systems where the service provider
does not have full information about the system. Finally, we conclude by reviewing what we
have accomplished, by stating what approximation and estimation techniques make

implementation easier, and by discussing possible areas for additional research.
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Chapter 2

DESCRIPTION OF THE MODEL

Different models were built to deal with different assumptions about the system.
This chapter will describe what assumptions were made and how the assumptions were
explicitly designed for each model. The three main models discussed are the single state and
single user-class model (SS model), the single state and multiple user-class model (SM

model), and the multiple state and multiple user-class model (MM model).

For each model, the optimal dynamic pricing policy to maximize performance was
developed. To determine the optimal dynamic pricing policy, continuous time, controlled
Markov chain models were built for each of the models and solved via dynamic
programming. ‘The measure used for performance was the steady state revenue rate

generated for the service provider.

Single state and single user-class model (SS model)

The SS model assumes that all users belong to a single user-class. All users have the
same demand function, bandwidth requirement, and departure rate. Additionally, the

demand function is constant through time.

Customer armival rate (Demand Curve)

Users enter the system according to a Poisson arrival process with a controlled

arrival rate. The instantaneous arrival rate A, is a function of the current price, # that the
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service provider charges. The price is assumed to be a connection-fee charge that users pay
when they connect to the network. The function A(u), is assumed to be linear in #, of the

form,
A(u) = max {/10 - llu,O}, 1)

where A, and A, are positive constants and the price, #, is nonnegative. As the price for

access to the network increases, the arrival rate decreases. Beyond a threshold price of

u % , there will be no additional users entering the system. Although there is currently no

data to support 2 linear demand curve for communication services, it makes sense to use a

curve where user demand is monotonically decreasing with respect to price.

It is assumed that the service provider is a monopolist and can set prices
independently of competition. This is a simplification of the actual system, where at least
some amount competition exists. In reality, both the average price charged to users and the
quality of service will affect the competitive environment of the service provider in the long
run.

User acceptance into the network

It is assumed in the single-class model that each user demands the same amount of
bandwidth. Thus, the maximum number of users the network can accommodate, N, can be
determined. N will be equal to the truncated integer value of the total bandwidth, R, divided

by the bandwidth demanded per user, 7,
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IR
N =int |i7j| . (2)

The system can keep admitting users into the network until the number of users, 7,
is equal to the maximum number of users the system can accommodate, N. If additional
arrivals occur beyond this point, the users who are not admitted into the system do not enter
a queue but are lost. This is also known as balking in queuing theory.

User departure rate

The holding time of each user is assumed to be exponentially distributed and

independent. The exponential parameter, L, 1s assumed to be a constant. The expected time

o . 1 .
that an individual connection lasts is —. Although there is no data to show that the
U

departure rate for communication services is exponential, the assumption makes modeling a
system with several users who arrive at different times much simpler because the
exponential distribution is memoryless. Determining the rate of departures from the system
at any time only depends on the exponential parameter, W, and the number of users, 7,
currently in the system. In addition, telephone calls, which are in some ways analogous to

these types of communication services, have been shown to be exponential.

Revenue

The service provider accumulates revenue through the price paid every time a user
connects to the network. One method of setting prices for a service provider would be to

try to maximize the expected revenue per unit time, J*. An upper bound on the maximum

18



revenue per unit time can be found by considering a system that has an infinite amount of
bandwidth R. For such a system the optimal price, # will be constant, regardless of how
many users are already in the system. In steady state, the expected revenue per unit time will
be J*=#A(#). This quantity can be maximized by setting its derivative with respect to # equal

to zero and solving for #.

J ¥ e = uA) =uly -1’4, ?3)
‘fij: =, —2u"2, =0, )
v =g o
=2, ©
J e = g? ™

These values for J* and u* (for a system with infinite bandwidth) will accurately
approximate finite bandwidth systems where congestion is not a problem. These are systems

where the steady state arrival rate is much less than the maximum departure rate.

J'r #J Row for Au*) << Ny, 8)

. A
Jr = J R for7°<< Ny . ©)
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A
If 2" > Nu, the J* calculated for a system with infinite bandwidth becomes a poor

approximation for the revenue per unit time of the congested system. To maximize revenue
in a system with finite available bandwidth, the optimal pricing strategy is a function of the
state of the system. This is called dynamic congestion-dependent pricing. In a system that
can support a finite number of users, dynamic congestion-dependent pricing says that the
user who enters the system when it is relatively empty will be charged a different price than

the user who enters the system when it is relatively full.

To maximize revenue it is NOw necessary to set a vector of prices, u¥=(u,, u,, .., uy),
where u, is the price charged a new user entering the system when there are n previous users

already in the system.

Modeling the Markov chain

The SS system can be modeled as having memoryless arrivals, memoryless service
times, and N servers, where there is balking. This is called an M/M/N queue with balking. A
conﬁnuous-time Markov chain can be constructed to model the system. The states in the
Markov chain are the number of users in the system at one time. The system will have N+1

states (0,1,2,...N) and will transition as shown in the Markov chain pictured below.
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Figure 1: Markov chain diagram for a single state, single user-class system.

Aoy )

AMw)
SR
U Nu

The maximum transition rate out of any state is bounded by v,
v = max(A(u))+max(nu) = A, + Nu. . (10)

The maximum possible arrival rate is A, (which corresponds to a price of #=0) and the

maximum departure rate occurs when the system is in state N, and is equal to INJL.

Maxcimizing revenue: Formulation of the dynamiic program

The optimal price vector, u*, can be found by solving a Bellman equation. The
Bellman equation and different methods of solving Bellman equations can be found in

chapter five of [2]. The general form of the Bellman equation 1s,

J *+h(n) = rr}‘axl}l(u")un + ZPM.h(j)} . (11)

Jjeneighbors(n)
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In this equation, the set zeighbors(n) consists of all the states that the system could transition
to from state #. This list includes state n as well. For this system, zeighbors(n) can only include
n-1 (if #>0), n, and #+1(f #<N). The variable h(s) indicates the relative reward of being in
state 7. This variable h(#) will be highest for =0 and lowest for #7=IN because the relative

reward is highest when the system is empty and lowest when it is full.

The maximum transition rate from any state in this system is bounded by v. The

probability of transitioning from the current state, #, to another state, j, is P, .. This

n.j
probability can be defined as the rate of transitioning to another state divided by the

maximum transition rate (V). The probability of transitioning to a higher state (given n<N) is

equal to, . The probability of transitioning to a lower state (given n>0) is equal to

Au,)
v

P2 The probability of staying in the same state is equal to 1- ZP,U. , where Z(n)
v icZ(n)

includes all of the neighboring states, except #. Substituting these values into the Bellman’

equation, we obtain,

J *+h(0) = max[/l(uo Yu, + ’1(:,’0) h(1) +(1 -M)hm)], (12)
4o \%
J*+h(N) = max[/l(uN Yt + %h(zv ~1)+(1- %)h(N)}, (13)

and for 0<n<N,
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J*+h(n) = max[/l(u")u" + @h(n +1)+ "T”h(n ~1)

1 (14)
w2 _ n—ﬂ)h(n)}
1% 14

Different dynamic programming methods can be used to solve this equation. Two
possible methods are policy iteration and value iteration. Value iteration was chosen for this
application because it is simpler to implement than policy iteration in this case. Value

iteration is known to converge to the unique solution of Bellman’s equation.

In formulating the dynamic program, the algorithm described below was used. Note
that h,(#), g(%), and #, correspond to approximations calculated by the algorithm in the "

iteration.
1. Set hy(n)=0 (for the initial value) foralln,0 <n< N.

2. Maximize the right-hand side of equations (12), (13), and (14) with respect to #,.
Call the result g(n). The price that attains the maximum can be found by taking the

derivative with respect to #,, and setting the result equal to 0. Solving for #_,,

(2
R N O) S .
-2
- A (15)
A n=N,
7
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. A
If the price #,, is not in the interval I:O, ZO} , then the demand function described in
equation (1) will be outside of the relevant range. To avoid this problem, we

constrain #,, to lie in the interval l:O,—O-jl , instead of using the price provided by

. - . A
equation (15). When the system is in state [N, the price is set to — to ensure that
1

there are no additional arrivals into the system.

Set h,(n)=g,(n)—g,(0). Since we are interested in the relative reward, hy(n),

between different states, we can arbitrarily set any one of the relative rewards equal

to 0. In this case, we chose to set h,(0) equal to zero. If,

€> |ht (I’I) - ht—l (l’l)

, (16)

for all #, where ¢ is an appropriately chosen error bound, then the last iteration has
not changed any of the relative rewards above the acceptable threshold, ¢, and an
acceptable approximation to the optimal policy has been found. The approximation
for the optimal steady state revenue rate, is J*=g(0), where g(0) is available from the
last iteration. The approximation of the optimal pricing policy vector s u¥*=(u,,

Uy, - Upy), Where #,, are available from the last iteration.

If the error bound requirement is not met, compute another iteration of values for

&(n) and 4,(n) (return to step 2).

24



Total Social Welfare

Although we use revenue as the measure for performance in developing the optimal
pricing policy, it is possible to use total social welfare as the measure of performance instead.
Additionally, even if revenue is the performance measure used, the system can still be
analyzed to see how the revenue maximization policy affects the total social welfare

generated.

The total welfare for the system is defined as the amount of welfare generated for
the service provider plus the additional welfare that the user receives from using the
network. The addiﬁona] welfare the user receives is defined as the amount in excess of the
price, #, that the user would have been willing to pay to connect to the network. No welfare

is generated if the user is refused access to the network.

From the demand curve, it is possible to construct the PDF for the social welfare a

user would get from connecting to the network. The maximum welfare that a user could get

A . :
is x =22 The PDF for welfare is uniform from x=0 until x=x_,,. At x=x_,,, the PDF

max

will reach 0. The PDF for the welfare that a user gets from connecting to the network can
be derived directly from this information, which was determined by the demand function in

equation (1). The PDF for the social welfare a user gets can be determined by,

|

O<x, <=2
fi(x) =14, A 17
0 , Otherwise
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It is possible to derive the conditional PDF for the additional welfare that a user would get,

given the user paid price # The conditional PDF can be derived from equation (17).

P

}'1
o :
I <X, <—>
Faul ) =1 | £,Ce )y & 18
’ , otherwise.
o

The expected value of this conditional PDF can be calculated to be,

E(x, |u)=u+%(j'—‘l)—u}. (19

Simulating the System

A simulation for the system was built in the system dynamics modeling application
Vensim, by Ventana Systems, Inc. Vensim is a system dynamics modeling application with a
graphical interface. The application is used to model stocks, flows, and auxiliary variables.
Stocks are variables that hold state, flows affect stock values, and auxiliary variables can be
used as inputs to the system, intermediate variables, and to aftect other auxiliary vanables
and flows. Stocks, flows, and auxiliary variables are all connected by arrows to show direct

cause and effect relationships between all variables.
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This application advances the time variable by discrete steps. Modeling actual time as

this discretized time variable in the simulation will introduce an error because the actual time
in the system is continuous. Choosing a small discretized time step (<<—) so that the
1%

probability of two actual events occurring in a single time step is negligible can reduce this

error, but will increase computational requirements (number of steps).

One way to avoid this error completely is to model the discretized time in the
simulation as “event time”, where each discretized time step corresponds to an event

occurring in the system.
One of three events can happen at each time step: an arrival could occur (with

probability %), a departure could occur (with probability <), or no event could occur (with

probability 1—22"). Event time can be related to real time as a summation of a series of

independent exponential random variables. The PDF for this exponential distribution s,

fe={" " Yo > (20)
X =
e 0 otherwise.
The “event time” in the simulation can then be related to actual time by,
#of events
Z - ln(p i )
f=—2— (21)
v

Each p, is an independent, uniform random variable between 0 and 1. The expected value

for the actual time elapsed is,
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#of events

1

E@t)= ':‘

# of events
= . (22)
1%

As the number of events becomes large, the expected value for time elapsed becomes a

more accurate estimate for the actual time elapsed.

Using event time to model the arrivals and departures of the system is accurate
because time is a continuous variable and the probability of having any 2 events occur at

exactly the same time is negligible.

Single state and multiple user-class model (SM model)

A multiple user-class model allows service providers the ability to distinguish
between different types of users who have different demand curves and different bandwidth
requirements. For example, the service provider can distinguish between users who need to
check email, users who want to check news or stock quotes real-time, and users who are
requesting video conferencing. Additionally, the demand curve for each class is constant
through time.

Customer arrival rate (Demand Curve)
In the single state, multiple user-class model, there are M different classes of users,

where each class, 7, has a different arrival rate of the form,

A, (u) = max {ﬂ.o,m - l,,mu,O}, u>0. (23)
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User acceptance into the network

A call from each user-class, 7, requires a different amount of bandwidth, 7,. There
are #_ users of class 7 already in the network and an additional user of class 7 ié accepted
into the network as long as the total available bandwidth is greater than or equal to the
required bandwidth,

M
r,+ o nm <R (24)

k=1

User departure rate

Users of each class have different departure rates, [, If there are 7, users of class 7

in the system, the overall departure rate for class 7 users would be 7, H,

Revenue

Revenue is again generated for the service provider whenever a user enters the
system. In this case, users of different classes can be charged different prices. When the
system is in state 5, 2 user from class m is charged a price #,,. For a system where bandwidth
is not a limiting constraint, the service provider can set prices for each class independently

and without regard to which state the system is in. The optimal pricing strategy for a system

with infinite bandwidth s,
* /10 m
um = (25)
24 m

The optimal revenue, J*, that the service provider can expect to earn in this case is,
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/1 2
J‘R—wo - Z 0.k

. 26
VR )

The infinite bandwidth approximation will be an accurate approximation for this

system as long as,

Telox

2

ket 2Hy,

<<R. @7

Modeling the Markov chain

The states in the Markov chain model of the SM system must represent the number
of users of each class, 7. Each state, s, is specified by a vector with M elements, where each
entry indicates the number of users of each class who are currently in the system. As the
number of classes, M, increases, the number of states required in the system increases
exponentially in M. It is only feasible to find solutions using dynamic programming for
systems where M is small. The maximum number of users of class 7 allowed in the system
(assuming there are no other users of different classes in the system) is N,. Below is a

Markov chain diagram for a system with R=7, M=2, n=2, and r,=3.
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Figure 2: Matkov chain diagram for a single state, multiple user-class system with M=2.
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The maximum transition rate out of any state is bounded by,

r,

v= Ao+ max(R‘u"J.
prys keM

Maximizing revenue: Formulation of the dynamic program

(28)

The basic form of the Bellman equation will still be the same. The system now

consists of a larger number of states, and therefore has more equations to be solved.

J *+h(s) = mfx[Z/l(u,m Yu,, + 2P,k j)].

JEneighbors(s)

(29)

Like the single user-class system, #ejghbors(s) consists of all the possible states that the system

could transition to from state s, including state s. However, now there are (at most) 2M+1

states that the system could transition into.
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Value iteration was used again to solve this dynamic program. The dynamic program
is able to solve a system with M user-classes as long as M is small. As M increases, the
number of states in the system increases exponentially, the time to solve the system

increases, and beyond a threshold, the dynamic program runs out of memory.

Total Welfare

The PDF for the price that a user of class # is willing to pay is independent of other

user-classes.

lll,m

[ =14,
0,

0,m

,Q <X, < (30)

1m ~

, Otherwise

Therefore, the expected value of the total welfare given a user of class 7 was accepted into

the system and paid #, is also independent of other user-classes. The expected value is,

_ 1 /10,m
E,, (x, lu,)=u, +E 7 -u, |. (31)

Multiple state and multiple user-class model (MM model)

The single state models described above assume that the demand function for user-
classes are known and static. This is unlikely to be the case in real systems. In order to deal
with the case where the demand function can change probabilistically over time and the

service provider may not know the exact demand function, the multiple state model is used.
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The multiple state model assumes the demand is a probabilistic function, where the
demand function is a Markov chain with five states. A change in state for the demand
function will result in the service provider changing the dynamic congestion-dependent price

in order to maximize performance.

Customer arrival rate (Demand Curve)

In the multiple state, multiple user-class model, the demand is assumed to be a
function of the current state, ¢, that the system is in. The system is assumed to transition, or
“drift”, between five different states according to the continuous-time Markov chain shown
in Figure 3. If the system transitions to a higher (or lower) state, the arrival rate is modeled

to increase (or decrease) by a value of /.

From these assumptions, the arrival rate for user-class m can be defined as,
A, @) =max{d, . — A 40, u=0. (32)
The variable A, is defined as,
ﬂ'O,m,q = /lmr'ddle,m +q, (33)
where A ;qq.m and / are positive constants and ¢ is the current state of the demand function.

As an example, Figure 3 also shows the corresponding Ay, for a specific user-class

for each state of the demand function. The parameters used for this example were A 44,

=50 and j=10.
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Figure 3: Markov chain diagram for state q in a multiple state system with example values for Ag;q for a specific
userclass, 4 System parameters used were Amidde; =50 and j=10.

0 Aoiq=70
a “ a

o Ao q=60
a a

° Ao,q=50
a “ a

The Markov chain changes states, ¢, with transition rate, 4. A system that is modeled
in such a fashion is mostly interesting if the arrival rate, A, is much greater than a (4 >> a).
Otherwise, the system transitions too quickly between different states for the current state of
the system to have a lasting effect on the system or for an accurate estimate of the current
state to be possible. This is because the state of the system is expected to transition before
many arrivals occur.
Maximizing revenue: Formulation of the dynamic program

The basic form of the Bellman equation will still be the same. However, 4 must be
part of the overall system state. There are five times as many states than in the single state

system, therefore there will be five times as many equations. Also, there are possibly two
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more states to transition into than before. These states correspond to a change in the value

of gby +1 or -1. Value iteration was used again in order to solve the set of equations.

The maximum transition rate, v, will also need to be changed to account for these
two new states that the system can transition into. Since ¢ could transition to at most 2 other

states and the rate of transitioning to one other state ¢ is 4, the new value for v is,

Ru,

V=2, Fou i

+2a. (34)
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Chapter 3

COMPARISONS AND QUALITATIVE OBSERVATIONS

The objective of this chapter is to develop some intuition on the nature of optimal
solutions and to find some methods of approximating them. The chapter begins by
presenting and analyzing the results from the optimal pricing policies found by dynamic
programming for each model. We then simulate the different models under the optimal
pricing policy and compare the resulting simulating values for the steady state revenue rate,
J, to the values for J* calculated by the dynamic program. Some of the approximations that
can be used when analyzing the different models will be introduced and their accuracy will
be measured. Lastly, interesting relationships between the different system parameters will

be discussed and analyzed.

Optimal pricing policies
SS model

The optimal pricing policies, u*, were determined for the SS model by dynamic
programming as described on page 21 of this thesis. Examples of the optimal pricing

policies for SS systems with different demand functions are shown in Figure 4.
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Figure 4: Graph of optimal SS pricing policies with different Ag’s. The system parameters were N=30, A1=5, and
p=1.
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When the system is empty, prices approach the infinite bandwidth approximation

A . . ,
prices of u = —2—0— . As the system becomes full, prices start to increase drastically.

The distribution of the state will concentrate around the point in the system where
the arrival rate is equal to the departure rate. This occurs when A(u)=np, where Au)=Ao-Ayu,

from equation (1). Figure 5 shows the intersection between these graphs. For A, low, the
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_ A . :
system will concentrate around the state n~ —20— . For A, high, the system will concentrate

close to the maximum state, #=N.

Figure 5: Intersection of npt and A()= Ae-Aru for SS systems with different Ao values, using the optimal pricing
policies. The system parameters were N=30, A,;=5, and p=1.
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SM model

It is more difficult to graphically illustrate a pricing scheme for the SM model. There
are on the order of 7" states, instead of #, arranged on an M-dimensional grid. One
interesting observation about the SM model is that even when the system is congested but
not full, it is often optimal to not allow certain user-classes into the system. This is done in
order to save bandwidth in case an arrival of a user from a more profitable class were to

occur. More profitable user-classes can be defined as those that have a higher revenue per

bandwidth * time.
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MM model

Figure 6 illustrates a simple MM model with M=1. This is a multiple state, single
user-class (MS) model. The system parameters were N=30, A,=5, /=10, A,_.44.=50, 4=1, and

pn=1.

Figure 6: Graph of an optimal MS pricing policy.
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Although these pricing policies are very similar to the pricing polices of the
analogous SS systems, they are not exactly the same. The difference is accentuated when the

state change rate, 4, is large as shown in Figure 7. The system parameters for the MS systemns

were N=30, A,=5, /=10, A ;;49.=50, and pu=1.
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Figure 7: Comparison of optimal MS pricing policies for q=0 with a=0.1 and a=5 to the analogous optimal SS
pricing policy with Ao=Amia.=50.
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Simulation results versus dynamic programming results

The values for J* from the simulation were close to the results of the dynamic
program when the optimal pricing policy u was used. The simulations were carried out to
100,000 or 200,000 time steps, in order to ensure that the results came close to converging
to the steady-state values. Table 1 and Table 2 compare these results for the SS and MS

models, respectively.
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Table 1: SS system dynamic programming J* values versus simulation results under the optimal policy. System
parameters were N=30, A1=5, and u=1.

Ao J* J
D.P. |Simulation
30 4500 | 44.83
60 167.78 | 167.72
90 317.99 | 317.25

Table 2: MS system dynamic programming J* values versus simulation results under the optimal policy. System
parameters were a=5 and j=5.

N Amigde | M M J* J
D.P. |Simulation

5 60 5 1 44 00 44 24

5 40 1 10 396.83 402.28

10 60 5 0.5 47.21 47.33

5 40 1 10 396.83 392.27

Additional SS system observations
Infinite Bandwidth Approximation

For the SS system, the infinite bandwidth approximation says that the system can be
modeled as having an infinite amount of bandwidth if the steady state arrival rate is less than

the maximum departure rate. As shown in equations (7) and (9), this means that

2
J R =—— is an accurate estimate of J* and is valid when 7" << Ny, where N, the
1

maximum number users in the system, is proportional to R, the maximum bandwidth

available.
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Table 3 illustrates the accuracy of the infinite bandwidth approximation for an SS

system with A, =5. J* values were computed using dynamic programming.

Table 3: SS system dynamic programming J* values versus infinite bandwidth calculations.

i i 5 . J *IZ o -J*
%o N n W2 N VSNV
— x ® 1 15 @ & & 000
45 0 1 25 0D P77 10125 001
&0 0 1 0 30 167.7775 180 0.07
75 0 1 375 0 2414109 2815 0.17]
QD0 0 1 45 0 317921 405 027

As —2"—increases beyond Ny, the infinite bandwidth approximation becomes less

accurate. When —2°- becomes much larger than N, there is a linear relationship between

A
the error and —2°— Figure 8 shows this relationship.
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Figure 8: Graph of infinite bandwidth approximation relative error versus Ao/2 for SS model.
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Upper bound approximation for J* when 7" > Nu
If —ZL > Ny, it is possible to get an approximation for J* that is more accurate than

the infinite bandwidth approximation. For such a system, the maximum arrival rate that
results in a stable system is A=Nu. The upper bound on performance for such a system is
when all bandwidth is always being used. It is possible [7] to estimate a value for J* using

that approximation,

Jop =uk=ulp, (39

Ay —Au=Nu, (36)
and solving for #,

U=——-, (37)
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SO,

Jp =uNu= Np(éﬁi—N’uJ. (38)

The accuracy of this upper bound approximation is illustrated in Table 4. The upper

bound approximation is shown to be more accurate than the infinite bandwidth
approximation when 7° is larger than N The system parameters (except for A, which is

indicated below) are identical to those in Table 3.

Table 4: SS system J* values versus Jub and infinite bandwidth approximations.

‘ | LA A
% T* A P
600 16778 180 180 007 0.07
75 24141 28125 270 017 012

%[ 3179 405 360 027 013
2000 91219 2000 1020 119 012

Relationship between J* and A,

Using these two approximations, it is possible to determine the approximate
relationship between J* and A, when all other parameters are held constant. When A, is

small, the infinite bandwidth approximation indicates that J* will increase quadratically with

. A . .
Ao since J Rrow =j—. As 1, increases past Ny, the upper-bound approximation J,,
1



becomes a better estimate for the system’s J*. J,,, is proportional to A, so J* will then increase
linearly with A,. Figure 9 shows this relationship for a system with parameters N=30, A,=5,
and pu=1.

Figure 9: Graph of J* versus Ao for SS model.

Social Welfare and Congestion-Dependent Pricing

So far, congestion-dependent pricing has been evaluated from a revenue
maximization perspective. However, one of the other important motivations of congestion-
dependent pricing is to increase social welfare. It is possible to develop a congestion-
dependent pricing system that maximizes total social welfare by solving a dynamic program
similar to the one outlined in this thesis. However, even a revenue-maximization congestion-

dependent pricing policy can increase total social welfare over a system whose pricing
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policies results in heavy congestion. For a static pricing policy, a heavily congested system
could be considered a system that is full to capacity a significant amount of the time. From
this assumption, an SS system with static pricing policy, u,, can be classified as heavily

congested when,
Alu,)>> Nu. (39

Table 5 compares a system where the static pricing policy leads to heavy congestion
compared to the welfare generated for the same system operated under the revenue-
maximization congestion-dependent policy. This does not mean that a policy that maximizes
revenue will also maximize total social welfare. In fact, a monopolist who maximizes
revenue will usually do so by setting prices below the total social welfare maximization price.
However, the example does point out that for certain congested systems, a policy that
maximizes revenue can also improve total social welfare compared to a policy that causes

heavy congestion.

Table 5: Comparison of total social welfare for a system with different pricing polices. w is the total social welfare
per unit time. System parameters were N=30, Ao=80, 1,=5, and u=1.

Average
Pricing Policy |System Description # of users J \
us=5 heavy congestion 28.9 144.86 304.26
optimal u* revenue maximization 254 266.6 336.05

Additional MS system observations
Approximations for MS systems with small a

For an MS system, if 4 is small compared to the other system parameters, the
probability of the demand function changing states, ¢, is low. The MS system’s steady state
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J* can then be modeled as the average of five SS systems. Each value of 4, , (ﬂmidd,e’m, q, j)

for the MS system can be used in place of Agfor each SS system. This averaged
approximation will provide a lower bound to the J* that the actual MS system will generate.
Table 6 shows the averaged SS system approximation calculations for an MS system with
‘parameters N=30, A,=5, /=10, A;44.=50, 4=1, and p=1. Table 7 compares J* of different

MS systems and their averaged SS system approximations.

Table 6: Averaged SS system approximation calculations for an MS system with parameters N=30, X1=5, j=10,
Amiaae=50, a=1, and p=1.

SS systems: N=30, Aq=5, p=1
| Ao J*
70| 216.45
. 60| 161.78
| 50| 121.57
; 40 79.65
* 30 45

Averaged approximation: 124.89
| | |

Actual J* for MS system: 126.716
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Table 7: Comparison of various MS system J* to averaged SS system approximations. MS systems have parameters
N=30, A;=5, =10, a=1, and p=1.

Amiagie |MS system Averaged SS
J* Approximation
20 29.91! 29.93
30 54.42. 54.24
40 87.24 85.60
50 126.72 124.89
60 171.06 169.23
70 218.62 216.90
80 268.20 266.60

Relationship between a and J*

For an MS system, if a increases, (with all other system parameters kept the same)
the value of J* increases monotonically. This may be a result from the optimal pricing
strategy being able to take advantage of frequent state changes to further increase revenue.

Figure 10 shows the relationship between  (on a log scale) and J* for an MS system with

parameters N=30, A, =5, j=iO, A miaae=50, and p=1.
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Figure 10: Graph of J* versus a for an MS system.
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Relationship between a, A4y, and J*

For a system with A4y, small, the difference in J* for analogous systems with
different state change rates, 4, is small. As A_4, increases, this effect seems to increase. This
difference reaches a maximum and past a certain threshold for A4y, the difference seems to

decrease as a function of Ay, This threshold for Ay, that maximizes the difference in

revenue for analogous systems appears to be related to the point in a system where the

system is between under-utilization and over-utilization. That occurs when
Amrddle ~ 2N H- (40)

Figure 11 shows the difference in revenue for analogous systems versus A_gq.. The

difference in revenue is graphed as the difference, 4, between J* for systems with state
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change rates of 4=100 and 4=1 normalized by J* for the system with 4=1. The value 4 is

defined as,

* _J%
J a=100 J a=1
* .
J a=1

d= 41)

The system parameters were N=30, X,=5, /=10, A;44,=50, and p=1. It is interesting
to note that the maximum difference appears to occur near the point where

Aiaae = 2Npr = 60.

Figure 11: Graph of 4versus Amiddi for an MS model.
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Relationships between j, A4, and J*

It is possible to determine the effects of j and A4, on J* for systems with different

utilization rates. As shown in Table 7, it is possible to estimate J* for an MS system using an
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averaged SS system approximation. Changing / in the MS system affects the A, parameters of
each of the SS systems that are averaged. For illustrative purposes, a system with three states

for ¢ (instead of five) is used to derive the relationship between J* and ;.

Derivation of the relationship between J* and j

A three-state MS system can be modeled as an average of three SS systems with
A= Amicae/ » Mniadier A Aigae™ /. IE J* for each SS system is considered a function of Ay, an

approximation for J* for the MS system 1s equivalent to,

1 . y .
JMS approximat ion = 5 (J * (ﬂ’middle - .]) +J * (ﬂ’middle ) + J * (Z’middle + ])) : (42)

Relationships between J* and j for underntiliged systems

If the system is underutilized, the infinite bandwidth approximation for the SS

system will be an accurate estimate for J*. This approximation (equation (7)) shows that

J*ac A,°. The relationship between an MS system approximation for J* and j can be

established,
1 2 2 2
JMS approximat ion x 5 ((/1 middle —J ) + (}'middle ) + (ﬂ' migdie T J ) ): (43)
1 )
‘]MS approximat ion o g (31 middle2 + 2.] : ) (44)
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It can be concluded that J* for the MS system will also be proportional to /. J*

should increase quadratically with /.

Relationships between [* and j for over-utilized systems

If the system is over-utilized, the J,, approximation is more accurate in estimating J*
for each SS system. The J,;, approximation (equation (38)) shows that J* is proportional to

- So the relationship between the approximation and j will be,

1 . .
JMS approximat ion x 5 ((ﬂ’ middle ~ J ) + (ﬂ' middle ) + (/1 middle + J )): (45)

J

MS approximat ion o ﬂ'middle N (46)

It can be concluded that increasing j will result in little change in J* for the MS system.

A graphic representation of the relationships

Figure 12 shows this relationship between J* and / for an over-utilized system (with
Amage =100) and an underutilized system (with A4 =20). The values for J* were
normalized by J* for the corresponding MS system with /=0 in order to graph both systems
on the same scale. Second order effects, such as limitations of the apprbxirnations and the
changing utilization levels of systems associated with changes in j, exist and have larger

effects when j is large. The system parameters were N=30, A,=5, /=10, &=1, and p=1.
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Figure 12: Graph of nommalized J* versus j for MS systems with low utllization (Amisae=20) and high utilization
O-middle= 100).
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Chapter 4

ESTIMATION OF SYSTEM PARAMETERS

In a real system, the service provider may not know all of the system parameters.
For instance, in an SS system, the details of the demand curve beyond the general shape may
not be known. In an MS system, even if the probabilistic demand function is known, the
current state that the demand function is in may not be know. There are different methods

for determining these system parameters with different advantages and disadvantages.

This chapter will discuss methods for estimating A, and A, for an SS system where
the price, #, is held constant over all states. Esﬁmatihg these parameters is not dealt with in

detail because it is a relatively simple problem.

Estimating some of the MS system parameters poses a more challenging question.
Different methods of estimating the current state of the demand function, ¢, for an MS
system, where all other system parameters are known, will be discussed. We will also discuss

how to set prices based on an estimate for 4.

The estimation topics discussed in detail for the MS system are:
1. Analyzing different shaped windows for estimation.

2. Determining the length of the estimation window to minimize error.
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3. Determining which windows minimize system memory requirements.

4. Comparing the effects of rounding the estimation data to determine a specific state

versus interpolating prices between different states.

SS System Estimations

Estimating A,
Estimation when prices are constant

It is possible to estimate X, in an SS system where the price, #, is held constant over
all states. In this case, it is possible to estimate A, by,
Ay =A+Au. @7)

In this case, the service provider knows both A, and #, so the service provider only needs to
estimate the Poisson arrival rate, A, of the system.
FIXED LENGTH WINDOW ESTIMATION
One method to estimate A is by counting the number of arrivals, £, that occur over a

window of fixed length W. An estimate for A can then be determined by,

~ k
A=—. 48
- 9)
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The longer the length of the window, W, that 1s chosen, the more accurate the
estimate for A becomes. At the very least, the length of W should be chosen so that there are

many expected arrivals in the window, or E(k)>>1. This expression can be rewritten as,
W >> ! (49)
I

The problem of using such a window of finite fixed length, W, 1s that the maximum
amount of memory that is required for such a system is equal to 4, the number of arrivals
that occur in the window. The interarrival time between each arrival must be stored in order
to determine how many arrivals must be summed inside the window, W to determine 4. As
new arrivals occur, old arrivals that are no longer in the window are discarded. The number
of Poisson arrivals over a window of fixed length, W, is a random variable described by the
Poisson distribution. The PMF for this Poisson distribution s,

3= (Aaw Yo e

pk(k k!

k, =0,1,2,... (50)

The PMF is positive for all positive integer values of &. This means that

probabilistically, there can be a very large number of arrivals, £ over a window of fixed
length, W. Because the amount of memory the system will require to estimate A is equal to

&, it can vary and could be very large.
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FIXED NUMBER OF ARRIVALS, K, 4zp, ESTIMATION

One way to avoid this problem of memory requirements is to fix the number of
arrivals, &4, and estimate A by dividing £;,4 by the amount of time required to get &g

arrivals. The estimate for A will be,

k
S (51)
> interarrival time, .

ick

A=

This system requires the system to store exactly &g, values, regardless of the length

of each interarrival time. The larger the number of arrivals, &;..4, the system estimates over,
the more accurate estimate of A will be.

OVERALL AVERAGED ESTIMATION
The optimal window, W, can be found by taking the limit of W — 0. This results

in computing the average number of arrivals per unit time of the system over all time,

i total # of arrivals _ (52)

total time

The benefits to using this window are that the estimation will be the most accurate
and the memory required to compute such an estimate is low. The estimation only requires

keeping track of two values.
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Estimation when prices are not constant

For an SS system, it is possible to estimate A, even if the price, #, changes over time.
This can be easily implemented if the demand curve is linearly related with price. It is
necessary to calculate # , the average price the service provider charges over the window, W.
An estimate A for the Poisson arrival rate, A, can again be calculated using equation (48),

(51), or (52). An estimate for A, can then be calculated by,

Ay = A+ AT, (53)

Estimation when the demand curve is unknown

If the demand curve is not known, it is still possible to determine an estimate for the
Poisson arrival rate, A, if the price, #, is held constant. This can be done using one of the

methods described above in equations (48), (51), and (52).

If the price, #, is not held constant and the demand curve 1s not know, it is still
possible to determine an estimate for A(i) in certain cases. An accurate estimate can be
made if the changes in price are small enough so that the demand curve can be estimated as
being linear over the relevant price range. A value for A(#) can be estimated by again using

equation (48), (51), or (52).
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Estimating A,

Determining an accurate estimate of A, is possible if accurate estimates for the
Poisson arrival rate, A, are determined at two different prices. The estimate for A, will
become more accurate as the difference between the two prices increases. There are
difficulties to setting prices that are vastly different from each other in a real system that may

make this estimation implaustble.

MS System Estimations
Estimating the state, ¢

The state, g, that the system is in can be estimated in an MS system where all other
parameters are known. A service provider may be interested in estimating ¢ to determine

when the system is in a state of shock and congestion may become a problem.
To determine the state, ¢, in a system, the service provider needs to:
1. Estimate the arrival parameter, A, over a specific window.

2. Use the data to estimate what the current state of the system is and then set prices

accordingly.

The next two sections will discuss methods to choose the appropriate window and to

estimate the current state of the system in order to set prices.
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Determining the appropriate window

Different window lengths and shapes can be chosen to estimate the arrival
parameter, A. Unlike the SS system, the optimal length of the window should not be chosen
to be as long as possible. When the system changes state, the data of the system from the

previous state will give an inaccurate estimate of the current state. For this reason, the
: . 1 ,
window size should not be chosen much larger than " However, the window should be
a

large enough to include several arrivals.

The two window shapes that are considered in this thesis are a rectangular window

and an exponential window. The windows are discussed in the following two sections.

THE RECTANGULAR WINDOW

Like the SS system, a rectangular window can be used to estimate A. The rectangular

window has an impulse response of,

1
7 0 W
no=1" T (54

0  otherwise

If x(t) is defined as the signal where each arrival nto the system at time t,;

amval

cotresponds to an impulse, then,

()= D00~ topma)- (55)

t arriva SATTIVAlS

An estimate for the arrival rate at time, t, can then be determined by,
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y(@)=x(@®)*h(). (56)

Since h(t) is a causal system, the estimate of y(t) can be computed in real time and
will only be dependent on the number of arrivals that have occurred in the system up to the

current time. This system is equivalent to the one in equation (48),

k.
3

y(t*) = A(t*) = 7 (57)

where k, is the number of arrivals that occurred between time t*-W and t*.

Optimizing the rectangular window

The rectangular window length, W, can be set to minimize the estimation error.

There are two types of error that are caused by the estimation,

(1) The error caused by having a finite number of data points for the random variable to
be estimated. This assumes that the random variable that is being estimated has fixed

statistics; a change in state has not occurred.

(i)  The error caused by the system changing state, 4.

The total error can be expressed as the sum of these two errors,

~ 2 ~ 1 pe* 2 1 e 2
E[(,z,.-z,*) |-£ (,1,* —W_[*_Wﬂ.,dr] +E (A,.—W L_Wl,drj , (9)

v v

and then the two errors can be analyzed separately.
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This expression is justified because the cross term (the covariance) can be shown to
be zero since we model the arrivals into the system and a change in state as independent

Poisson processes.

1. Random vartable estimation error

This error is caused by having a finite set of data points from which a random
variable must be estimated. It is assumed that the random variable that is being estimated 1s

fixed and that this parameter does not change over the window of estimation.

The error can be rewritten as,

B 2
error, = E (i,,, L }errj ]
w
~ 1 e 2
=EE|i.-—[ adr
W de-w

This expression can be rewritten as,

(59)
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2
error, = E E{(i,. L [ z,dr)
W [alid

i

=F — |Ad
iz IW r} (60)
_E[A]

il

Therefore the error will be,

error, = E{[}:,* —;;—j::_w ﬂ,dr} } = E% (61)

In this result, £ [/1,] is the steady state expected value of the arrival rate, which can

be approximated by simulating the appropriate MS system with the optimal pricing policy

and full information about the current state of the system.

The error will decrease monotonically as W increases. This is because as W
increases, the system will have more data about the random variable and then can estimate
the Poisson parameter of this variable more accurately. The error is displayed graphically as a

function of the window length, W, in Figure 13.
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Figure 13: Graph of error; as a function of the fixed window length, W. System parameter used: E(A,)=25.
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1. Change of state error

This error is caused by the system changing states during the window. If the system
changes states, ¢, between time t*-W and t*, there will be an associated estimation error.

This error can be calculated by,

=)
-l

(62)

64



This equation can then be broken down using conditional probabilities. If the time

since the system last changed states is called T,

T =t*_tlastchangeinq> (63)
the error can be broken down into,
1 - :
error; = E {[W L_W (A--4, )a'rj }
(64)

- 7’rl_z(f’(r < W)E[( [0 (G2, )a!rj2
+P(T > W)E[( [, G- l,)drﬂ? > WD .

T<W}

If the system did not change state in the interval (t*-W, t*), then T>W, and there will be no

error,

T>W]=O. (65)

E[[ [0 (-2, )dr)z

From these results, equation (64) can be simplified to,

error; = 7;7 P(T <Ww )E[U:_W (2. -4, )d.r)2

T<W]_ (66)

If the system does change state, there will be an error associated with that change of
state. The assumption is made that the length of the window, W, will be chosen to be short

enough so that the probability of the system changing states more than once inside the
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interval (£*-W, t+) will be negligible. If the state of the system is assumed to change exactly

once in the interval (t*-W, t¥) then,

Iﬂ’t" - /11.'

| trW<r<t*-T
o otherwise

©7)

The probability of the system changing state in the interval of time, (£*-W,t*) can be

determined in terms of the exponential distribution with parameter, 4,

“bh [,>0

-1,

) (68)
otherwise.

The parameter, 4, is the total state transition rate from a state ¢ to another state. The
total transition rate will depend on the state that the system is in currently. If 4=-2 or 4=2,
then the transition rate will be a. If; g = -1, 0, or 1, the transition rate will be 24. In order to
simplify the system, a constant total transition rate will be chosen, regardless of the state of
the system. This will allow the system to have a fixed-width window regardless of the

current state, ¢, of the system. A reasonable approximation for & s,

b=~2a. (69)
Thus,

P(T<W)=1-e" =1-¢7". (70)

By using the assumption that the system changes state at most once in the time

interval (£*-W, t*) and equation (67), the required expectation can be simplified to,
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(71)

E[( [0 (-4, )dz')z

T < W] - j B[ -wy Ir < w|

Conditioned on having a single event in an interval of length W, the location of that even is

uniformly distributed. Thus, W-T is uniform on [0,W] and,

Elr-wy Ir < w)- Eg_a : (72)

Substituting the results of equations (72), (71), and (70) into equation (66) leads to,

1 o+ ?
error, = FP(T < W)E[(L_W (A. -4, )dr) T< W]
(73)
1 e\ W’
= l-e
W2 ( ) 3
The change of state etror can finally be evaluated as,
2 _ p2aW
error, = Z wh-e) (74)

il 3

Analyzing this equation as a function of the window length, W, shows that if W 1s
set to 0, there is no error. This makes sense because if the length of the window is zero,
there should be no error associated with a change of state in the interval (t*-W, t¥). As W

increases, the error will increase monotonically. Equation (74) is only a valid approximation
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for values of W where the probability of having two or more changes of state in the interval

(£*-W/, t%) 1s small. This is the range of values for W where,

. (75)

Q=

2
W<<—=~
b

Figure 14: Graph of error; as a function of W. System parameters used were a=0.5 and j=10.
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Figure 15: Zoomed in version of Figure 14, showing the relevant range for W.
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Minimizing total error

The total error will be the sum of error; and error;,

€ITOr = €I17107, + €ITOor;
_E(4,) N sz(l - e‘““’)- (76)
W 3 -

To optimize the length of the window, W*, the total error must be minimized with

respect to W,

: _ . (EQ) sz(l—e"z"W)
my;n(error)— m;n[ W + 3 . an

The value of W that minimizes the error can be found numerically. Figure 16 shows

the total error as a function of W for an MS system. The system parameters were @=1, j=10,
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and E(A)=20. The value of W* that minimized the error in this system was W*=0.736. Note
that this solution for W satisfies the requirement of equation (75). This means that the
solution for the optimal window length is consistent with the assumption made of no more

than one change of state for the duration of the window, W.

Figure 16: Graph of the total error as a function of W for an MS system.
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Figure 17: Zoomed in version of Figure 16, minimization of the total error showing the relevant range.
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Observations about the optimal length, W*

There are many interesting observations on the relation between the optimum value
of W found in equation (77) and the different system parameters. Some of these

observations are discussed below.
1. For most systems, increases in the state change rate, a, will decrease the window length, W.

If the state change rate is small, increasing it will cause the change of state error
(errory) to have a higher slope in the range of interest and the total error will be minimized at
a lower value for W. However, if the state change rate is sufficiently large, the window
length may increase. This is because the state change error (error;) will already have a
relatively flat slope for the optimal value of W and increasing the state change rate may

decrease the slope at W instead of increasing it.
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2. Inoreasing the jump distance, J, will decrease the window length.
If the jump distance, j, is increased, the slope of the change of state error (error;) will

increase for all W. This will again cause the total error to reach its minimum value earlier.
3. Increasing both E(1,) andj by a commanmultiplicative factor, will decrease the window length.

If both j and E(A) are increased by a factor of x, the slope of the state change error

(error;) will increase by 2x and the slope of the random variable estimation error (error;) will
increase by x. Since the slope of the state change error will have a larger change in

magnitude, the error will be result in a lower value for W* than before.

Implementing the optimal rectangular window

Implementing a fixed length window in an MS system has the same problems as in
an SS system. The amount of memory required is large since the maximum memory that is
required is unbounded. As in an SS system, to avoid this problem, a fixed number of arrivals
estimation can be used, instead. This type of estimation is similar to the fixed length window
but the amount of memory required is bounded and constant. An optimal kg4 can be

inferred from the optimal W* by,
kﬁxed = E(/ll )W * : (78)

Using this technique introduces some additional error in estimating A, which is

shown in Figure 18. Price interpolation of the optimal pricing policy (which is described on

page 80) was used to determine the price from the estimate of the arrival rate. The number
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of armvals technique tends to overemphasize shorter arrival lengths and therefore can
overestimate the actual arnval rate when several arnvals occur in a short amount of time.
However, the results (which will be introduced later) indicate that this overestimation is not
a large problem.

Figure 18: Comparison of ) versus the estimate of lambda (A ) for an MS system using a rectangular window with
Kgred= 15 and price interpolation. System parameters used were N=30, a=1, j=10, Amige=50, and A;=5,and p=1.
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THE EXPONENTIAL WINDOW

An exponential window can be used instead of a rectangular window. An

exponential window has the impulse response,

h(t) = Ce™“u(t), (79)
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where C is the smoothness parameter. As C increases, the window will decay faster and as C

decreases, the window will decay slower.

If x(t) is once again defined as the signal where each armval into the system at me

t, COrresponds to an impulse, then,

X(O)= D0~ tua) - (80)

Uarrival €GTTIVGlS
An estimate for the arrival rate at time, t, can then be determined by,
y(6) = x(t)*h(z) . (81)

Since h(t) is a causal system, the estimate can be calculated in real time.

There are three main advantages to using an exponential window compared to the

rectangular window:
i.  The exponential window requires less memory than the rectangular widow.
An exponential window only requires storing one value, which is the current
estimate, 4. This is because an exponential window is memoryless. The current
estimate of A can be found by discounting the previous estimate by the appropriate

factor and adding the new information,
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1L.

il

A = y(t%) = x(O) * (D) _,.

= [ x@h(* 1)

o 82
= [P x(1)Ce " dr + I x(7)Ce " dr

A

S NS N OLYC)

where t, < t* and x,,(¢) is,

X () = {x(t) o <! (83)

0 otherwise.

Since the window is shaped like a decaying exponential, the more recent
information is weighted more than previous information. This results in a more
accurate estimation of A, since the more recent information is more accurate than

the previous information.

The exponential window does not ran into the problems that the fixed rumber of arrevals tedmique
dloes.

The rectangular window cannot be implemented directly because of memory
limitations. As previously mentioned, the fixed number of arrivals technique that is
used to overcome the memory limitation tends to overemphasize shorter arrival
lengths and therefore can overestimate the actual arrival rate when several arrivals
occur in a short amount of ume. This was shown in Figure 18. However, the

exponential window can be implemented without memory limitation issues and does
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not result in this overestimation that can occur from the fixed number of arnvals

technique. This can be seen by comparing Figure 18 to Figure 19.

Optimizing the exponential window

The same technique that was used to optimize the rectangular window parameter,
W, can be used to optimize the exponential window parameter, C. The error can be
expressed as the sum of the random variable estimation error (i) and the change of state
error (ii) since the cross term (the covariance) is zero,

#lla-2.f =g -c [aeecrar) | (4.-c [aeear) | o9

/

v
i il

1. Random vanable estimation error.

Using the same line of reasoning as with the rectangular window,

R 2
error, = E[(l -cf A,,_,e-“dr) }

, (85)
- E[E[(/l -cf l,._re'C’dr) (A, }H
The estimate for A,.can be expressed as,
Ao=C[e“dd., (86)

where dA is the area under the impulse (from x(t)) when an arrval occurs. The error can
then be evaluated as,
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1.

error, = E

1

E{(ﬂ -c[ A,e-C’erZ {4, }H
crf ¢ E|(dd - l,dt)zﬂ
C* flre'zcrdr}

2]

5

E

1

(87)

I
t
—

S

Change of state error

The change of state error can be defined as,

oo, = |4 =C [ 0] |
- E{(C [ (e =2 )drﬂ'

If T is assumed to be the time since the last change of state, ¢, occurred, then,

error, = E[(C [ (=4 )e‘C’erz}

, )
~cij [ be-br[ J:e‘c"dq) dT,

where we again assume that there can be at most one change of state similar to our

analysis for the rectangular window. Simplifying the equation, results in,
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error, = bj’ f eTedr

T bh+2C
The total error is then,
A 2
error = CE[4] + b : 1)
2 b+2C

To find the optimal smoothness parameter, C*, this error must be minimized with

respect to C. Taking the derivative and setting it equal to zero leads to,
4b;°
cr=L| 227 4. 92)
2(VE[]

Observations about the optimal smoothing parameter, C*

The optimal rectangular window length, W* should be inversely proportional to C*.
That is, the higher the smoothing parameter, C, the more emphasis the éxponential window
puts on recent information and the less emphasis it puts on previous information. This is
analogous to shortening the rectangular window length, W. As the smoothing parameter is
decreased, the exponential window decays slower and more weight 1s put on past
information. This is analogous to increasing the rectangular window length, W. The
observations that were made for the rectangular window should hold for the analogous

exponential window as well. If changing a system parameter increases the length of the
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optimal rectangular window, W*, it should also decrease the optimal smoothness parameter,

C*

Implementing the exponential window

As previously mentioned the exponential window takes less memory to implement
than the rectangular window. The exponential window can be implemented from equation
(82). However, the problem with doing this is that it requires the estimate to be continuously
updated. It is possible to only update the estimate when an arrival occurs if the expected

change in the estimate between arrivals is small. This happens if,
C<<E(4,). (93)

This is the case for many practical systems, and the estimate for the arrival rate can be

updated only when an armival occurs.

The exponential window can then be implemented by,

A

J 2 et (o4

!

where t, corresponds to the time when the i* arrival occurred. Figure 19 compares the arrival

rate, A, versus the estimate using an exponential window with price interpolation of the

optimal pricing policy.
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Figure 19: Comparison of X versus the esumate of lambda (A) for an MS system using an exponential window
with smoothness parameter C=2.2 and price interpolation. System parameters used were N=30, a=1, j=10,
Amiddle=50, and A1=5, and pu=1.
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Determming the appropriate price to charge

Once the arrival rate, A, has been estimated using the appropriate window, an
estimate for A, has to be determined. As with the SS system, A, can be estimated using the

equation,

)
(=]

Il

SN

+ A0, (95)

where # is the average price charged customers entering the system. This equation can be

used because the demand curve 1s linear with respect to the price, #. The average price
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should be calculated using the same window type (rectangular or exponential) and the same
parameters (for W or C) that were used to calculate A . From the estimated value of A, it is

possible to estimate the state that the system is in,

/10 B /?"middle )
J

q= (96)

This estimate for g can take on noninteger values. However, the actual state, g, can
only take on integer values between [-2,2]. The dynamic pricing policy is only defined for
these integer values of ¢ and the estimate, ¢ must be discretized n order to determine a
pricing policy. Figure 20 and Figure 21 show the resulting estimates, ¢, versus the actual

states, ¢, using a rectangular window and an exponential window.
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Figure 20: Comparison of actual state g versus the estimated state, g, for an MS system using a rectangular
window with kgyed=15 and price interpolation. System parameters used were N=30, a=1, j=10, Amide=50, and
Ai=5,and p=1.
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Figure 21: Comparison of actual state q versus the estimated state, (i , for an MS system using an exponential window
with C=2 and price interpolation. System parameters used were N=30, a=1, )= 10, Amiddie=50, and h1=5,and p=1.
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To determine a price using the estimate, g , one of two methods can be used:
1. Rownding the estomated state data

An integer estimate for the state, g, can be determined by simply rounding § to the

nearest integer inside the range [-2,2]. This can be expressed as,
qround =r [o_glgld (q) . (97)

The price the service provider should charge can be determined by using g, as an
estimate for ¢ and then applying the optimal pricing policy determined by dynamic
programming,

This method provides a reasonable estimate for the state of the system. However, if
applied to a real system with a long delay in estimation or implementation of the pricing
policy, this rounding method could become problematic. Also, if the arrival rate jump

distance, , is large, the system response rate could become slow to changes and inaccurate

estimates will negatively impact the effectiveness of the system significantly. This is because

if the system changes states, it will take a long period of time for the estimate, §,,,,,, t

change integer values. Furthermore, an inaccurate estimation of the state could result in

G,y €stimating the state to be in the wrong integer value, which would result in the system

setting prices that are significantly different from optimal prices.
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2. huterpolating prices between different states
In order to build a system which is more accurate than rounding for the cases

described above, the system can use the estimated §and interpolate a price between the
integer values for the states that § falls between. In implementing this system, linear

interpolation for prices was used.

Camparison of estomation results

This section will discuss simulation results of the estimation techniques that were
introduced. This includes comparing the different window shapes and window lengths, the
effect of using interpolation versus rounding, the effect of changing the state change rate,

and the total social welfare generated with different pricing policies.

EVALUATING THE NO ESTIMATION POLICIES: THE BASE CASES

If a service provider does not have full information about the system, it can decide
not to estimate the current state of the system in determining prices. The Service Provider

can model the MS system as an analogous SS system, (with no state, g) and set Ag=2 g
The results of applying an SS system pricing policy to an MS system are compared to the
results of applying the optimal MS system pricing policy with complete information in Table

8.

There is a large difference in the steady state revenue rate, J, that is generated
between an MS system where the optimal 5 state policy and the optimal 1 state policy are

used (from comparing rows ii and iii). If the estimation is successful, it should allow the
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Service Provider to significantly increase the steady state revenue rate, J, compared to using
the 1 state policy. By setting prices based on the SS model, the Service Provider is losing

about 12.5% of the optimal revenue rate with full information.

Another observation is that a large difference between the expected revenue and the
actual revenue could be a sign of an insufficient model. For example, assume that a service
provider models the system as an SS system and has calucted the optimal revenue rate to be
J#=121.57 (from row i of Table 8). Setting prices accordingly, the Service Provider will earn
significantly less than J* (J ~ 109 from row ii of Table 8) if the system is in reality an MS
system. This difference could be a flag to the Service Provider that the SS model being used

may be insufficient.

Table 8: Evaluation of applying an SS pricing policy to an MS system. The optimal 1 state and 5 state policies were
used. MS system has parameters N =30, Amiadle=50, M1=5,j=10, a=1, and p.= 1. SS system has %o =Amigdle=50.

[Simulation Results (from dynamic program)
J* J
SS system
i [1 State Policy [ 121.57 [ 121.49
MS system
ii Applying 1 State Policy 108.95
iii pplying 5 State Policy 126.72 124.56

SIGNIFICANT ADVANTAGES FROM ESTIMATION
The MS system was then simulated where the state, ¢, was unknown and had to be

estimated. Table 9 shows the results of using a rectangular estimation window with linear

price interpolation. The system parameters were the same as those in Table 8. Solving for
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the optimal window length by minimizing the expected error resulted in, W*=0.736 and the

optimal number of arrivals was kg, =14.7.

Table 9: MS system simulation results for J, the steady state revenue rate. A rectangular window, with number of
arrivals, £, was used with linear price interpolation and the optimal MS pricing policy determined by dynamic

programming.

K J
10 117.72
13 118.32
14 118.37
15 118.42
16 118.32
17 118.48
18 118.34
20 118.33

The data shows that estimation is able to generate a significant increase of revenue
compared to using an SS pricing policy. The Service Provider is now only losing about 5%

of the optimal revenue due to estimation error.

The calculated value for k;, produces a nearly maximum revenue, J. Differences

between the calculated and actual optimal number of arrivals could have occurred from
1. Assumptions and simplifications used in the derivation

There were assumptions used in the dervation for the optimal window. Making these
assumptions allowed the calculations to be simplified but did introduce some error into the
calculations. However, the assumptions should not have significantly affected the optimal

window.
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2. Lack of simulation convergence

The simulation was run to 200,000 “event time” steps. Therefore, the revenue per unit time,
J, that was calculated is only an estimation of the steady state revenue. Factors, such as the
random number generator seeds being set to particular values can also introduce error into

the system.

The error in determining the optimal number of arnvals, &, causes an insignificant
difference in J. Also, the data indicates that in this particular system, J is fairly insensitive to

the value for & used, over a range of values.

COMPARISONS BETWEEN PRICE ROUNDING AND INTERPOLATION
Comparing the results of Table 9 (estimation with linear price interpolation) and

Table 10 (estimation with price rounding) shows that price interpolation produces higher
steady state revenue rates. This was an expected result because the interpolation adds a level
of accuracy that rounding is not able to capture. However, the difference between the two
methods is insignificant in this case (*1%). For many real-world appﬁcations, rounding
prices may provide an accurate enough estimate without the additional computation and

complexity of interpolation.
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Table 10: MS system simulation results for J, the steady state revenue rate. A rectangular window, with number of
arrivals, &, was used with rounding and the optimal MS pricing policy determined by dynamic programmung.

k J
12 117.13
13 117.39
14 117.3
15 117.13

COMPARISONS BETWEEN RECTANGULAR AND EXPONENTIAL WINDOWS
Results for the rectangular window with price interpolation are shown in Table 9.

The same MS system was then estimated using an exponential window. Table 11 shows the
results using an exponential window with different values for the smoothness parameter, C,
and price interpolation. Comparing these two tables shows that as expected, an exponential
window results in a higher steady state revenue rate. However, once again the difference
between the steady state revenue rate is insignificant (“1%). Additionally, an exponential
window also requires less memory than a rectangular window and is therefore probably the

preferred method.

Table 11: MS system simulation results for J, the steady state revenue rate. An exponential window, with
smoothness parameter, C, was used with interpolation and the optimal MS pricing policy determined by dynamic
programming.

C J

1.4 118.81
1.7 119.01

2 119.21
2.1 119.11
2.2 119.17
2.4 119.2
2.6 119.23
2.8 119.09

3 119.1
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The optimal smoothness parameter, C*, found by minimizing the expected error is
C*=2.16 .Once again, differences between the optimal C from simulation and the C* that
was derived may have been caused by error introduced by assumptions or by simulation
error. However, this error does not cause a large difference in J, the steady state revenue

rate.

THE EFFECT OF THE STATE CHANGE RATE ON ESTIMATION
If the state change rate of the MS system is increased, the effectiveness of estimation

should be expected to decline. This is because an increase in the state change rate means the

data of previous interarrival times will give a less accurate estimate of the current state.

The data in Table 12 compares the effectiveness of using estimation to the optimal
MS pricing policy with full information and the SS pricing policy in an MS environment. For
estimation, an exponential window was used with price interpolation. The system

parameters used were N=30, A4q.=50, A, =5,7=10,and p=1.
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Table 12: Comparison of steady state revenue rate, J, for MS systems with different state change rates, 4, and
different pricing policies. The optimal MS pricing policy is simulated with the system having full information about
the current state, g. The estimation policy applied an exponential window, price interpolation, the optimal MS
pricing policy, and smoothness parameter C*. The optimal SS and MS pricing policies were determined by dynamic
programming.

state change rate (a)
0.2 0.5 1 5
Steady
State Applying optimal SS Pricing Policy 105.75 107.35 108.95 114.18
Revenue
per unit Applying optimal MS Pricing Policy 122.11 122.91 124.56 127.53
Time
(J) Applying Estimation Policy 120.08 119.37 119.17 117.07
i % loss from using the SS Policy
(compared to optimal MS Policy) 13.4% 12.7% 12.5% 10.5%
ii % loss from using the Estimation Policy
(compared to optimal MS Policy) 1.7% 2.9% 4.3% 8.2%
fii % increase from using the Estimation Policy
(compared to optimal SS Policy) 13.6% 11.2% 9.4% 2.5%

Three observations can be inferred from the data:

1. An increase in the state dhange rate results in a decrease i the loss fram using an SS pricing policy as
apposed to the optomal policy.

Row 1 shows that as the state change rate is increased, the percent loss of steady state
revenue becomes smaller when compared to the optimal MS pricing policy with full
information.

2. As the state change rate increases, the estimation policy becomes worse at approximatmg the optomal MS
pricing policy with ful wjormation.

Row ii shows that as the state change rate increases, the percentage difference in

steady state revenue between the optimal policy and the estimation policy increases. This is
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because when the state change rate is low, the estimation will give a more accurate estimate

of the current state than when the state change rate is high.

3. As the state duange rate increases, the effectiveness of the estimation policy over the SS policy decresases
sigrificanty.

Row iii shows that when the state change rate is low, a significant amount of excess

revenue can be generated by using estimation. However, as the state change rate increases,

the effectiveness of estimation versus the SS pricing policy diminishes rapidly and past a

certain point, will cause an insignificant difference in the steady state revenue.

As expected, the data shows that if the state change rate is high, the value of perfect
information is higher than if the state change rate is low. In a real system, where the service
provider may not have perfect information, it is beneficial to use an MS model only if the
state change rate is much smaller than the other system parameter rates (the arrival rate and
departure rates). If the state change rate is high, no significant increase in revenue will result
from estimation, and the service pfbvider can simplify the model of the system and use an

SS system instead of an MS system.
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EFFECT ON TOTAL SOCIAL WELFARE
Although the pricing policies discussed in this chapter were aimed at revenue

maximization, it is possible to derive the optimal pricing policies to maximize total social
welfare instead. However, a revenue maximization policy can in some cases lead to an

increase in total social welfare as well. This was shown in chapter 3, page 45 of this thesis.

In an MS system without full information, using estimation can increase the total
social welfare generated (as well as the revenue earned by the service provider) compared to
using an SS pricing policy. Table 13 shows this for an MS system with system parameters

N= 30, )\'midd.le=50’ }\41= 5, ﬂ=1,j=1o, a.nd H= 1.

Table 13: Comparison of total social welfare generated by different pricing policies. The policies SS and MS pricing
policies are the optimal pricing policies determined by dynamic programming. The MS pricing policy assumed the
system has full information. The estimation policy uses an exponential window with C=2.2 and price interpolation
with the optimal MS pricing policy.

Total
J Social Welfare
Steady
State |Applying SS Pricing Policy 108.95 162.59
Revenue
per unit |Applying MS Pricing Policy 124.56 171.56
Time
J) Applying Estimation Policy (C=2.2) 119.17 165.24
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Chapter 5

CONCLUSIONS

This chapter will review the objectives that were set out in the introduction. It will
also review some of the conclusions that were reached for the optimal dynamic congestion-
dependent pricing policy and some of the practical techniques that can be used in analyzing,

modeling, and setting prices for real systems.

Objectives

Different models were introduced and studied for optimal congestion-dependent

(dynamic) pricing for a service provider. There were two main objectives for the analysis:

1. To dewelop an optomal pricing methad that maximizes performante for a network under various system
modds.

The service provider is considered to be a monopolist who can set priées without
worrying about competition or substitution effects. A price is charged to users when they
enter the system (a connection-fee). Prices are set based on the level of congestion in the
system and the number and type of users already in the system. The pricing policy that
maximizes the performance was then found using dynamig programming. Although the
steady state revenue rate generated for the service provider was used as the measure for

performance of the network, total social welfare could be used as the measure of
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performance. The policy that will optimize performance is a dynamic congestion-dependent
pricing policy.
In this thesis, three models were examined in detail.
a) The single state, single user-class (SS) model.

The model assumes all users have similar requirements and characteristics.
Therefore, the users can be grouped into a single user-class. Furthermore, users enter
the network according to a Poisson process and the demand function, which is a

linearly decreasing function of price, will remain constant through time.

b) The single state, multiple user-class (SM) model.

Users are grouped into different classes based on their requirements,
characteristics, and demand functions. Prices can then be set to maximize
performance. The model also allows a service-pronider to differentiate between
various types of products and services that use the common resource of bandwidth.

This could include:
i. Different services, such as Internet service and video conferencing,

ii. Different qualities of connection options, such as an analog modem or cable

modem.

ii1. Different market segmentation strateges.

94



Determining the optimal dynamic pricing policy when there are a large
number of possible user-classes and users is difficult because of memory
requirements of the dynamic program. However, simplifications can be made to

help in analytically evaluating the system.
¢) The multiple state, multiple user-class (MM) model.

The model considers the case where the arrival rate can dnft into different
states as a Markov chain. The service provider can optimize the expected revenue
rate by taking this possibility of “drifting” into other states into account when setting
prices. It makes sense to use an MM model only when the probability of drifting
into another state is small and the difference in arrival rates between the different
states is significantly large. The multiple state, single user-class (MS) model was
introduced as a simplified version of the MM model to aid in analysis. For the case
where the probability of drifting is small, the MM pricing policy for a system in state

q will resemble the SM pricing policy for the analogous SM system.

2. To dewtlop msight from the optimal pricing method that a service provider could use in developmg a
congestion-dependent pricing policy i praciice

Implementing the optimal dynamic congestion-dependent pricing policy is difficult

in practice because it is complex, requires memory of the present state of the system, and

creates a large amount of uncertainty in prices for users. Users may not feel comfortable

with a such a large amount of uncertainty in prices and the service provider may not want to
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use a system that is complex to operate. Additionally, implementing the optimal policy
requires that the service provider know the system parameters and the current state of the
system, which may not necessarily be the case. The optimal pricing policy was analyzed in
order to build intuition about how to implement a pricing policy that increases revenue in a
real system. Although such a pricing policy may not be optimal, if it results in only a modest
loss in performance, but at the same time is less complex, less computationally intensive, and
more acceptable to users compared to the optimal dynamic pricing policy, it may be a better

policy to implement.

Practical Approximation and Estimation Techniques for Real Systems

It is useful to categorize real systems into one of two categories: systems which are
over-utilized or systems which are underutilized. For underutilized systems, prices can be set
as if there were no limiting bandwidth constraint. For these systems, congestion-dependent
pricing will not cause a significant increase in the performance of the system. For over-
utilitzed systems, congestion-dependent pricing will lead to a large increase in the

performance of the system.

Static versius dynamic congestion priceng
Although dynamic congestion-dependent pricing will maximize the performance of

the system, it may not be a practical policy to implement in a real system because it causes a
large amount of uncertainty in prices and is more complex to implement. Static congestion-

~ dependent pricing (which maximizes the performance of the system with the price constant
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regardless of the number of users in the system) seems to be an acceptable alternative to
dynamic programming, Static pricing results in less price uncertainty for users and an easier
system to implement for the service provider. Although static pricing will not result in the
optimal performance like dynamic pricing, may come close. This is shown by Paschalidis
and Tsitisiklis. They conclude that, “... the static policy offers its substantial implementation

advantage at a modest performance cost,” (p.21), [7].

Modeling the network as a single state versus a multiple state system

It may be useful to model a real network as a multiple state system if the arrival rate
is believed to drift or if the system can go into a state of shock. However, it only makes
sense to model the network as a multiple state system if it changes states infrequently (the
expected time between changes in state is small). If the system changes states too frequently,
it becomes difficult to accurately estimate the current state of the system and the additional
complexity of the system does not justify the modest increase in performance. If the model
used for the network is a single state model and the actual performance is significantly lower
than the calculated theoretical performance, it may be a signal that a multiple state system
should be used. The disadvantages of using a multiple state model are that it causes more

uncertainty in prices and it is significantly more complex than a single state model.

Using static congestion-dependlertt pricing in a multiple state system
In a multiple state system, the dynamic policy can be simplified to a set of static

pricing policies with a different static price for each state of the demand function. In the
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optimal static policy, the price charged in each state will depend on the othér states that the
system could transition into. However, if the expected time of a state change is large, this
effect on the pricing policy will be negligible. The static pricing policy in each state can be
solved for independent of the other states, as if each state corresponds to a separate single

state system.

Estimating the current state in a nudtiple state system

In a multiple state system, the current state of the system can be estimated by using
either a rectangular window or an exponential window. An exponential window is preferred
to a rectangular window because it requires less memory to implement and it results in a
more accurate estimate. However, the difference in performance when using the different
window shapes is small. The smoothness parameter, C, for the exponential window should
be chosen to minimize the total error of estimation. This value can be found by using
equation (92), but performance seems to be insensitive to C over a range of values.
However, C should be chosen so that there are a large number of data points in the window
before it decays significantly but, by the expected state change time, the value of the window

must have decayed to a neglgible value.

Once an estimate for the state of the system has been calculated, a pricing policy can
be determined by either rounding or interpolating the arrival rate to determine the price that
should be charged. Although interpolation results in higher system performance, rounding

will result in only a modest decrease in value if the expected time between a change in state
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is long, Rounding has the benefits that it is less computationally intensive and causes less
price uncertainty than interpolation (if multiple state, static pricing is used). With rounding,
the price charged will be in a discrete set of values (one price for each possible state of the

system). With interpolating, the price charged is in a continuous range of values.

Extensions

There are many areas of additional study that can be conducted. Some of the

interesting areas for additional study are:

o Model the gffects of competition and substitution on the pricing policy

The model assumed that the service provider has a monopoly over the system and
can set prices without worry of competition or substitution. The current landscape indicates
that this is an idealized assumption, as there are many different service providers and
different suplementary products available at different prices to users. One area to extend the
model is to take into account the effects of competition and substitution on the pricing

policy in a system with more than one service provider.

o Use profit instead of revernuue as a measure of performance

In the case where the marginal cost realized by the service provider is negligible, the
revenue and profit maximization policies will be the same. However, in the case where the
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marginal cost is not negligible, the profit maximization and revenue maximization pricing
policies will be different. It is possible that in the future the 'service provider will be charged
a fee for access to the Internet. The fees charged can be modeled as a marginal cost and will
have to be passed on to users. One area of additional study would be to see how the pricing
policy differs when using profit for a measure of performance where the marginal cost

incurred by the service provider is not constant.

psychology towards price uncertainty

A demand function of A(u) was modeled as decreasing linearly with respect to price.
There is no data to support this assumption. Further study needs to be done to determine
the actual demand function with respect to price. Also, the departure PDF was assumed to
be exponential. Although telephone calls have shown to have an exponential departure
PDF, this has not been shown for network connections. Additionally, the findings of this
thesis are based on certain assumptions about user psychology towards price uncertainty.
These assumptions need to be studied in more detail to determine the best pricing policy to

implement.

o Optoruze performance for a systenwith other price structures
In this thesis the system was modeled as charging users a connection-fee. In a real

system, it may make more sense to use a connection-time charge since using a connection-
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fee would probably result in users staying connected to the network for long periods of time.
This is because once connected to the network, there is no incentive for a user to
disconnect. In an over-utilized system, it is necessary for the departure rate to be large to
increase turnover. A connection-time charge may result in a higher departure rate than a
connection-fee charge. The analysis of the connection-fee system is in many ways similar to
the analysis of a system with a connection-time charge. The two systems can be equated by
setting the connection time charge equal to the connection-fee charge divided by the
expected length of a connection session. However, there are some subtle differences that
need to be explored, such as how the connection time fee affects the length of a connection

session and the departure rate PDF.

In addition to a single price structure, a system where a two-charge structure is used
would be interesting to analyze. For instance, how a service provider should maximize

performance using both a flat fee and a connection-time charge would be an interesting area

to study.
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