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probe of Higgs properties, allowing one to disentangle Higgs width and coupling information

unavailable in on-shell rate measurements. These measurements require an understanding

of the cross section in the far off-shell region in the presence of realistic experimental cuts.

We analytically study the effect of a pT jet veto on far off-shell cross sections, including

signal-background interference, by utilizing hard functions in the soft collinear effective

theory that are differential in the decay products of the W/Z. Summing large logarithms

of MWW /p
veto
T , we find that the jet veto induces a strong dependence on MWW , modifying

distributions in MWW and MT . The example of gg → H → WW is used to demonstrate

these effects at next to leading log order. We also discuss the importance of jet vetoes and

jet binning for the recent program to extract Higgs couplings and widths from far off-shell

cross sections.
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1 Introduction

With the recent discovery of a boson resembling a light Standard Model (SM) Higgs [1–5], a

large program has begun to study in detail the properties of the observed particle [6–34]. Of

fundamental interest are the couplings to SM particles and the total width of the observed

boson, which is a sensitive probe of BSM physics [35–41]. Most studies have focused on

the extraction of Higgs properties from on-shell cross sections. In this case, the effect of

jet vetoes and jet binning, which is required experimentally in many channels to reduce

backgrounds, has been well studied theoretically [42–50]. A jet veto, typically defined by

requiring that there are no jets with pT ≥ pveto
T , introduces large logarithms, log(mH/p

veto
T ),

potentially invalidating the perturbative expansion, and requiring resummation for precise

theoretical predictions. In this paper, we analytically study the effect of an exclusive jet

pT -veto on off-shell particle production, resumming logarithms of
√
ŝ/pveto

T , where
√
ŝ is

the invariant mass of the off-shell particle, or more precisely,
√
ŝ is the invariant mass of the

leptonic final state. We use gg → H → WW as an example to demonstrate these effects,

although the formalism applies similarly to gg → H → ZZ if a jet veto is imposed. We
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find that the off-shell cross section is significantly suppressed by a jet veto, and that the

suppression has a strong dependence on
√
ŝ. This results in a modification of differential

distributions in
√
ŝ, or any transverse mass variable, in the case that the invariant mass

cannot be fully reconstructed. The jet veto also has an interesting interplay with signal-

background interference effects, which typically contribute over a large range of
√
ŝ. We

use two cases, mH = 126 GeV, and mH = 600 GeV, to demonstrate the effect of the jet

veto on the signal-background interference in gg → H →WW .

There exist multiple motivations why it is important to have a thorough understanding

of the far off-shell region in Higgs production, and the impact of a jet pT veto on this region.

As has been emphasized in a number of recent papers [15, 51–54], the separate extraction of

the Higgs couplings and total width is not possible using only rate measurements for which

the narrow width approximation (NWA) applies. In the NWA the cross section depends

on the couplings and widths in the form

σnwa ∼
g2
i g

2
f

ΓH
, (1.1)

which is invariant under the rescaling

gi → ξgi, ΓH → ξ4ΓH , (1.2)

preventing their individual extraction from rate measurements alone.

The direct measurement of the width of the observed Higgs-like particle, expected

to be close to its SM value of ' 4MeV, is difficult at the LHC, but is of fundamental

interest as a window to new physics [35–41]. It is also important for model independent

measurements of the Higgs couplings. Proposals to measure the Higgs width include those

that rely on assumptions on the nature of electroweak symmetry breaking [15], direct

searches for invisible Higgs decays [13, 55–58], and a proposed measurement of the mass

shift in H → γγ relative to H → ZZ → 4l caused by interference [51].

More recently, it has been proposed [52–54] that the Higgs width can be bounded by

considering the far off-shell production of the Higgs in decays to massive vector bosons. In

this region there is a contribution from signal-background interference [59–62], and from

far off-shell Higgs production [63–65]. Far off-shell, the Higgs propagator is independent of

ΓH , giving rise to contributions to the total cross section that scale as

σint ∼ gigf , σoff-shell
H ∼ g2

i g
2
f , (1.3)

for the signal-background interference and off-shell cross section respectively. The method

proposed in [52] takes advantage of the fact that these components of the cross section scale

differently than the NWA cross section. For example, in a scenario with large new physics

contributions to the Higgs width, on-shell rate measurements at the LHC consistent with

SM predictions enforce through equation (1.2) that the Higgs couplings are also scaled as

gi → gi
(
ΓH/Γ

SM
H

)1/4
. The off-shell and interference contributions to the cross section are

not invariant under this rescaling of the couplings, under which they are modified to

σint =

√
ΓH

ΓSMH
σint
SM , σoff-shell

H =
ΓH

ΓSMH
σoff-shell
H,SM . (1.4)
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A measurement of the off-shell and interference cross section then allows for one to directly

measure, or bound, the total Higgs width. This method is not completely model indepen-

dent, indeed some of its limitations were recently discussed in [66], along with a specific

new physics model which decorrelated the on-shell and off-shell cross sections, evading the

technique. However, interpreted correctly, this technique places restrictions on the Higgs

width in many models of BSM physics. The study of the off-shell cross section as a means

to bound the Higgs width was first discussed in the H → ZZ → 4l channel [52, 53], where

the ability to fully reconstruct the invariant mass of the decay products allows for an easy

separation of the on-shell and off-shell contributions. Recently, CMS has performed a

measurement following this strategy and obtained a bound of ΓH ≤ 4.2 ΓSMH [67] .

The method was extended in [54] to the gg → H → WW → lνlν channel. The WW

channel has the advantage that the 2W threshold is closer than for H → ZZ, as well

as having a higher branching ratio to leptons, and a higher total cross section. It does

however, also have the disadvantage of large backgrounds, which necessitate the use of jet

vetoes, as well as final state neutrinos which prevent the reconstruction of the invariant

mass. To get around the latter issue one can exploit the transverse mass variable

M2
T = (Emiss

T + Ell
T )2 − |pll

T + Emiss
T |2, (1.5)

which has a kinematic edge at MT = mH for the signal. This variable was shown to be

effective in separating the region where the off-shell and interference terms are sizeable,

namely the high MT region, from the low MT region where on-shell production dominates,

allowing for the extraction of a bound on the total Higgs width. Although the experimental

uncertainties are currently large in the high MT region, the authors estimate that with a

reduction in the background uncertainty to . 10%, the WW channel could be used to place

a bound on the Higgs width competitive with, and complementary to the bound from the

H → ZZ → 4l channel. They therefore suggest a full experimental analysis focusing on

the high-MT region of the WW channel. More generally, it was proposed in [68] that a

similar method can also be used to probe couplings to heavy beyond the Standard Model

states.

Independent of bounding the Higgs width, the study of the off-shell cross section

opens up a new way to probe Higgs properties, which is particularly interesting as it probes

particles coupling to the Higgs through loops over a large range of energies. Further benefits

of the measurement of the off-shell cross section for constraining the parity properties of the

Higgs, as well as for bounding higher dimensional operators were also discussed in [66, 69].

A full theoretical understanding of the far off-shell region, especially in the presence

of realistic experimental cuts, is therefore well motivated to allow for a proper theoretical

interpretation of the data, and of bounds on new physics. Indeed, the current limits on the

Higgs width from the off-shell region are based on leading order calculations combined with

a parton shower. There has recently been progress on the calculation of the perturbative

amplitudes required for an NLO description of the off-shell cross section, including signal-

background interference, with the calculation of the two loop master integrals with off-shell

vector bosons [70, 71]. However, one aspect that has not yet been addressed theoretically
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is the effect of jet vetoes, and more generally jet binning, on far off-shell cross sections, and

on the signal-background interference.

Jet vetoes and jet binning are used ubiquitously in LHC searches to reduce back-

grounds. They are typically defined by constraining the pT of jets in the event. The

H → WW channel is an example of such a search, where the exclusive zero jet bin, de-

fined by enforcing that all jets in the event satisfy pT < pveto
T , is used to reduce the large

background from tt̄ production. Indeed, the analysis of [54] used the exclusive Njet = 0

bin in the large MT region to estimate the bound on the Higgs width achievable in the

H → WW channel. Furthermore, the recent bound by CMS [67] of the Higgs width from

the H → ZZ → 2l2ν channel used jet bins to optimize sensitivity, splitting data into

exclusive 0-jet and inclusive 1-jet samples, which were each analyzed and then combined

to give the limit. The proper interpretation of the off-shell cross section measurements

requires understanding, preferably analytically, the impact of the jet veto and jet binning

procedures.

As is well known, the jet veto introduces a low scale, typically pveto
T ∼ 25 − 30GeV,

into a problem which is otherwise characterized by the scale Q, of the hard collision. This

causes large logarithms of the form αns logm(Q/pveto
T ), m ≤ 2n, to appear in perturbation

theory, forcing a reorganization of the perturbative expansion. Physically these logarithms

arise due to constraints placed on the radiation in the event, which prevent a complete

cancellation of real and virtual infrared contributions. A resummation to all orders in αs
is then required to make precise predictions. For the leading logarithms this resummation

can be implemented by a parton shower. This approach is however difficult to systemati-

cally improve, and does not allow for higher order control of the logarithmic accuracy, or

a systematic analysis of theoretical uncertainties in the correlations between jet bins. An

alternative approach, which allows for the analytic resummation of large logarithms appear-

ing in the cross section, is to match to the soft collinear effective theory (SCET) [72–76],

which provides an effective field theory description of the soft and collinear limits of QCD.

In SCET, large logarithms can be resummed through renormalization group evolution to

desired accuracy, providing analytic control over the resummation. This framework also

provides control over the theoretical uncertainties, including the proper treatment of cor-

relations between jet bins [42, 77, 78].

The effect of jet vetoes on Higgs production in the on-shell region has attracted con-

siderable theoretical interest [42–47, 49, 50]. For on-shell Higgs production, Q ∼ mH , and

hence the resummation is of logarithms of the ratio mH/p
veto
T . The use of a jet clustering

algorithm in the experimental analyses complicates resummation and factorization [47, 79],

and leads to logarithms of the jet radius parameter [44, 47, 80, 81]. Current state of the

art calculations achieve an NNLL′+NNLO accuracy [49, 50], along with the incorporation

of the leading dependence on the jet radius, allowing for precise theoretical predictions in

the presence of a jet veto. Such predictions are necessary for the reliable extractions of

Higgs couplings from rate measurements. Indeed, the exclusive zero-jet Higgs cross section

is found to decrease sharply as the pveto
T scale is lowered.

In this paper we use SCET to analytically study the effect of a jet veto on off-shell cross

sections. In particular, we are interested in processes with contributions from a large range
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of ŝ, where
√
ŝ is the partonic centre of mass energy. In section 2, we present a factorization

theorem allowing for the resummation of large logarithms of the form log
√
ŝ/pveto

T , in the

cross section for the production of a non-hadronic final state. Working to NLL order, and

using canonical scales, for simplicity, gives [43]

dσNLL
0 (pveto

T )

dŝ dΦ
=
∣∣Mij(µ =

√
ŝ,Φ)

∣∣2 ∫ dxadxbfi(xa, µ = pveto
T )fj(xb, µ = pveto

T ) (1.6)

× δ(xaxbE2
cm − ŝ)e−2ReKi

NLL(
√
ŝ, pvetoT ) ,

where σ0(pveto
T ) is the exclusive zero-jet cross section. In this formula, fi, fj are the parton

distribution functions (PDFs) for species i, j, Mij is the hard matrix element, Φ is the

leptonic phase space, and Ecm is the hadronic centre of mass energy. Ki
NLL is a Sudakov

factor, defined explicitly in section 2, which depends only on the identity of the incoming

partons. The form of equation (1.6) shows that the effect of the jet veto can be captured

independent of the hard underlying process, which enters into equation (1.6) only through

M. At higher logarithmic order a dependence on the jet algorithm is also introduced, but

the ability to separate the effect of the jet veto from the particular hard matrix element us-

ing the techniques of factorization remains true, and allows one to make general statements

about the effect of the jet veto.

The resummation of the large logarithms, log
√
ŝ/pveto

T , introduced by the jet veto leads

to a suppression of the exclusive zero-jet cross section, evident in equation (1.6) through the

Sudakov factor, and familiar from the case of on-shell production. The interesting feature

in the case of off-shell effects is that this suppression depends on
√
ŝ. For example, when

considering off-shell Higgs production, or signal-background interference, which contribute

over a large range of
√
ŝ, the jet veto re-weights contributions from different

√
ŝ regions in

a strongly
√
ŝ dependent manner. In particular, this modifies differential distributions in√

ŝ, or any similar variable, such as MT . This is of particular interest for the program to

place bounds on the Higgs width using the off-shell cross section in channels which require

a jet veto, as this procedure requires an accurate description of the shape of the differential

cross section. Furthermore, the jet veto has an interesting effect on the signal-background

interference, which often exhibits cancellations from regions widely separated in
√
ŝ. The

study of these effects is the subject of this paper.

Our outline is as follows. In section 2 we review the factorization theorem for the

exclusive zero jet bin, with a jet veto on the pT of anti-kT jets, focussing on the depen-

dence on
√
ŝ. Section 3 describes the generic effects of jet vetoes on off-shell production,

including the dependence on the jet veto scale, the identity of the initial state partons

and the hadronic centre of mass energy. In particular, we show that off-shell production

in the exclusive zero-jet bin is suppressed by a strongly
√
ŝ dependent Sudakov factor,

and comment on the corresponding enhancement of the inclusive 1-jet cross section. In

section 4 we perform a case study for the gg → H → WW → lνlν process, resumming

to NLL accuracy the off-shell cross section including the signal-background interference.

For the signal-background interference, we consider two Higgs masses, mH = 125 GeV and

mH = 600 GeV, whose interference depends differently on
√
ŝ, to demonstrate different
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possible effects of the jet veto on the signal-background interference. Since
√
ŝ is not ex-

perimentally reconstructible for H →WW , in section 4.5, we demonstrate the suppression

as a function of MT caused by the jet-veto restriction. In section 5 we discuss the effect of

the jet veto and jet binning on the extraction of the Higgs width from the off-shell cross

section in H →WW (commenting also on H → ZZ). We conclude in section 6.

2 Cross sections with a jet veto: a review

In this section we review the factorization theorem, in the SCET formalism, for pp→ L+0-

jets, where L is a non-hadronic final state. We consider a jet veto defined by clustering

an event using an anti-kT algorithm with jet radius R to define jets, J , and imposing

the constraint that pJT < pveto
T for all jets in the event. This is the definition of the jet

veto currently used in experimental analyses, with the experimental value of pveto
T typically

25− 30 GeV, and R ' 0.4-0.5.

2.1 Factorization theorem

Following the notation of [50], the factorization theorem for pp → L + 0-jets with a jet

veto on pT can be computed in the framework of SCET. For a hard process where L has

invariant mass
√
ŝ (on-shell or off-shell), we have

dσ0(pveto
T )

dŝ
=

∫
dΦdxadxb δ(xaxbE

2
cm − ŝ)

∑
i,j

Hij(
√
ŝ,Φ, µ)Bi(

√
ŝ, pveto

T , R, xa, µ, ν)

×Bj(
√
ŝ, pveto

T , R, xb, µ, ν)Sij(p
veto
T , R, µ, ν)

+
dσRsub0 (pveto

T , R)

dŝ
+
dσns0 (pveto

T , R, µns)

dŝ
. (2.1)

In this formula, Φ denotes the leptonic phase space, i, j denote the initial partonic species,

Hij is the hard function for a given partonic channel, Bi are the beam functions which

contain the PDFs, and Sij is the soft function, each of which will be reviewed shortly.

Since this factorization theorem applies to the production of a color singlet final state, we

either have i = j = g, or i = q, j = q̄. Equation (2.1) is written as the sum of three terms.

The first term in equation (2.1) contains the singular logarithmic terms, which dominate

as pveto
T → 0, or in the case of off-shell production that we are considering, as ŝ→∞, with

pveto
T fixed. The second term, σRsub0 , contains corrections that are polynomial in the jet

radius parameter R, and σns0 contains non-singular terms which vanish as pveto
T → 0, and

are suppressed relative to the singular terms when the ratio pveto
T /
√
ŝ is small.

The factorization theorem allows for each component of equation (2.1) to be calculated

at its natural scale, and evolved via renormalization group evolution (RGE) to a common

scale, resumming the large logarithms of pveto
T /
√
ŝ. For the case of a veto on the jet pT , the

factorization follows from SCETII, where the RGE is in both the virtuality scale, µ, and

rapidity scale, ν [82, 83]. In this section, we will briefly summarize the components of the

factorization theorem with a particular focus on their dependence on the underlying hard

matrix element, the identity of the incoming partons, the jet algorithm, and the jet veto

– 6 –
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measurement. We will also review their RGE properties. Further details, including analytic

expressions for the anomalous dimensions, can be found in [42, 47, 50], and references

therein.

Soft function. The soft function Sij(p
veto
T , R, µ, ν) describes the soft radiation from the

incoming partons i, j which are either both gluons or both quarks. It is defined as a matrix

element of soft Wilson lines along the beam directions, with a measurement operator,Mjet,

which enforces the jet veto condition:

Sii(p
veto
T , R, µ, ν) = 〈0|YnbY †naMjet(pveto

T , R)YnaY
†
nb
|0〉 . (2.2)

The soft function depends only on the identity of the incoming partons, through the rep-

resentation of the Wilson lines, which has not been made explicit. It also depends on the

definition of the jet veto through the measurement function.

The soft function is naturally evaluated at the soft scale µS ∼ pveto
T , and νS ∼ pveto

T ,

and satisfies a multiplicative renormalization in both µ and ν. The solution is given by

Sii(p
veto
T , R, µ, ν) = Sii(p

veto
T , R, µS , νS) exp

[
log

ν

νS
γiν(pveto

T , R, µS)

]
exp

[ µ∫
µS

dµ′

µ′
γiS(µ′, ν)

]
.

(2.3)

Further details including expressions for the anomalous dimensions are given in [50].

In the case of interest, where the jets are defined using a clustering algorithm with

a finite R, the soft function also contains clustering logarithms from the clustering of

correlated soft emissions, which first arise at NNLL. These appear in the cross section as

logarithms of the jet radius, log(R), but are not resummed by the RGE. For experimentally

used values of R, the first of these logarithms is large [44], while the leading O(α3
s) term was

recently calculated and found to be small [81]. We therefore treat these log(R) factors in

fixed order perturbation theory. We discuss the impact of these logarithms on our results

in section 4.3.

Beam function. The beam function [84–86], Bi, describes the collinear initial state-

radiation from an incoming parton, i, as well as its extraction from the colliding protons

through a parton distribution function. The beam function depends only on the identity

of the incoming parton i, and the measurement function.

In the case of a pveto
T , the beam function can be calculated perturbatively by matching

onto the standard PDFs at the beam scale µB ∼ pveto
T , νB ∼

√
ŝ:

Bi(
√
ŝ, pveto

T , R, x, µB, νB) =
∑
j

1∫
x

dz

z
Iij
(√
ŝ, pveto

T , R, z, µB, νB
)
fj

(x
z
, µB

)
(2.4)

The lowest order matching coefficient is

Iij = δijδ(1− z) (2.5)

– 7 –
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so that to leading order the beam function is simply the corresponding PDF, but evaluated

at the beam scale µB ' pveto
T . This was seen explicitly in the NLL expansion of equa-

tion (1.6). Higher order matching coefficients involve splitting functions, allowing for a

mixing between quarks and gluons. This matching procedure corresponds to the measure-

ment of the proton at the scale µB ∼ pveto
T by the jet veto. Above the scale µB, the beam

function satisfies a multiplicative RGE in both virtuality, µ and rapidity, ν, describing the

evolution of an incoming jet for the off-shell parton of species i. Unlike the RGE for the

PDFs, the RGE for the beam function leaves the identity and momentum fraction of the

parton unchanged. The solution to the RGE is given by

Bi(
√
ŝ, pveto

T , R, x, µ, ν) = Bi(
√
ŝ, pveto

T , R, x, µB, νB) exp

[
1

2
log

νB
ν
γiν(pveto

T , R, µB)

]

× exp

[ µ∫
µB

dµ′

µ′
γiB(
√
ŝ, µ′, ν)

]
, (2.6)

which resums the logarithmic series associated with the collinear radiation from the incom-

ing parton. Further details and expressions for the anomalous dimensions are again given

in [50].

As with the soft function, the beam function also contains logarithms and polynomial

dependence on the jet radius, R, from the clustering of collinear emissions. These loga-

rithms can be numerically significant, but are not resummed by the RGE. We again treat

these terms in fixed order perturbation theory.

Hard function. The hard function Hij encodes the dependence of the singular term

of equation (2.1) on the underlying hard partonic matrix element of the pp → L + 0-jets

process. It can be obtained by matching QCD onto an appropriate SCET operator at the

scale
√
ŝ, giving a Wilson coefficient, Cij . The Wilson coefficient satisfies a standard RGE

in virtuality, allowing it to be evolved to the scale µ. The hard function is then given by

the square of the Wilson coefficient

Hij(Q,µ) = |Cij(Q,µ)|2 , (2.7)

where Q denotes dependence on all variables associated with the final leptons as well as

parameters like the top-mass, and the Higgs and W/Z masses and widths. The solution to

the RGE equation for the hard function is

Hij(Q,µ) = Hij(Q,µH)
∣∣∣e−Ki(

√
ŝ,µH ,µ)

∣∣∣2 , (2.8)

where the Sudakov form factor is

Ki(
√
ŝ, µH , µ) =

∫ µ

µH

dµ′

µ′
γiH(
√
ŝ, µ′)

= 2KΓicusp
(µH , µ)−KγiH

(µH , µ)− ln
(−ŝ− i0

µ2
H

)
ηΓicusp

(µH , µ) . (2.9)

– 8 –
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Here the integrals involve the β-function and anomalous dimensions

KΓicusp
=

∫ αs(µ)

αs(µH)

dαs
β(αs)

Γicusp(αs)

∫ αs

αs(µH)

dα′s
β(α′s)

, ηΓicusp
=

∫ αs(µ)

αs(µH)

dαs
β(αs)

Γicusp(αs) ,

KγiH
=

∫ αs(µ)

αs(µH)

dαs
β(αs)

γiH(αs) , (2.10)

where the channel i is either for quarks or gluons. Here the cusp and regular anomalous di-

mensions are Γicusp(αs) =
∑∞

k=0 Γik(αs/4π)k+1, γiH(αs) =
∑∞

k=0 γ
i
k(αs/4π)k+1, respectively,

and the β-function is β(αs) = −2αs
∑∞

k=0 βk(αs/4π)k+1 so β0 = 11CA/3− 2nf/3.

Explicit results for the functions in eq. (2.10) can be found for example in ref. [42]. Since

we will be considering far off-shell production, and including signal-background interference

effects, which have not been discussed in SCET factorization theorems before, we will

discuss in more detail the definition of the hard function for the specific case of gg → lνlν

in section 4.1.

The beam and soft functions are universal, depending only on the given measurement

and the identity of the incoming partons, it is the hard function that needs to be calculated

separately for different processes. The beam and soft functions are known to NNLL for

the case of a jet veto defined using a cut on pT , and it is the hard coefficient that prevents

resummation to NNLL for several cases of interest. In particular, since we are interested

here in the case of off-shell production, one needs the full top mass dependence of loops,

significantly complicating the computation. Indeed, for the case of signal-background in-

terference for gg → H →WW → lνlν, only the leading order hard function is known [59],

while for direct gluon-fusion Higgs production, analytic results exist for the NLO virtual

corrections including quark mass dependence [87]. This restricts our predictions to NLL

accuracy for signal-background interference for gg → H →WW → lνlν.

Non-singular terms. The non-singular term σns0 (pveto
T , R, µns) is an additive correction

to the factorization theorem, containing terms that vanish as pveto
T → 0. This term scales

as pveto
T /
√
ŝ. The non-singular piece is important when pveto

T is of the same order as
√
ŝ,

where both singular and non-singular pieces contribute significantly to the cross section.

In this paper, we will be focusing on the effect of a jet veto on far off-shell effects, and we

will therefore always be considering the case that pveto
T �

√
ŝ. We will therefore not discuss

the non-singular pieces of the cross section, and focus on the singular contributions.

Uncorrelated emissions. Beginning with two emissions, the jet algorithm can cluster

uncorrelated emissions from the soft and collinear sectors [44, 45, 47]. This produces

terms proportional to powers of R2, which can formally be treated as power corrections

for R� 1, and are included in σRsub0 . For the jet radii of 0.4-0.5 used by the experimental

collaborations, these effects are numerically very small, especially compared to the logR

terms from correlated emissions. We make use of the expressions from [50].

2.2 Expansion to NLL

It is useful to consider the factorization theorem at NLL order with canonical scale choices,

to see the main factors that control its behaviour. The result at NLL was first given

– 9 –
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in [43] for on-shell production with
√
ŝ = mH . Allowing for off-shell production, and using

canonical scales, the cross section with a pveto
T cut is given at NLL by

dσNLL
0 (pveto

T )

dŝ dΦ
=
∣∣Mij(µ =

√
ŝ,Φ)

∣∣2 ∫ dxadxbfi(xa, µ = pveto
T )fj(xb, µ = pveto

T ) (2.11)

× δ(xaxbE2
cm − ŝ)e−2ReKi

NLL(
√
ŝ, pvetoT ) ,

where Φ are phase space variables for the final state leptonic decay products. In this

equation, fi and fj are the appropriate PDFs, for example, they are both fg for the case

of gluon-fusion since direct contributions from the quark PDFs do not enter until NNLL

order. For a partonic center of mass energy
√
ŝ, equation (2.11) resums to NLL accuracy

the logarithms of
√
ŝ/pveto

T . Equation (2.11) does not include the non-singular contribution

to the cross section. As discussed previously, in the far off-shell region, pveto
T �

√
ŝ, and

the singular contributions to the cross section dominate. It should also be emphasized that

at NLL one is not sensitive to the jet algorithm or jet radius, as at O(αs) there is only

a single soft or collinear emission. Although the R dependence is important for accurate

numerical predictions, it does not effect the qualitative behaviour of the jet veto. The R

dependence appears in the factorization theorem at NNLL.

The only dependence on the hard partonic process in equation (2.11) is in the matrix

element Mij(ŝ). The Sudakov form factor Ki given in eq. (2.9) arises from restrictions on

real radiation in QCD, and depends only on the identity of the incoming partons. At NLL

the Sudakov factor is given by

Ki
NLL(
√
ŝ, µH , µ) = − Γi0

2β2
0

{
4π

αs(µH)

(
1− 1

r
− ln r

)
+

(
Γi1
Γi0
− β1

β0

)
(1− r + ln r) +

β1

2β0
ln2 r

}
+

γi0
2β0

ln r + ln
(−ŝ− i0

µ2
H

) Γi0
2β0

{
ln r +

αs(µH)

4π

(
Γi1
Γi0
− β1

β0

)
(r − 1)

}
,

(2.12)

where r = αs(µ)/αs(µH). The form in eq. (2.12) allows for the use of complex scales,

such as µH = −i
√
ŝ, to minimize the appearance of large π2 factors in the Hard function.

On the other hand, with canonical scales we would take Ki
NLL = Ki

NLL(
√
ŝ, pveto

T ). At

LL order the terms with Γ1, β1, and γ0 do not yet contribute and using the LL running

coupling we can write ReKi
LL(
√
ŝ, pveto

T ) = −(4C/β0) ln
√
ŝ/pveto

T [1+ln(1−2λ)/(2λ)] where

λ = αs(
√
ŝ) β04π ln

√
ŝ/pveto

T . For gluon-fusion, C = CA = 3, whereas for a quark-antiquark

initial state, C = CF = 4/3.

There are two important features of the expression in eq. (2.11) compared with the

case of no jet veto. First, the PDFs are evaluated at the scale µ = pveto
T instead of µ =

√
ŝ.

Secondly, the cross section is multiplied by a Sudakov factor, which depends on logs of the

ratio
√
ŝ/pveto

T . These have a strong impact on the cross section, which will be the focus of

section 3.

3 Jet vetoes and off-shell effects

In this section we will discuss quite generally the effect of jet vetoes on off-shell cross

sections. We focus on the dependence on the identity of the initial state partons, and the

– 10 –
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relation between the exclusive 0-jet and inclusive 1-jet bins. We conclude with a discussion

of the dependence on the hadronic centre of mass energy. For simplicity, in this section

we will use the NLL expansion of equation (2.11) with canonical scale choices. The NLL

expansion demonstrates the essential features that persist at higher logarithmic order, and

makes transparent how these effects depend on various parameters of interest. This serves

for the purpose of demonstrating the generic effects of jet vetoes, and their dependencies.

In section 4, we will perform a more detailed study for the specific case of gg → H →WW .

Unlike on-shell effects, which contribute to the cross section over a small region in√
ŝ, of order the width, off-shell effects, including signal-background interference and off-

shell production, typically contribute over a large range of values of
√
ŝ. In this case the√

ŝ dependence of the jet veto suppression can produce interesting effects. In particular,

it modifies differential distribution in
√
ŝ, or any substitute such as MT in cases where

the full invariant mass cannot be reconstructed, such as H → WW . Furthermore, for

signal-background interference, the
√
ŝ dependence of the jet veto suppression can cause

an enhancement or suppression of the interference relative to the on-shell contribution

to the cross section, or enhance/suppress interference contributions with different signs

relative to one another.

With this motivation, we now study the
√
ŝ dependence of the jet veto suppression to

the exclusive zero jet cross section using the NLL expression of section 2.2. The benefit of

the factorized expression is that this discussion can be carried out essentially independent

of the matrix element prefactor |Mij |2. From equation (2.11), the NLL cross section is

modified compared with the LO cross section, only by the evaluation of the PDFs at the jet

veto scale, and by the Sudakov factor, which is a function of
√
ŝ. To study the suppression

due to the jet veto as a function of
√
ŝ, we will therefore consider

E0(ŝ) =

(
dσNLL

0 (pveto
T )

d
√
ŝ

)/(
dσ

d
√
ŝ

)
, (3.1)

where σNLL0 (pveto
T ) is the NLL exclusive zero jet cross section. In equation (3.1), the

cross section in the denominator is evaluated to LO, namely to the same order as the

matrix element that appears in equation (2.11) for the NLL resummed cross section. When

forming this combination, one could choose to evaluate the denominator at various orders,

for example using the full NLO result calculated without the pveto
T . Since NLO corrections

are typically large, especially for gluon initiated processes, this would typically decrease

the above ratio. However, we have in mind an application to processes, such as signal-

background interference in gg → lνlν, for which the NLO corrections are not yet known,

so that current calculations are restricted to LO results. In this case, we can incorporate

the effect of the jet veto at NLL using equation (2.11), and the ratio of equation (3.1)

will characterize the effect of the resummation compared to previous calculations in the

literature [53, 54, 59]. This approach also has the benefit that it can be done independent

of the particular matrix element, as the NLO corrections are clearly process dependent.

However, all of the general features described in this section persist to NNLL resummation,

as will be demonstrated in section 4. As was mentioned previously, at NLL one doesn’t have

sensitivity to the jet radius R. While this dependence is important for precise predictions,
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Figure 1. The ratio E0(ŝ)/E0(m2
H), for both a gluon-gluon initiated process in (a), and a quark-

antiquark initiated process in (b). In both cases we consider pvetoT = 20, 30 GeV. The jet veto causes

an ŝ dependent suppression, which is significantly stronger for initial state gluons than initial state

quarks, due to the larger colour factor appearing in the Sudakov.

it does not dominate the behaviour of the jet vetoed cross section as a function of ŝ, or

modify in any way the conclusions of this section.

For numerical calculations in this section we use the NLO PDF fit of Martin, Stirling,

Thorne and Watt [88] with αs(mZ) = 0.12018. Unless otherwise stated, we use a hadronic

center of mass energy of Ecm = 8 TeV. In section 3.3 we discuss the dependence on the

Ecm, comparing behaviour at 8, 13, and 100 TeV.

In figure 1a we demonstrate the effect of the jet veto for a gluon-gluon initial state,

as a function of
√
ŝ.1 We plot the ratio E0(ŝ)/E0(m2

H), for mH = 126 GeV. We have

chosen to plot this particular ratio to focus on the ŝ dependence, rather than the impact

that the jet veto has on the on-shell Higgs production cross section which is given by

E0(m2
H). The ratio E0(ŝ)/E0(m2

H) describes the impact of the jet-veto for off-shell effects

relative to its impact for on-shell production. It will also be useful when discussing the

impact on Higgs width bounds in section 5. Figure 1a shows that the suppression of the

exclusive zero-jet cross section has a strong dependence on ŝ. The comparison between

pveto
T = 20 GeV, and pveto

T = 30 GeV shows that a lower cut on the pT of emissions causes a

more rapid suppression, as expected. We have chosen to use the values pveto
T = 20, 30 GeV,

because CMS currently uses pveto
T = 30 GeV, and although the ATLAS collaboration uses

pveto
T = 25 GeV, the pveto

T = 20 GeV cut demonstrates the effects of a fairly extreme jet

veto. Figure 1a demonstrates that at scales of
√
ŝ ' 500 GeV, the suppression relative to

that for on-shell production is of order 50%.

3.1 Quarks vs. gluons

We now consider the difference in the jet veto suppression for quark initiated and gluon

initiated processes. This is relevant in the case where multiple partonic channels contribute

1Note that a similar effect was considered in [42] which performed resummation for gluon fusion Higgs

production with a veto on the global beam thrust event shape, as a function of the Higgs mass.
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to a given process, or if the signal and background processes are predominantly from

different partonic channels. This is the case for both gg → H → WW, ZZ, which have

large qq̄ initiated backgrounds. The factorization theorem in equation (2.1) allows one to

easily study the dependence of the jet veto suppression on the identity of the incoming

partons, which is carried by the hard, beam, and soft functions. The difference in the

suppression arises from the differences in the anomalous dimensions, where for the 0-jet

cross section, they involve CF for quarks, and CA for gluons. The clustering and correlation

logarithms are also multiplied by the colour factors CF and CA. This phenomenon is similar

to quark vs. gluon discrimination for jets [89], where the same factors of CF and CA appear

in the Sudakov and allow one to discriminate between quark and gluon jets. However, in

this case, the discrimination is between incoming quarks and gluons.

Comparing figure 1a and figure 1b, we see a significant difference between a gluon-gluon

and quark-antiquark initial state. The jet veto suppression increases more rapidly with ŝ

in the case of gluon-fusion induced processes than quark anti-quark induced processes. The

suppression due to the jet veto being approximately twice as large for the case of gluon-

fusion as for quark-antiquark fusion, for the values considered in figure 1. (Note that for

the quark-antiquark initial state, we have used the up quark for concreteness, however, the

result is approximately independent of flavour for the light quarks, with the suppression

being dominated by the flavour independent Sudakov factor. A small dependence on flavour

comes from the scale change in the PDF.) The effect of the jet veto is therefore of particular

interest for gluon initiated processes, such as Higgs production through gluon-gluon fusion,

to be discussed in section 4. This difference in the suppression is interesting for a proper

analysis of the backgrounds for H →WW, ZZ in the off-shell region, and deserves further

study since one may wish to vary pveto
T as a function of

√
ŝ or MT .

3.2 Inclusive 1-jet cross section

We have up to this point focused on the exclusive zero jet cross section. However, since the

total inclusive cross section is unaffected by the jet veto, the inclusive 1-jet cross section has

the same logarithmic structure as the exclusive zero-jet cross section, and can be related

to the exclusive zero jet cross section by

dσ≥1(pveto
T )

d
√
ŝ

=
dσ

d
√
ŝ
− dσ0(pveto

T )

d
√
ŝ

. (3.2)

In this equation, σ≥1(pveto
T ) is the inclusive 1-jet cross section defined by requiring at least

one jet with pT ≥ pveto
T , σ0 is the exclusive zero-jet cross section and σ is the inclusive

cross section. This relation allows us to discuss the properties of the inclusive 1-jet bin

as a function of ŝ using the factorization theorem for the exclusive 0-jet cross section. Of

particular interest is the split of the total cross section between the exclusive zero-jet bin

and the inclusive 1-jet bin, and the migration between the two bins as a function of ŝ. This

relation also implies a correlation between the theory uncertainties for the resummation

for the two jet bins, which is important for experimental analyses using jet binning [78].

– 13 –



J
H
E
P
0
9
(
2
0
1
4
)
1
2
9

150 300 450 600
0.

0.2

0.4

0.6

0.8

1.

s` @GeVD

E0Hs`L
E³1Hs`L

Gluon-Gluon
NLL, pT

veto=30 GeV

Figure 2. The ratios E0(ŝ), E≥1(ŝ) for a gluon-gluon initial state, and pvetoT = 30 GeV. There

is a large migration from the exclusive 0-jet bin to the inclusive 1-jet bin as a function of ŝ. This

phenomenon is important for understanding the impact of jet binning on off-shell cross sections.

In figure 2 we plot E0(ŝ), and

E≥1(ŝ) =

(
dσNLL≥1 (pveto

T )

d
√
ŝ

)/(
dσ

d
√
ŝ

)
, (3.3)

as a function of ŝ for a gluon-gluon initial state with pveto
T = 30 GeV. The behaviour in this

plot is of course evident from figure 1, but it is interesting to interpret it in this fashion:

as an ŝ dependent migration between jet bins. Although our calculation is only for the

inclusive 1-jet bin, the dominant increase will be in the exclusive 1-jet bin.

This migration between the jet bins as a function of ŝ is important for the proper

understanding of the off-shell cross section predictions in the presence of jet vetos. For

CMS’s recent off-shell H → ZZ → 2l2ν analysis, ignoring the VBF category, the events

were categorized into exclusive zero jet, and inclusive one jet bins [67], both of which have

high sensitivity, due to the clean experimental signal. For the case of H →WW , exclusive

0, 1, and 2 jet bins are used, although the experimental sensitivity is largest in the 0-jet

bin, where the backgrounds are minimized.

The effect of the migration is therefore different in the two cases. For H → ZZ, since

the backgrounds are easier to control, the jets that migrate from the exclusive 0-jet bin

are captured in the inclusive 1-jet bin. Since both are used in the experiment, there is not

a significant loss in analysis power. Accurate predictions for the two jet bins should still

be used, and the correlations in the theory uncertainties due to resummation should still

be treated properly. For the case of H → WW , where the jet veto plays a more essential

role in removing backgrounds, the migration causes a loss in sensitivity. For example, the

analysis of [54] used the exclusive zero jet bin of H → WW to bound the Higgs width

without a treatment of the ŝ dependence induced by the jet veto. This will be discussed

further in section 5. Calculations for the exclusive 1-jet and 2-jet bins are more difficult.

Although NLL resummed results exist for the case pjetT ∼
√
ŝ [46, 90], the treatment of

pjetT �
√
ŝ is more involved [91]. The latter is the kinematic configuration of interest for

far off-shell production.
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Figure 3. A comparison of the effect of the jet veto at Ecm = 8, 13, 100 TeV for a gluon-gluon

initial state, and pvetoT = 30 GeV. At higher Ecm a larger suppression in the exclusive zero jet bin

is observed, due to the larger range of Bjorken x probed.

3.3 Variation with Ecm

Here we comment briefly on the dependence of the exclusive zero jet cross section on the

hadronic centre of mass energy, Ecm. This is of course of interest as the LHC will resume

at Ecm = 13 TeV in the near future, and Higgs coupling and width measurements are

important benchmarks for future colliders at higher energies. Here we only discuss the ŝ

dependence of the suppression due to the jet veto, the ratio of equation (3.1), on Ecm. Of

course, with an increased Ecm, one can more easily achieve higher ŝ, allowing for off-shell

production over a larger range, magnifying the importance of off-shell effects. We will

discuss this for the specific case of gg → H →WW in section 4.

In figure 3 we compare the ratio E0(ŝ)/E0(m2
H) for Ecm = 8, 13, 100 TeV. As the value

of Ecm is raised, the ŝ dependence of the jet veto suppression systematically increases.

Although the effect is relatively small between 8 TeV and 13 TeV, it is significant at 100 TeV.

A similar effect was discussed in [92] where the exclusive zero jet fraction for on-shell Higgs

production was observed to decrease with increasing Ecm. Since the Sudakov factor is

independent of Ecm, this difference arises due to the fact that as the Ecm is increased, the

PDFs are probed over a larger range of Bjorken x, including smaller xa,b values. In the

NLL factorization theorem of equation (2.11) the PDFs are evaluated at the scale pveto
T

instead of at the scale ŝ. The impact of this change of scales in the PDFs depends on the

x values probed, and causes an increasing suppression as Ecm is increased.

For the majority of this paper we will restrict ourselves to Ecm = 8TeV, although in

section 4.6 we will further discuss the effect of an increased Ecm.

4 gg → H → WW : a case study

In this section we use gg → H → WW to discuss the effect of an exclusive jet veto

in more detail. H → WW is a particularly interesting example to demonstrate the
√
ŝ

dependence of the jet veto suppression since it has a sizeable contribution from far off-

shell production [63, 65], and furthermore has interference with continuum gg → WW →
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Figure 4. LO Higgs mediated, (a), and continuum, (b), diagrams contributing to the process

gg → lνlν. These are matched onto the helicity basis of SCET operators given in equation (4.6).

lνlν production, which contributes over a large range of
√
ŝ [59, 60, 62]. A jet veto is

also required experimentally for this channel due to large backgrounds. For the signal-

background interference, we will consider two different Higgs masses, mH = 126 GeV and

mH = 600 GeV, which have interference which depend differently on
√
ŝ and therefore

cover two interesting scenarios for the different effects that the jet veto can have.

In section 4.1 we discuss in detail the hard coefficients, and the matching to SCET.

Default parameters are given in section 4.2. In section 4.3 we use gg → H →WW → lνlν,

which can be calculated to NLL and NNLL, to study the convergence in the off-shell region.

The extension to NNLL allows us to study the effect of the finite radius of the jet veto. In

section 4.4 we show results for the NLL resummation for the signal-background interference.

Although we are unable to go to NNLL without the NLO hard function for the interference,

the results of section 4.3 give us confidence that the NLL result is capturing the dominant

effects imposed by the jet veto restriction. In section 4.5 we consider jet veto suppression

in the exclusive zero jet bin as a function of the experimental observable MT .

4.1 Hard function and matching to SCET

In this section we discuss the hard function appearing in the SCET factorization theorem,

which carries the dependence on the hard underlying process. This is discussed in some

detail, as we will be considering signal-background interference, which has not previously

been discussed in the language of SCET.

It was shown in [59] that only two Feynman diagram topologies contribute to the

process gg → νee
+µ−ν̄µ at LO, due to a cancellation between diagrams with an s-channel

Z boson. The two diagrams that contribute are the gluon-fusion Higgs diagram, and a

quark box diagram for the continuum production, both of which are shown in figure 4.

The gg → νee
+µ−ν̄µ cross section consists of Higgs production, the continuum production,

and the interference between the two diagrams. Although the interference contribution is

small when considering on-shell Higgs production, it becomes important in the off-shell

region.

In the effective field theory formalism, these two diagrams are matched onto effective

operators in SCET. It is convenient both for understanding the interference, and for com-

paring with fixed order QCD calculations to work in a helicity and color operator basis in

SCET [93, 94]. For this process the color structure is unique, as we are considering the
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production of a color singlet state from two gluons. We therefore focus on the helicity

structure. The helicity of the outgoing leptons is fixed by the structure of the weak inter-

actions, so we need only construct a helicity basis for the incoming gluons. We write the

amplitudes for the above diagrams as

AH(1h1g , 2
h2
g , 3

−
νe , 4

+
ē , 5

−
µ , 6

+
ν̄µ), AC(1h1g , 2h2g , 3−νe , 4+

ē , 5
−
µ , 6

+
ν̄µ) (4.1)

where the subscripts H, C denote the Higgs mediated, and continuum box mediated dia-

grams respectively, and the superscripts denote helicity. In the following we will mostly

suppress the lepton arguments, as their helicities are fixed, and focus on the gluon helicities.

Since the SM Higgs boson is a scalar, we have

AH(1−g , 2
+
g ) = AH(1+

g , 2
−
g ) = 0. (4.2)

In this paper, our focus is on the Higgs production and the signal-background interference.

Since there is no interference between distinct helicity configurations, we can therefore

also ignore the continuum production diagrams with the +−, −+ helicity configuration.

These do contribute to the background, however their contribution is small compared to

the qq̄ → lνlν process.

The above amplitudes are matched onto operators in the effective theory. The SCET

operators at leading power are constructed from collinear gauge-invariant gluon fields [73, 74]

Bµn,ω⊥ =
1

g

[
δ(ω + P̄n)W †n(x)iDµn⊥Wn(x)

]
(4.3)

where n, n̄ are lightlike vectors along the beamline. The collinear covariant derivative is

defined as

iDµn⊥ = Pµn⊥ + gAµn⊥, (4.4)

with P a label operator which extracts the label component of the momentum in the

effective theory, and Wn is a Wilson line defined by

Wn(x) =

[ ∑
perms

exp

(
− g

P̄n
n̄ ·An(x)

)]
. (4.5)

A helicity basis of SCET operators for the process of interest is given by

O++ =
1

2
Ban+Ban̄+J34−J56− (4.6)

O−− =
1

2
Ban−Ban̄−J34−J56−, (4.7)

where the 1/2 is a bosonic symmetry factor to simplify matching to the effective theory.

We have defined collinear gluon fields of definite helicity by

Bai± = −ε∓µBa,µni,ωi⊥i , (4.8)

where ε∓µ are polarization vectors, as well as leptonic currents of definite helicity

Jij− = εµ+(pi, pj)
ψ̄i−ψj−√

2[ji]
. (4.9)
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In this expression, and in the expressions for the Wilson coefficients given below, we will use

the standard spinor helicity notation, with 〈ij〉 = ū−(pi)u+(pj), and [ij] = ū+(pi)u−(pj).

Note that we use Hard functions that are fully differential in the leptonic momenta.

This allows for realistic experimental cuts on the leptonic phase space to be straightfor-

wardly incorporated.

It is important to note that operators with distinct external helicities do not mix under

the SCET RGE at leading power. The jets from the incoming partons, which are described

by the beam functions, can only exchange soft gluons, described by the soft function. At

leading power, the soft gluons cannot exchange spin, only color, and therefore the RGE

can only mix Wilson coefficients in color space, which in this case is trivial. This allows

one to consistently neglect the operators O+−, O−+, which would arise from matching the

AC(1−g , 2+
g ), and AC(1+

g , 2
−
g ) onto SCET. They do not contribute to the process of interest,

and do not mix under the RGE with the operators that do contribute.

We are interested in considering both the direct Higgs production and signal-background

interference separately, so it is convenient to maintain this distinction in SCET. Although

the SCET operators are the same in both cases, we can separate the Wilson coefficient into

a component from the Higgs mediated diagram, and a component from the box mediated

continuum diagram. We then have four Wilson coefficients

CH++, C
H
−−, C

C
++, C

C
−− . (4.10)

Since the operators are in a helicity basis, these four Wilson coefficients are simply the

finite part of the helicity amplitudes for the given processes (or more specifically for MS

Wilson coefficients in SCET are the finite part of the helicity amplitudes computed in pure

dimensional regularization). These were computed in [59], and can be obtained from the

MCFM code [95]. The Wilson coefficients for the Higgs mediated process depend on the

Higgs and W boson widths and masses, as well as the invariants s12, s34, s56. The explicit

leading order Wilson coefficients for the Higgs mediated process are given by

CH−−(mH ,ΓH , s12, s34, s56) =

(
g4
wg

2
s

16π2

)
PH(s12)PW (s34)PW (s56)

〈12〉〈35〉[64]

[21]s34s56
FH(s12),

(4.11)

CH++(mH ,ΓH , s12, s34, s56) =

(
g4
wg

2
s

16π2

)
PH(s12)PW (s34)PW (s56)

[12]〈35〉[64]

〈21〉s34s56
FH(s12),

(4.12)

where the function Pi is the ratio of the propagator for the particle species i to that of the

photon,

Pi(s) =
s

s−m2
i + iΓimi

. (4.13)

We have also used FH(s12) for the usual loop function for gluon-fusion Higgs production

FH(s12) =
∑
q=t,b

m2
q

s12

[
2 +

(4m2
q

s12
− 1
)
g
(m2

q

s12

)]
, (4.14)
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with

g(x) =


1
2

[
log
(

1+
√

1−4x
1−
√

1−4x

)
− iπ

]2
x < 1

4

−2
(

sin−1
(

1
2
√
x

))2
x ≥ 1

4 .
(4.15)

The Wilson coefficients CC++ and CC−− for the box diagram depend on the W mass and

width, as well as the kinematic invariants formed by the external momenta. In the presence

of massive quarks in the loops, they are extremely lengthy, so we do not reproduce them

here. We refer interested readers to [59], and the MCFM code from which we have extracted

the required results for our analysis. We have verified that our extracted expressions

reproduce quoted numerical results and distributions in [59].

The Hard coefficient, H, appearing in the factorization theorem, equation (2.1) is given

by the square of the Wilson coefficients:

H = |CH++ + CC++|2 + |CH−− + CC−−|2 + |CC+−|2 + |CC−+|2 (4.16)

As is typically done in the case of squared matrix elements, we can separate the hard

function into the sum of a hard function for the Higgs mediated process HH , a hard

function for the interference H int, and a hard function for the background arising as the

square of Wilson coefficient for the continuum process HC (which we will not use here).

For the first two we have

HH = |CH++|2 + |CH−−|2 (4.17)

H int = 2Re
[
CH++(CC++)†

]
+ 2Re

[
CH−−(CC−−)†

]
. (4.18)

This decomposition allows us to discuss the resummation of the interference and the Higgs

mediated processes separately in the effective theory, in a language that is identical to

that used in Feynman diagram calculations. In sections 4.3 and 4.4 we will discuss the

effect of resummation on both the Higgs mediated contribution and the signal-background

interference.

4.2 Parameters for numerical calculations

For the numerical results, we use the default set of electroweak parameters from MCFM,

following [54, 59]:

mW = 80.398 GeV, mZ = 91.1876 GeV ,

ΓW = 2.1054 GeV, ΓZ = 2.4952 GeV ,

mt = 172.5 GeV, mb = 4.4 GeV ,

GF = 1.16639× 10−5 GeV−2, sin2 θW = 0.222646 ,

αe.m.(mZ) =
1

132.338
.
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We use the following two Higgs mass/width combinations to demonstrate the dependence

on the Higgs mass:2

mH = 126 GeV, ΓH = 0.004307 GeV ,

mH = 600 GeV, ΓH = 122.5 GeV ,

where the widths are determined from HDECAY [96]. We use the NLO PDF fit of Martin,

Stirling, Thorne and Watt [88] with αs(mZ) = 0.12018.

The results in this section were obtained using the analytic results for the partonic

process documented in [59]. Scalar loop integrals were evaluated using the LoopTools

package [97], and phase space integrals were done using the Cuba integration package [98].

For all the results presented in this section, we have integrated over the leptonic phase

space, and allow for off-shell vector bosons.

4.3 Off-shell Higgs production

We begin by studying the effect of the jet veto on far off-shell Higgs production in gg →
H →WW → e+νeµν̄µ. While a full analysis of the off-shell region also requires the inclu-

sion of signal-background interference, for which the hard function to NLO is not known,

we use the off-shell Higgs mediated process to study the convergence of the resummed

predictions. In particular, one is first sensitive to the jet radius at NNLL. The ability to

perform the resummation to NNLL for the Higgs mediated signal enables us to assess the

convergence of the resummed predictions in the off-shell region. It also allows us to check

that the NLL result, which will be used when signal-background interference is included,

accurately captures the effect of the jet veto reasonably well. In particular, we will focus

on the shape of the differential distribution in ŝ. As will be discussed in more detail in

section 5, the procedure for extracting a bound on the Higgs width from the off-shell cross

section uses a rescaling procedure to the on-shell cross section. Because of this, the shape,

but not the normalization of the distribution is important for an accurate application of

this method. Therefore, as in section 3 we will rescale the differential cross sections by

E0(m2
H), allowing us to focus just on the shape.

The NNLL calculation requires the NNLL beam and soft functions, which are known

in the literature for a jet veto defined by a cut on pT [50], as well as the virtual part

of the NLO gluon-fusion hard function. The NLO virtual contributions for gluon fusion

Higgs production are known analytically with full dependence on the top and bottom quark

mass [87], which is necessary, as in the off-shell region one transitions through the
√
ŝ = 2mt

threshold.3 The NLO hard function is determined by matching onto the gluon-fusion

operators in SCET, as discussed in section 4.1. We do not include in our calculation the

non-singular pieces, as we focus on the region pveto
T �

√
ŝ, where the singular contributions

dominate, and are not interested in the transition to the region pveto
T ∼

√
ŝ.

2Although more recent analyses point to a Higgs mass closer to 125 GeV, we have taken 126 GeV as

representative of a light Higgs. The conclusions of this section do not depend on this small difference for

the Higgs mass, and our plots for 125 and 126 GeV are indistinguishable at the resolution shown.
3The analytic NLO virtual corrections were also used in [99] to study the dependence of the jet veto on

the b-quark mass for the case of on-shell Higgs production.
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(a) (b)

Figure 5. The off-shell Higgs cross section in the exclusive zero jet bin for pvetoT = 30 GeV in

(a), and pvetoT = 20 GeV in (b), with R = 0.5 in both cases. Results are normalized by the jet

veto suppression at the Higgs mass, such that the on-shell cross section is the same in all cases,

allowing one to focus on the modification to the shape of the distribution. NLL and NNLL results

are similar, with a small modification due to the finite jet radius, which is not present in the NLL

calculation.

In figure 5 we plot the resummed distribution, normalized to the jet veto suppression

at the Higgs mass: (dσ0/dm4l)/E0(m2
H), for off-shell gg → H → WW → e+νeµν̄µ. Note

that in the case without a jet veto, the jet veto suppression at the Higgs mass is defined

to be 1. We have integrated over the leptonic phase space. Here m4l =
√
ŝ is the invariant

mass of the 4 lepton final state. In figure 5a we use pveto
T = 30 GeV, and in figure 5b we

use pveto
T = 20 GeV. In both cases, we use a jet radius of R = 0.5, as is currently used

by the CMS collaboration. The uncertainty bands are rough uncertainty estimates from

scale variations by a factor of 2. Note that in the calculation, we use a five flavour scheme,

even above mt since the difference with using a six flavour coupling is well within our error

band.

Figures 5a and 5b show a small modification to the differential distribution between

NLL and NNLL. This arises primarily due to the clustering logarithms, which introduce de-

pendence on the jet radius, which is not present at NLL. The R dependence reproduces the

expected physical dependence of the cross section on R: for a fixed pveto
T cut, the restriction

on radiation from the initial partons becomes weaker as the jet radius is decreased, causing

a smaller suppression of the cross section. Despite this, the shape is well described by the

NLL result. In particular, the NLL result captures the dominant effect of the exclusive jet

veto on the off-shell cross section. This is important for the resummation of the interfer-

ence, considered in section 4.4. In this case, higher order results are not available (for some

approximate results, see [100]), and therefore one is restricted to an NLL resummation.

However, the results of this section demonstrate that the NLL result accurately captures

the effects of the jet veto on the shape of the distribution as a function of ŝ.
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4.4 Signal-background interference

Signal-background interference for the process gg → lνlν has been well studied in the

literature [59, 60, 62]. The interference comes almost exclusively from the
√
ŝ > 2MW

region. For a light Higgs, mH < 2MW , this means that the interference comes entirely

from
√
ŝ > mH . For a heavy Higgs, the Higgs width is sufficiently large that there are con-

tributions to the interference from a wide range of
√
ŝ. The signal-background interference

is therefore, in both cases, an interesting process on which to demonstrate the effect of the

jet veto.

The NLO virtual corrections are not available for the interference process, restricting

the resummation accuracy to NLL. However, as argued in section 4.3 if one is interested in

the shape of the distribution, and not the normalization, the NLL captures the effects of

the jet veto. One thing that cannot be known without a full calculation of the NLO virtual

contributions to the interference is if the NLO virtual contributions for the interference

are different than for the signal. For the case of interference in H → γγ where they are

known, the virtual contributions for the interference were found to be smaller than for the

signal [51]. Due to the similar structure of the diagrams for H → WW , the same could

certainly be true. However, we expect this to be a minor correction compared to the effects

of the jet veto. In particular, we do not expect the K-factor to have strong ŝ dependence,

which is the important effect captured by the resummation. In this section we use the LO

result for gg → eνµν, fully differential in the lepton momenta, which is available in the

MCFM code, and is documented in [59].

We begin by reviewing the notation for the signal-background interference in gg →
eνµν at LO following [59]. It is convenient to pull out the dependence on mH and ΓH
coming from the s-channel Higgs propagator. Defining C̃H = (ŝ −m2

H + imHΓH)CH , we

can separate the Hard function for the signal-background interference into its so called

“Imaginary” and “Real” contributions:

H int =
2(ŝ−m2

H)

(ŝ−m2
H)2 +m2

HΓ2
H

Re
[
C̃H(CC)†

]
+

2mHΓH
(ŝ−m2

H)2 +m2
HΓ2

H

Im
[
C̃H(CC)†

]
. (4.19)

In equation (4.19) there is a sum over helicities of the Wilson coefficients, which for no-

tational convenience has not been made explicit. Note that the imaginary part of the

interference is multiplied by an explicit factor of ΓH , and is therefore negligible for a light

Higgs.

The interference without a jet veto is shown in figure 6a for a 126 GeV Higgs and

figure 6b for a 600 GeV Higgs, as a function of m4l. We have integrated over the phase

space of the leptons, including allowing for off-shell vector bosons. The interference is

negligible below the
√
ŝ = 2mW threshold. For the case of mH = 126 GeV the only non-

negligible contribution is the real part of the interference above the Higgs pole, which gives

a negative contribution to the total cross section. In the case of mH = 600 GeV, there

is significant interference both above and below the Higgs pole, and from both the real

and imaginary parts. The interference below the pole dominates, leading to a net positive

contribution to the total cross section. We have chosen these two Higgs masses, where the
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Figure 6. Signal-background interference in gg → e+νeµν̄µ for (a) mH = 126 GeV, and (b)

mH = 600 GeV. NLL predictions are shown for pvetoT = 20, 30 GeV, and have been rescaled by the

jet veto efficiency at mH . The size of the signal-background interference relative to the on-shell

cross section is enhanced by the jet veto for a heavy Higgs, whereas it is suppressed for a light

Higgs. For mH = 126 GeV the jet veto causes a significant reduction of the cross section in the far

off-shell region relative to the on-shell cross section.

interference has a different
√
ŝ dependence, so as to demonstrate the different effects that

a jet veto can have on signal-background interference.

Figure 6 also shows as a function of
√
ŝ the result for interference including a jet veto

of pveto
T = 20, 30 GeV with NLL resummation, which can be compared with the interference

without a jet veto. To make the interpretation of figure 6 as simple as possible, we have

rescaled the interference by E0(m2
H), the jet veto efficiency at mH . Therefore, enhance-

ments and suppressions in the jet vetoed interference correspond to enhancements and

suppressions of the interference relative to the on-shell Higgs contribution when a jet veto

is applied. As expected from the discussion in section 3, we find a significant suppression of

the interference at higher
√
ŝ, and this suppression increases with

√
ŝ. For mH = 126 GeV,

shown in figure 6a, the interference comes entirely from above
√
ŝ = mH , and is therefore

more highly suppressed by the jet veto relative to the on-shell Higgs cross section. However,

the situation is quite different for the case of mH = 600 GeV, shown in figure 6b. Here the

dominant contribution to the interference is from the real part in equation (4.19), which

changes sign at
√
ŝ = mH . The real part of the interference coming from below

√
ŝ = mH

is positive and is partly cancelled by negative interference from above
√
ŝ = mH if we

integrate over ŝ. The jet veto suppresses the on-shell cross section and the negative inter-

ference from above
√
ŝ = mH more than the contribution from the positive interference

below
√
ŝ = mH , and therefore the jet veto acts to enhance the interference contribution

relative to the signal. This enhancement is significant in the case of mH = 600 GeV, as the

interference has contributions starting at m4l ' 2mW , where the suppression due to the
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No Veto pveto
T = 30 GeV pveto

T = 20 GeV

mH = 126 GeV 0.92 0.94 0.95

mH = 600 GeV 1.38 1.49 1.54

Table 1. Values of RI = σH+I

σH
for mH = 126 GeV and mH = 600 GeV for two different values of

pvetoT . As is clear from figure 6, the jet veto causes a suppression of the importance of the interference

relative to the Higgs mediated process for a light Higgs, and an enhancement for a heavy Higgs.

jet veto is smaller. To quantify this further we can consider the effect of the jet veto on

the ratio

RI =
σH+I

σH
, (4.20)

where σH+I is the cross section including the signal-background interference, and σH is

the Higgs mediated cross section. The behaviour of this ratio is different for the two Higgs

masses considered. Numerical values of RI are shown in table 1. The effect of interference

for mH = 126 GeV with or without the jet veto is fairly small, and would be made even

smaller when cuts are made to eliminate interference. However, for mH = 126 GeV the

effect of the jet-veto can also be significantly amplified when cuts are used to maximize

sensitivity to the Higgs width. For example, the analysis of [54] considered the region

MT > 300 GeV to bound the Higgs width. Since m4l ≥ MT , we see from figure 6a that

in this region the effect of the exclusive jet veto is by no means a small effect, giving a

suppression of ∼ 1.5− 2. A representative error band from scale variation is also shown in

figure 6a. The effect on the derived bound will be discussed in section 5.

These two examples demonstrate that a jet veto can have an interesting interplay

with signal-background interference, enhancing or suppressing its contribution relative to

the Higgs mediated cross section, depending on the particular form of the interference.

A detailed understanding of the interference is of phenomenological interest for both a

light and heavy Higgs. In the case of mH = 126 GeV, the interference can be efficiently

removed by cuts when studying the on-shell cross section [59], but is important for the

understanding of the off-shell cross section. In the case of a heavy Higgs, the interference

is important for heavy Higgs searches [59, 101, 102], where it is a large effect, and cannot

be easily removed by cuts. The effect of the jet veto must therefore be incorporated in

such searches.

4.5 Suppression as a function of MT

We have so far discussed the effect of the jet veto on the cross section as a function of
√
ŝ, as

the Sudakov factor is explicitly a function of
√
ŝ. However, in the case of H →WW → lνlν,

the total invariant mass of the leptons cannot be reconstructed. A substitute for
√
ŝ, used

in [59], and which is measured by the CMS and ATLAS collaborations [101, 103, 104] is

the transverse mass variable, MT defined in equation (1.5).

Similarly to the ratios considered in section 3 of the exclusive zero jet cross section to

the total cross section, as a function of ŝ, in figure 7, we plot the variable

RT =

(
dσNLL0 (pveto

T )

dMT

)/(
dσ

dMT

)
, (4.21)
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Figure 7. Suppression of the exclusive zero jet cross section for off-shell Higgs production as a

function of MT . The Sudakov factor is controlled by
√
ŝ, but since

√
ŝ ≥MT , a larger suppression

is observed as a function of MT .

for gg → H → WW → ν̄µµe
+νe in the far off-shell region. Since MT is designed as a

proxy for ŝ, the behaviour is as expected from the discussion of section 3, however, since√
ŝ ≥ MT , the events contributing at a given MT all have a larger

√
ŝ. Since it is the

√
ŝ

that governs the Sudakov suppression due to the jet veto, the suppression due to the jet

veto at a given MT is larger than at the same value of
√
ŝ.

We should note that while the values of MT at which the suppression due to the jet

veto becomes significant are larger than is normally considered, or studied experimentally,

the authors of [54] show that with an improved understanding of the backgrounds in the

ATLAS Njet = 0 bin of the WW data, the MT > 300 GeV region, where the jet veto

effects are indeed significant, can be used to place a competitive bound on the Higgs

width. As will be discussed in section 5, their method relies heavily on having an accurate

description of the shape of the MT distribution, which is modified by the jet veto. This

section demonstrates that in the exclusive zero jet bin, there is a suppression by a factor

of ∼ 2 above MT > 300 GeV, which is a significant effect. This will cause a corresponding

weakening of the bound on the Higgs width by a similar factor, which we discuss further

in section 5.

4.6 From 8 TeV to 13 TeV

Since the focus will soon shift to the 13 TeV LHC, in this section we briefly comment on how

the effects discussed in the previous sections will be modified at higher Ecm. In section 3.3

we noted that at higher Ecm the jet veto suppression has an increased dependence on ŝ

due to the larger range of Bjorken x that is probed in the PDFs. The larger range of

available x increases the gluon luminosity at high ŝ allowing for an increased contribution

to the cross section from far off-shell effects [53, 54], and increasing the range over which

they contribute, potentially amplifying the effects of the jet veto discussed in the previous

sections.
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Figure 8. A comparison of the signal-background interference, and impact of the jet veto, at 8,

13 TeV. At a higher centre of mass energy there is a larger contribution to the cross section from

higher m4l, where the effect of the exclusive jet veto is largest.

In this section we consider one example to demonstrate this point, the signal-background

interference for mH = 126 GeV. The signal-background interference distribution for Ecm =

8 and 13 TeV is shown in figure 8, along with the signal-background interference in the

exclusive zero-jet bin at 13 TeV. As was done in figure 6 for the NLL predictions, we

have normalized the distribution by the jet veto suppression at mH so that the suppres-

sion is relative to the on-shell production. The most obvious modification compared with

Ecm = 8 TeV, is the significant enhancement of the signal-background interference cross

section, due to the large enhancement of the gluon luminosity at larger ŝ. In particu-

lar, the contribution to the signal-background interference cross section from the peak at

m4l = 2mt is enhanced at higher Ecm, relative to the contribution from m4l ∼ 2mW . Since

there is a larger relative contribution from higher invariant masses, where the suppression

due to the jet veto is larger, the effect of an exclusive jet veto is larger at 13 TeV. This is

in addition to the fact that at 13 TeV, the ŝ dependence of the suppression due to the jet

veto is slightly stronger, as was demonstrated in section 3.3.

We again emphasize that when cuts are applied to gain sensitivity to the off-shell

region, the effect of the jet veto is not small. In particular, for 13TeV, there is a significant

region above m4l ∼ 350GeV where the suppression due to the jet veto is & 2, as is seen in

figure 8.

Although we have focused on the effect of an increased centre of mass energy on a

particular observable, the conclusions apply generically, for example, for the H → ZZ →
4l, 2l2ν channel, which exhibits similar signal-background interference. Indeed as the centre

of mass energy is increased one has the ability to probe phenomena over an increasingly

large range of ŝ. This amplifies the effects of off-shell physics, as well as the effect of an
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exclusive jet veto. These effects will be important in any physics channel for which a jet

veto is applied, and for which one is interested in the physics over a range of ŝ.

5 Effect of jet vetoes on Higgs width bounds

In this section we discuss the impact of jet binning and jet vetoes for the recent program

to use the off-shell cross section in H → WW, ZZ to bound the Higgs width [52–54, 67].

Although we have focussed on the case of H → WW , we will review also the strategy for

H → ZZ which is similar, also exhibiting a large contribution from the far off-shell cross

section, as well as signal-background interference analogous to that in H →WW . We first

discuss the procedure used to bound the Higgs width, and then relate it to our discussion

of the suppression of the off-shell cross section in the exclusive zero jet bin. Our focus will

be on the effect of the jet vetoes, rather than carrying out a complete numerical analysis.

In particular the proper incorporation of backgrounds, and additional experimental cuts is

beyond the scope of this paper.

The method used to bound the Higgs width in refs. [52–54] can be phrased in a common

language for both H → ZZ, WW . It is based on the different scalings of the on-shell,

off-shell and interference contributions to the Higgs cross section, as discussed in section 1.

Recalling the scaling from equation (1.4), the total cross section can be written as

σH+I = A+B

(
ΓH

ΓSMH

)
+ C

√
ΓH

ΓSMH
, (5.1)

where the coefficients A,B,C correspond to on-shell, off-shell Higgs mediated, and signal-

background interference contributions, respectively. The coefficients depend strongly on

the set of cuts that are applied. To extract a bound on the Higgs width, the procedure

is as follows. First, one determines a normalization factor between the experimental data

and theoretical prediction, which is as independent as possible of the Higgs width. This

can be done for WW by using a strict MT cut, for example 0.75mH ≤ MT ≤ mH , and

for ZZ by using a strict cut on ŝ. In both cases, this essentially eliminates the coefficients

B,C corresponding to the off-shell production and interference. Once this normalization

factor is determined, it is scaled out from the entire differential distribution, so that we

now must consider the ratio of offshell and onshell production cross sections. One can

then compute the predicted number of events above some MT , or ŝ value, for example,

MT ,
√
ŝ ≥ 300 GeV. In this region, the interference and off-shell production dominate

the cross section, so that the coefficients B,C are significant, and the expected number of

events is sensitive to the Higgs width, as can be seen from the scalings in equation (5.1).

By comparing with the number of events observed by the experiment in this region, one

can place a bound on the Higgs width.

This method relies on the ability to normalize the theoretical prediction to data in the

low MT , or ŝ region, which is insensitive to the dependence on the Higgs width, and then

use the same normalization in the high MT , or ŝ region where there is a large sensitivity to

the Higgs width through off-shell production and signal-background interference. However,
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to be able to do this, one needs to have an accurate theory prediction for the shape of the

MT , or ŝ distribution, particularly in the high MT , or ŝ region.

As we have seen, the jet veto significantly modifies the shape of the MT , or ŝ distri-

bution, causing it to fall off more rapidly at high MT , or ŝ. Often we presented our results

by normalizing the offshell cross sections to the cross section at the Higgs mass. Given the

agreement between theory and experiment at mH , this normalization corresponds exactly

to what is done if the theory prediction is normalized to the experimental data in the

on-shell region, and therefore shows the extent to which a prediction without the inclusion

of a jet veto overestimates the contribution to the cross section at high MT or ŝ compared

with that in the exclusive zero jet bin.

In both the H → ZZ, and H → WW analyses, jet vetoes or jet binning are used, so

it is interesting to consider how they will effect the width bounds. Their use in the two

channels is quite different so we will discuss them separately.

For the case of H → WW the jet veto plays an important role because the exclusive

zero jet bin dominates the sensitivity, so the jet veto has a large impact on the potential

Higgs width bound. This is because effectively it is more difficult to recover the jets which

migrate out of the zero jet bin. The plots of the off-shell distributions in section 4 show

the extent to which a prediction without the inclusion of a jet veto overestimates the

contribution to the cross section at high MT . This will lead to a weakening on the bound

of the Higgs mass, compared with a calculation that does not incorporate the effect of the

jet veto. For example, in [54], which first proposed the use of the H → WW channel,

the estimated sensitivity was derived by comparing an inclusive calculation for the off-shell

cross section with data in the exclusive zero jet bin. Here the effect of the restriction to

the zero jet bin is not small, and will worsen the bounds by a factor of ∼ 2, as can be seen

by the suppression of the far off-shell cross section in the exclusive zero jet bin, shown in

section 4. In an analogous experimental analysis this Sudakov suppression from the jet veto

will be accounted for up to some level of precision by the use of a parton shower. Because

this is such a large effect, we believe that an experimental analysis of the high MT region

performed to bound the Higgs width, would benefit from using an analytic calculation

of the jet veto suppression in the exclusive zero jet bin, instead of relying on the parton

shower. We have demonstrated that the resummation, including the signal-background

interference, can be achieved to NLL. Once the NLO virtual corrections are calculated for

the interference, these results can also easily be extended to NNLL.

In the H → ZZ → 2l2ν channel the situation is different, as the jet binning procedure

is used to optimize sensitivity, splitting the data into exclusive 0-jet and inclusive 1-jet

categories with comparable bounds coming from each category [67]. Because the inclusive

1-jet channel is still experimentally clean, the large migration to the inclusive 1-jet bin

discussed in section 3.2 should have a small (or no) impact on the width bounds derived

from the combination of the two channels in H → ZZ. A proper treatment of the migration

of events with changing ŝ is still important when considering any improvement that is

obtained by utilizing jet binning. The analytic results for the Sudakov form factor discussed

here for H →WW could be utilized for jet bins for H → ZZ in a straightforward manner.
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6 Conclusions

In this paper a study of the effect of jet vetoes on off-shell cross sections was made. A

factorization theorem in SCET allowed us to analytically treat the summation of Sudakov

logarithms, and make a number of general statements about the effect of the jet veto. In

particular, the restriction on radiation imposed by the jet veto causes a suppression to

the exclusive 0-jet cross section, and correspondingly an enhancement of the inclusive 1-jet

cross section, which depends strongly on ŝ. For gluon initiated processes the ŝ dependence

of the suppression is greater than for quark initiated processes, which is important for

channels where the signal is dominated by one production channel, and the background by

another.

The fact that the jet veto suppression is ŝ dependent has interesting effects on dif-

ferential distributions in ŝ, as well as on signal-background interference. To demonstrate

these effects, we considered the gg → H → WW process, which has large off-shell con-

tributions as well as signal-background interference. We performed an NLL resummation

for the gg → H → WW → lνlν process, including a discussion of the resummation for

the signal-background interference, for mH = 126 GeV, and mH = 600 GeV. These two

examples demonstrated that depending on the structure of the interference, the jet veto

can either enhance or suppress interference effects relative to the on-shell production. For a

low mass Higgs a suppression is observed, while for a high mass Higgs there is a significant

enhancement in the interference. These effects must be properly incorporated in high mass

Higgs searches that use jet vetoes.

The modification of differential distributions in ŝ or MT due to the ŝ dependence of the

jet veto suppression is particularly relevant to a recent program to bound the Higgs width

using the off-shell cross section [52–54, 67]. In particular, for the H →WW channel, where

an exclusive 0-jet veto is imposed to mitigate large backgrounds, the jet veto weakens the

bound on the Higgs width by a factor of ∼ 2 compared to estimates without accounting for

the jet veto. Furthermore, since the suppression in the exclusive 0-jet bin corresponds to

an enhancement in the inclusive 1-jet bin, and the migration is significant as a function of√
ŝ a proper understanding of the effect of the jet veto is crucial for experimental analyses

which use jet binning. This migration may for example play some role in H → ZZ → 2l2ν,

which was recently used by CMS to place a bound on the off-shell Higgs width, and which

uses jet binning in exclusive 0-jet and inclusive 1-jet bins [67].

We presented a factorization theorem in SCET which allows for the resummation of

large logarithms of
√
ŝ/pveto

T , including for the signal-background interference, in a system-

atically improveable manner. This allows for the analytic study of the effect of the jet veto

on the exclusive 0-jet and inclusive 1-jet bins, including the correlations in their theory

uncertainties. A complete NNLL calculation would require the calculation of the NLO

virtual corrections to the interference, but would allow for the analytic incorporation of jet

radius effects, and would place the study of the off-shell cross section on a firmer theoretical

footing. Furthermore, since our hard functions are fully differential in leptonic momenta,

realistic experimental cuts on the leptonic phase space can be easily implemented. We

leave a more detailed investigation, including the treatment of such cuts, and a calculation

of the effect of the jet veto on the backgrounds, for future study.
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With the LHC beginning its 13 TeV run in the near future, the importance of the effects

discussed in this paper will be amplified. As the centre of mass energy is raised, the range

of ŝ which can be probed increases. This typically increases the importance of off-shell

effects, as well as the impact of the jet veto, which is essential for an accurate description

of the differential distribution in ŝ. In general a proper theoretical understanding of jet

vetoes and jet binning for large ŝ can be achieved through resummation, and is important

when theoretical cross sections are needed for the interpretation of experimental results.
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