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Abstract
Dogs, with their breed-determined limited genetic background, are great models of human

disease including cancer. Canine B-cell lymphoma and hemangiosarcoma are both malig-

nancies of the hematologic system that are clinically and histologically similar to human

B-cell non-Hodgkin lymphoma and angiosarcoma, respectively. Golden retrievers in the US

show significantly elevated lifetime risk for both B-cell lymphoma (6%) and hemangiosar-

coma (20%). We conducted genome-wide association studies for hemangiosarcoma and

B-cell lymphoma, identifying two shared predisposing loci. The two associated loci are lo-

cated on chromosome 5, and together contribute ~20% of the risk of developing these can-

cers. Genome-wide p-values for the top SNP of each locus are 4.6×10-7 and 2.7×10-6,

respectively. Whole genome resequencing of nine cases and controls followed by genotyp-

ing and detailed analysis identified three shared and one B-cell lymphoma specific risk hap-

lotypes within the two loci, but no coding changes were associated with the risk haplotypes.

Gene expression analysis of B-cell lymphoma tumors revealed that carrying the risk
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haplotypes at the first locus is associated with down-regulation of several nearby genes in-

cluding the proximal gene TRPC6, a transient receptor Ca2+-channel involved in T-cell acti-

vation, among other functions. The shared risk haplotype in the second locus overlaps the

vesicle transport and release gene STX8. Carrying the shared risk haplotype is associated

with gene expression changes of 100 genes enriched for pathways involved in immune cell

activation. Thus, the predisposing germ-line mutations in B-cell lymphoma and hemangio-

sarcoma appear to be regulatory, and affect pathways involved in T-cell mediated immune

response in the tumor. This suggests that the interaction between the immune system and

malignant cells plays a common role in the tumorigenesis of these relatively different

cancers.

Author Summary

To shed light on the genetic predisposition to cancers of the hematologic system, we per-
formed genome-wide association analysis of affected and non-affected pet dogs. Dogs nat-
urally develop the same diseases as humans, including cancer, and the relatively limited
genetic diversity within different breeds makes genetic studies easier compared to in hu-
mans. By doing genome-wide association, we identified loci predisposing to hemangiosar-
coma and B-cell lymphoma. To our surprise, we found two shared loci predisposing to
both diseases. Within these two regions we identified several partially overlapping haplo-
types, predisposing somewhat differently to the two cancers. We found no coding muta-
tions that followed the risk or non-risk haplotypes suggesting that regulatory mutations
exert the effect on disease. We also looked at gene expression in B-cell lymphomas, com-
paring samples from individuals with risk or non-risk haplotypes. This analysis showed
differential expression associated with the haplotypes at both loci, suggesting the risk hap-
lotypes are associated with an effect on T-cell response.

Introduction
Lymphoma and angiosarcoma are both malignancies of the hematological system, originating
from lymphocytes and hematopoietic stem cells, respectively. Lymphomas are a heterogeneous
group of diseases, estimated to be the eighth leading cause of human cancer deaths in the US in
2014 [1]. The majority is classified as non-Hodgkin lymphoma (NHL) and, among these, dif-
fuse large B-cell lymphoma (DLBCL) and follicular lymphoma are the most common [2].
Angiosarcoma is a highly aggressive cancer accounting for 1–5% of adult spontaneous sarco-
mas [3, 4] but its rarity limits genetic studies.

Equivalents of both lymphoma and angiosarcoma occur spontaneously in pet dogs. Sixty-
eight percent of golden retrievers, one of the most popular dog breeds in the US, die from can-
cer [5]. Approximately 13% of golden retrievers develop lymphoma [5], and approximately
50% of these cases are of B-cell origin, within which the most common subtype is the canine
equivalent of DLBCL [6–9]. Twenty percent of golden retrievers develop hemangiosarcoma
[5], which is clinically and histologically similar to human visceral angiosarcoma [10, 11].

Large-scale population-based epidemiological studies and several genome-wide association
studies (GWAS) of human lymphoma cases have shown increased familial risks and germ-line
risk factors in the human population [12–15]. These studies provide clear evidence for herita-
ble predisposing mutations for B-cell NHL subtypes in certain human populations, but also
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point to the heterogeneous nature of B-cell NHL. In this study, we have used the relatively lim-
ited genetic diversity in golden retrievers to facilitate the identification of susceptibility loci.

Dogs have been used successfully to map complex diseases including systemic lupus erythe-
matosus, obsessive-compulsive disorder and osteosarcoma [16–19]. Dogs spontaneously devel-
op diseases that are also common in humans, and, as dogs receive modern health care, have
recorded family structures and share the living environment with humans, they make an excel-
lent model to study these diseases [8]. In addition, due to recent breed creation, purebred dogs
have megabase-sized haplotypes and linkage-disequilibrium (LD) blocks, allowing GWAS in
dogs to be performed with 10-fold fewer SNPs than in humans [20, 21]. Power calculations
and proof of principle studies have shown that 100–300 cases and 100–300 controls can suffice
to map risk factors contributing a 2–5 fold increased risk in dogs [16, 20]. Strong bottlenecks in
the evolutionary history of the dog have led to genetic homogeneity within breeds, allowing for
relatively efficient identification of germ-line mutations, and allowing for effective clinical trials
to study the effect of those germ-line mutations on outcome or response to therapy [22].

Here we present the combined results of GWAS of B-cell lymphoma and hemangiosarcoma
in 356 golden retrievers. While originally performed as two separate studies, the major associ-
ated regions colocalized, which prompted us to combine the datasets. Our analysis revealed
two major loci on canine chromosome 5, associated with both diseases and together accounting
for ~20% of the disease risk in this cohort. Neither associated region is explained by coding
mutations, but RNA-Seq analysis of differential gene expression in B-cell lymphomas suggests
that the risk alleles at the two loci significantly alter expression of genes involved in the T-cell
mediated immune response. These results highlight the importance of regulatory mutations, as
well as the interaction between the immune system and malignant cells in cancer development,
and may explain why these two different diseases unexpectedly share the same predisposing
germ-line risk factor.

Results

GWAS in hemangiosarcoma and B-cell lymphoma
To search for inherited risk factors predisposing to hemangiosarcoma in golden retrievers, we
performed GWAS by genotyping 148 hemangiosarcoma cases and 172 cancer-free golden re-
trievers>10 years old using the canineHD Illumina 170k SNP array [23]. Since dog breeds con-
tain high levels of cryptic relatedness and complex family structures, it was necessary to apply a
method to control for the population stratification [24] (Methods), and a final dataset of 142
hemangiosarcoma cases and 172 controls, and 108,973 SNPs was used for the association analy-
sis. The quantile-quantile plot (QQ-plot) showed an inflation factor λ of 0.959, indicating that
the population stratification had been well controlled (Fig. 1A). SNPs with p-values below
1.45×10−4 significantly deviate from the expected distribution, and as the Manhattan plot of
p-values estimated by GCTA [25] shows, the main association signal comes from chromosome
5, with other less significantly associated peaks on chromosomes 11 and 13 (Fig. 1A). For the
chromosome 5 peak, the top SNP (regression odds ratio (ORregres) = 1.23, p-value = 1.09×10−6)
was located at 29,892,306 bp, 85 kb upstream of TRPC6 and in strong LD (r2> 0.8) with 10
other significantly associated SNPs (Table 1). The four most associated SNPs are all in high LD
with each other. The next three significantly associated SNPs are all located within the STX8
gene, around 33.8–34.1 Mb; two more significantly associated SNPs are in LD with SNPs at
33 Mb (Table 1).

A separate GWAS for B-cell lymphoma in golden retrievers was performed using 41 cases
and the same 172 controls as for the hemangiosarcoma study. Since the case sample size was
relatively small, stricter cutoffs were used to control for population stratification, but due to
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careful selection of controls based on pedigrees, all of the 41 cases and 172 controls, and
109,579 SNPs remained in the dataset for the association analysis. The QQ-plot revealed that
although no SNPs reach genome-wide significance for this small dataset of cases, there are
three SNPs with p-values below 1×10−4 that deviate from the null distribution. These three
SNPs are located on chromosome 5 at 33.4–33.9 Mb, and have ORregres of 1.36–1.39.

Figure 1. Genome-wide association of hemangiosarcoma and B-cell lymphoma identifies chromosome 5 as a common risk factor. A. Association of
142 cases with hemangiosarcoma and 172 healthy controls. The inflation factor λ of this analysis is 0.959, indicating that the population stratification had
been properly controlled. The observed p-values deviated from the null beyond 95% confidence interval at-logP = 3.84, with a strong peak on chromosome 5,
and a few SNPs on other chromosomes reaching significance. B. Analysis of 41 B-cell lymphoma cases and 172 healthy controls (λ = 0.976). C. As both
lymphoma and hemangiosarcoma were most strongly associated to the same region on chromosome 5, the datasets were combined (142
hemangiosarcoma + 41 B-cell lymphoma cases and 172 controls) and reanalyzed for association, resulting in an increased association signal on
chromosome 5 at p-value of 4.63 × 10−7 (λ = 0.988, significance threshold-logP = 3.66). Sex and the first PC was used as covariates in all association
studies.

doi:10.1371/journal.pgen.1004922.g001
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Table 1. List of significantly associated SNPs from each GWAS.

B-cell lymphoma, top chr 5 SNPs (not significantly associated)

SNP Chr Position
(bp)

alleles
(minor/
major)

MAF
(cases)

MAF
(controls)

P Odds
Ratio
(regr.)

r2 from 29 Mb top
SNP
(BICF2G63035726)

r2 from 33Mb-shared
top SNP
(BICF2G630183630)

r2 from 33Mb-BLSA
top SNP
(BICF2G630183623)

BICF2S23035109 5 8756081 G/A 0.30 0.17 1.27E-
04

1.19 n/a n/a n/a

BICF2G63035476 5 29699676 G/A 0.31 0.49 1.48E-
05

1.20 0.88 0.09 0.02

BICF2S23317145 5 29716926 G/A 0.31 0.49 1.36E-
05

1.20 0.88 0.09 0.02

BICF2P1405079 5 29748609 T/G 0.30 0.47 4.32E-
05

1.19 0.83 0.09 0.01

BICF2G63035510 5 29748871 C/A 0.30 0.47 4.32E-
05

1.19 0.83 0.09 0.01

BICF2G63035542 5 29762601 C/T 0.30 0.47 4.32E-
05

1.19 0.83 0.09 0.01

BICF2G63035564 5 29778962 A/G 0.30 0.48 1.64E-
05

1.20 0.85 0.09 0.02

BICF2G63035577 5 29795750 C/T 0.30 0.48 1.64E-
05

1.20 0.85 0.09 0.02

BICF2G63035700 5 29867304 G/T 0.28 0.47 4.38E-
06

1.21 0.98 0.09 0.02

BICF2G63035705 5 29870177 G/T 0.27 0.47 3.23E-
06

1.22 0.99 0.09 0.02

BICF2G63035726 5 29892306 C/T 0.27 0.48 1.09E-
06

1.23 <top> 0.09 0.02

BICF2G63035729 5 29893423 C/T 0.27 0.47 3.23E-
06

1.22 0.99 0.09 0.02

BICF2G630183626 5 33851492 C/T 0.21 0.09 2.87E-
05

1.28 0.09 0.99 0.36

BICF2G630183630 5 33854327 C/T 0.22 0.09 7.00E-
06

1.30 0.09 <top> 0.37

BICF2G630183805 5 34088493 A/G 0.21 0.10 5.64E-
05

1.26 0.09 0.95 0.34

BICF2P267306 5 34106119 A/G 0.23 0.10 9.21E-
06

1.29 0.09 0.87 0.31

BICF2P1337948 5 34117726 G/T 0.23 0.10 5.91E-
06

1.30 0.09 0.88 0.33

BICF2P22260 11 37603913 A/T 0.27 0.15 1.37E-
04

1.21 n/a n/a n/a

BICF2P858820 11 37765641 T/C 0.18 0.07 5.65E-
05

1.28 n/a n/a n/a

BICF2P1362415 13 61519478 T/C 0.13 0.03 2.46E-
05

1.36 n/a n/a n/a

BICF2G630746301 13 61533573 C/T 0.12 0.03 4.27E-
05

1.36 n/a n/a n/a

BICF2S23119401 22 56864599 C/A 0.33 0.23 8.95E-
05

1.20 n/a n/a n/a

BICF2G630105651 25 44610750 T/C 0.40 0.57 9.14E-
05

1.16 n/a n/a n/a

TIGRP2P389582 33 25358942 C/T 0.27 0.17 1.00E-
04

1.21 n/a n/a n/a

(Continued)
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Table 1. (Continued)

B-cell lymphoma, top chr 5 SNPs (not significantly associated)

SNP Chr Position
(bp)

alleles
(minor/
major)

MAF
(cases)

MAF
(controls)

P Odds
Ratio
(regr.)

r2 from 29 Mb top
SNP
(BICF2G63035726)

r2 from 33Mb-shared
top SNP
(BICF2G630183630)

r2 from 33Mb-BLSA
top SNP
(BICF2G630183623)

SNP Chr Position
(bp)

alleles
(minor/
major)

MAF
(cases)

MAF
(controls)

P Odds
Ratio
(regr.)

r2 from 29 Mb top
SNP
(BICF2G63035726)

r2 from 33Mb-shared
top SNP
(BICF2G630183630)

r2 from 33Mb-BLSA
top SNP
(BICF2G630183623)

BICF2G630183354 5 33422865 A/G 0.24 0.04 6.48E-
05

1.36 0.05 0.51 0.91

BICF2G630183623 5 33845636 T/C 0.23 0.04 2.34E-
05

1.39 0.05 0.58 <top>

BICF2G630183652 5 33888351 C/T 0.22 0.04 6.39E-
05

1.37 0.06 0.56 0.97

Combined hemangiosarcoma + B-cell lymphoma, significantly associated SNPs

SNP Chr Position
(bp)

alleles
(minor/
major)

MAF
(cases)

MAF
(controls)

P Odds
Ratio
(regr.)

r2 from 29 Mb top
SNP
(BICF2G63035726)

r2 from 33Mb-shared
top SNP
(BICF2G630183630)

r2 from 33Mb-BLSA
top SNP
(BICF2G630183623)

TIGRP2P54568 3 83457175 G/T 0.45 0.31 1.19E-
04

1.17 n/a n/a n/a

BICF2P678427 3 83463617 A/G 0.45 0.31 8.05E-
05

1.17 n/a n/a n/a

BICF2S23035109 5 8756081 G/A 0.30 0.17 1.06E-
04

1.19 n/a n/a n/a

BICF2G63035383 5 29613573 T/A 0.32 0.48 3.2E-
05

1.18 0.73 0.09 0.03

BICF2G63035403 5 29623349 T/C 0.32 0.48 3.2E-
05

1.18 0.73 0.09 0.03

BICF2G63035476 5 29699676 G/A 0.32 0.49 5.89E-
06

1.19 0.87 0.10 0.03

BICF2S23317145 5 29716926 G/A 0.32 0.49 5.44E-
06

1.19 0.87 0.10 0.03

BICF2P1405079 5 29748609 T/G 0.30 0.47 1.03E-
05

1.19 0.81 0.10 0.03

BICF2G63035510 5 29748871 C/A 0.30 0.47 1.03E-
05

1.19 0.81 0.10 0.03

BICF2G63035542 5 29762601 C/T 0.30 0.47 1.03E-
05

1.19 0.81 0.10 0.03

BICF2G63035564 5 29778962 A/G 0.30 0.48 3.23E-
06

1.20 0.82 0.10 0.03

BICF2G63035577 5 29795750 C/T 0.30 0.48 3.23E-
06

1.20 0.82 0.10 0.03

BICF2G63035700 5 29867304 G/T 0.28 0.47 1.09E-
06

1.21 0.97 0.10 0.04

BICF2G63035705 5 29870177 G/T 0.28 0.47 8.74E-
07

1.22 0.98 0.10 0.03

BICF2G63035726 5 29892306 C/T 0.29 0.48 4.63E-
07

1.22 <top> 0.10 0.03

BICF2G63035729 5 29893423 C/T 0.29 0.47 1.62E-
06

1.21 0.99 0.10 0.03

BICF2P93507 5 30000139 A/G 0.49 0.34 1.19E-
04

1.17 0.44 0.00 0.04

BICF2P342766 5 30313603 A/G 0.36 0.26 1.34E-
04

1.18 0.27 0.34 0.18

(Continued)
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Combined GWAS identifies shared risk loci
The hemangiosarcoma dataset showed a strong association on chromosome 5. The B-cell lym-
phoma signal was considerably weaker and no SNP reached genome-wide significance, but the
association signals overlapped with the hemangiosarcoma signal on chromosome 5. Therefore,
we combined the datasets to assess if the two diseases had common predisposing risk factors.
After quality and relatedness control, 183 cases (142 hemangiosarcoma cases and 41 B-cell
lymphoma cases), 172 controls, and 109,407 SNPs were analyzed for the association. The QQ
plot deviated from the null distribution at 2.2×10−4, identifying 35 significantly associated
SNPs (best p-value = 4.63×10−7, Fig. 1C, Table 1), of which 20 were located on chromosome
5 between 29.6 Mb and 34.1 Mb. Sixteen SNPs out of these 20 SNPs were identical to the signif-
icantly associated SNPs from the hemangiosarcoma analysis, all of them with more significant
p-values in the combined study, confirming their importance in B-cell lymphoma. The

Table 1. (Continued)

B-cell lymphoma, top chr 5 SNPs (not significantly associated)

SNP Chr Position
(bp)

alleles
(minor/
major)

MAF
(cases)

MAF
(controls)

P Odds
Ratio
(regr.)

r2 from 29 Mb top
SNP
(BICF2G63035726)

r2 from 33Mb-shared
top SNP
(BICF2G630183630)

r2 from 33Mb-BLSA
top SNP
(BICF2G630183623)

BICF2G630183626 5 33851492 C/T 0.22 0.09 9.02E-
06

1.27 0.09 0.99 0.45

BICF2G630183630 5 33854327 C/T 0.23 0.09 2.66E-
06

1.28 0.10 <top> 0.45

BICF2G630183805 5 34088493 A/G 0.22 0.10 2.07E-
05

1.25 0.10 0.96 0.44

BICF2P267306 5 34106119 A/G 0.24 0.10 6.07E-
06

1.26 0.10 0.88 0.41

BICF2P1337948 5 34117726 G/T 0.25 0.10 3.05E-
06

1.27 0.10 0.89 0.42

BICF2S22951928 8 72096016 C/T 0.35 0.47 1.71E-
04

1.15 n/a n/a n/a

BICF2G630484859 10 32674924 T/C 0.32 0.48 1.05E-
04

1.17 n/a n/a n/a

BICF2G630293768 11 14869362 C/T 0.19 0.11 1.23E-
04

1.23 n/a n/a n/a

BICF2P858820 11 37765641 T/C 0.17 0.07 1.13E-
04

1.25 n/a n/a n/a

BICF2P1128413 11 44451759 G/T 0.09 0.04 1.95E-
04

1.32 n/a n/a n/a

BICF2P858293 12 1213363 C/T 0.35 0.49 1.27E-
04

1.16 n/a n/a n/a

BICF2P1265909 16 10974488 G/A 0.05 0.14 1.29E-
04

1.28 n/a n/a n/a

BICF2P1305119 16 10979219 T/C 0.05 0.14 1.29E-
04

1.28 n/a n/a n/a

BICF2P1334089 16 10986902 T/C 0.05 0.14 1.29E-
04

1.28 n/a n/a n/a

BICF2P51352 16 11005128 C/T 0.05 0.14 1.29E-
04

1.28 n/a n/a n/a

BICF2G630817643 16 50321589 T/C 0.48 0.36 1.64E-
04

1.17 n/a n/a n/a

TIGRP2P389582 33 25358942 C/T 0.27 0.17 4.89E-
05

1.21 n/a n/a n/a

doi:10.1371/journal.pgen.1004922.t001
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associated SNPs in this region clustered in two peaks located 4 Mb apart. The top SNPs in the
two regions were located at 29,892,306 bp and 33,854,327 bp, with p-value of 4.63×10−7 and
2.66×10−6, respectively.

Importantly, the two loci located 4 Mb apart were tagging different risk haplotypes. For the
combined dataset, the top SNP in each region shows high LD (r2 > 0.8) with SNPs within the
same peak, but low LD (r2 < 0.2) to the associated SNPs in the other peak (Table 1, Fig. 2 A, D,
S1–S3 Fig.). To further confirm that these loci are not in linkage, we conducted conditional as-
sociation analyses, which included the genotype of the top SNP of one peak as a covariate
(Methods), and the results also indicate that the two peaks are independent signals (S1–S3
Fig.). Detailed analyses of the associated risk haplotypes in the separate and combined datasets
shows that the 29 Mb risk alleles are mostly predicting hemangiosarcoma predisposition, al-
though the association is stronger in the combined dataset compared to hemangiosarcoma
alone. The 33 Mb region is associated with disease in both datasets, and interestingly, the top
SNPs differ in the hemangiosarcoma and combined, vs the B-cell lymphoma dataset (Table 1,
Fig. 2D, E). The respective top SNP from each analysis, located 8.7 kb apart, are in high LD
(r2>0.8) with several SNPs around them, but not with each other (r2 = 0.45, combined dataset).
They are tagging two different haplotypes in the 33 Mb region. SNPs in the B-cell lymphoma
risk haplotype are not significantly associated with hemangiosarcoma (Table 1) and p-values
drop in the combined analysis compared to B-cell lymphoma alone, suggesting that this is an
independent haplotype only predisposing to B-cell lymphoma. The SNPs of these two haplo-
types are interspersed along the genome (S1 Table).

Risk haplotypes are common at one locus, rare at the other
To define the exact risk haplotypes and their boundaries, r2-based clumping analysis was per-
formed by PLINK [26, 27], and r2-based block definition and association analysis was per-
formed by Haploview [28] (Methods). These analyses identified risk and non-risk haplotypes
in both loci. In the 29 Mb region two associated haplotype blocks were seen: a 9-SNP block
(“29.7Mb-shared”) spanning 182 Kb, and a 4-SNP block (“29.9Mb-shared”) spanning 26 kb
(Table 2, Fig. 2). The risk haplotypes largely appear in the same dogs, suggesting the possibility
of selection in this region (S2A Table). In the 33 Mb region, a 5-SNP haplotype block (“33Mb-
shared”) spanning 266 kb was identified in the combined dataset (Table 2, Fig. 2, S1 Table). An
additional, B-cell-lymphoma-specific haplotype was identified at 33 Mb (“33Mb-BLSA”),
which consists of 4 SNPs spanning over 887 kb. An r2-based haplotype analysis of the chromo-
some 5 region including both peaks using the combined dataset showed no long-range haplo-
type spanning two peaks, thus further confirming the independence of these two peaks.
Notably, the BLSA-33Mb risk haplotype is in LD (r2 = 0.75) with 4 SNPs in the 29 Mb region
(Fig. 2E). Those SNPs are interspersed with the top SNPs at 29 Mb identified in the combined
analysis.

The risk haplotypes at the 29 Mb locus have a high frequency (Fig. 2C, S3 Table); almost
half of all cases are homozygous for the risk haplotype as compared to 25% in the control dogs
for the 29.7Mb-shared risk haplotype. The frequencies are similar for the 29.9Mb-shared hap-
lotype. For both haplotypes, the percentage of dogs homozygous for the risk allele is consider-
ably larger among the cases compared to controls (S3 Table).

In contrast, the risk haplotypes at the 33 Mb locus have a much lower frequency; only 7% in
dogs with B-cell lymphoma and 4% in dogs with hemangiosarcoma are homozygous risk,
while about a third are heterozygous for the 33Mb-shared risk haplotype. In comparison, not a
single control dog is homozygous risk, and one in five are heterozygous for this risk haplotype
(Fig. 2, S3 Table). The disparate frequency of the risk alleles at the two loci also supports a
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Figure 2. Two neighboring loci on chromosome 5 are independently associated with disease risk. A. The top SNP of the first peak (29 Mb) is in high
LD with nearby variants and shows no evidence of linkage to the top SNPs in the second peak (33 Mb). B. The 29 Mb peak is comprised of two haplotype
blocks, and C. the risk haplotypes for the 29 Mb peak are rather common in the population. Similarly, D. the second peak also shows no linkage with the first
peak in the combined analysis, whereas E. analysis of only B-cell lymphoma shows SNPs in strong LD within the second peak and in moderate LD with
SNPs in the first peak. The top SNPs in the combined analysis and B-cell-lymphoma-only analysis are independent, and F. make up separate haplotypes at
the second locus. G. Both risk haplotypes at the second locus are rare. Color-coding of SNPs in A, D, E, reflects their r2 value relative the top SNP of that
region, ranging from grey (not in LD) to red (strong LD).

doi:10.1371/journal.pgen.1004922.g002
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hypothesis of two distinct risk factors. The separate B-cell lymphoma risk haplotype (33Mb-
BLSA) is also rare; 2% of B-cell lymphoma and 1% of hemangiosarcoma cases are homozygous
for this haplotype and 34% and 11%, respectively, are heterozygous. In contrast, no control dog
is homozygous for the risk haplotype and 8% are heterozygous for the risk haplotype. The
33Mb-BLSA risk haplotype appears to be tagging a newer variant that occurred on the existing,
shared risk haplotype. Every 33Mb-BLSA risk allele is carried with a 33Mb-shared risk allele,
such that dogs homozygous for the 33Mb-BLSA risk haplotype are also homozygous for the
33Mb-shared risk haplotype, and all dogs heterozygous for the 33Mb-BLSA risk haplotype
have at least one copy of the 33Mb-shared risk haplotype. This is a significant deviation from
what would be expected if the two haplotypes were unlinked (pChiSq = 7.3×10−50) (S2A Table).

To determine the proportion of disease risk explained by the genotypes of these two loci, we
performed a restricted maximum likelihood (REML) analysis using GCTA software [25] (Meth-
ods). All the autosomes together explain 43.2% ± 17.1% of the phenotype (p-value = 5.6 × 10−4),
and the SNPs within 25–40 Mb on chromosome 5 explain 22.4% ± 10.7% (p-value = 2.7 × 10−5)
of the phenotype in the combined analysis (S4 Table). These results suggest that the two risk loci
on chromosome 5 account for ~20% of the phenotypic variance of these cancers in the golden re-
triever breed.

Chromosome 5 germ-line risk factors influence expression of genes
important in immune responses
Two approaches were taken to evaluate potential candidate genes within the regions of associa-
tion. In summary, no protein-coding changes associated with either risk or non-risk haplotypes
were found, but the risk haplotypes at both loci had a strong effect on the expression level of
genes that play important roles in the immune response, especially T-cell mediated responses.

Specifically, we first examined the coding exons of genes within the most strongly associated
regions for risk-haplotype-concordant non-synonymous germ-line mutations using ~40x cov-
erage of Illumina sequence from nine individuals (Methods). At the 29 Mb locus, KIAA1377
harbored two SNPs that would lead to amino acid substitutions if they were translated but they

Table 2. List of significantly associated haplotypes.

Hemangiosarcoma Haplotype Frequency (case, control) ChiSq Allelic OR P (raw) P (empirical) *

29.7Mb-shared ACAAGATGT (0.68,0.49) 21.55 2.12 3.45E-06 3.10E-06

29.9Mb-shared TTTT (0.72,0.53) 25.68 2.37 4.02E-07 6.00E-07

33Mb-shared CCAAG (0.21,0.09) 17.47 2.73 2.92E-05 2.23E-05

33Mb-BLSA GCTA (0.07,0.04) 3.60 1.85 5.79E-02 8.25E-02

B-cell lymphoma

29.7Mb-shared ACAAGATGT (0.65,0.49) 6.26 1.82 1.24E-02 1.32E-02

29.9Mb-shared TTTT (0.69,0.53) 6.826 1.83 8.98E-03 1.92E-02

33Mb-shared CCAAG (0.28,0.09) 18.91 3.94 1.37E-05 1.87E-05

33Mb-BLSA GCTA (0.21,0.04) 27.48 6.85 1.59E-07 5.40E-06

Combined

29.7Mb-shared ACAAGATGT (0.67,0.49) 22.78 2.02 1.81E-06 2.60E-06

29.9Mb-shared TTTT (0.72,0.53) 27.08 2.22 1.95E-07 3.00E-07

33Mb-shared CCAAG (0.22,0.09) 22.75 2.91 1.85E-06 1.60E-06

33Mb-BLSA GCTA (0.10,0.04) 10.78 2.68 1.03E-03 1.30E-03

*P-value generated by permutation test with 107 iterations. Significant p-values are shown in bold. Haplotypes that are not significantly associated in one

disease are listed for comparison purposes.

doi:10.1371/journal.pgen.1004922.t002
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are likely intronic, ANGPTL5 has one coding mutation, and TRPC6 has two mutations in the
5’ UTR (S5 Table). For NTN1, STX8, andWDR16, genes near the 33 Mb locus, one non-
synonymous mutation was found inWDR16 and two in NTN1 (S5 Table). However, none of
those mutations was associated with the risk haplotype while deviating from the mammalian
consensus.

Secondly, since no coding changes were identified, we investigated whether the risk haplo-
types were associated with transcriptional changes in tumors. We generated RNA-Seq data
from 22 hemangiosarcoma and 22 B-cell lymphoma samples. The gene expression in the
hemangiosarcoma samples reflected their high levels of contamination by stroma cells, which
is typical for hemangiosarcoma tumors, and no conclusions could be drawn. The B-cell lym-
phoma samples were more homogeneous, and were grouped into “higher-risk” and “lower-
risk” categories depending by how many copies of the risk allele they possessed.

Briefly, for the 29 Mb locus, 12 dogs homozygous for the risk haplotype were designated as
the higher-risk group and compared to the lower-risk group consisting of mostly heterozygous
dogs (eight heterozygous dogs and two dogs with no copy of the risk haplotype). The same in-
dividuals were higher-risk or lower-risk for both 29.7Mb-shared and 29.9Mb-shared haplo-
types. The results show that the risk haplotype at 29 Mb had a clear cis-regulatory effect (Fig. 3A,
Table 3, S6 Table), and most significantly altered the expression of TRPC6, the closest gene to
29.9Mb-shared (logFCrisk = −7.46, p-value = 7.45 × 10−17, FDR = 1.37 × 10−12, Table 3, Fig. 3A).
The expression of the TRPC6 transcript was virtually undetectable in the tumors of dogs in the
higher-risk group (all dogs are homozygous for the risk haplotype). TRPC6 encodes a transient
receptor potential channel, which mediates calcium ion (Ca2+) influx [29] and plays a signifi-
cant role in T-cell activation through at least two pathways; 1) the PLCγ pathway regulated by
the T-cell receptor, and 2) the PI3K pathway that is mediated by co-stimulation through CD28
[30, 31].

For the 33 Mb locus, a higher-risk group of mostly heterozygous dogs (one homozygous
and five heterozygous for the 33Mb-shared risk haplotype) were compared to the lower-risk
group of 16 dogs carrying no copy of the 33Mb-shared risk haplotype (Methods). Five of the
six higher-risk dogs carried the 33Mb-BLSA risk haplotype, which is consistent with the geno-
typing data where all dogs carrying the 33Mb-BLSA risk haplotype also carry the 33Mb-shared
risk haplotype (S2B Table). Having at least one copy of the 33Mb-shared risk haplotype at
33 Mb significantly changed the expression levels of 100 genes located elsewhere in the genome
(Table 3, S6 Table). None of the 100 genes were within 1 Mb of any of the significantly associat-
ed loci in either the hemangiosarcoma, B-cell lymphoma, or combined GWAS. Unsupervised
clustering (S4 Fig.) did not group the samples relating to their haplotypes, suggesting that the
differential gene expression associated with the risk haplotypes is not the key differentiator of
tumors. A knowledge based Ingenuity Pathway Analysis (IPA)[32] of the 100 genes based on
the 33Mb-shared haplotype identified a large number of common biological functions includ-
ing differentiation, activation and cell-to-cell signaling in the immune system (S7 Table). The
33Mb-shared risk allele was shown to mediate overall decreases in immune cell activation
(Fig. 3B, S7 Table). Eighteen significant canonical pathways were identified (S8 Table), and of
the top four pathways (p-value< 0.005) three directly implicate T-cell responses. Several up-
stream regulators, including IL-2 (z-score = −2.97, p-value = 5.62×10−14), CD3 (z-score = 2.02,
p-value = 3.34×10−13), TCR (z-score = −2.83, p-value = 6.31×10−13), ZBTB7B (z-score = 2.21,
p-value = 1.13×10−9) and IL-15 (z-score = −2.63, p-value = 2.96×10−9) were identified, all of
which play an important role in the activation, acquisition of effector functions and lineage dif-
ferentiation of T-cells [33–35] (S9 Table).
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Figure 3. Differentially expressed genes by the risk alleles at 29 Mb and 33 Mb play important role in T-cell immunity. A. The risk allele at the 29 Mb at
homozygous state has a clear cis-regulation effect on the expression levels of TRPC6, KIAA1377, and ANGPTL5, three of the most proximal genes. BIRC3,
which is also proximal to the 29 Mb risk locus, had a significant p-value, however the FDR value was slightly above the threshold of 0.05. The risk allele at 29
Mb was also associated with a regulatory effect on genes near the 33 Mb locus and a change in the expression of PIK3R6 significantly. B. A large network of
molecules that play a major role in activation of T-lymphocyte and other immune cells (IPA category: cell-to-cell signaling and interaction, hematological
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Discussion
GWAS of human DLBCL using thousands of human patients have detected a few candidate
loci, which together only account for a small fraction of the genetic risk [12, 14, 15]. For
human angiosarcoma, no GWAS has been performed due to the rarity of the disease. Here we
performed GWAS for canine B-cell lymphoma and hemangiosarcoma using fewer than 400
dogs for both diseases combined, and identified two loci of strong effect accounting for about
20% of the disease risk. This study illustrates the advantages of mapping a complex trait within
a canine breed, in which a small number of risk factors with a strong effect are present as a re-
sult of the strong bottlenecks at breed creation, and the relative genetic homogeneity within the
breed. The fact that one of the two risk factors on chromosome 5 (29 Mb) is very common in
the U.S. golden retriever population may relate to the use of popular sires. It also could be an
example of a strong genetic risk factor accumulating either through drift or selective breeding
for a nearby locus.

It was unexpected and remarkable to discover that two rather different cancers, B-cell lympho-
ma and hemangiosarcoma are linked to the same inherited risk factors, as shown by the increased
strength of association when combining the two datasets. While surprising, this could be explained

system development and function). This network includes 15 molecules of which expressions are significantly altered in individuals carrying at least one copy
of the shared risk allele at the 33 Mb locus. The outcomes of such expression changes are significantly linked to decrease in T-cell activation.

doi:10.1371/journal.pgen.1004922.g003

Table 3. Top 10 differentially expressed genes by the risk haplotype at each locus.

29 Mb risk analysis

Gene Name logFCrisk * p-value FDR Chr Start first exon

TRPC6 -7.46 7.45E-17 1.37E-12 5 29,974,951

FGFR4 -4.37 1.46E-07 8.96E-04 4 36,241,080

RPL6 1.74 2.78E-07 1.28E-03 26 9,970,456

PIK3R6 -1.69 3.88E-07 1.43E-03 5 33,471,196

GFRA2 -3.72 9.26E-07 2.62E-03 25 35,437,179

KIAA1377 -2.54 1.01E-06 2.62E-03 5 29,559,277

SCARA5 -2.68 1.13E-06 2.62E-03 25 29,591,101

GRM5 -3.04 1.48E-06 2.90E-03 21 10,982,218

FABP4 -3.4 1.57E-06 2.90E-03 X 2,439,049

U2 5.65 4.55E-06 7.00E-03 4 12,989,141

33 Mb risk analysis (shared haplotype)

Gene Name logFCrisk * p-value FDR Chr Start first exon

IGLV2–33 5.98 5.36E-12 9.89E-08 26 27,164,804

CD5L -3.46 3.84E-07 3.12E-03 7 40,515,318

CXCL10 -3.37 6.55E-07 3.12E-03 32 597,634

SLC25A48 -4.65 6.76E-07 3.12E-03 11 23,754,003

KRT24 -5.79 1.76E-06 5.50E-03 9 21,967,227

HIST1H4L 2.92 2.62E-06 6.91E-03 17 59,129,682

IGHV3–64 -3.62 5.29E-06 1.14E-02 8 73,477,706

GPR27 -3.91 5.57E-06 1.14E-02 20 20,271,644

GZMA -2.82 8.06E-06 1.31E-02 2 42,490,492

HS3ST3B1 1.96 9.27E-06 1.31E-02 5 38,023,684

*Fold change was calculated by designating the lower-risk group as a reference.

doi:10.1371/journal.pgen.1004922.t003
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by previous observations that hemangioblasts have the ability to generate both hematopoietic
stem cells and endothelial cells [36], and that canine hemangiosarcoma is likely to originate from
hemangioblasts [37]. Another remarkable finding is that only two loci appear to explain 20% of
the total disease risk. This may be partly due to the homogenous genetic background present
within this dog breed, but may also result from the effect size of the individual risk factors.

While the risk loci on chromosome 5 explain as much as 20% of the risk, no coding muta-
tions were identified. Instead, we found that the risk haplotypes of both loci are significantly as-
sociated with gene expression changes, implying that the mutations in regulatory regions play
an important role in cancer, which is often the case in other common diseases [38]. Several
candidate loci fall just above or below the significance threshold in our current analyses. Since
all autosomes together can explain an additional ~21% of the risk, incorporation of additional
cases and controls in the future will likely identify more risk loci with genome-wide signifi-
cance. In this context we note that the 41 B-cell lymphoma cases alone produced a relatively
weaker signal for the chromosome 5 locus at 29 Mb, suggesting that for this high-frequency
risk allele at ORallelic ~2.0, a higher sample number would be needed to reach genome-wide sig-
nificance, as our original power calculations predicted that at least 100 cases and 100 controls
are required for mapping such alleles at less than 4% false positive rate with 80% power [20].

We find the existence of at least four disease-associated haplotypes in the two nearby chro-
mosome 5 regions intriguing, and speculate that there may be genes in the region affecting
traits for which dogs are bred in this population. In small, inbred populations like dog breeds,
one popular individual can have many offspring, allowing certain haplotypes to become rela-
tively common.

We note that no coding changes agree with the risk haplotypes, suggesting the presence of
regulatory mutations. To identify the actual causative mutations additional bioinformatics
analysis, validation genotyping in a larger sample set and functional analysis of key candidate
variants will likely be necessary. It will also be useful to survey the frequency of the risk haplo-
types in different golden retriever populations, for example those from the US and Europe
where disease frequencies are reported to vary.

RNA-Seq data from B-cell lymphomas demonstrated an almost complete reduction of
TRPC6 transcript suggesting cis-regulation by the 29 Mb risk haplotype, which also reduced
the expression of three other genes in the region BIRC3, ANGPTL5, and KIAA1377. BIRC3 en-
codes an anti-apoptotic protein associated with B-cell malignancies and other cancers [39],
ANGPTL5 is a member of the angiopoietin growth factor family [40], while KIAA1377 is a
novel centrosomal protein required for cytokinesis [41]. TRPC6 encodes a transient receptor
potential channel, which mediates calcium ion (Ca2+) influx [29]. Interestingly, TRPC6 is not
normally expressed in B-cells [42], but has been reported to play an important role in T-cell ac-
tivation [30, 43]. The expression levels of TRPC6 have been shown to significantly alter levels
of intracellular Ca2+ elevation and T-cell activation, which are mediated by at least two path-
ways; the PLCγ pathway regulated by the T-cell receptor, and the PI3K pathway that is mediat-
ed by co-stimulation through CD28 [30, 31]. Notably, the 33 Mb risk allele also suppressed the
expression levels of many genes that are involved in the activation of immune responses, par-
ticularly T-cell activation. The regulation from the 33 Mb region appears to be trans-regulato-
ry, but the exact mechanism to elicit this effect is unknown at present. One possibility is that a
cis-regulatory effect of the risk haplotype on an undiscovered lincRNA in this region could be
mediating the trans-regulatory effect. The different effects of the combined risk haplotype and
the B-cell lymphoma specific haplotype at this locus cannot be distinguished without further
work. Notably, several of the suggested top upstream regulators of the 100 genes affected by the
33Mb haplotype are possible targets of NF-κB [44], which could suggest that the effect of the
risk haplotype could be mediated by pathways affected by NF-κB. Because of the altered gene
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expression, we hypothesize that the germ-line mutations tagged by the risk haplotypes in the
associated loci lead to T-cell dysfunction that plays an important role in B-cell lymphoma and
hemangiosarcoma development.

The expression levels of T-cell markers, such as CD28 and CD3 epsilon, were not affected by
the risk haplotypes, so the expression reduction in TRPC6 and other genes involved in T-cell ac-
tivation was not due to the absence of T-cells within the tumor. We also did not observe any ex-
pression differences in markers for NK cells and dendritic cells, such as CD3 zeta, CD11b,
CD11c, CD56, and CD68. This is important to note, as the expression levels of certain chemo-
taxins and receptors, including CCL5, CCL19, CCL22, and CCR6, which attract lymphocytes,
macrophages and/or dendritic cells [45–47] were decreased in dogs carrying the 33Mb-shared
risk haplotype. In previous studies, different quantities of these cells in B-cell lymphoma have
been linked to diagnostic and prognostic significance in humans as well as dogs [48–55].

In conclusion, we have identified two loci explaining ~20% of the risk for both hemangio-
sarcoma and B-cell lymphoma in US golden retrievers. While the discovery of the mutation(s)
and the related mechanisms that lead to tumorigenesis is dependent on future studies, this
study demonstrates the power of dogs for mapping germ-line risk factors with strong relevance
for human cancer, as well as the importance of non-coding inherited risk factors in cancer pre-
disposition. The strong correlation between the germ-line risk haplotypes and the expression
changes that are indicative of immune dysfunction generates a novel hypothesis of how germ-
line risk factors contribute to tumorigenesis. This novel hypothesis warrants further investiga-
tions both in canine and human lymphoma and angiosarcoma.

Methods

Study participants and inclusion criteria
All of the golden retrievers in the study were recruited from the privately owned pet population
in the US. The owner voluntarily agreed to participate in the study, and a signed consent form
was obtained for each participant. All the work described is in accordance to ethical guidelines
and is included in the ethical approval protocols on “canine research”, MIT CAC 0910–074–13
(Lindblad-Toh). Diagnosis of B-cell lymphoma was confirmed by histological examination of
the tumor as well as by PARR assay [56]. Diagnosis of hemangiosarcoma was obtained by one
or more of the following methods: histological examination of formalin fixed tumor tissue, ex-
amination of cell surface markers by flow-cytometry, and by the pathology reports that were
submitted by the dog owner or their veterinarian, which confirmed hemangiosarcoma diagno-
sis. Some of the hemangiosarcoma cases that had acute and extensive abdominal hemorrhage
with an ultrasound report of multiple cavitated and blood-filled tumors in more than one
organ, and those having the characteristic right atrial tumor were included in the study without
histological confirmation. Controls were confirmed to be cancer-free by owner questionnaire
at the point of sample submission, and by periodic health updates. The age when a dog was last
confirmed as healthy was used to determine inclusion. All control dogs’ pedigrees were careful-
ly checked before picking dogs for genotyping to avoid introducing stratification. Cases’ pedi-
grees were also checked to avoid including closely related individuals when possible.

GWAS analysis
Genomic DNA was isolated from whole blood and was genotyped for 170,000 SNPs using the
Illumina 170K canine HD array [23] at the Broad Institute of MIT and Harvard, or at Gene-
Seek Inc (Lincoln, NE). To successfully control for the population stratification present in the
dataset, we took an analysis approach based on a method described by Price et al. [24] First, the
genome-wide SNP dataset was analyzed by PLINK [27, 57] (PLINK1.9 was used whenever
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possible, otherwise PLINK1.07) to apply standard quality filters including genotyping rate per
SNP (>95%) and per individual (>95%), and minor allele frequency (MAF,>5%). Chromo-
some X was excluded because of the risk of it not being handled correctly in mixed model ge-
netic relatedness calculations. Secondly GCTA [25] was used to estimate a genetic relationships
matrix (grm) to remove excessively related individuals, and to calculate the principal compo-
nents of the whole-genome SNP genotype data per individual by the EIGENSTRAT method
[58], which was used as a covariate in the final step. Finally, GCTA [25] was used to test for the
disease-genotype association with adjustment for the IBS matrix and for the first principal
component, both calculated by GCTA. The threshold for genome-wide significance for each
association analysis was defined based on the 95% confidence intervals (CIs) calculated from
the beta distribution of observed p values, a method adopted from the study by the Wellcome
Trust Case Control consortium [59]. Sex was used as a covariate. For the conditional analysis
to address the independence of the two peaks on chromosome 5, the genotype of a top SNP of
one peak/haplotype was used as the first covariate and sex was used as the second covariate.

For the GWAS of hemangiosarcoma, we genotyped 148 hemangiosarcoma cases (107 histo-
logically confirmed cases, and 41 presumed cases including 16 with tumor in the right atrium
of the heart), and 172 healthy controls> 10 years of age. After quality control and removal of
excessively related individuals (grm value> 0.75), the final dataset analyzed for the hemangio-
sarcoma association included 142 cases, 172 controls and 108,973 SNPs. For the GWAS of
B-cell lymphoma, we genotyped 41 histologically confirmed B-cell lymphoma cases and they
were compared to the 172 healthy controls used for the analysis of hemangiosarcoma. To con-
trol for population stratification in this small dataset, grm value of 0.25 was used as the cut-off
to remove dogs related at greater than the half-sibling level within the cases, and in the con-
trols. After the filtering, the final dataset analyzed for the B-cell lymphoma association included
41 cases, 172 controls and 109,579 SNPs. For the combined analysis, after quality control and
removal of excessively related individuals (grm value> 0.75), the final dataset analyzed for the
association included 183 cases (142 hemangiosarcoma cases and 41 B-cell lymphoma cases),
172 controls, and 109,407 SNPs. We further independently validated the genotypes of the
24 top SNPs in a subset of 250 dogs by Sequenom (miscalling rate 0.0038).

Haplotype block definition, and association analysis
The haplotype blocks in the associated loci were defined with boundaries that were commonly
identified by the clumping analysis using PLINK [26, 27] and r2 based LD analysis by Haplo-
view [28]. PLINK clumping analysis was performed by setting parameters as follow: association
p-value for the index SNP< 1 × 10−4, r2 > 0.8 or 0.9, and a physical distance limit of 1 Mb.
The Haploview analysis was performed by calculating pair-wise r2 values for the SNPs between
28 Mb and 36 Mb on chromosome 5 with a 2 Mb distance limit, and haplotype blocks were de-
fined by r2 > 0.8 or 0.9. The haplotype blocks commonly identified by both analyses were used
for further analysis. Haplotypes of each block, their allelic frequencies, chi-square test, allelic
odds ratio and p-values (Praw) were obtained using PLINK. Each haplotype was then tested for
association significance by running a permuted chi-square test for 107 iterations using PLINK.

Restricted maximum likelihood (REML) analysis
Estimation of the phenotypic variance explained by genetic variance was performed by REML
analysis using GCTA [60], following online instructions on the GCTA website. In our analyses,
the variance of the genetic factor was determined by the genotypes of SNPs on all autosomes, on
each autosome separately, and within the associated region (25–40Mb) on chromosome 5. Sex
was used as a covariate. The estimate of variance explained on the observed scale is transformed
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to that on the underlying scale by the estimated disease prevalence of the general population. A
p-value for each analysis is calculated based by performing a log-likelihood ratio test. We esti-
mated prevalence as 0.20 for hemangiosarcoma, 0.0625 for B-cell lymphoma [5], and 0.2625 for
being affected by either cancer, as it is extremely rare for one dog to have both cancers.

Whole genome sequencing and analysis
Whole-genome paired-end sequencing was performed for germ-line DNA from nine golden
retrievers, of which six were from the GWAS cohort. For each sample, approximately 1 billion
101 base-pair paired-end reads at 40x coverage were generated using Illumina HiSeq 2000. Pi-
card pipeline [61] was used for data quality filtering and alignment of the reads to the can-
Fam3.1 reference genome. The Genome Analysis Toolkit’s (GATK’s) UnifiedGenotyper [62]
was then used to make genotype calls from the cleaned alignments. The resulting variants were
then annotated based on the conservation across species using SEQscoring [63, 64], annotated
and analyzed for predicted effect by using snpEff [65], and were visually examined by IGV [66]
to look for variants likely to cause biological changes, and that are concordant with the disease-
associated haplotypes. One variant was evaluated with SIFT [67].

RNA sequencing and expression analysis
Twenty-two canine nodal B-cell lymphoma and twenty-two hemangiosarcoma samples (one
tumor sample per dog) were analyzed by high-density RNA sequencing (20 million paired end
reads). Total RNA was isolated from a whole frozen naïve (untreated) tumor tissue or cryopre-
served single cell suspension of naïve tumor cells. Indexed Illumina sequencing libraries were
constructed, size selected to 320 bp +/- 5%, and 50 base-pair paired-end reads were generated by
Illumina HiSeq 2000. To estimate the abundance of different genes expressed in our samples, we
first aligned the read data to canFam3.1 using TopHat [68] v1.4.1. The mate inner distance was
set to 100 bp, and the maximum intron length was set to 500,000 bp. We then used HTSeq [69]
v0.5.3p9 set for non-strand-specific data to perform read counting on genes. For a gene annota-
tion, we used the canFam3.1 annotation supplemented with RNAseq data [70]. The expression
levels were compared using edgeR [71] v3.0.8 to examine the relative gene expression changes as-
sociated with the presence or absence of approximately one copy of the risk haplotypes at 29Mb
or 33 Mb locus in the tumors. Given the high frequency of the risk allele, the 29 Mb “higher-risk”
and “lower-risk” groups were defined as follows: a higher-risk group containing 12 dogs homo-
zygous for risk haplotype; and a 29 Mb lower-risk group containing eight heterozygous dogs and
two dogs with no copy of the risk haplotype (all dogs haplotypes were identical for the 29.7Mb-
shared and 29.9-shared Mb). Because very few dogs were homozygous for the risk haplotype at
the 33Mb, the 33 Mb higher-risk and lower-risk groups were defined as follows: a higher-risk
group of six dogs (five heterozygous and one homozygous for the 33Mb-shared risk haplotype);
and a lower-risk group of 16 dogs with no copy of the risk haplotype. The groups were largely
the same if defined from the 33Mb-BLSA risk haplotype, but the shared haplotype was used for
group definition to be consistent with hemangiosarcoma analysis. B-cell lymphoma RNA was
isolated from either tumor cells in suspension, or from a tumor biopsy that contained more stro-
mal tissue (lymphocyte content> 90%, of those 85–100% were malignant cells). This known
variable was applied as a blocking factor in edgeR analysis to reduce its influence in detecting the
differences in gene expression. Expression differences between the groups with p-value and false
discovery rate (FDR) of less than 0.05 were considered significant findings. Unsupervised clus-
tering was performed using normalized FPKM values for the annotated genes, calculated for
each sample using CuffNorm from Cufflinks 2.2.1. These values were then used as a feature vec-
tor and the dendrogram was created using the R v2.15 functions “dist” and “hclust”.
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Ingenuity Pathway Analysis
A knowledge-based functional analyses of the significant expression changes by the 29 Mb
risk allele in 27 genes, and by the 33 Mb risk allele in 100 genes were performed by Ingenuity
Pathway Analysis (IPA) [32]. Of the 27 and 100 genes examined, IPA mapped 25 and 89
genes respectively. The parameters for the core analysis were set to consider direct and indi-
rect relationships of genes and endogenous chemicals at predicted and experimentally observed
confidence levels. The p-values for the downstream functions and canonical pathway analyses
were corrected for multiple testing by the Benjamini-Hochberg procedure, and resulting
p-values less than 0.05 were considered significant. When the analysis of downstream functions
or upstream regulators identified a gene set with “bias” in the direction of expression changes,
significance was determined by the combination of a p-value of less than 0.05 and an activation
z-score of less than-2.00 or greater than 2.00, following Ingenuity Systems’ recommendation.
False discovery rate (FDR) cutoff was set to 0.05 and fold change (FC) cutoffs were 1 and-1
(in log2).

Statistical analysis
All the p-values reported in this study were obtained by using the programs mentioned in each
analysis method. Briefly, the p-values in GWAS analysis were obtained by using GCTA, with a
mixed model approach to account for population stratification, and a 0–1 quantitative re-
sponse variable to represent the case-control status. The significance of the slope coefficient of
a SNP, which represents the effect size of the SNP is calculated by the standard t test based on
the variance of the slope coefficients of the study cohort [72]. For case-control data, Haploview
utilizes a simple chi-square test to calculate the phenotype-haplotype association p-values
(Praw) [28], and the association significance p-value (Pperm) was obtained as the empirical prob-
ability of observing chi-square values in permutation tests that exceeded the best observed
chi-square value using PLINK1.07. The p-values obtained by edgeR to identify differentially ex-
pressed genes were calculated by fitting gene-wise generalized linear models, and then conduct-
ing likelihood ratio tests for the risk haplotype [71]. The p-values by IPA for the canonical
pathways and downstream biological functions were calculated using Fisher’s Exact Test, com-
paring the proportion of genes from the provided list mapping to a function or pathway to the
proportion genes in the IPA database in that function or pathway [32]. The p-values were then
corrected for multiple testing by the Benjamini-Hochberg procedure [32]. The upstream regu-
lator analysis calculates the “overlap p-values” using Fisher’s Exact Test, which measures
whether there is a statistically significant overlap between the observed gene set and the genes
that are regulated by a particular transcriptional regulator [32].

Data access
GWAS data are available on the Broad Institute’s website (www.broadinstitute.org/ftp/pub/
vgb/dog/HSA_BLSA_PlosGenetics2014_paper/). WGS and RNA-Seq data are available via the
NCBI BioProject site (WGS: PRJNA247491, RNA-Seq: PRJNA267721-267742).

Supporting Information
S1 Fig. LD between the two neighboring loci on chromosome 5 for hemangiosarcoma anal-
ysis and conditional association analyses for the top SNPs reveal that the two neighboring
loci are independent. A. r2 values were calculated from the top SNP at 29 Mb to other SNPs in
the region, or B. r2 values were calculated from the top SNP at 33 Mb to other SNPs in the re-
gion, and the coloring reflects r2 values, ranging from grey (not in LD) to red (strong LD). In
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this study cohort, the top SNPs in these two peaks are not in LD (r2 < 0.2). C. r2 values were
calculated from the top SNP in the B-cell lymphoma specific haplotype at 33 Mb. SNP. In
order to test if the two loci are showing independent association signals, each association analy-
sis was performed with a primary covariate that represents the genotypes ofD. the top SNP at
29 Mb, E. the top SNP at 33 Mb (33Mb-shared haplotype), and F. the top SNP at 33 Mb
(33Mb-BLSA haplotype). Concordant with the LD structure observations, the association sig-
nal of a peak was still detected even with the conditioning on the top SNP of the other peak, in-
dicating independent association. Sex was used as covariate in all association studies
(secondary covariate in the conditional analysis).
(TIF)

S2 Fig. LD between the two neighboring loci on chromosome 5 for B-cell lymphoma analy-
sis and conditional association analyses for the top SNPs reveal that the two neighboring
loci are independent. The two loci on chromosome 5 detected in hemangiosarcoma had stron-
ger association when the B-cell lymphoma cases were added, although they didn’t reach ge-
nome-wide significance in this dataset alone. Even though it was not significant each locus had
a separate peak, therefore, to test if they were independent loci in the B-cell lymphoma dataset,
A. r2 values were calculated from the top SNP of the combined analysis at 29 Mb to other SNPs
in the region, or B. r2 values were calculated from the top SNP of the combined analysis at 33
Mb to other SNPs in the region. In this study cohort, the top SNPs in these two peaks are not
in LD (r2 < 0.2). C. r2 values were calculated from the top SNP in the B-cell lymphoma predis-
posing haplotype at 33 Mb. SNP coloring reflects r2 value, ranging from grey (not in LD) to red
(strong LD). In order to test if the two loci are showing independent association signals, each
association analysis was performed with a primary covariate that represents the genotypes of
D. the top SNP at 29 Mb, E. the top SNP at 33 Mb (33Mb-shared haplotype), and F. the top
SNP at 33 Mb (33Mb-BLSA haplotype). Concordant with the LD structure observations, the
association signal of a peak was still detected even with the conditioning on the top SNP of the
other peak, indicating independent association. Sex was used as covariate in all association
studies (secondary covariate in the conditional analysis).
(TIF)

S3 Fig. LD between the two neighboring loci on chromosome 5 in the combined dataset
and conditional association analyses for the top SNPs reveal that the two neighboring loci
are independent. To test if the identified loci on chromosome 5 were independent loci in the
combined dataset, A. r2 values were calculated from the top SNP at 29 Mb to other SNPs in the
region, or B. r2 values were calculated from the top SNP at 33 Mb to other SNPs in the region,
and the coloring reflects r2 value, ranging from grey (not in LD) to red (strong LD). In this
study cohort, the top SNPs in these two peaks are not in LD (r2 < 0.2). C. r2 values were calcu-
lated from the top SNP in the B-cell lymphoma specific haplotype at 33 Mb. SNP. In order to
test if the two loci are showing independent association signals, each association analysis was
performed with a primary covariate that represents he genotypes ofD. the top SNP at 29 Mb,
E. the top SNP at 33 Mb (33Mb-shared haplotype), and F. the top SNP at 33 Mb (33Mb-BLSA
haplotype). Concordant with the LD structure observations, the association signal of a peak
was still detected even with the conditioning on the top SNP of the other peak, indicating inde-
pendent association. Sex was used as covariate in all association studies (secondary covariate in
the conditional analysis).
(TIF)

S4 Fig. Unsupervised clustering of RNA-Seq samples does not form groups related to the
differential expression seen in high-risk and low-risk groups. The RNA source (0, tissue
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or 1, cells), and the grouping into high- and low-risk for the two loci (H, high-risk and L, low-
risk) are indicated. RNA source was corrected for in analysis.
(TIF)

S1 Table. Haplotype block definitions. Position (canFam3.1) and ID of SNPs constituting the
four identified haplotypes.
(PDF)

S2 Table. Coexistence of risk haplotypes at 29 and 33 Mb.Number of observed individuals
and their haplotypes (R, risk; a, alternative) at the A. 29 Mb locus or B. 33 Mb locus.
(PDF)

S3 Table. Frequency of risk haplotypes. Frequency of individuals being homozygous risk, het-
erozygous risk, or homozygous non-risk for each haplotype in the respective datasets.
(PDF)

S4 Table. Variance explained by chromosome 5 or all autosomes, as estimated by REML.
Variance explained with and without sex as covariate in the respective datasets.
(PDF)

S5 Table. List of germ-line non-synonymous mutations in genes at the 29 and 33 loci. Non-
synonymous mutations in exons including 5’UTR.
(PDF)

S6 Table. Differentially expressed genes by the risk haplotype at each locus. Genes differen-
tially expressed in B-cell lymphomas when comparing tumors that are high-risk to low-risk at
the 29 and 33 Mb loci.
(PDF)

S7 Table. Significantly affected biological functions downstream of the observed gene ex-
pression changes by the 33 Mb risk haplotype. Biological functions predicted by IPA to be al-
tered as a result of the differential gene expression seen in tumors that are high-risk at the 33
Mb locus.
(PDF)

S8 Table. Canonical pathways with significant (p< 0.05) enrichment of the genes with ex-
pression changes by the 33 Mb risk haplotype. Canonical pathways estimated by IPA to be
affected as a result of the differential gene expression seen in tumors that are high-risk at the
33 Mb locus.
(PDF)

S9 Table. Upstream regulators of the observed gene expression changes by the 33 Mb risk
haplotype. Upstream regulators suggested by IPA to explain the differential gene expression
seen in tumors that are high-risk at the 33 Mb locus.
(PDF)
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