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Abstract

Today’s computers are based on irreversible logic devices, which have been known
to be fundamentally energy-inefficient for several decades. Recently, alternative re-
versible logic technologies have improved rapidly, and are now becoming practical.

In traditional models of computation, pure reversibility seems to decrease overall
computational efficiency; I provide a proof to this effect. However, traditional models
ignore important physical constraints on information processing.

This thesis gives the first analysis demonstrating that in a realistic model of com-
putation that accounts for thermodynamic issues, as well as other physical constraints,
the judicious use of reversible computing can strictly increase asymptotic computa-
tional efficiency, as machine sizes increase. I project real benefits for supercomputing
at a large (but achievable) scale in the fairly near term. And with proposed future
computing technologies, I show that reversibility will benefit computing at all scales.

INext, the thesis demonstrates that reversible computing techniques do not make
computer design much more difficult. I describe how to design asymptotically efficient
processors using an “adiabatic” reversible electronic logic technology that can be
built with today’s microprocessor fabrication processes. I describe a simple universal
reversible parallel processor chip that our group recently fabricated, and a reversible
instruction set for a more traditional RISC-style uniprocessor.

Finally, I describe techniques for programming reversible computers. I present a
high-level language and a compiler suitable for coding efficient reversible algorithms,
and I describe a variety of example algorithms, including efficient reversible sort-
ing, searching, arithmetic, matrix, and graph algorithms. As an example applica-
tion, I present a linear-time, constant-space reversible program for simulating the
Schrédinger wave equation of quantum mechanics.

Thesis Supervisor: Thomas F. Knight, Jr.
Title: Senior Research Scientist



Acknowledgments

First and foremost, I am enduringly grateful to my advisor Tom Knight and also to
Norm Margolus, for taking me into their fold, for their extensive and wise guidance in
all areas of this research, for the many things I learned from them, and for providing
an exceptionally supportive and stimulating work environment. Thanks very much
also to the other readers Gill Pratt and Gerry Sussman, for kindly agreeing to serve
on my thesis committee and lend their expertise to the evaluation of this work.

I would also like to thank the Pendulum group’s head graduate student, Carlin
Vieri, for inventing the Pendulum architecture, which provided the context for much
of this work; for taking it upon himself to do most of the project’s administrative
chores; and for the fun we had working together on the nuts and bolts of various
aspects of the project such as the Pendulum ISA and the FLATTOP chip. (Also,
thanks for all the Nolios!)

I should also thank a number of other MIT students: Matt DeBergalis created
many helpful software tools, such as the Pendulum assembler and emulator. Josic
Ammer assisted with chip design, and made important contributions to the theory
and algorithms work. Scott Rixner and Nicole Love were my primary design partners
on the Tick and FLATTOP processors, respectively. Matt Becker often popped into
my office for a friendly greeting and an interesting conversation.

Prof. Michael Sipser deserves thanks for his informal but very helpful guidance
during the development of the proof in §3.4. I am also grateful to Alain Tapp and
Pierre McKenzie of the University of Montreal, for providing much helpful feedback
on that result, and for inviting me to visit their lab. Thanks also to Prof. Tom
Leighton for communicating the reversible shortest-path algorithm, and to both him
and Prof. Charles Leiserson for feedback on the scaling results of chapter 5.

Finally, I would like to thank Carl R. Witty and Warren D. Smith for helpful
editorial comments on drafts of this document, my family and my wife Lori for their
love, and all my friends throughout my years at MIT for their companionship and
encouragement.

This research was supported by DARPA (the Defense Advanced Research Projects
Agency of the United States of America) as part of the Scalable Computing Systems
research program [37], under contract number DABT63-95-C-0130.



to my father, Patrick Gene Frank



Contents

1 Introduction and background

1.1
1.2
1.3

1.4
1.5
1.6

2.1
2.2

2.3
24
2.5

What this thesisisabout . . . . . . . ... ... ... 00000
Motivation . . . . . . . ...
Brief history of reversible computing . . . ... ... ... ... ..
1.3.1 Early thermodynamics of computation . . ... ... ... ..
1.3.2 Development of reversible models of computation . . ... . .
1.3.3 Development of physically reversible logic devices . . . . . . .
1.3.4 Previous reversible computing theory . . . . .. ... .. ...
1.3.5 Optimal scaling of physical machines . . . ... ... ... ..
1.3.6 Programming reversible machines . . . . . ... ... .. ...
Major contributions of this thesis . . . . . .. .. ... .. .. ....
Overview of thesis chapters . . . . ... ... ... ..........
Overall message of thesis . . . . . . .. ... ... ... ........

Foundations of reversible computing

Physical constraints on computation

Propagation speed limits . . . . . .. ... .. ... ..........
Information density limits . . . . ... ... ... ... ... .....
2.2.1 Entropy bounds from black hole physics. . . . .. ... .. ..
2.2.2 Entropy bouads for a photongas. . . . . .. ... ... ... ..
2.2.3 Entropy bounds at normal temperatures/pressures. . . . . . .
Information flux rate limits . . . . . ... ... ... . ... ... ..
Computation rate limits . . . . . ... ... ... ... ........
Reversibility of physics . . . . . . .. ... .. .. .. .. ... ....
2.5.1 Physical reversibility and information erasure . . . . . . . ..
2.5.2 Reversibility, entropy, and the second law . . . . . . .. .. ..
253 Entropyandenergy . .. ... ... ... ... . ... ...,
2.5.4 Logical irreversibility and energy dissipation . . . ... .. ..

17
17
18
20
20
21
21
22
22
23
23
24
26



CONTENTS

2.6 Quantum computation . . . . . ... ... ... ... 45
2.7 Physical constraints—conclusion . . . . . . ... ... ..., 45
Reversible computing theory 47
3.1 Models of computation . . . . . ... ..o 48
3.1.1 Computability . . . .. ... ... ... L o0
3.2 Computational complexity and efficiency . . . . .. ... .. .. ... 50
3.2.1 Computational efficiency vs. computational complexity . . . . 50
3.2.2 Characterizing cornputational complexity . . . . . . . . . . .. 51
3.2.3 Complexity classes . . . . . . ... ... ... L 56
3.3 Review of existing reversible computing theory . . . . . . ... .. .. 56
3.3.1 Reversible models of computation . . . . ... ... ... ... 56
3.3.2 Computability in reversible models . . . . .. .. ... .. .. 56
3.3.3 Time complexity in reversible models . . . . . . . .. ... .. 58
3.3.4 Reversible entropic complexity . . . . . .. ... ... ... .. 59
3.3.5 Reversible space complexity . . . .. ... ... ... ..... 60
3.3.6 Miscellaneous developments . . . . . . .. .. ... ...... 64
3.4 Reversible vs. irreversible space-time
complexity . . . . . . ... 64
3.4.1 General definitions . . . . . ... ... oL 66
342 Oracleresults . . . ... ... ... ... ... L. 69
3.4.3 Non-relativized separation . . . . . .. .. .. ... .. .... 81
3.4.4 Decompression algorithm . . . . . .. .. ... .. ..., ... 83
3.4.5 Can this proof be carried farther? . . . . . . .. ... ... .. 84
3.5 Summary of reversible complexity results for traditional models . . . 84
Ultimate physical models of computation 89
4.1 What is a model of computation? . . . . . ... ... .. ... .. .. 90
4.2 Existing models of computation . . . .. ... ... ... ..., ... 92
4.3 Problems with the existing models . . . .. ... ... ........ 94
4.4 Some candidates for an ultimate model . . . . . . . ... ... .. .. 97
4.4.1 The reversible 3-D mesh (R3M) model . . . . . . . ... ... 98
4.4.2 The ballistic 3-D mesh (B3M) model . . . . .. ... ... .. 99
4.4.3 The quantum 3-D mesh (Q3M) model . . . . ... ... ... 99
4.5 A “tight” Church’sthesis. . . . . . ... ... ... ... .. ..... 100
4.6 Ultimate computational complexity . . . . . ... ... ... ... .. 101
4.7 Summary of discussion of ultimate models . . . . . . . ... ... .. 102



CONTENTS 7

5 Reversibility and physical scaling laws 103
5.1 Types of architectures studied . . . . . . . ... ... ... ... .. 104
5.1.1 Shared properties . . . . . . ... .. ... oL 104
5.1.2 Fully irreversible architecture . . . ... ... ... ... ... 104
5.1.3 Time-proportionately reversible architecture . . . . . . . . .. 105
5.1.4 Ballistic reversible architecture . . . ... ... ... ... .. 105

5.2 Analyses under various physicalcosts . . . . .. ... ... ... ... 106
52.1 Entropycost. . .. .. . .. .. .. ... 107
5.2.2 Area-time product . . . ... ... ... ... ... ... 109
523 Timecost . .. . . . . . .. . . 113
5.2.4 Spacetimecost . .. .. ... ... ... .. o oL 119
5.2.5 Mass-time product . . . . . ... ... .o 121
52.6 (Area + mass) X time . .. ... ... ... .......... 121
5.2.7 Entropy + mass-time . . . . . ... ... ... ... ... ... 121

5.3 Generalizing theresults. . . . . .. ... .. ... .. ......... 121
5.3.1 Speedups for irreversible computations on reversible machines 122

54 Summary of scalingresults . . . . . ... ... ... 0000 124
II Engineering reversible computational systems 127
6 Adiabatic circuits 129
6.1 Maximizing the efficiency of iICMOS . . . . . . . ... ... ... ... 130
6.1.1 BasiciCMOSreview . . .. ... .. ... .. ... ...... 130
6.1.2 iCMOS entropy generation. . . ... ... ... ... ..... 133
6.1.3 The SIA semiconductor roadmap . . .. ... .. .. ... .. 139
6.1.4 Minimizing permanent energy dissipation in iCMOS . . . . . . 144
6.1.5 Maximizing per-area processing rate for iCMOS . . . . . . .. 145
6.1.6 Maximizing iCMOS cost-efficiency . . . . . .. ... ... ... 147

6.2 Historical development of adiabatic circuits . . . . . . . ... ... .. 148
6.3 A comment on terminology . . . ... ... ... ..., ... .. 152
6.4 Basic principles of adiabatic circuits . . . . . . ... ... L. 153
6.5 The SCRL technique . . . . ... ... ... ... .. ......... 156
6.5.1 Basic SCRL components . . . ... ............... 156
6.5.2 SCRL pipelines . . ... ... ... ... ... ......... 160
6.5.3 Timingdisciplines. . . . . . ... ... .. ... ........ 162

6.6 SCRL circuit aralyses . . . . ... .. .. ... ... ......... 162
6.6.1 A simple SCRL model for analysis . .. ... ......... 165
6.6.2 Switching losses as a function of technology parameters . . . . 166

6.6.3 Minimizing the sum of switching and lcakage energy . . . . . . 172



6.6.4 Fixing a problematic case for plain SCRL . . . ..
6.7 Experimental SCRL Circuits . . . . . . ... ... ... ..
6.7.1 The Biiliard Ball Model . . . ... ... ... ...
6.7.2 The Billiard Ball Model Cellular Automaton . . . .
6.7.3 Logic minimization . . . . . . .. .. ... ... ..
6.7.4 FlatTop array design . . . . . .. ... ... ....
6.7.5 Minimum energy estimation . . .. ... . ... ..
6.8 Resonant power supply techniques . . . . . . ... ... ..

6.9 Scaling SCRL to future technology

generations . . . . . . ... ...
6.10 Mostly reversible computation . . . . .. .. ... .. ...
6.11 Adiabatic Circuits—Conclusion . . . . .. ... ... ...

Future reversible device technologies

7.1 Cooling technologies . . . ... ... .. ... ... ....
7.2 Irreversible device technologies . . . . . . . ... ... ...
7.3 Reversible technologies . . . . . . ... ... ........
7.4 Future device technologies—Conclusion . . . . . . . . . ..

Design and programming of reversible processors

8.1 Context of thiswork . . . ... ... ... ... .....
8.1.1 Previous reversible architectures . . . . . . . .. ..
8.1.2 Pendulum architecture . . . . . ... ... ... ..

8.2 Reversible instruction set architectures . . . . . ... ...
8.2.1 Asymptotic efficiency . . . .. ... ...
8.2.2 Use of paired branches . . . . .. ... ... ....
8.2.3 Reversible logic/arithmetic operations . . . .. ..
8.2.4 Data transfer operations . . . .. ... ... ....
8.2.5 Hardware-guaranteed reversibility . . . . . . .. ..

8.3 Simple example PISA program: Multipication algorithm

83.1 Discussion . . .. .. ... ... ... .
8.4 Reversible programming languages . . .. ... ... ...
84.1 Generalissues . . . . ... ... ... ... .....
84.2 “R,” areversible language . . ... ... ... ...
843 TheRcompiler . . ... ... ... ... .......
8.5 Reversible algorithms . . . . . . ... ... .. .......
85.1 Sorting. . ... .. ... .. ... .. 0.
8.5.2 Arithmetic. . . . .. ... ... ... ..., .
853 Matrices . . . . . ... ...
854 Searches . . .. ... ... ... ... ... ..

CONTENTS



CONTENTS

8.6
8.7

9.1

9.2
9.3
9.4
9.5
9.6

855 Graphproblems. .. ... ..............
8.5.6 Physical simulations . . ... ... .........
Operating system issues . . . . . .. ... ... .. ....
Parallelism. . . . ... ... ... ... .. ... ......

Alternative applications for reversibility
Auditable/verifiable/trustable computation . . . . . . . ..
9.1.1 Detecting transient errors . . . . . . .. ... ...

9.1.2 Logging or limiting effects of unwelcome intrusions

Program debugging . . . . . .. ... ... ... L.
Transaction processing and database rollback . . ... ..
Speculative execution in multiprocessors . . ... ... ..
Numerical stability in physics simulations. . . . . . .. ..
Alternative applications: Conclusion . ... ... ... ..

10 Conclusion and Future Work

10.1 Summary of Contributions
10.2 Major areas for future research
10.3 Final words

I1I Appendices

A FlatTop processor schematics and layouts

A.1 High-level blocks
A.2 Detailed gate schematics
A.3 Cell layout

C.3 Overview of R Syntax
C.4 User-level Constructs
C.4.1 Program Structure . ... .. ............

The Pendulum instruction set architecture (PISA)
B.1 Overall organization
B.2 List of Instructions
B.3 Arithmetic/logical ops
B.4 Ordinary branches
B.5 Special instructions

The R reversible programming language
C.1 Introduction

..................

------------------

--------------------

......

221
221
224
226

229
229
230
231
232
233
233
234
234

237
237
239
243



10

C.4.2 Control Structure . . . . ... ... ... ...
C4.3 Variables. . . . . .. ... ... .. ...
C.4.4 Data Modification . .. ... .. ... .. ..
C.4.5 Expressiens . . ... ... ...........
C46 StaticData . .. ... .............
C.4.7 Input/Output . . ... .............
C.5 Example Programs . . ... ..............
C.6 Compiler Internals . . . .. ... ...........
C7 Conclusions . . . . ... .. ... oo

D The R language compiler

D.1 R Compiler User's Guide . . . . . ... ... .....
D.2 Compilation technique . . . .. ... ... ......
D.3 Internal compiler constructs . . . ... ... .. ...

D.3.1 Intermediate-level internal constructs

D.3.2 Low-level constructs . . .. ... .......
D.4 Compiler LISP sourcecode . . . . . . .. ... ....
D.4.1 loader.lisp .. ... .. ...........
D42 util.lisp. . ... ... ... ... ... ...
D.4.3 infrastructure.lisp . .. ... .. ... ..
D.44 1location.lisp . ... .. ... ........
D.4.5 environment.lisp .. .. ... ... .. ...
D.4.6 regstack.lisp . . ...............
D.4.7 variables.lisp . .. ... ... .. .. ...
D.4.8 branches.lisp . ... ... ..........
D.4.9 expression.lisp. .. .. ... ..... ...
D.4.10 clike.lisp . . . . . . . . .. ...
D.411 print.lisp . . .. ... ... ...
D.4.12 controlflow.lisp . . .. .. ... ... ...
D.4.13 subroutines.lisp . . . . . . . ... .. ...
D.4.14 staticdata.lisp . . . . . . ... ... . ...
D.4.15 program.lisp . . . . . . .. ...
D.4.16 library.lisp. . . . . . . . . . . .. ... ..
D.4.17 files.lisp . . . . . . . . ..o
D4.18 test.lisp . . . . . . . . .. ..o

E Reversible Schréodinger wave simulation

E.1 Derivation of discrete updaterule . . . . . . ... ..
E.2 Reversible C implementation . . . . . .. .. ... ..
E.3 Source code in R language . . . . . . .. ... .. ..

CONTENTS



CONTENTS

E.4 Compiled PISAcode . . ... ... ... .. ... .. .... .. ...

F Units, Constants, and Notations



12

CONTENTS



List of Figures

2-1 Forward and reverse determinism . . . . ... ... ... . ... ... 38
2-2 Information “erasure” under reversible physics . . . . . ... ... .. 4ar,
2-3 Venn diagram of entropy and information. . . . . . ... ... .. .. 43
3-1 Configuration graphs in reversible and irreversible models of computation 57
3-2 Bennett’s 1989 reversible simulation algorithm . . . . .. ... . ... 61
3-3 Euler tour of an irreversible machine’s configuration tree . . . . . . . 63
3-4 Structure of permutationoracles. . . . . .. ... ... ... ... . 68
3-5 Encoding outdegree-1 directed graphs in self-reversible oracles . . .. 71
3-6 Problem graph defined byoracle. . . . . ... ... .......... 73
3-7 Optimal reversible pebble game strategy . . . . . .. ... ... ... 76
3-8 'Triangle representation of oracle queries . . . ... ... ... .. .. 77
3-9 Visualizing the definition of the set of pebbled nodes . . . ... . .. 78
3-10 Decompression algorithm . . . . . . ... ... ... . . ... ... .. 85
5-1 Speed limit for reversible machines of given dimensions . . . . . . . . 111
5-2 An optimal irreversible machine for 3-D CA simulations . . . . . . . . 116
5-3 A faster reversible machine for 3-D CA simulations . ... ... ... 117
5-4 “Folding” a column of processors to minimize volume . . . . . . . .. 120
6-1 Ordinary CMOSinverter . . . . . . .. .. ... ... ... ...... 131
6-2 Energy dissipation in conventional switching . . . . ... ... .. .. 132
6-3 Charging with constant current . . . . . . ... ... ... ... ... 154
6-4 Adiabatic charginginCMOS. . . . . .. ... ... .. .. ...... 155
6-5 Voltage curves for slow and fast charging . . . . . . . ... ... ... 156
6-6 SCRLinverter . . . . . . .. ... ... ... ... ... .. ... 158
6-7 SCRL generalized inverter . . . . . ... ... ... .. .... ... . 159
6-8 SCRL bidirectional latch . . . . ... ... . ... .. ... .. ... . 161
6-9 SCRL pipeline. . . . . . ... ... ... . ... .. .. ... ... 163
6-10 Full SCRL timing diagram . . . . . . ... ... ... ......... 164
6-11 Simplified SCRL circuit model . . . . . . . . .. ... ... ... ... 165
6-12 Scaling of energy/op in SCRL with speed, given nonzero leakage . . . 174

13



14

LIST OF FIGURES

6-13 How minimum energy scales with threshold voltage . . . .. ... .. 178
6-14 A problematiccasefor SCRL . ... ... ... ... ......... 180
6-15 Fixing the problemcase . ... ... ... ... ... ...... ... 182
6-16 Two logic gates in the physical billiard ball model . . . . . . . . . .. 183
6-17 The billiard-ball model cellular automaton . . . . . . .. .. ... .. 185
6-18 Boolean logic form of BBMCA updaterule . . . . ... ... ... .. 186
6-19 Grid of FLATTOP processing elements . . . . . . ... ... .. ... 187
8-1 Reversible control-flow structures . . . . .. ... ... ... .. ... 209
8-2 Reversible assembly-language multiplication routine.. . . . . . . . . . 213
8-3 Multiplication routine in R language . .. ... ... .. .. ... .. 218
8-4 Initial state in Schrodinger simulation . . . . . . . . ... .. ... .. 222
8-5 State after 1000 simulationsteps . . . ... ... ... ... ... .. 223
A-1 Block diag.amof PEcell . . . . . . . ... ... . o000 248
A-2 Icon for a single FLarTopcell . .. .. ... ... .. ... ... 248
A-3 One corner of an array of FLaAtTTopPEs . . . . . .. ... ... ... 250
A-4 The full 20x20 array of PEs . . . . . . . . . ... .. ... 251
A-5 Stagellogicgate . . . . . .. ... ... ... L 252
A-6 Logicforstages2and3 ... .. ... ... .. ... ........ 253
A-7 Complete layout of a single FLArTOoPPE . . ... ... ... .. .. 253
B-1 “Non-expanding” arithmetic/logical operations . . . . . . . ... ... 256
B-2 “Expanding” arithmetic/logical operations . . . . . . ... ... ... 257

B-3 Branch and I/Ooperations. . . . . . ... ... ... ......... 258



List of Tables

2.1
2.2

3.1
3.2

5.1
5.2

6.1
6.2
6.3
6.4
6.5

7.1
7.2
7.3
74
7.5

8.1

F.1
F.2
F.3
F.4

Limits on entropy density from various analyses . . . . . ... . ... 35
Physical constraints on computation . . .. ... ......... . . 46
Some existing theoretical models of computation . . . . . ... .. . . 49
Some measures of cost or complexity . . .. ... ... ... ... . 52
Three classes of architectures . . . . ... ... ... .. .. ... . . 106
Summary of asymptotic scaling results . . . . ... ... ... ... . 124
SIA semiconductor roadmap . . . . ... .. ... ... .. ... ... 140
Minimum entropy generation for irreversible CMOS . . . . . . . . . . 141
Dielectricconstants . . . . .. ... ... ... ... .. ... ..... 141
Outer-area times time, for irreversible CMOS . .. ... .. ... .. 146
Device parameters for the HP14 fabrication process . . . . ... .. . 189
Maximum entropy flux estimates . . ... ... ... ........ . 196
Maximum per-area rate for various irreversible technologies . . . . . . 198
Entropy coefficients for various reversible technologies . . . . . . . . . 200
Reversible device density to beat irreversible technolgies . . . . . . . 201
Thicknesses above which reversible machines win . . . . ... ... . 201
Registers used in MULT routine . . . . ... ............. . 214
Unit magnitude prefixes . . . ... ... ... ... ... ... .. .. 388
Fundamental units used in this document . . . . . . ... ... .. .. 388
Fundamental physical constants used in this document . . . .. . . . 389
Asymptotic order-of-growth notation . . . . .. .. ... .. . .. .. 389

15



16

LIST OF TABLES



17

Chapter 1

Introduction and background

In this chapter, we describe (§1.1) and motivate (§1.2) the topic of this thesis, outline
some of the history of the body of research upon which this work builds (§1.3),
summarize the major contributions of this thesis (§1.4), and give a brief overview of
the contents of the later chapters (§1.5).

1.1 What this thesis is about

This thesis is a detailed study of the advantages (and disadvantages) of the use of
reversibility in computing. What do we mean by reversible computing? For our
purposes, there are two important meanings:

Logical reversibility. First, a computational operation can be logically reversible,
meaning that the logical state of the computational device just prior to the operation
(its input state) is uniquely determined by its state just after the operation (its output
state). Computing in a logically reversible fashion implies that no information about
the computational state of the system can ever be lost; any earlier state can always be
recovered by computing backwards from a given point. Another way to understand
logical reversibility is that the system is deterministic looking backwards in time.

In chapter 9 we will see that logical reversibility, in itself, has some interesting com-
putational applications. Chapter 8 will discuss how to program logically reversible
computers. But the larger emphasis of this dissertation will not be on logical re-
versibility by itself, but on the benefits to be gained from using logical reversibility
to enable another important kind of reversibility, namely, physical reversibility.

Physical reversibility. A physically reversible process is a process that dissipates
no energy to heat, and produces no entropy. It seems that absolutely perfect physical
reversibility is technically unattainable in practice in a complex, controlled dynamical
system, simply because there will always be some nonzero probability for a random
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event to occur (e.g., the impact of a cosmic ray, or an asteroid) that is sufficiently
energetic that it will interfere with even the most carefully-controlied and well-isolated
of systems. Nevertheless, physical reversibility is a useful concept, because (as we
will see in ch. 6) even with present-day electronic technology, we can already make
logic devices that are almost physically reversible, and we do not yet know of any
fundamental limits to how close we can get to perfect reversibility, as technology
improves.

As we will see in §2.5, logical reversibility is necessary in order to approach cormn-
plete physical reversibility. Chapters 5 and 6 will focus on the study of computing
devices that are both logically and physically reversible, and on their resulting im-
plications for the potential efficiency of computation. Usually when we speak of
reversibility in this thesis, we will be referring to this combination of logical and
physical reversibility, rather than to just logical reversibility by itself.

1.2 Motivation

Why study reversible computing? Aside from pure academic interest, we feel that the
study of reversible computing cann be motivated in a fairly strong way, in terms of the
long-term goals of society in general and the field of computer science in particular.

For the productivity of society, and the growth of the economy, efficient informa-
tion processing is critical. A relatively small improvement in the speed and power of
computers facilitates progress in virtually every industry. The great value of informa-
tion processing has motivated the enormous technological investments fueling Moore’s
law, the trend of exponential improvement in computer speed and cost-efficiency that
has been maintained over the last half-century.

It is in society’s interest that computer technology continue to improve rapidly for
as long as possible. Therefore, it is important to identify various potential obstacles
to further improvements far enough in advance so that the research community has
time to develop solutions before such an obstacle has a chance to stall the rate of
progress. Or, if some truly insurmountable barrier to further improvement can be
identified early on, at least society will have time to prepare for the consequences.

The semiconductor electronics industry is well aware of a variety of potential ob-
stacles to further improvements of its technology over the next 10 to 15 years [120].
Even if these obstacles are overcome, we can expect that eventually a point will be
reached where it is technically or economically impossible to refine semiconductor
technology further. At that point, perhaps alternative computing technologies will
eventually emerge and supersede semiconductors. (We discuss several potential al-
ternatives in ch. 7.)

However, in the longer term, we can foresee a variety of more fundamental limits to



1.2. MOTIVATION 19

the improvement of computer technology, limits that are qualitatively independent of
the particular technology used (such as semiconductors), and whose existence depends
only on well-established fundamental laws of physics. These fundamental limits will
become increasingly important as computer technology improves, whatever path it
takes. If we can, right now, identify some techniques that will allow technology to
perform as well as possible given these ultimate physical limits, then we will be well
prepared to cope with these limits once they become dominant concerns in computer
engineering. (We discuss this research philosophy in more detail in ch. 4.)

Not to keep the reader in suspense, one fundamental physical limit, known since
at least 1961 (Landauer, [79]), is that for every bit’s worth of computational infor-
mation that is discarded within a computer, at least one bit’s worth of new physical
entropy must be generated. Moreover, due to basic thermodynamic principles, this
entropy cannot simply be destroyed, but must instead be physically moved out of the
computer, if one is to keep the machine from eventually overheating. (We will explain
these constraints in more detail in chapter 2.)

In chapter 5 of this thesis, we establish that in order for a scalable computer
architecture to be as efficient as possible in the face of these constraints, the machine
must contain the capability to perform computations in a logically and physically
reversible manner, which minimizes the production of unnecessary entropy, and the
overhead of its removal from a densely-packed machine. This suggests a framework
for algorithm design in which information is considered as a conserved material-like
thing, embedded in 3-D space. As we will see, this is what information really is like.
The expert programmer should not mind expanding his expertise to working with
such a model, because it allows designing the best algorithms that are physically
possible.

The capability of reversibility is completely lacking from today’s processor de-
signs. But the technology now exists to remedy this situation, and Part II of this
thesis discusses how to design and program machines that use reversibility to achieve
asymptotically optimal efficiency. The high-level concepts of reversible circuits in
chapter 6 are described in terms of existing semiconductor technology, but are not
dependent on it: they can be applied equally well to a wide range of future logic-device
technologies that might emerge.

Near-term benefits. Present-day technology is far from the fundamental physical
limits of computation, but reversibility offers some of the same benefits today that
it will offer in the limiting technology. We now know how to build approximately
physically reversible computers using today’s electronic technology. These techniques
may have benefits in the near-term, in applications where energy dissipation is of
paramount importance (see §6.10). There may even be some near-term uses for logi-
cal reversibility by itself, regardless of physical reversibility, as discussed in chapter 9.
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But one must be careful: chapter 3 reveals some of the theoretical inefficiencies in-
curred when using logical reversibility by itself, in situations where saving energy and
minimizing entropy production are unnecessary.

In summary, motivations for studying reversible computing include both short and
long-term applications; the long-term ones being more fundamental. The major mo-
tivation lies in the economic value of making computers more efficient through re-
versibility, under any of a variety of measures of efficiency that are influenced by
energy dissipation. This thesis focuses on exploring how this can be done.

1.3 Brief history of reversible computing

In this section we briefly summarize some of the history of reversible computing
research. This is not intended to be a complete account. Some additional historical
information about particular sub-areas will be provided in later chapters. A more
comprehensive review of the early history of part of the field is provided in Bennett
1988 [18].

1.3.1 Early thermodynamics of computation

The study of thermodynamically and logically reversible computational processes has
historically been motivated by concerns in fundamental physics. For example, the
proper resolution of the famouvs “Maxwell’s Demon” paradox of thermodynamics (see
the papers in [82]) required understanding that the means of disposal of unwanted
information can be important when considering the thermodynamics of a system.

The first connection between computation and fundamental thermodynamics was
apparently made by John von Neumann ([154], p. 66). In a December 1949 lecture
at the University of Illinois, he reportedly performed a calculation of the thermody-
namical minimum energy that is dissipated “per elementary act of information, that
is, per elementary decision of a two-way alternative and per elementary transmittal
of 1 unit of information.” He quantified this energy as kpT In N/, where kg is Boltz-
mann'’s constant, T is the temperature, and N/ = 2 is the number of alternatives to
be decided between. Unfortunately, there is apparently no existing complete record
of this lecture, or of any corresponding written analysis by von Neumann, so it is
difficult to determine exactly how he explained this analysis, how seriously he took
it, and whether it was actually original to him.

Rolf Landauer (1961, {79], §4) was apparently the first person to explicitly state
the argument establishing that the irreversible erasure of a bit of computational in-
formation inevitably requires the generation of a corresponding amount of physical
entropy (namely 1bit = In2 “nats” = kgIn2 ~ 9.57x 1072* J/K). In that paper, Lan-
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dauer also recognized that reversible operations need not incur such dissipation, and
that any irreversible computation can be performed via a sequence of reversible oper-
ations by saving a history of all the information that would otherwise be irreversibly
dissipated. However, Landauer then proceeded upon the mistaken assumption that
the space occupied by this history record would have to be irreversibly cleared in or-
der to be reused, and concluded that therefore, reversible operations could not avoid
the fundamental unit dissipation incurred by each computational step, but could only
postpone it until the memory needed to be reused. To his credit, Landauer realized
that this argument was not rigorous, and did not present it as such.

1.3.2 Development of reversible models of computation

Landauer’s error was not caught until Charles Bennett (1973, [16]) discovered that the
reversibly-recorded history of an irreversible computation could also be cleared in a
logically reversible way, leaving only the input and the desired computational output
in memory. This refuted Landauer’s argument that each useful computational step
must incur, in the long run, at least about kgT energy dissipation. With Bennett’s
trick, the amount of memory that would need to be irreversibly cleared between runs
could be smaller, by an arbitrarily large factor, than the number of useful irreversible
computation steps that are reversibly simulated during the course of the computation.

Bennett described his technique using a formal Turing machine model, but later
researchers showed that Landauer’s trick of recording a history could also be applied
to permit other models such as cellular automata (Toffoli 1977 [134]) and logic cir-
cuits (Toffoli 1980 [135), Fredkin & Toffoli 1982 [62]) to operate reversibly as well.
Indeed, the Laundauer/Bennett techniques seem to apply generally to “reversiblize”
auy model of computation.

1.3.3 Development of physically reversible logic devices

However, showing that logically irreversible operations can be avoided in useful com-
putations is only part of the problem of demonstrating that reversible computing
can save energy. The other part requires showing that physically reversible primitive
logic devices can actually be built. Bennett’s 1973 paper [16] suggested the possi-
bility of an enzyvmatic reversible computer using biomolecules, and in later papers
such as (1982, [17]) he described a clockwork mechanical Turing machine powered
by Brownian motion. Meanwhile, Fredkin and Toffoli had described an electronic
implementation (1978, [61]), and an idealized model based on the ballistic motion
of rigid spheres (1982, [62]), which we will describe in more detail in §6.7.1, p. 183.
Konstantin Likharev showed in 1982 [88] that superconducting Josephson junction
circuits could be used to compute in a reversible fashion.
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Later reversible device proposals (see ch. 7) include various mechanical and elec-
tronic proposals by the pioneering molecular nanotechnologists Drexler and Merkle
(Drexler 1992 [43], ch. 12; Merkle 1993 [101, 102]; Merkle & Drexler 1996 [104]), and
a single-electron system analyzed by Likharev and Korotkov (1996, [91]).

So at present, there is no shortage of reversible device ideas. Moreover, in the
years since Fredkin & Toffoli’s 1978 proposal [61] it has become quite feasible and
economical to build reversible devices using conventional VLSI electronic fabrication
techniques (cf. Athas et al. 1994 (5], Younis & Knight 1994 [163]); we will review
those developments in more detail in chapter 6.

1.3.4 Previous reversible computing theory

Independently of the type of reversible devices that are used, there are algorithmic
issues involved in performing large computations using logically reversible primitives.
For example, Bennett’s original reversible simulation technique is limited by the fact
that the algorithm requires an amount of temporary storage space that is proportional
to its run-time. In contexts where digital storage is expensive and energy is cheap,
one might do better by just discarding the bits instead.

So, in 1989, Bennett developed a more space-efficient version of his algorithm
[16). Unfortunately, it incurs a polynomial slowdown factor that cannot be made
arbitrarily close to linear without making the space usage exponentially large (Levine
and Sherman 1990 [84]). Similarly, in 1997, Lange, McKenzie, and Tapp [80] gave
a general algorithm for reversible simulation of irreversible computations using no
extra space, but with exponentially inflated run-times. It remains an important open
problem to prove whether or not there is a single reversible simulation technique that
incurs overheads in neither space nor time, but, as we will prove in §3.4, any such
technique cannot be totally general, in the sense of applying to any conceivable model
of computation.

1.3.5 Optimal scaling of physical machines

This thesis takes the study of reversible computing beyond the traditional focus on
devices and classical complexity theory; chapter 5 introduces a new area of study,
namely of how reversibility affects the scaling behavior of the most powerful physically
possible computers, based on fundamental physical arguments.

The optimal scaling of computation within physically realistic constraints is an
issue that has been studied previously (c¢f. Vitdnyi 1988 [152], Bilardi & Preparata
1993 [23], Smith 1995 [126]), but never before with particular attention to how the
reversibility of physics allows reversible computation to improve physical scaling be-
havior. The research reported in this thesis is, to our knowledge, the first work that
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explores this new angle.

1.3.6 Programming reversible machines

We will save our review of the history of this area until chapter 8.

1.4 Major contributions of this thesis
The primary novel, original contributions of this thesis are the following:

e Chapter 2 gathers together and presents in an organized form a variety of
known fundamental physical constraints on information processing, that are
expected to apply to any physically possible computing technology, at least
in the non-relativistic regime. We conjecture that this is the first such listing
that is sufficiently complete that it encompasses all the fundamental physical
constraints (within that regime) that determine the maximum asymptotic scal-
ability of computers and algorithms.

e Chapter 3, section 3.4 (work done with Josie Ammer) underscores the over-
heads for reversibility in traditional models of computation by proving, for the
first time, that any completely general transformation of irreversible machines
to reversible ones must sometimes increase either the asymptotic computational
time or space requirements for solving some problems. It gives lower bounds
on the amount of increase required. The proof applies to cases where there
is reversible access to an external black-box ROM or oracle. It is conjectured
to also be true for pure models with no external black box. The proof might
be extensible to that realm if it assumes that one-way functions exist, as is
frequently assumed in cryptography.

e Chapter 4 presents a novel physically-realistic model of computation (the R3M
or “reversible 3-D mesh”) and conjectures a “tight Church’s thesis” claiming
that this model is asymptotically as powerful as is physically possible given the
constraints from ch. 2, within a constant factor.

e Chapter 5 proves that the proposed R3M model is asymptotically strictly
more powerful than any irreversible model of computation, by small polyno-
mial factors in the machine size. Specifically, reversible machines of physical
diameter D are shown to be asymptotically faster than diameter-D irreversible
machines, by a factor of @(/D ). Also, reversible machines of mass M are both
faster and more hardware-efficient than mass-M irreversible machines by a fac-
tor of ®(¥/M ). These bounds are shown to apply to a wide class of parallel
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computations that require sufficiently tight communication, but that need not
be inherently reversible.

I consider the previous item to be the central, most important contribution of
the thesis.

Chapter 7 uses the scaling results from ch. 5 together with parameters of
present-day and proposed future technologies to show that with present-day
technology, reversibility becomes advantageous at a reasonable scale, and in
future technologies, it will be advantageous at just abcut any scale.

Chapter 6, section 6.6 does some novel analysis showing how to choose
speeds, voltages and temperatures so as to minirnize energy dissipation in cne
form of reversible electronics.

Chapter 6, section 6.7 and appendix A present the design (for which I
was primarily responsible) of the world’s first ever fabricated reversible parallel
processor, which in principle obeys the scaling results of chapter 5 and thus is
asymptotically faster than all previous parallel processing architectures, which
are irreversible.

Chapter 8 and appendices B through E present examples of reversible
instruction sets, programming languages, and algorithms. Similar efforts have
been undertaken before by other researchers, so this area of contribution is
not completely novel. However, much of my work proceeded independently of
the earlier efforts. This reinvention helps underscore my point that reversible
programming concepts are not difficult to master.

That completes our summary of the major contributions of the thesis. We wiil

revisit this list once again in chapter 10.

1.5 Overview of thesis chapters

Here we summarize the contents of the various chapters of this thesis.

Chapter 2 surveys what is currently known about the fundamental constraints that
known physics places on the potential capabilities of computing systems. We describe
limits on the speed at which information can travel, the density at which it can be
stored, and the rate at which it can cross a surface. We also review recent fundamental
limits from Margolus and Levitin (1996, [96]) on the rate at which a computer can
change state. We discuss the meaning and the computational implications of physical
reversibility and the second law of thermodynamics.
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Chapter 3 examines various formal theoretical models of reversible computing,
and describes all the known results in the area. Then the chapter focuses on proving
an important new conjecture in the theory of reversible computing: namely that in
ordinary, nonphysical models of computation, imposing reversibility on the model
must cause either the space or time complexity of some problems to increase. We
prove that the conjecture is indeed true in a model of computation that invokes a
contrived (but computable) oracle, and we establish lower bounds on the resulting
increase in complexity. This proof implies that if there is an algorithm for simulating
irreversible machines on reversible ones with perfect efficiency, then that algorithm
cannot be totally general (relativizable to all oracles), in contrast to all the reversible
simulation algorithms that are known currently.

Chapter 4 introduces the concept of “ultimate” physical models of computing,
which are designed to accurately capture the true asymptotic complexity of all com-
putational problems under the laws of physics. Then the chapter outlines the form
that we will argue such models must take—namely, some sort of three-dimensional
mesh of potentially reversible processors.

Chapter 5 discusses how the use of reversibility affects the scaling behavior of
computers in several important respects. Due to their unavoidable generation of
entropy which must be removed, irreversible computers turn out to ultimately be
limited to processing rates that are only proportional to their surface area. In contrast,
if a computer uses devices that are reversible, even in a limited sense that takes
frictional effects into account, then it can perform ©(/d) times more operations per
second within a physical space of diameter d. Even if we do not constrain the physical
area of the computer, but only its mass (number of processors), reversible computers
are still faster at some problems by a factor that grows as ©(%/n) where n is the
number of processors.

Chapter 6 describes and analyzes in detail some known reversible circuit tech-
nologies, how they perform as various parameters are scaled, how they compare to
traditional circuits, and how to design processors based on these techniques that real-
ize the scaling benefits described in the previous chapter. We describe a very simple
example of such a processor that we designed.

Chapter 7 reviews a variety of advanced logic technologies that have been proposed
for use when the limits of traditional VLSI are reached. Then, we use our scaling
results from chapter 5, together with parameters of the proposed technologies, to show
that if we assume reasonable limits on future cooling systems, then any computers
of macroscopic size that are built using these future technologies will be considerably
faster if their logic elements are operated reversibly.

Chapter 8 illustrates in detail how to program reversible compaters.
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Instruction sets. We start with a description of some properties that a good
reversible microprocessor machine instruction set needs to have, and how we achieved
these properties in our group’s Pendulum instruction set architecture.

High-level languages. Next we describe important issues in the design of high-
level programming languages for reversible processors. Special programming lan-
guages are required in order to permit optimum efficiency on reversible processors.
We describe the simple reversible programming language “R” which we designed and
wrote a compiler for.

Algorithms. Finally, we describe some good reversible algorithms for a num-
ber of problems, including sorting, searching, arithmetic, matrix operations, graph
problems, and simulations of physical systems.

Chapter 9 briefly discusses some potential alternative applications for reversible
computing, aside from the energy dissipation issues. These include applications in
hardware error detection, protecting against accidental or malicious data destruction,
program debugging, transaction processing and database rollback, and speculative
execution in multiprocessors.

Chapter 10 summarizes the progress in reversible computing achieved in the thesis,
and points out the main areas where future work is needed.

Appendix A shows circuit schematics and VLSI layouts for the proof-of-concept
parallel reversible processing element we describe in chapter 6.

Appendix B gives program-level specifications for PISA, the instruction set archi-
tecture for PENDULUM, our group’s reversible RISC processor design.

Appendix C gives a complete account of “R,” the simple C-like reversible pro-
gramming language we developed.

Appendix D describes our compiler, written in Common Lisp, which translates R
source programs into reasonably efficient PISA assembly code.

Appendix E gives the detailed derivation and code for our reversible program for
simulating the Schrodinger wave equation of quantum mechanics (our illustration of
an efficient reversible physical simulation).

Appendix F gives tables of mathematical units, constants, and notations used in
the text, for easy reference.

1.6 Overall message of thesis

The overall message of this thesis is that (1) reversible computing techniques are not
very different from or more difficult than ordinary computing techniques, and (2)
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they will definitely be a necessary part of the long-term future of computing.
It is hoped that this thesis will help to convince the larger computing community
of these very important points, and thus help to spur further research in this field.
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Chapter 2

Physical constraints on
computation

In this chapter we briefly review some of the important fundamental constraints that
physical law places on computational capabilities. These constraints will serve as the
basis for the arguments in chapter 5, which will establish that reversible models are
necessary for permitting the maximum possible computational power in the limiting
technology.

Most of existing computer science theory today deals not with physics, but with
abstract realms of pure mathematics, exploring a plethora of different models of
computation having wildly varying capabilities. Sometimes these theoretical models
have capabilities substantially different from those of physics as we know it.

But real-world computers are physical devices, and their ultimate potential capa-
bilities are defined not by some arbitrarily-chosen model, but rather by the hard facts
of physical law. Unfortunately, physics is not yet completely understood (witness the
lack of an accepted unification of quantum mechanics with general relativity), and
even those parts that are well understood are not usually described in terms that
facilitate the use of physics itself as a model of computation.

However, physics does constrain information processing in a number of important
ways that can already be identified with fairly high confidence.

2.1 Propagation speed limits

The most obvious physical limit important to information processing is the lightspeed
bound for the speed at which information may propagate through space.

Physical dynamics, as currently understood, proceeds purely through local inter-
actions; there is no “action at a distance.” Even gravity, thought by Newton to be
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an instantaneous force, is now understood, in the context of general relativity, t»
propagate through space at only the speed of light, c =~ 3 x 10® m/s.

Even the quantum-mechanical systems that are sometimes interpreted as demon-
strating “spooky action at a distance” (such as separated EPR pairs), can be ex-
plained insteac in terms of local interactions. Quantuin dynamics is based on an
“amplitude function” which is a function of the global state of a system (the whole
universe if you like). This leads to a statistical behavior that may at first appear to
require nonlocal interactions, but the wavefunction actually evolves over time through
a transformation (the Hamiltonian) that can be expressed as a composition of inter-
action terms that are entirely spatially local.

In general, due to the locality of underlying physical law, all influences are re-
stricted to traveling, at most, at the speed of light. Thus, the physical transmission
of information in a computer is limited to this speed as well.

This bound is “tight” in the sense that it is, of course, already achieved in practice
in our ubiquitous telecommunication systems, and in optical interconnection networks
in some computers. Signals in typical electrical transmission lines travel a bit slower,
about half the speed of light. But propagation times are still linear in the distance
traveled.

One important exception is that signals in low-inductance, resistive wires (such
as the wires on integrated circuit chips) do not actually travel at constant speed, but
rather, for long wires, require propagation time that is proportional to the square of
the length ¢ of the wire, in accordance with the diffusion equation. This unfavorable
scaling presents problems in integrated circuit design today. However, even with
current technology, this ¢ scaling is not inevitable, but can be avoided through simple
schemes such as periodic re-buffering of the signal.

2.2 Information density limits

Another important constraint for computation results from physical limits on the
amount of information that can be stored within a given volume of space (such as
memory in a computer). We can say with confidence that some such bounds do exist,
but unfortunately their exact value is hard to determine. However, these bounds will
be very important in our later arguments about the advantages of reversibility, so we
will now take some time to look at the various possible answers in some detail.
Fundamental quantum mechanics appears to dictate a particular finite upper
bound on the total amount of information (including entropy) that can be contained
in any system, as a function of the system’s physical volume and the amount of energy
it contains. By the amount of information in a system, we mean simply the logarithm
of the number of states that the system could occupy, given some definition of what
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constitutes “the system.” (See §2.5.2.) According to Margolus (1996, (96]),

[The question of the number of states] is really a very old question: the
correct counting of physical states is the problem that led to the intro-
duction of Planck’s constant into physics [112], and is the basis of all
of quantum statistical mechanics. The question can be answered by a
detailed quantum mechanical counting of distinct (mutually orthogonal)
states. It can also be well approximated in the macroscopic limit [72, 155]
by simply calculating the volume of phase space accessible to the system,
in units where Planck’s constant is 1.

Let us look at some particular information density bounds in more detail.

2.2.1 Entropy bounds from black hole physics.

Some particular upper bounds on information content as a function of system size
and energy are given by Bekenstein (1984, [15]) and by Joos and Qadir (1292, [73]).
Bekenstein’s bounds, which originally came out of his studies of the entropy of black
holes (e.g., [14]), are fairly loose, in the sense that his bounds may conceivably be
much higher than the maximum information content for systems other than black
holes. One bound Bekenstein gives ([15], eq. 1) is:

S < 2nER/hc, (2.1)

where S is the capacity for entropy or information (in natural log units or nats), E
is the total energy (including rest mass-energy) in a system, and R is the radius of
the system. In black holes, the mass-energy scales in proportion to the radius, so the
entrepy in Bekenstein’s bound scales in proportion to the hole’s surface area. The
entropy is thought to perhaps reside in the form of quantum fluctuations at the hole’s
event horizon.

If this is indeed the case, the information density at the event horizon is truly
enormous: 1/4 nat of entropy for each square of area that is 1 Planck length, or
lp = /Gh/c3 = 1.62 x 107* m, on a side. That is, an astounding 2.21 x 107 bits
per square meter, or 2.21 x 10 bits per square Angstrom (roughly atom-size) area.
(It’s probably safe to say that DRAM densities won't reach that level for a while!)

In any case, black holes are certainly not a very good place to store information
that we might want to retrieve later, although they might conceivably be a good place
to dump unwanted entropy. Macroscopic black holes have intrinsic temperatures near
absolute zero, and in contrast to most systems, they get cooler as you dump more
energy and entropy into them! (Cf. eq. 26 in Smith’s paper [126], and his references
to Hawking, his source.) So a black hole would be a sort of natural heat sink, cooler
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even than the cosmic microwave background which is at ~3 K. But for the foreseeable
future, black holes will remain rather hard to come by, so it behooves us to also
consider where we stand without them.

2.2.2 Entropy bounds for a photon gas.

Much tighter bounds can be given for the entropy of normal (non black-hcle) systems,
given additional assumptions about their composition. This is done in Bekenstein’s
paper [15], as well as in papers by Joos and Qadir [73] and Smith (1995 [126]) and
the related literature. Sinith argues that for high-temperature systems (above 1000
K or so, roughly the melting point of ordinary solids), the maximum entropy densty
for a given mass density is approximately achieved (within a small constant factor)
by a thermal photon gas, in which the entropy density (entropy per unit volume) is
([126], eq. 22)

S 1647 (c M\** 0
v‘3-601/4(h'v) 22)
where M/V is the energy density of the photon gas, in mass units.

This equation would appear to allow arbitrarily high entropy densities to be
achieved by raising the temperature and mass-energy density, except that actually of
course the energy density is itself limited as a function of a system’s size, since be-
yond a certain point the system would form a black hole. So even with (2.2), entropy
density is still limited for a system of given size.

2.2.3 Entropy bounds at normal temperatures/pressures.

Another problem with (2.2) is that it would in general require extremely high tem-
peratures in order to reach the maximum entropy density for a given mass density.

At ordinary temperatures and pressures, the entropy density of light is rather low,
and we conjecture that the maximum entropy might instead be achieved by some sort
of normal atomic material.

If each atom has enough energy to jiggle around a little, it will have on average
kgT energy (corresponding to 1 nat of entropy) per vibrational degree of freedom. For
three-dimensional vibrations, there are six degrees of freedom, three of position and
three of momentum, so this gives 6 nats/ In2 = 8.66 bits per atom. There should also
be small entropy contributions from variability in the nuclear spin orientation, and
from electrons that are free to roam in molecular orbitals or in conduction bands. But
most atoms are somewhat larger than 1 A? in volume, so 1-10bit/A3 is still probably
the right overall order of magnitude for entropy density in normal materials.
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Upper bound on
entropy density
Black hole 414> 109 b/AY | Need mass ~ Saturn; can't get info. out
Non-black hole | 1.53x10%2b/A3 | Requires nearly as much mass

Normal density | ~ 3x10°b/A3 | May require billion-degree temperatures
Atomic matter ~ 1-10b/A% | Hand-waving estimate.

Material Caveats

Table 2.1: Theoretical limits on entropy or information density for a 1-meter-radius
sphere, in various scenarios. The radius is important because in the high-gravity
regime, the maximum average entropy density decreases with increasing size. It is
difficult to know which of these limits, if any, might someday be achievable for use in
computational systems.

Table 2.1 summarizes the above discussion by giving the average entropy density
of a sphere of radius 1 meter that contains the maximum entropy according to various
bounds. (Keep in mind that entropy actually scales less rapidly than volume for the
systems near black-hole mass, due to Bekenstein’s bound.)

This concludes our discussion of information density limits. Although we were
unable to determine precisely the maximum density that was possible, we saw that
entropy density does appear to ultimately be limited by some function of energy
density, such as in eq. (2.2). Furthermore, much of a system’s rest mass-energy
may not count for purposes of this calculation, if it is energy that is tied up in an
inaccessible nucleus, for example. At this stage I believe it would be premature to
predict that a density greater than say ~ 10 bits per cubic Angstrom could ever
actually be achieved for stable, retrievable storage of information. I would need more
information before I could make a similar statement regarding achievable thermal
entropy densities.

2.3 Information flux rate limits

Another physical quantity of importance in computation is the maximum flux (rate
of flow per unit area) of information or entropy through any surface in the computer.
We should point out that one class of bounds on this quantity immediately follows
from the bounds of sections 2.1 & 2.2, as follows.

Suppose a material having entropy density ps passes through of surface at velocity
v. Then the entropy in that material is crossing the surface with exactly the flux Fg =
psv. Section 2.2 gave us bounds on the maximum value of pg, and the maximum v is
of course ¢, so this leads immediately to corresponding bounds on Fs. A relativistic
analysis shows that the scaling of entropy density with energy density doesn’t improve
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as one nears the speed of light, so this flux bound holds even at relativistic speeds.
Smith 1995 [126], p. 6, eq. 7 gives an explicit formula for the maximum entropy
flux Fs using light, given an energy flux Fg:

Fs < %a;{;Fg/‘ (2.3)

This is the formula for the entropy flux emitted by a blackbody that is at the appro-
priate temperature to emit energy flux Fg. As Smith points out, there is a simple
proof that this is the maximum entropy flux that can be transmitted with photons
given that energy flux. Imagine using photons to continuously transmit energy and
entropy through a small aperture into an insulated box (a perfect blackbody). The
interior of the box will heat up, and, at equilibrium, will radiate energy out of the
aperture exactly as fast as it is coming in (since energy is conserved), and will also
radiate entropy out at least as fast as it comes in (since global entropy cannot de-
crease). Therefore the entropy flux of the thermal blackbody radiation coming out of
the box upper-bounds the achievable entropy flux of the light coming in, which may
be of any forin (coherent, etc.).

At this point we could go on to calculate upper bounds on information flux at any
energy based on the black hole limits to entropy density that we discussed in §2.2.
For example, for a postulated minimum-size (Planck-length scale) black hole moving
at near the speed of light, we estimate entropy flux would be around 10'®° bit/s-cm?.
However, this sort of bound is rather far from anything meaningful, since it does not
represent a sustainable rate, or a rate achievable over an area much larger than a
Planck length—black holes placed near each other would rapidly conglomerate into
a larger black hole with lower entropy density. Even if we were so bold as to allow
for the use of such exotic objects as black holes as computer components, properly
accounting for gravitational effects in such systems would make our scaling analysis
of chapter 5 much more complex. So instead, for the rest of the thesis, we will ignore
high-gravity situations, and instead focus only on the bounds obtained for normal
Inatter.

2.4 Computation rate limits

In chapter 5 we will examine in detail how certain kinds of limits on computation rates
for irreversible and imperfectly-reversible computers can be derived from the limits
on information flux we saw in §2.3. However, there are other limits on processing
rates that apply even to perfectly reversible computers.

In particular, there is the result of Margolus and Levitin (1996, [96]) that the
fundamental laws of quantum mechanics imply that the maximum rate v, at which
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a system at an average energy E (above some minimum energy E;) can transition
between distinguishable (i.e., orthogonal) states is

vy < 4(E - Ey)/h. (2.4)

This bound is derived in a totally general way, and applies even for systems traveling
at relativistic velocities. Insofar as any computational operation requires that some
part of a system change from one distinct state to another, Margolus and Levitin's
bound is an absolute upper limit on the rate at which operations can be performed
within a computer.

Further, Margolus suggests [personal communication] that for systems in which
not all the system’s energy is accessible for computational purposes (for example, if
some of it is in the form of heat, or tied up in rest mass), it is the free energy of the
system, rather than its total energy, that determines the maximum rate at which the
system can transition between useful computational states according to eq. (2.4).

As a simple example, a single electron excited to a potential of 1 Volt above its
ground state contains 1 eV of accessible energy and thus can never perform com-
putational steps (or any state change) more rapidly than at a rate of 4 eV/h =
9.67 x 10" Hz, or about once per femtosecond.

2.5 Reversibility of physics

Another physical constraint of great importance for computation is that all physical
dynamics is reversible (invertible), that is, it is deterministic looking backwards in
time. (See figure 2-1.)

Quantum mechanics is sometimes described in nondeterministic terms, but it is
actually perfectly deterministic (and reversible) at the level of the evolution of the
quantum wave function. The apparent nondeterminism of quantum events can be
interpreted as merely a subjective, emergent phenomenon that is predicted perfectly
well by the underlying deterministic theory [46].

One possible exception to reversibility may be black holes, which, in some the-
oretical arguments, are found to destroy information (see Preskill 1992 [113] for a
review of the situation). However, there is currently no accepted, complete theory
of black hole physics from which we could draw indisputable theoretical conclusions,
and there is no experimental evidence that supports information loss. The truth of
the issue is still being actively debated (e.g., [44, 98]). Moreover, it appears that some
recent developments in string theory would allow reversibility to be maintained, if the
theory is correct (Myers 1997, [106]).

In any case, it seems to be the general consensus among physicists that reversibility
is certainly maintained in at least all areas of mechanics that do not involve extreme
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(Forward) Determinism: Reverse Determinism:
No splits No merges
(ﬂ'iﬁ v,

State
State

1 Sl
e

Time —

Forward and Reverse Determinism:

State

Time -

Figure 2-1: Forward and reverse determinism in physics. Normal forward determinism
means that a single state cannot evolve to become one of two different states at any
single later time, and similarly, reverse determinism or just reversibility means that
two initially-distinct states cannot evolve to become the same state at some later time.
Physics is both forward and reverse deterministic, and so the possible trajectories of
a system through configuration space-time never intersect.
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situations such as black holes. So regardless of the black hole situation, physics
remains reversible for all practical purposes.

2.5.1 Physical reversibility and information erasure

Another way of characterizing physical reversibility is that two states (of a classical
system, or of a quantum wavefunction) that are initially distinct can never evolve to
become the same state at some later time. Thus the number of possible states of a
system is irreducible over time. A popular way of expressing this is with the slogan,
“state space is incompressible.”

The incompressibility of state space has an important consequence for information
erasure within a computer, first described explicitly by Landauer [79]. Whenever we
attempt to irreversibly erase a piece of information from a computer, that information
is not truly destroyed, but instead is simply transferred to another part of the system,
typically to the uncontrolled thermal state of the computer and its environment. We
explain in more detail with reference to figure 2-2.

The figure illustrates a 1-bit piece of computational state within a computer. We
wish to perform an “erasure” operation, which we may characterize as an operation
that transforms that bit to a zero regardless of whether it was originally a 0 or a 1.

In addition to the bit in question, the computer also contains some amount of
other information in the form of other bits in memory, together with the entropy of
its thermal state. Let N denote the number of possible states of the system, apart
from the bit in question.

We want our “erase” operation to operate correctly, independently of which of the
2N possible states the combined system is in. Due to physical reversibility, each of
these 2 states must be mapped to a distinct state after the erase operation—but
all of those states have value 0 in the erased bit. Thus there must be 2A/ possible
states of the rest of the system, after the operation. The amount of information in
the rest of the system has therefore increased by lg 2N — lg N = 1 bit.

So the presumably erased information has not really been destroyed, but is still
present somewhere, either in some other part of the computational state or in the
thermal state. The original value of the bit could in principle be retrieved by, for
example, running the laws of physics backwards.

However, if the information has been lost in a sea of thermal chaos, then in practice
there is no way to reconstruct the original value of the bit.

2.5.2 Reversibility, entropy, and the second law

We now see how physical reversibility can be understood to imply the second law of
thermodynamics.
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Figure 2-2: Information “erasure” under reversible physics. In order to erase an
unknown bit and thereby reduce the number of possible digital states of the computer
by a factor of 2, one has to make up for this by increasing the number of possible
thermal states of the rest of the system by a factor of 2.
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The second law of thermodynamics states that the total entropy of any closed
system cannot decrease. What is entropy? Quantitatively, it is the logarithm of the
number N of possible states of a system. The base of the logarithm determines the
unit of entropy: if the base is e = 2.718.. ., the base of natural logarithms, then we
might call the corresponding unit of entropy 1 nat, equal to Boltzmann’s constant
kg. If the base is 2, then the unit of entropy is called 1 bit. Thus, 1 bit = (In2) nat ~
0.693 nat.

If entropy is the log of the number of possible states, what, then, do we mean by a
“possible state?” This depends entirely on the context, specifically on how we define
what constitutes a legal example of “the system” in question.

However, ever with this broad definition of entropy, we can already make some
meaningful statements about entropy in connection with reversibility. First, it is
clear that if the entropy of a system were to decrease over time, then the system
would not be reversible, because we would have an example of multiple possible
initial states evolving to become a smaller number of resulting final states, violating
the incompressibility of state space that is implied by reversibility. Therefore, the
reversibility of a system immediately implies that its entropy can never decrease over
time.

There is a similar connection between entropy increase and determinism. In a
deterministic system, state space is “inexpandable” since a given state can not evolve
to more than one possible new state in a given amount of time. Thus the number
of possible states cannot increase, in this strict sense, and so deterministic systems
undergo no “true” increases in entropy.

However, even if a system is deterministic, we may find it convenient to label more
and more states as “possible” over a system’s time evolution, simply because, given an
incomplete model of a system’s initial state, we may lose track of the exact trajectories
of the initially possible states over time, and so many additional states may become
possible over time from the point of view of the model. In such circumstances, it is
convenient to say that entropy increases. An example is the situation in figure 2-2
(p. 40). Suppose we have constructed an initial condition in which only the “1” value
of the bit is possible, so the entropy before the “erase” operation is just InA/. But
since we fail to model what becomes of the information that the bit is 1 after the
“erase” operation is performed, the entropy of the system under the model increases
to In2N. This increase will happen whenever a non-entropy bit turns into thermal
form, because the evolution of the micro-state of a thermal system is, by definition,
un-trackable by us.

We thus can state the following principle: Total entropy increases (permancntly)
by at least 1 bit’s worth any time a bit that is originally non-entropic moves to reside
in a thermal system. Furthermore, this happens whenever a digital bit is erased,
unless (a) the bit was already entropy, in which case moving it to thermal form does
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not necessarily increase total entropy, or (b) the bit is canceled out instead, by un-
computing it from other bits of state with which it is correlated.

2.5.3 Entropy and energy

As we just saw, the second law of thermodynamics states that the entropy of a closed
system cannot decrease over time. We saw that it aiso cannot increase, except in the
sensc that our incomplete model of the system may lcse track of what happens to a
state over time, so that more states become “possible” from the point of view of the
model. However, entropy can be moved from one subsystem to another.

Correspondingly, the first law of thermodynamics states that the energy of a closed
system can neither increase nor decrease, but can only be moved from one subsystem
to another.

How are these conservation laws for energy and entropy related? We find empiri-
cally that in order to increase or decrease the entropy of any subsystem (not counting
increases due to deficiencies in our model), we generally must also increase or decrease
its energy (given a closed, constant-volume system). For sufficiently small changes in
entropy, we find that the change in enargy required is proportional to the change in
entropy. The constant of proportionality is called the temperature T of the subsystem.
Formally,

T = 9E/0S. (2.5)

This is a perfectly valid definition of temperature, in terms of the relation between a
system’s energy and its number of states.

Under this definition, 1 Kelvin of absolute temperature is definable as a require-
ment of ~ 1.38x1072 J of energy per 1-nat increase in entropy. A nat of entropy
can therefore also be expressed in units of energy per unit temperature, such as
1.38 102 J/K. In such form, 1 nat of entropy is often referred to as Boltzmann’s
constant kg.

From all this, it follows inmediately that the amount of energy E that must be
added to system in order to double its number of possible states is just

E =kgTIn2 (2.6)

since kyIn 2 is just a 1-bit increase in entropy, and multiplying by the system’s tem-
perature just converts this entropy increase to the required change in energy, by the
definition of temperature.
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Figure 2-3: Venn diagram of entropy and information. Any system of finite size
and energy has a finite maximum entropy; however, if the system expands without
bound, the maximum entropy may also. The maximum entropy may be considered
the total amount of information of all kinds in the system. However, much of it may he
redundant and cross-correlated. Bits of information that are uncorrelated, or whose
correlations have become lost beyond all hope of recovery, are entropy, which can only
increase in a reversible universe. Some portion of the system, and the information in
it, is within our ability to manipulate and control, such as bits within a computer.
These bits, too, may either be entropy or not, depending on our ability to know their
correlations.

2.5.4 Logical irreversibility and energy dissipation

We saw in section 2.2 that in any system with particular size and energy there is a
consequent upper bound on the entropy that system can contain. If a given system is
found to contain less entropy than the maximum given the amount of energy in the
system, then that must mean our model of the system is imposing further structure
on the system, ruling out some of the states that would otherwise be possible.

For such a system with non-maximal entropy, only a portion of the energy of the
system is actually needed for permitting the entropy that is actually present. This
portion of the total energy will be referred to as the amount of dissipated energy in
the system. The rest of the system’s energy will be referred to as its free energy. The
difference between the entropy of the system and its maximum entropy will be termed
the negentropy or information capacity of the system. Some of this information
capacity may become allocated for storing computational information. (See rig. 2-3.)
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As we discussed in §2.5.2, even in the context of a perfectly deterministic under-
lying physics, the entropy of a system can be seen to increase, through a failure to
completely model the determinism inherent in the system’s physical evolution. When
this happens, the amount of the system’s energy that is needed to support this en-
tropy will increase by some amount, and the free energy will decrease by the same
amount. We say this amount of energy has been dissipated.

We are now in a position to accurately state and explain the central statement on
which the field of reversible computing is based:

Landauer’s principle. The irreversible loss of 1 bit of computational information
requires the dissipation of kT In2 energy, where T is the temperature of the sub-
system in which the lost bit finally ends up. By the “irreversible loss,” we mean
that some bit of computational information (not a bit that is already entropy!) be-
comes transformed in such a way that our computational models can not track it,
for example by becoming mixed up with parts of the system whose state is already
thermal, or unknown. Thus by definition the bit has become entropy, and the entropy
of the system as a whole is increased by 1 bit. This increase is eventually reflected
in some subsystem at temperature 7', and by definition of temperature, the energy
of this subsystem must be increased by kg7 In2. The energy invested in the entropy
increase is heat. If T is the lowest available temperature, then this energy must come
out of the free energy, because all the dissipated energy in the system is already fully
occupied with containing the pre-existing entropy. Thus the free energy is decreased
by kgT'In2.
The abcve principle was first explicitly conjectured by Landauer [79].

Note that since T is the temperature of the system where the entropy finally ends
up, not the temperature of the device that held the entropy originally, cooling a
comptter cannot in the long run decrease the total energy dissipation required to
erase bits, if the dissipation in the cooling system is taken into account. The entropy
that is generated can not build up indefinitely in the cooling system, or else it would
not stay cool. Instead, it ultimately ends up in some natural thermal reservoir in
the environment. The coolest thermal reservoir of effectively unlimited capacity that
might be available in the foreseeable future is the interstellar microwave background,
at a temperature of ~2.73 K. Thus, no process that generates entropy can, in the
long run, sustain an eneigy dissipation cost less than kp(2.73K)In2 = 2.6x1072 ]
per bit generated, and this can only be attained if the entropy can be transmitted
directly into space. For earthly systems that use the atmosphere as their thermal
reservoir, the reievant temperature is in the neighborhood of room temperature or
300 K, for a minimum energy dissipation of ~ 3x 102! J/b.
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2.6 Quanturn computation

One area in which physics may actually constrain computation less than might be
expected is in the possibility of quantum computation (cf. [48, 39, 22, 21, 20, 123,
121]), that is, computation using large, complex, coherent superpositions of states. If
it can be implemented successfully, quantum computation seems likely to be strictly
asymptotically faster than classical computation on certain problems, by as much as
an exponential factor. But it is not yet known if quantum computation would be
beneficial for purposes other than obsoleting the RSA cryptosystem, or simulating
physical quantum systems. Still, if the recent progress on implementing quantum
computers (45, 142, 31, 33, 64, 34, 132, 41, 124, 10, 30] eventually culminates in
success, then we would certainly like to consider quantum computation as a physically
possible means of computation. But even a quantum computer would still need to
obey the fundamental constraints discussed above affecting the maximum density and
propagation speed of information.

2.7 Physical constraints—conclusion

This concludes our discussion of fundamental physical limits on computation. Ta-
ble 2.2 summarizes the limits we discussed, and the presumed effect on the form of a
physically-realistic model of computation, which we will discuss further in ch. 4.

In chapter 5 we will see how these limits affect the scaling of computation speeds
in reversible and irreversible computers. But first, in the next chapter, we review the
non-physical theoretical underpinnings of reversible computing, and show that in an
imagined non-physical computational framework, reversibility leads to unfavorable
scaling. The contrast between that result and the results of chapter 5 underscores
that traditional non-physical theoretical frameworks for computation are inadequate
for realistically modeling the advantages of reversibility, and thus, more sophisticated
models of computation that take the above-described physical constraints into account,
are required for a correct analysis. Such models will be discussed in chapter 4.
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Fundamental | Constrained Quantitative Impact on
principle quantity Symbol | constraint our model
Quantum Entropy ps < 1-10 b/A3? Finite state/
mechanics density processox
Entropy flux Fs < psv Finite info.
flux
Rate of state v, < 4(E — Ey)/h Finite oper.
change frequency
Locality Info. prop. v <ca~3x108m/s | Mesh arch.
velocity (Vitdnyi '88)
3-dimensionality | Connec- O(t3) 3-D mesh
of space tivity
Micro- Entropy AS > 0 always, Logical
reversibility, change > 1 bit/bit erasure | reversibility,
thermodynamics | Energy AFE > 0 always, entropy
dissipation > kpT In2/eras. accounting
Frictional Entropy ks > 0 b/Hz? Time-prop.
effects coefficient reversibility

Table 2.2: Fundamental physical constraints on computation, and

their effects on

the form of a physically-realistic model of computation. The value of the bound on
ps is very uncertain, but the assertion that some such bound exists is not. For any
particular computing technology through the foreseeable future, there will generally
be much stricter limits than the above on most of these quantities.
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Chapter 3

Reversible computing theory

In the previous chapter, we set the stage for our research by reviewing the known
physical limits on computation, including the entropic cost of logically irreversible
information loss. We saw that avoiding this cost requires the use of computational
primitives that possess the special property of logical reversibility. This observation
leads naturally to the question: What implications would logical reversibility have in
the context of the traditional theory of computation?

This chapter addresses that question, while also introducing the related question
of how the traditional measures of complexity and models of computation will need to
be adjusted to more effectively cope with thermodynamic issues and other important
physical considerations. That line of study is continued in chapters 4 and 5.

One reason that computer designers have not yet rushed to adopt reversible com-
puting principles is that purely reversible operation is not necessarily opti:nal in all
circumstances. For many applications of computer technology today and in the fu-
ture, energy dissipation may not be a limiting factor. In such circumstances, purely
reversible operation appears to incur significant computational overheads compared
to irreversible operation. If energy dissipation is modeled as costing exactly noth-
ing, then it seems that the total cost overhead factor for pure reversible computing
becomes unboundedly large as problem sizes increase.

In §3.4 of this chapter, we will rigorously prove a technical theorem in computa-
tional complexity theory which suggests that such overheads are inevitable, and that
no amount of clever improvements of reversible algorithms can avoid these overheads
on all problems. This result indicates that if we wish to be able to perform asymp-
totically optimally even under cost models in which the energy cost is zero, then our
computer models should at least include the option of not being completely reversible.

However, in chapter 5, we will show that if energy dissipation has any non-zero
cost, then our physical model of computation must also include the option to have an
arbitrarily high degree of reversibility, if it is to achieve asymptotically optimal speed
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and cost-efficiency on all problems. _

But first, in §3.1 and §3.2, we will review general concepts of models of computa-
tion, computability, and complexity, and introduce a few new measures of complexity
that attempt to better capture important physical considerations. Then in §3.3 we re-
view the major results of existing reversible computing theory, leading up to our own
contributions in §3.4. Finally, §3.5 sums up the comparison of traditional reversible
and irreversible computing models.

3.1 Models of computation

Discussions of the theory of computation often start with the definition of a par-
ticular model of computation to work with, such as, for example, Turing machines.
However, in this thesis, we do not wish to pick a particular model, since our interest
is in comparing the relative efficiency of different models. if we wished to pursue a
completely formal mathematical approach, we would need to give a precise definition
of what a model of computation is in general, describe various particular models in
terms of that general framework, define what it means to compare two models under
that framework, and then prove various theorems comparing the different models.
This would be straightforward but tedious, and it is unclear whether we would learn
anything important from that highly formal approach that is not already sufficiently
clear using our more informal understanding of the situation.

Therefore, in this thesis we will refrain from presenting a detailed formal expli-
cation of the concept of a “model of computation,” and instead we will rest our dis-
cussion on the intuitive understanding of the phrase that the reader will be expected
to have, given a general background in computer science. To refresh the reader’s
memory, a partial list of existing models of computation may be helpful (table 3.1).

Informally speaking, a model of computation merely delineates a space of ab-
stract computing machines, and the computations that run on them. Most models
were originally introduced as an attempt to approximate some class of physical ma-
chines; however, the existing models unusually end up ignoring one or another of the
important realities of physical law that we saw in chapter 2. Sections 4.2 and 4.3
of ch. 4 review some of the problems with the existing models, and discusses candi-
dates for a new model (which we might call PM, the “physical machine”) intended
to exactly represent the computing capabilities of physics.

Physically realistic or not, any abstract model of computation needs to be reduced
to a physical implementation in order to actually run. In chapter 5 we will compare the
power of two fairly realistic classes of models of physically-implemented machines: the
FIA (fully irreversible architectures) and the TPRA (time-proportionally reversible
architectures), and we show that the TPRAs are strictly more efficient, in several
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Notation

Model name

Example references

PRF
RF
FA

RFA
™
RTM
NTM
CA

BBM
RAM
PRAM

BLC
3dM

Primitive recursive functions
Recursive functions
Finite automata

Reversible finite automata

Turing machines

Reversible Turing machines
Nondeterministic Turing machines
Cellular automata

Billiaﬁ,d-ball model
Random access machines
Parallel random access machines

Boolean logic circuit

3-d mesh

Rogers 1987 [116], §1.2, pp. 5-9
[116], ch. 1

Hopcroft & Ullman 1979 [71],
ch. 2

Pin 1987 [111]

[143]; [71], ch. 7

[81, 16, 80]

[71], §7.5

von Neumann 1966 [154],
Toffoli & Margolus 1987 [138]
Fredkin [62]

Papadimitriou 1994 [108], §2.6
Papadimitriou 1994 [108], §15.2,
pp- 371--375

Papadimitriou 1994 [108], §4.3
Leighton 1992 [83], ch. 1

Table 3.1: Some existing theoretical models of computation.
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physically-relevant senses.

3.1.1 Computability

For any model of computation, an obvious first question is “What computations can
it possibly perform?” (Given unlimited resources.) This question was the subject
of much early research on computation, but eventually it was realized that a large
variety of physically reasonable models of computation can all compute exactly the
same set of functions, namely the recursive (now just called computable) functions
(cf. [116]), and so the issue became less interesting. The famous “Church’s thesis” is
the conjecture that the recursive functions are indeed exactly the functions that real
physically-realizable machines can compute; the conjecture is true as far as anyone
knows, and it would be extremely surprising if physical machines were to turn out to
be able to compute non-recursive functions.

Of course, there also exist weaker models of computation that cannot even com-
pute all recursive functions, such as finite automaton (FA) models.

With computability turning out to be mostly a non-issue, the next natural issue in
computing theory is to discover how difficult or complez one finds various computa-
tional tasks to be under a given model of computation, or (in complementary terms),
how efficiently the model can perform on various tasks.

3.2 Computational complexity and efficiency

Now we review some of the basic concepts used in traditional computational com-
plexity theory, and extend them to capture some new, more general measures of com-
putational complexity and cost-efficiency that will help us better address real-world
concerns in later sections.

3.2.1 Computational efficiency vs. computational complexity

The focus of this thesis is on how to achieve maximum computational efficiency,
which can mean several things, but most often we will use it to mean cost efficiency,
defined as follows.

Given some way ¥ of characterizing the cost of a computation (or any process),
one very general notion of efficiency is the fraction of the cost that is actually well-
spent. In other words, if the minimum possible cost to perform some task is $,n,
and the actual costs incurred by a particular computation that performs that task
are $, then we can say that the cost-efficiency %s of the computation (under the cost
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measure ¥) is

T = — (3.1)

because only 8, out of the total cost $ was really warranted; the remainder $ — $,,;,,
was wasted.

Thus, whatever the minimum cost $,, for a task, in order to maximize the efhi-
ciency %s, one should try to minimize the actual cost 8. This leads to the frequent
emphasis in computer science on characterizing and studying various abstract mea-
sures of cost, which are often referred to in theoretical computer science as measures
of computational complezxity.

3.2.2 Characterizing computational complexity

In this section we examine how measures of computational complexity are tradition-
aily characterized, and propose the use of some new complexity measures that may
allow different computational models to be compared in a more realistic way.

3.2.2.1 Scaling with problem size

When comparing the cost-efficiency of two algorithms or two models of computation,
it is sometimes difficult to make a definitive distinction as to which candidate is better,
if one of them is more efficient on some problems, and the other one is more efficient
at others. Even within a particular class of problems, one machine may be better at
small problems and the other at large ones.

However, if we look at how the performance of the two machines scales as the
problem size increases, it may often be the case that one machine performs better
than the other at problems of all sizes above a certain size, and the ratio between
the efficiency of the two machines may even grow unboundedly large as problem sizes
increase. Asymptotic order-of-growth analysis (see table F.4, p. 389) is the traditional
tool for determining if such relationships hold, because it allows ignoring the many
details of algorithm design that cause constant-f.ctor differences in complexity, which
often end up being irrelevant in an asymptotic determination of which machine is
better.

Table 3.2.2.1 lists several measures of complexity which we will now discuss.

3.2.2.2 Traditional measures of complexity

Traditionally in computer science, theoreticians study only very simple measures of
complexity, in order to make their analysis easier. Two of the most popular measures
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Our Notation for
the Cost Measure | Meaning
Computational cost measures.
Nops Number of primitive operations.
T Number of computational clock “ticks”
(called “time” in traditional complexity theory).
S Maximum memory used at any time
(called “space” in traditional complexity theory).
(S, T Computational “space” paired with “time” (p. 54).
| ST Computational “space” times “time” (p. 54).
Physical cost measures.
Lohys Physical time taken.
Viax Maximum physical volume of space used.
Stot Total entropy generated.
5. Comprehensive physical cost complexity (p. 55).
8 Simplified physical cost complexity (p. 55).

Table 3.2: Some measures of cost or complexity. We distinguish the non-physical,
“computational” cost measures from the physical cost measures. The physical mea-
sures can be accurately determined only for models of computation that realistically
take into account physical constraints on computation such as we discussed in chap-
ter 2.




3.2.2. CHARACTERIZING COMPUTATIONAL COMPLEXITY 53

are time complexity and space complexity.

Time complexity. The “time complexity” of a computation can be characterized
simply as the amount of physical time ¢y, that the computation takes (from its start
to its end), or as the number Ny, of computational “operations” (at whatever level
of interest) that are performed, which is proportionally equivalent to real time if, for
example, operations are performed serially and take ©(1) (i.e., constant) time each.
If operations are performed in parallel, a better approximation to time would be the
number of “ticks” T of some (real or imagined) computational “clock” that is thought
of as synchronizing the operations of all the processing elements.

'The problem with using time complexity alone as a cost measure is that it ignores
the cost of the computer that is needed to solve a problem with the minimum time
complexity. The minimum time complexity might only be achieved by a computer
that is unfeasibly expensive.

One may reply that the machine cost is negligible because it may be amortized
over arbitrarily many uses of the machine into the future, but one can counter with
the point that whenever the computer is fully occupied with solving the given prob-
lem, its components can not meanwhile be used for another problem, so there is an
opportunity cost inherent in using a large machine that must be considered as well.

Thus, minimizing only time complexity may completely miss the solution that
minimizes cost in the real world.

Space complexity. Another measure of computational complexity which attempts
to take the machine cost into account is space complexity, that is, the maximum
amount of digital storage (in bits, say) that is in use at any point during the compu-
tation (we will denote this as S).

Given fixed lower bounds to the physical size and mass-energy required for a bit’s
worth of storage, space complexity can also be equated (within a constant factor) to
the amount of physical volume (Vpmax) or mass in the computer, assuming there are
no cost advantages in storing bits with an asymptetically increasing mass-per-bit or
volume-per-bit. We conjecture that asymptotically, this assumption is true.

Of course, like time complexity, space complexity by itself is also inaccurate for
real-world situations. Most significantly, it ignores the impact of the length of time
during which the given amount of storage needs to be used. If the storage requirements
for a computation are large, but the computation is rather short, or even if just the
time during which the bulk of the storage is in use is short, then the computation may
actually be less costly, in real terms, than a computation that has a smaller formal
space complexity but which occupies that space for an extremely long time.
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3.2.2.3 Some new measures of complexity

Given the inadequacies of the most popular traditional measures of complexity, we
now describe some new alternative measures which attempt to more closely approxi-
mate the real-world economics of computing.

Joint space-time complexity. We saw earlier that both space complexity and
time complexity, although they each took important cost factors into account, were
individually incomplete. We can try to improve on the situation by combining both
space and time complexity into a single measure of complexity.

One way to combine a space complexity measure s and a time complexity measure
t is to simply group them into a pair (s,t). We can define a partial order 2 between
pairs (sy,t) and (sq,t;) by saying, for example, that (sy,%;) 2 (s2,t2) iff 51 22 s2 and
ty = to. (The = notation is defined in table F.4, p. 389.) However, this approach
suffers from the problems that two complexity measurements may be incomparable
(for example if s; < s but ¢t; > t3), and that it is difficult to define a numerical
measure of overall efficiency in this system. However, this simple complexity measure
still suffices for some purposes, such as for our proof in §3.4.

Space-time product complexity. One interesting, improved measure of complex-
ity is the product of space and time complexity. This comes closer to a true measure
of cost because it increases monotonically with both space and time and allows com-
parisons between any two instances. It can be viewed as a measure of rental cost, the
cost of renting a computer having storage capacity s for a period of time t; we might
expect such a cost to be roughly linear in both storage capacity and time. Another
way to look at the product is as a measure of the total volume of spacetime (as in
the theory of relativity) that is dedicated to the computation.

However, even the space-time product is still somewhat inaccurate, since it does not
take into account that a particular algorithm may not have constant space usage over
time, and that the resources that are unused by the algorithm during a particular
period of time can (in an appropriate machine architecture) be used for solving other
problems during that time, thus reducing the effective cost of the program whose
complexity we are measuring.

Another point is that besides spacetime volume, there is another resource that a
computation uses up: namely, free energy. Energy that is dissipated by the computer
is forever unavailable for use in other computations, because it is in a disorganized,
maximum-entropy form that cannot do useful work. (We discussed these issues in
much more detail in §2.5.) So this dissipation has a cost. In fact, in contexts such
as battery-powered portable computers, the energy costs may be fairly high because
the readily-available supply of energy is so limited. So a comprehensive model ought
to take energy costs into account. One way to characterize free energy loss is by the
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total amount of entropy that is generated during the computation (Ss).

Finally, there is the point that the storage space itself can be separated into
several constituent entities “hat separately contribute to the total rental costs: the
mass-energy of the computation/storage medium, the volume of physical space it
occupies, and perhaps even its surface area (real estate it occupies). Mass-energy
can be further broken down into free energy and rest mass, which can be further
decomposed into the cost of various types of constituent components and the raw
materials that they are made of; but we will not go this far in our modeling.

These cbservations lead to the following new complexity measures.

Comprehensive physical cost complexity. For a computation (or really, any)
process that increases total entropy by S, takes total real time ¢, and that at times
0 < 7 <t (between the start and end of the computation) occupies spatial volume
V(7), contains free energy F (), rest mass M(7), and has a minimum surface area of
A(7), we define the comprehensive physical cost $. of the process as

$. = £S5+ / t [va('r) + £5E(7) + £uM(T) + £AA(T)] dr (3.2)

where the various £x > 0 are cost coefficient constants whose values are parar.eters
of the cost model. The £x convert all cost elements to some canonical cost unit,
perhaps even a monetary unit.

This cost model is very comprehensive, probably more so than needed. In our
explorations of the efficiency of reversible and irreversible machines in chapter 5, we
have found that not all of the above terms need to be included in the cost model in
order to find the optimal machine configurations for the kinds of computational tasks
we have considered so far. So we also suggest a simplified version of this model.

Simplified physical cost complexity. For a computation process that generates
entropy S, takes total real time ¢, and that at times 0 < 7 < t requires a free energy
allocation of E(7), we define the simplified physical cost $; of the process as

$, = £sS+| fgEdr (3.3)

where the £ > 0 constants are parameters of the cost model. Given the Margolus-
Levitin bound on computation rate from §2.4, the second term in this cost measure
can be considered a measure of the maximum number of states that could be traversed
using the given energy profile over the given time.

We propose that cost models like the above are appropriate for exploring the asymp-
totic physical limits of computation.
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3.2.3 Complexity classes

A complexity measure tells us how to assign a cost to a particular instantiation of a
computation process. In chapter 4 we will discuss a variety of models of computation
processes. Given a complexity measure and a model of computation, we can char-
acterize the complexity of any program written for that model, as a function of the
length ni; of its input (in bits, say). The program complexity for length n;, is often
defined as the worst-case complexity of the program over all the inputs of length n;,.

Further, we can define the complexity of a given task under a model of computation
as the complexity of the program that performs that task with the lowest program
complexity, on that model.

A complexity class is the set of all problems that can be solved under a given
model of computation within given bounds on asymptotic complexity, according to a
given complexity measure.

3.3 Review of existing reversible computing
theory

In this section we review the past developments in reversible computing theory. Much
of our predecessors’ work can be interpreted as an attempt to compare the compu-
tational efficiency of reversible and irreversible machines under various complexity
measures and 1aodels of computation. In this section we will show how each of the
existing results can be interpreted in this way, and then in §3.4 and ch. 5 we will carry
this effort onward to the new complexity measures that we proposed in §3.2.2.3.

3.3.1 Reversible models of computation

Reversible models of computation can be easily defined in general as models of com-
putation in which the transition function between machine configurations has a single-
valued inverse. In other words, the directed graph showing allowed transitions be-
tween states has in-degree 1. In this thesis we will always deal with machines that
arc deterministic, so that the configuration graph always has out-degree one as well.
See figure 3-1, p. 57.

3.3.2 Computability in reversible models

As we already noted in §3.1.1, one of the most important questions to answer for any
new kind of computation is “What functions it can compute at all?” This comes before
efficiency questions, since obviously a machine’s efficiency at a task is meaningless if
the machine cannot even perform the task.
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Figure 3-1: Mackine configuration graphs in (deterministic) reversible and irreversible
models of computation.

In the configuration graphs of irreversible machines, configurations may have many
different predecessor configurations. In reversible models of computation, each config-
uration may have at most one predecessor. The configuration graph therefore consists
of disjoint loops and chains, which may be infinite. In both reversible and irreversible
models we may, if we wish, permit configurations having 0 predecessors (initial states)
and/or 0 successors (final states).

3.3.2.1 Unbounded-space reversible machines are Turing-universal

In his 1961 paper [79], Landauer had already pointed out that arbitrary irreversible
computations could be embedded into reversible ones by simply saving a record of all
the information that would otherwise be thrown away (cf. §3 of [79]). This observation
makes it obvious that reversible machines with unbounded memory can certainly
compute all the Turing-computable functions.

We will call this idea, of embedding an irreversible computation into a reversible
one by saving a history of garbage, a “Landauer embedding,” since Landauer seems
to have been the first to suggest it.

3.3.2.2 Reversible finite automata are especially weak

In contrast, in 1987 Pin [111] investigated reversible finite automata, which he defined
as machines with fixed memory reading an unbounded-length one-way stream of data,
and found that they cannot even decide all the regular languages, which means that
technically they are strictly less powerful than normal irreversible finite automata,
which are in turn strictly less powerful than unbounded-space Turing machines.

So there are functions computable by an irreversible machine with fixed memory
that no purely reversible machine with fixed memory can compute, given an external
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one-way stream of input. We should note, however, that this incapacity might be due
solely to the non-reversible nature of the input flow, rather than to the finiteness of the
automaton memory itself. Conceivably, if a finite reversible machine was permitted
to read backwards as well as forwards through its read-only input, and perform some
sort of “unread” operations, it might then be able to recognize any regular language.
But we have not investigated that possibility in detail.

That issue aside, in the rest of this thesis we consider medels of computation that
permit access to arbitrarily large amounts of memory as input sizes increase. For
such machines, pure computability is no longer an issue, and we turn to questions of
computational efficiency.

3.3.3 Time complexity in reversible models

One of the most common simple measures of computational cost we have seen is “time
complexity,” which in a theoretical computer science context often means the number
of primitive operations performed. Landauer’s suggestion (cf. §3 of [79]) of embedding
each irreversible operation into a reversible one makes it clear that the number of
such operations in a reversible raachine need not be larger than the number for an
irreversible machine, as was demonstrated more explicitly by many later embeddings
e.g., (81, 16]. So under the time complexity measure by itself, reversibility does not
hurt.

Can a reversible machine perform a task using fewer computational operations
than an irreversible one? Obviously not, if we take reversible operations to just be
a special case of irreversible operations. However, physically speaking, actually it is
the converse that is true: so-called “irreversible” operations, implemented physically,
are really just a special case of reversible operations, since physics is alw.ys reversible
at a low level. We will see the implications of this for physical time complexity
in ch. 5. But, using the usual computer-science definition of time as the number
of computational operations required, clearly reversible machines can be no more
“time”-efficient than irreversible ones.

Although Lecerf and Bennett explicitly discussed their time-efficient reversible
simulations only in the context of Turing machines, the approach is easily generalized
to any model of computation in which we can give each processing element access
to an unbounded amount of auxiliary unit-access-time stack storage. For example,
based on Toffoli’s embedding [134], one could use essentially the same trick to creatc a
time-cfficient simulation of irreversible cellular automata on reversible ones, by using
an extra dimension in the cell array to serve as a garbage stack for each cell of the
original machine. (To actually recycle the garbage in a CA, we would also need a
boundary condition that applies globally after an appropriate amount of time in order
to reverse the simulation.)
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3.3.4 Reversible entropic complexity

The original point of reversibility was not to reduce time but to reduce energy dissipa-
tion, or in other words entropy production. Can this be done by reversible machines?
In 1961 Landauer [79] argued that it could not, since if we cannot get rid of the
“garbage” bits that are accumulated in memory, they just constitute another form
on entropy, no better in the long term than the kind produced if we just irreversibly
dissipated those bits into physical entropy right away.

3.3.4.1 Lecerf reversal

However, in 1963, Lecerf [81] formally described a construction in which an irreversible
machine was embedded into a reversible one that first simulated the irreversible ma-
chine running forwards, then turned around and simulated the irreversible machine
in reverse, uncomputing all of the history information and returning to a state corre-
sponding to the starting state. If anyone familiar with Landauer’s work had noticed
Lecerf’s paper in the 1960’s, it would have seemed tantalizing, because here was Lecerf
showing how to reversibly get rid of the garbage information that was accumulated
in Landauer’s reversible machine in lieu of entropy. So maybe the entropy production
can be avoided after all!

Unfortunately, Lecerf was apparently unaware of the thermodynamic implications
of reversibility; he was concerned only with determining whether certain questions
about reversible transformations were decidable. Lecerf's paper did not address the
issue of how to get useful results out of a reversible computation. In Lecerf’s em-
bedding, by the time the reversible machine finishes its simulation of the irreversible
machine, any outputs from the computation have been uncomputed, just like the
garhage. This is not very useful!

3.3.4.2 The Bennett trick

Fortunately, in 1973, Charles Bennett [16], who was unaware of Lecerf’s work but
knew of Landauer’s, independently rediscovered Lecerf reversal, and moreover added
the ability to retain useful output. The basic idea was simple: one can just reversibly
copy the desired output into available memory before performing the Lecerf reversal!
As far as we can tell, this trick had not previously occurred to anyone.

Bennett’s idea suddenly implied that reversible computers could in principle be
more efficient than irreversible machines under at least one cost measure, namely
entropy production. To compute an output on an irreversible machine, one must
produce an amount of entropy roughly equal to the number of (irreversible) operations
performed; whereas the reversible machine in principle can get by with no new entropy
production, and with an accumulation of only the desired output in memory.
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3.3.4.3 Entropy proportional to speed

Unfortunately, absolutely zero entropy generation per operation is achievable in prin-
ciple only in the ideal limit of a perfectly-isolated ballistic (frictionless) system, or
in a Brownian-motion-based system that makes zero progress forwards through the
computation on average, and takes ©(n?) expected time before visiting the nth com-
putational step. In useful systems that progress forwards at a positive constant speed,
the entropy generation per operation appcars to be, at minimum, proportional to the
speed. (We do not yet know how necessary this relationship is, but it appears to be
the case empirically.) A cost analysis that takes both speed and entropy into account
will need to recognize this tradeoff. We do this is chapter 5.

3.3.5 Reversible space complexity

In addition to the number of computational operations performed and the entropy
produced, another important element of cost is the number S of memory cells that
are required to perform a computation.

3.3.5.1 Initial estimates of space complexity.

As Landauer pointed out [79], his simple strategy of saving all the garbage information
appears to suffer from the drawback that the amount of garbage that must be stored
in digital form is as large as the amount of entropy that would otherwise have been
generated. If the computation performs on average a constant number of irreversible
bit-erasures per computational operation, then this means that the memory usage
becomes proportional to the number of operations. This means a large asymptotic
increase in memory usage for many problems; up to exponentially large. Even if the
garbage is uncomputed using Lecerf reversal, this much space will still be needed
temporarily during the computation.

3.3.5.2 Bennett’s pebbling algorithm

In 1989, Bennett [19] introduced a new, more space-efficient reversible simulation
for Turing machines. This new algorithm involved doing and undoing various-sized
portions of the computation in a recursive, hierarchical fashion. Figure 3-2 is a
schematic illustration of this process. We call this the “pebbling” algorithm because
the algorithm can be seen as a solution to a sort of “pebble game” or puzzle played
on a one-dimensional chain of nodes, as described in detail by Li and Vitanyi '96 [86].
(Compare figure 3-2(a) with fig. 3-7 on page 76.) We will discuss the pebble game
interpretation and its implications in more detail in §3.4.2.
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Figure 3-2: Illustration of two versions of Bennett’s 1989 algorithm for reversible
simulation of irreversible machines. Diagram (a) illustrates the version with k = 2,
diagram (b) the version with k = 3. (See text for explanation of k.)

In both diagrams, the horizontal axis indicates which segment of the original
irreversible computation is being simulated, whereas the vertical axis tracks time
taken by the simulation in terms of the time required to simulate one segment. The
black vertical lines represent times during which memory is occupied by an image of
the irreversible machine state at the indicated stage of the irreversible computation,
whereas the shaded areas within the triangles represent memory occupied by the
storage of garbage data for a particular segment of the irreversible computation being
simulated.

Note that in (b), where k = 3, the 9th stage is reached after only 25 time units,
whereas in (a) 27 time units are required to only reach stage 8. But notc also that
in (b), at time 25, five checkpoints (after the initial state) are stored simultancously,
whereas in (a) at most four are stored at any given time. This illustrates the general
point that higher-k versions of the Bennett algorithm run faster, but consume more
memory.
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The overall operation of the algorithm is ac follows. The irreversible computation
to be simulated is broken into fixed-size segments, whose run time is proportional
to the memory required by the irreversible machine. The first segment is reversibly
simulated using a Landauer embedding (§3.3.2.1). Then the state of the irreversible
machine being simulated is checkpointed using the Bennett trick of reversibly copying
it to free memory. Then, we do a Lecerf reversal (§3.3.4.1) to clean up the garbage
from simulating the first segment.

We proceed the same way through the second segment, starting from the first
checkpoint, to produce another checkpoint. After some number & of repetitions of
this procedure, all the previous checkpoints are then removed by reversing everything
done so far except the production of the final checkpoint. Now we have only a single
checkpoint which is k segments along in the computation. We repeat the above
procedure to create another checkpoint located another k£ segments farther along,
and then again, and again k times, then reverse everything again at the higher level
to proceed to a point where we only have checkpoint number k2 in memory. The
procedure can be applied indefinitely at higher and higher levels.

In general, for any number n of recursive higher-level applications of this proce-
dure, k™ segments of irreversible computation are be simulated by (2k — 1)" reversible
simulations of a single segment, while having at most n(k — 1) intermediate check-
points in memory at any given time [19)].

The upshot is that if the original irreversible computation takes time T and space
S, then the reversible simulation via this algorithm takes time O(T'*¢) and space
O(SlogT) = O(S?). As k increases, the e approaches 0 (very gradually), but unfor-
tunately the constant factor in the space usage increases at the same time [84].

Li and Vitényi '96 [86] proved that Bennett’s algorithm (with k£ = 2) is the most
space-efficient possible pebble-game strategy for reversible simulation of irreversible
machines.

Crescenzi and Papadimitriou 95 [36] later extended Bennett’s technique to provide
space-efficient reversible simulation of nondeterministic Turing machines as well.

3.3.5.3 Achieving linear space complexity

Bennett’s results stood for almost a decade as the most space-efficient reversible
simulation technique known, but in 1997, Lange, McKenzie, and Tapp [80] showed
how to simulate Turing machines reversibly in linear space—but using worst-case
exponential time. Their technique is very clever, but simple in concept: Given a
configuration of an irreversible machine, they show that one can reversibly enurmnerate
its possible predecessors. Given this, starting with the initial state of the irreversible
machine, the reversible machine can traverse the edge of the irreversible machine’s
tree of possible configurations in a reversible “Euler tour.” (See figure 3-3.) This is
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Figure 3-3: Illustration of an Euler tour of an irreversible machine’s computation tree.
Although the tree has branches, the Euler tour is itself both forward- and reverse-
deterministic, and so can be traversed in purely reversible fashion, using no more
space than is needed to keep track of the current irreversible machine configuration
[80).

analogous to using the “right-hand rule” technique (move forward while keeping your
right hand on the wall) to find the exit of a planar non-cyclical maze. The search
for the final state is kept finite, and the space usage is kept small, by cutting off
exploration whenever the configuration size exceeds some limit. Unfortunately, the
size of the pruned tree, and thus the time required for the search, is still, in the worst
case, exponential in the space bound.

Lange et al. originally thought that a limit on the size of the final state was
required to be known in advance of the computation in order to guarantee finding the
final state, but after seeing a draft of their paper, I pointed out to them (in personal
discussions) that in fact, one could determine the appropriate limit dynamically by
simply traversing repeatedly around and around the tree, advancing to a successively
higher size limit each time the initial state is re-encountered, until the size limit is
made large enough that the final state is found. This approach does not increase the
worst-case asymptotic run-time, because that time is dominated anyway by the final
traversal around the tree, due to the exponential nature of the worst-case branching.

As with Bennett’s techniques, the Lange-McKenzie-Tapp technique was defined
explicitly only in terms of Turing machines, but it is easily generalized to many
different models of computation.

The above time and space complexity results for reversible simulation (§3.3.3 & §3.3.5)
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are very interesting in themselves, but to our knowledge, no one has yet directly
addressed the question of whether a single reversible simulation can run in linear
time like Bennett’s 1973 technique and in linear space like the new Lange et al.
techniqu~. Li and Vitdnyi’s analysis {86] of Bennett’s 1989 algorithm {19] leads to our
proof in §3.4 that if such an ideal simulation exists, it would not relativize to oracles,
or work in cases where the space bound is much less than the input length.

3.3.6 Miscellaneous developments

Here, we mention in passing a few more miscellaneous developments in reversible
computing theory, but we do not go into them in detail.

Coppersmith and Grossman (1975, [32]) proved a result in group theory which
implies that reversible boolean circuits only 1 bit wider than a fixed-length input
can compute arbitrary boolean functions of that input. (Thanks to Alain Tapp for
bringing this paper to our attention.)

Toffoli (1977, [134]) showed that reversible cellular automata can simulate irre-
versible ones in linear time using an extra spatial dimension. Fredkin and Toffoli also
developed much reversible circuit theery (1980-1982, [135, 136, 62]).

As we already mentioned in §3.3.2.2, Pin (1987 [111]) showed that reversible finite
automata (defined in a certain way) cannot decide all regular languages.

3.4 Reversible vs. irreversible space-time
complexity

In this section we prove that reversible machine models require higher asymptotic
complexity on some problems than corresponding irreversible models, if a certain new
reversible black-box operation is made available to both models. Thus, no comnpletely
general technique can exist for simulating irreversible machines on reversible ones
with no asymptotic overhead.

However, the new primitive operation that we defined in order to make this proof
go through is not itself physically realistic. The operation implements a computable
function, but the operation is modeled as taking constant (©(1)) time to perform
independent of the size of its input, which violates physical locality (ref. §2.1) and
the asymptotically very large number of steps that it would take to compute the
operation using the algorithm that corresponds directly to the operation’s definition.

Therefore, technically, even given our proof, it is still an open question whether
a perfect simulation technique might still exist that works in the case of reversible
machines simulating irreversible machines that are composed only of primitives that
are physically realistic in the sense of obeying locality. However, if one wishes to
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progress to complete physical realism, then irreversible machines are themselves al-
ready reversible at the micro-level (§2.5), and therefore are efficiently implementable
on reversible machines, as we will see in ch. 5.

Nevertheless, we conjecture that if the constraint of physical reversibility is ig-
nored, then reversible machines are strictly less efficient on some problems than irre-
versible machines, even if the machines are constrained to be physically realistic in all
other respects. If this conjecture is true, then in combination with our results of ch. 5,
it would follow that the constraint of physical reversibility is not independent of other
physical constraints from a computational complexity perspective, and that it must
be taken into account in order to have a realistic physical model of computational
complexity, as we will discuss in ch. 4.

If our conjecture were false, and irreversible models can be simulated with no
overhead on reversible machines, then one would not necessarily have to explicitly
incorporate reversibility in a model of computation in order for it to qualify as an
accurate model for predicting problem complexity, such as we advocate in ch. 4. But
as a matter of opinion, we consider that possibility a prior: to be very unlikely.

In this section, we will prove our results in both oracle-relativized and non-oracle
forms for serial (uniprocessor) machines. The oracle results cover a large family of
possible asymptotic bounds on the joint space and time requirements of machines.
For all bounding functions within this family, we show that there exist an oracle and
a language such that the language is decidablc within the given bounds by serial
machines that can query the oracle only if the machines are irreversible. This result
is non-trivial (compared to Pin’s, for example) because the individual oracle calls are
themselves reversible and easy to undo.

A similar result, not involving an oracle, covers cases where the space bound
is much smaller than the length of the randomly (and reversibly) accessible input.
Corollaries to both the oracle and non-oracle results give loose lower bounds on the
amount of extra space required for a reversible machine to decide the language within
the time bounds.

Another contribution of our proof is to illustrate ways to use incompressibility
arguments in analyzing reversible machines. It is conceivable that similar techniques
might increase the range of reversible and irreversible space-time complexity classes
that we can separate without resorting to the oracle.

Acknowledgment. Some ideas in the proof below originated with M. Josephine
Ammer, who was an undergraduate research assistant in our group at the time this
work was done. Ms. Ammer also assisted with the writing of the original manuscript
[67] from which this section is derived. That manuscript has not yet been formally
published, but some version of it may be in the future.
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3.4.1 General definitions

Space-time complexity ciasses. Given any reversible model of computation (e.g.,
reversible Turing machines), and given any computational space and time bounding
functions S(ni,), T(nin), we define the reversible space-time S, T complezity class,
abbreviated RST(S, T), to be the set of languages that are accepted by reversible
machines that take worst-case space of O(S(ni,)) memory bits and worst-case time
O(T(ni,)) ticks, where n;, is the length of the input. Similarly, we define the un-
restricted space-time S, T complezity class, abbreviated ST(S, T), to be the set of
languages accepted in that same order of space and time on the corresponding nor-
mal machine model, without the restriction on the in-degree of the transition graph.
For oracle-relativized complexity classes, we use the notation C?, as is standard in
complexity theory, to indicate the class of problems that can be solved by the ma-
chines that define the class C if they are allowed to query oracle O.

We want to know whether RST(S, T) L ST(S,T), for all S, T, in normal sorts of
serial computational models such as multi-tape Turing machines or RAM machines.

Unfortunately, we have found this question, in its purest form, very difficult to
definitively resolve. We do not see any general way to simulate normal machines on
reversible machines without suffering asymptotic increases in either the time or space
required. But neither do we know of a language that can be proven to require extra
space or time to recognize reversibly in ordinary machine models. The difficulty is in
constructing a proof that rules out all reversible algorithms, no matter how subtle or
clever.

But is the RST(S, T) = ST(S, T) question truly difficult to resolve, or have we
just been unlucky in our search for a proof? Often in computational complexity
theory, we find ourselves unable to prove whether or not two complexity classes (for
example, P and NP) are equivalent. Traditionally (as in [9]), one way to indicate
that such an equivalence might really be difficult to prove is to show that if the
machine model defining each class is augmented with the ability to perform a new
type of operation (a query to a so-called “oracle”), then the classes may be proven
either equal or unequal, depending on the behavior of the particular oracle. This
shows that any proof equating or separating the two classes must make use of the
fact that normal machine models are only capable of performing a particular limited
set of primitive operations. Otherwise, we could just add the appropriate oracle
call as a new primitive operation, and invalidate the supposed proof. In complexity
theory, it is said that any proof of the equivalence or inequivalence of the two classes
must not “relativize,” that is, it does not remain valid relative to models that are
augmented with oracles. Reputedly, this rules out a large number of proof techniques
from recursion theory, and means that resolving the question will be more difficult.

In this section we will demonstrate, for any given S, T in a large class, an oracle
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A relative to which we prove RST(S, T)4 # ST(S, T)4, for the case of serial machine
models with a certain kind of oracle interface. For these same S, T we have not yet
found an alternative oracle B for which RST(S,T)? = ST(S, T)2. It may be that
none exists, but this is uncertain.

Reversible oracle interface. First, we define an oracle interface that allows a re-
versible machine to call an oracle. Ordinarily, oracle queries are irreversible, and thus
impossible in reversible machines. For example, a bit of the oracle’s answer cannot
just overwrite some storage location, because regardless of whether the location con-
tained 0 or 1 before the oracle call, after the call it would contain the oracle’s answer.
The resulting configuration would thus have two predecessors, and the machine would
be irreversible.

Our reversible oracle-calling protocol is as follows. Machines will have reversible
read and write access to a special oracle tape which has a definite start, unbounded
length, and is initially clear. At any time, the machine is allowed to perform an oracle
call, a special primitive operation which in a single step replaces the entire contents
of the oracle tape with new contents, according to some fixed invertible mapping
A : C — C over the space C of possible tape contents. The function A is called
a permutation oracle. Further, if A is its own inverse, A = Al it will be called
self-reversible. Presented more formally:

Definition 3.1. A permutation oracle A is an invertible (bijective) function
A :C — C, where C is the space of possible contents of a semi-infinite oracle tape.

Definition 3.2. A self-reversible (permutation) oracle is a permutation oracle A such
that A = A~L.

In the below, we will deal only with self-reversible oracles. Self-reversibility ensures
that machines can easily undo oracle operations, just as they can easily undo their
own internal reversible primitives. If oracle calls were hard to undo, then the oracle
model would be unlikely to teach us anything meaningful about ordinary machines.

ST-constructibility. In order for our proof to go through, we will need to restrict
our attention to space and time functions S(ni,), T(ni,) which are ST-constructible,
meaning that given any input of length n;,, an irreversible machine can construct
binary representations of the numbers S(n;,) and T(ni,) using only space O(S(ni,))
and time O(T(niy)). We state here without proof that many reasonable pairs of
functions are indeed ST-constructible. For example, S = n?, T = n3 can both be

computed in time O(log® niy) plus O(nin) to count the input bits, and space O(log n;y, )
plus O(ni,) if we include the input.

Next, we need some basic definitions to support the notion of incompressibility that
will be crucial to the proof of our theorem. The foliowing definition and lernma follow
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Figure 3-4: Illustration of the structure of (a) a permutation oracle, and (b) a self-
reversible permutation oracle.

In either case, the oracle call operation replaces the old contents of the oracle
tape with new contents according to a transition function A : C — C that is a per-
mutation mapping—a bijective function—over the space C of possible tape contents.
The bijectivity of this function means that a call to a permutation oracle is always
a reversible operation. After an oracle call, the previous oracle tape contents can be
uniquely determined by applying the inverse mapping A~!. In self-reversible oracles,
A=A"1
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the spirit of the discussions of incompressibility in Li and Vitanyi's excellent book cn
Kolmogorov complexity [85].

Description systems and compressibility. A description system s is any func-
tion s: {0,1}* — {0,1}* from bit-strings to bit-sirings, that is, from descriptions
to the bit-strings they describe. We say that a bit-string d describes bit-string z in
description system s if s(d) = z. We say that a bit-string z is compressible in de-
scription system s if there is a shorter bit-string that describes it; i.e. if there exists a
string d such that s(d) = z and |d| < |z|, where the notation |b| denotes the number
of bits in bit-string b.

Lemma 1. Ezistence of incompressible strings. For any description system s, and
any string length ¢, there is at least one bit-string z of length ¢ that is not compressible
in s.

Proof. (Trivial counting argument.) There are 2¢ bit-strings of length ¢, but
there are only Ef;; 2' = 2¢ — 1 descriptions that are shorter than ¢ bits long. Each
description d can describe at most one bit string of length ¢, namely the string s(d) if
that string’s length happens to be ¢. Therefore there must be at least one remaining
bit-string of length ¢ that is not described by any shorter description. O

In our main proof, we will be selecting incompressible strings from a series of
computable description systems.

Notational conventions. In the following, we will often abbreviate the space and
time function values S(ni,) and T(n;,) by just S and T, respectively; likewise for other
functions of n;,. For comparing orders of growth, we will use both the standard o,
0, 2, o, w notations, and our mnemonic custom ~, 3, =, <, > notation, defined in
table .4 on p. 389.

3.4.2 Oracle results

Theorem 3.1. Relative separation of reversible and irreversible space-time
complexity classes. Let S, T be any two non-decreasing functions over the non-
negative integers. Then the following are true:

(a) If S 2 T or T x 25, then RST(S,T)? = ST(S, T)? for any self-reversible
oracle O.

(b) IfS < T < 25, and if S, T are ST-constructible, then there exists a computable,
self-reversible oracle A such that RST(S, T)# # ST(S, T)A.

Proof.

Part (a). (CasesS - T and T 7 25.) First, if S > T, then obviously we have both
RST(S, T)? = RST(T,T)° and ST(S, T)° = ST(T, T)© simply because in time T
no more than S ~ T memory cells can be accessed on a machine that performs ©(1)
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operations per time step. Similarly, if T > 2%, then RST(S, T)° = RST(S,25)°
and ST(S,T)? = ST(S, 25)9, because no computation using only S bits of memory
can run for more than 25 steps without repeating. So part (a) reduces to proving
RST(S, T)? = ST(S, T)? only for the case where S ~ T or T ~ 25.

From here, the result follows due to the existing relativizable simulations. When
S ~ T, Bennett’s simple reversible simulation technique [16] can be applied because
it takes time O(T) and space O(T). Similarly, when T ~ 25 the simulation of Lange
et al. [80] can be used because it takes time O(2°%) and space O(S). Both techniques
can be easily seen to relativize to any self-reversible oracle O. Thus, in both cases,
any irreversible machine can be simulated reversibly in O(T) and space O(S), and
therefore RST(S, T)° = ST(S, T)°.

Part (b). (Case S < T < 25.) Outline: We will construct A to be a permuta-
tion oracle that can be interpreted as specifying an infinite directed graph of nodes
with outdegree at most 1. We will also define a corresponding language-recognition
problem, which will be to report the contents of a node that lies T/S nodes down an
incompressible linear chain of nodes that have size-S identifiers, starting from a node
that is determined by the input length. The oracle will be explicitly constructed via
a diagonalization, so that for each possible reversible machine, there will be a par-
ticular input for which our oracle makes that particular reversible machine take too
much space or else get the wrong answer. In the cases where the reversible machine
takes too much space, we will prove this by equating the machine’s operation with
the “pebble game” for which Li and Vitdnyi [86] have already proven lower bounds,
and by showing that if the machine does not take too much space, then we can build
a shorter description of the chain of nodes using the machine’s small intermediate
configurations, thus contradicting our choice of an incompressible chain.

For the formal proof of part (b), we need some special definitions.

Definition 3.3. A graph oracle is a self-reversible permutation oracle with the follow-
ing property: There exists a partial function f: {0,1}* — {0,1}", called a successor
function, such that for any bit string (node) b € {0, 1}* for which f is defined, the
oracle’s permutation function maps the tape contents b to the tape contents b# f (),
and also maps b#f(b) back to b, where # is a special separator character in the ora-
cle tape alphabet. For all tape contents x not of either of these forms, the oracle’s
permutation function maps them to theinselves. See fig. 3-5.

Given that we will be working only with graph oracles, we can now specify an
oracle by specifying just the successor function f that it embodies. But before we
actually construct the special oracle A that proves our theorem, let us define, relative
to A, the language that we claim separates RST(S, T)# from ST(S, T)4.

Definition 3.4. Given two ST-constructible functions S(n), T(n), and graph oracle
A with successor runction f, we define the difficult language L(A) to be the language
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Figure 3-5: Encoding outdegree-1 directed graphs in self-reversible permutation ora-
cles. Letters stand for nodes represented as bit-strings, except for z which represents
any other bit-string not explicitly shown. The # is a special separator character.

On the left, we show an example of an outdegree-1 directed graph with bit-string
nodes abbreviated a,b,c,d,e,g. The graph function f gives the successor of each node:
f(a) =¢, f(c) =d, etc. This f is a partial function; e.g. f(d) is undefined. For each
edge in this graph, there is a corresponding pair of strings that are mapped to each
other by the self-reversible oracle. To represent the edge a — c, for example, the
permutation oracle maps tape contents “2” to “a#c” and maps “a#c” back to “a”.
Any other string z (including those for terminal nodes of the graph) is simply mapped
to itself. In this way the permutation oracle allows easily and reversibly looking up a
node’s successor, or uncomputing a node’s successor given the node and its successor.
But finding a node’s predecessor(s), given just the node itself, is designed to be hard.
Thus the oracle call resembles the reversible computation of a “one-way” invertible
function that is easy to compute, but whose inverse is difficult to compute.
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decided by the irreversible machine described by the following pseudocode:

Given input string w,
Let n = |w|, compute S = S(n), T = T(n).
Let bit-string b = 05.
Repeat the following, t = | T/S| times:
Write b on oracle tape, and call oracle.
If result is of the form b#c, with c a bit-string,
assign b « ¢ (c is f(b)),
else, quit loop early.
Accept iff b[0] = 1.

In other words, given a string of length n, construct a string of zeros of length S(n).
Treat this string as a node identifier, and use oracle queries to proceed down its chain
of successors for up to |T/S] nodes. Finally, return the first bit of the final node’s
bit-string identifier.

We will be explicitly constructing the successor function f so that it always returns
a string of the same length as its input. Given the corresponding oracle, the above
algorithm requires only space O(S) and time O(T) on on irreversible machine in
any standard serial model of computation. (Recall that S, T are ST-constructible.)
Therefore the language L(A) will be in the class ST(S, T)4.

Now, we will specify how to construct f so that the language L(A) will not be
computable by any reversible machine that takes space O(S) and time O(T). The
way we will do this is to make each of the node identifiers be a different incompressible
string. Intuition suggests that the only way to decide L(A) is to actually follow the
entire chain of nodes, to see what the final one is. But having obtained a node’s
successor, the reversible machine cannot easily get rid of its incompressible records
of the prior nodes. The graph oracle provides no convenient way to compute f~! and
find a node’s predecessor, even if the successor function f happens to be invertible.
Thus the reversible machine will tend to accumulate records of previous nodes, of
size S(n;,) each, and thus, for sufficiently long enough chains, it will take more than
a constant factor times S(ni,) space. The reversible machine could conceivably find
and uncompute predecessor nodes by searching them all exhaustively, but this would
take too much time.

The situation with this oracle langrage resembles the non-oracle problem of it-
erating a one-way function, 7.e. an invertible function whose inverse much is harder
to compute than the function itself (e.g., MD5). Public-key cryptography depends
on the (unproven, but empirically reasonable) assumption that some functions are
one-way. The same assumption might allow us to show that RST(S,T) # ST(S, T)
without an oracle, by using a one-way function instead.
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Figure 3-6: The problem graph defined by our oracle for inputs of size n. The “correct
answer” is just the first bit of the final node ¢,. If the reversible machine M, that we
are trying to foil happens to get the right answer, but never asks for the successor of
node ¢, we redefine g,_,’s successor to be a new node ¢’ having a different initial
bit.

Oracle construction. We now construct a particular oracle A and prove that
L(A) ¢ RST(S, T)A.

First, fix some standard enumeration of all reversible oracle-querying machines.
The enumeration is possible because reversible Turing machines, for example, can
be characterized by local syntactic restrictions on their transition function, as in
Lange et al., so we can enumerate ali machines and pick out the reversible ones. Let
(My,c1),(My,cz), ... be this enumeration dovetailed together with an enumeration
of the positive integers. If a given machine always runs in space O(S) and time O(T)
then it will eventually appear in the enumeration paired with a large enough ¢; so
that the machine M; takes space less than ¢; +¢;S(n;,) and time less than ¢; +¢: T (niy)
for any input length n;,.

We will construct the oracle A so that each machine M; will fail to decide L(A)
within these bounds. When considering M;, f(g) will have already been specified for
all oracle queries q asked by machines M;, M, ... , M;_, when given certain inputs of
lengths ny,ny, ... ,n;_y, respectively. Now, choose n; (henceforth called n), the input
length for which our oracle definition will foil M;, to be such that S(n) is greater than
the maximum length z of any of those earlier machines’ oracle queries. Some other
lower bounds on the size of n will be mentioned as we go along.

Later we will specify a description system s; based on M;, c;, the value of n, and
all the f(g) values defined so far (for bit-strings smaller than S(n)). The description
system will be a total computable function, i.e., there is an algorithm that computes
si(d) for any d and always halts. We will use this description system to define f(q)
for bit-strings of length S(n), as follows:

Let x be a bit-string of length T(n) that is incompressible in description system
si (to be defined as we go along). This z will be used as the sequence of size-S(n)
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node identifiers that will define our graph for inputs of size n.

Break z up into a sequence of t(n) = |T/S| bit-strings of length S(n) each; call
these our graph nodes or query strings q,...,q. We will design our description
system s; so that all the ¢;’s must be different. How? By allowing descriptions of the
form (j, k,2'), where j and k are the indices of two equal nodes q; = g%, j < k, and
z' is £ with the g, substring spliced out. The description system would be defined
to generate z from such a description by simply looking up the string ¢; in =’ and
inserting a copy of it in the kth position. The indices j and k would take O(log(T/S))
space, which is O(log T) space, which is o(S) space, whereas we are saving S(n) space
by not explicitly including the repetition of g;. Therefore as long as n is sufficiently
large, the total length of this description of z would be less than T(n). With z being
incompressible in a description system that permits such descriptions, we know that
qi,--. ,q includes no repetitions.

Now we can specify exactly how the oracle defines our problem graph for inputs
of size n, as follows. Define query string go = 03 (a string of S 0 bits). Provisionally,
set f(gj—1) = g; for all 1 < j <t. These assignments are possible since all the g;’s are
different, as we just proved. (They also mnust be different from go, but this is easy to
ensure as well.) Given these assignments, all strings of length n are in the language
L(A) if and only if ¢[0] = 1, due to the earlier definition of L(A). (Definition 3.2.)

Suppose temporarily that our oracle definition was completed by letting f remain
undefined over all strings w for which we have not yet specified f(w). (le., let
A(w) = w for these strings.) Under that assumption, simulate M;’s behavior on the
input 0*. If M; runs for more than c¢; + ¢;T steps, then it takes too much time, and
we are through addressing it. Otherwise, M; either accepts (1) or rejects (0). If this
answer is different from g,[0], then M; already fails to accept the language L(A), and
we are through with it.

Alternatively, suppose M;’s answer is correct with the given g;’s and it halts within
¢; + ¢;T steps. But now suppose that M; never asked any query dependent on f(g,—;)
during its run on input 0". That is, suppose M; never asked either query q,_, or query
q.—1#q,. In that case, let us change our definition of f(g,—;) as follows, to change the
correct answer to be the opposite of what M; gave. Let ¢’ be a bit-string whose
successor was never requested in any query by M;, and whose first bit is the opposite
of M;’s answer. To ensure such strings exist, note there are %25 bit-strings of length
S having the desired initial bit, but M; can make at most ¢; + ¢;T queries since that
is its running time. We know T < 25, so with sufficiently large n, 12°% > ¢; + T,
and we can find our node ¢'. Now, given ¢, we change f(¢—;) to be ¢'. This cannot.
possibly affect the behavior of M; since it never asked about f(q,-,). But the correct
answer is changed to the first bit of ¢, the new node number ¢ in the chain. Thus
with this new partial specification of f, M; fails to correctly decide L(A), and we can
go on to foil other machines.
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Finally, suppose M; does ask query ¢;_;. We now show how to complete the
definition of our description system s;, source of our incompressible z, so that if M;
does ask query g,_;, then it must at some point take more than c; + ¢;S space.

To do this, we show that M; can always be interpreted as following the rules of
Bennett’s reversible “pebble game,” introduced in [19] and analyzed by Li and Vitanyi

in [86].
Pebble game rules. The game is played on a linear list of nodes, which we will
identify with query strings qi,...,q,. At any time during the game some set of nodes

is pebbled. Initially, no nodes are pebbled. At any time, the playér (in our case, M;)
may, as a move in the game, change the pebbled vs. unpebbled status of node ¢, or
any node g; for which the previous node g;_; is pebbled. Only one such move may
be made at a time.

The idea of the pebbled set is that we will make it correspond to the set of
nodes that is currently “stored in memory” by M;. Pebbling or unpebbling node q;
will require querying the oracle with query string g;_; or gj—1#g;, respectively. The
goal of the pebble game is to eventually place a pebble on the final node ¢,. This
corresponds to the fact already established that M; must at some point ask query
q:—1 or the oracle can be constructed to foil it trivially.

Li and Vitanyi’s analysis of the pebble game [86] showed that no strategy can win
the game for 2% nodes or more without at some time having more than k nodes pebbled
at once. We will show that our machine M; and its space usage can be modeled using
the pebble game, so that for some sufficiently large n, the space required to store
the necessary number of pebbled nodes will exceed M;’s allowable storage capacity
¢ + ¢S.

For the oracle A as defined so far, consider the complete sequence of configurations
of M; given input 0", notated C;,C,,...,Cy, where T' < ¢; + ¢;T is M,’s total
running time, in terms of the number of primitive operations (including oracle calls)
performed.

Now, for any time point 7, 1 < 7 < T, and for any node q; in the chain of
nodes qi, ... , q, define the previous query involving q; (written prev(g;))to mean the
most recent oracle query in M;’s history before time 7 in which the query string
(the one that is present on the oracle tape at the start of the query) is one of
{aj-1,9j,9;#4;+1,¢j—1#¢;}. There may of course be no such query in which case
prev(g;) does not exist. Similarly define the next query involving g; (written next(q;))
to mean the most imminent such query in M;’s future after time 7.

Definition 3. Node g; is pebbled at time 7 iff at time 7 either (a) prev(q,) exists
and is either (al) g;1, (a2) g;, or (a3) g;#g;41, or (b) next(g;) exists and is (b1) ¢,
(b2) g;#g;41, or (b3) g;_1#g;. (Exception: the final node g, is only considered pebbled
in cases (al) and (b3).)

Note that this definition implies that g; is not pebbled iff prev(g;) = q;_i#¢; (or
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Node Number

Move sequence —

Figure 3-7: Bennett’s reversible pebble game strategy. Highlights point out the move
made at each step. (Compare with fig. 3-2(a), page 61, rotated 90°.)

A node g; can be pebbled or unpebbled only if it is node ¢, or if the previous node
gj—1 is pebbled. The strategy invented by Bennett [19], illustrated here, was shown
by Li and Vitanyi to be optimal [87] in terms of the number of pebbles required. But
even with this optimal strategy, to pebble node 2* we must at some time have more
than k nodes pebbled. In this example, we reach node 2° = 8 but must use 4 pebbles
to do so. (After pebbling node 8, we can remove all pebbles by undoing the sequence
of moves.) The fact that a constant-size supply of pebbles can only reach outwards
along the chain a constant distance is crucial to our proof.
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Figure 3-8: Triangle representation of oracle queries.

The shape and direction of the triangle is meant to evoke the fact that at the
times just before and after an oracle query, the oracle tape contains the shorter string
g; at one of the times, and the longer string q;#g;,, at the other time. The set of
triangles defines the set of pebbled nodes at any time, as illustrated in figure 3-9.

nonexistent) and next(q;) = gj_1.

Figure 3-9 illustrates the intuition behind this definition using the graphical nota-
tion introduced in fig. 3-8. This graphical notation is especially nice because it evokes
the image of playing the pebble game or running Bennett’s algorithm (compare fig. 3-9
with figs. 3-7 and 3-2).

The times at which a node is to be considered “pebbled” during a machine’s exe-
cution are indicated by the solid horizontal lines on 3-9. These times are determined,
according to definition 3 above, solely by the arrangement of triangles (representing
oracle queries, see fig. 3-8) on the chart. Each vertex of a triangle generates a line
of pebbled times for the corresponding node, extending horizontally away from the
triangle unti) it hits another triangle. Query string 0 is never considered pebbled
because it is not considered to be a node.

Let p denote the number of distinct nodes out of ¢,...,q, that are pebbled at
time 7. We now lower bound the size of C;, i.e. M;’s space usage at time 7.

Lemma 2. Space to pebble p nodes. |C,| > %pS.

FProof. Suppose C, were no larger than %pS bits. Then we can show that
(the sequence of all g;’s) is compressible to a shorter description d which we will
now specify. Our description system s; will be defined to process descriptions of the
required form.

First, note that for each node g; that is pebbled at time 7, that node is pebbled



78 CHAPTER 3. REVERSIBLE COMPUTING THEORY

|
4 i C

& d

53

wn a
21

[~

51 , b

Ooo- A ___IN____________] L]

Time — T

Figure 3-9: Visualizing the definition of the set of pebbled nodes. The times at which
a node is pebbled (indicated by solid horizontal lines on the chart) are determined, by
definition, solely by the identities and timing of oracle queries and the corresponding
arrangement of triangles (see fig. 3-8) on the chart. Each vertex of a triangle generates
a line of pebbled times for the corresponding node, extending horizontally away from
the triangle until it encounters another triangle. (Except query string 0 is never
pebbled, because it is not considered to be a node.)

The above example shows a pattern of queries similar to the one that would occur
if one tried to apply Bennett’s [19] optimal pebble game strategy. (Compare with
figs. 3-7 and 3-2.)

Node 2 is considered pebbled at time (a) both because of the previous and next
queries (triangles) involving ncde 2. Node 1 is not pebbled at times (b) because the
previous and next queries are qo#4q; and g respectively. Node 4 is pebbled at all times
after (c) because even though there is no next query involving node 4, the previous
query involving node 4 exists and is of the right form (g3). Node 3 is pebbled at time
(d) because although the previous query (e) is of the wrong form (g2#4¢s), the next
query is okay.

Query (e) does not change the set of pebbled nodes and so is not considered to
be a move in the pebble game. All the other queries are considered to be pebbling or
unpebbling moves in the pebble game, depending on the direction of the corresponding
triangle.

In the machine configuration C; at time 7, nodes 2, 3, and 4 are pebbled. But note
that the query string for node 2 can be found by simulating the machine backwards
from time 7 until query (e), and reading g, off of the oracle tape. And if g is given, we
can continue simulating backwards until we get to time (c), and read g4 off the oracle
tape as well. The ability to perform this sort of simulation, for any arrangement of
triangles, either forwards or backwards in time as needed to find out more than a
constant number of the pebbled nodes is what makes our incompressibility argument
work.
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either because of the previous query involving g;, because of the next query involving
g;, or both. Therefore, either at least %p nodes are pebbled because of their previous
query, or at least %p nodes are pebbled because of their next query. Let D be a
direction (forwards or backwards) from time 7 in which one can find queries causing
h > 1p nodes to be pebbled.

We now specify the shorter description d that describes z. It will contain an
explicit description of C;, which by our assumption is no longer than }pS. It will
also specify the direction D and contain a concatenation of all the g;’s that are not
pebbled because of queries in direction D. (Space: (¢t —h)S.) For each of the h nodes
g; that are pebbled because of a query in direction D, the description d will contain
the node index j and an integer Ar; giving the number of steps from step 7 to the
time of the query. Also we include a short tag k; indicating which of the 3 possible
cases of queries causes the node to be pebbled. Each of the indices j takes space
O(logt) < log T < S, and each Ar; takes space O(log T) < S. The tag is constant
size. Thus for sufficiently large n, all h of the (j, A7;, k;) tuples together take less
than i—,hS space. Total space so far: less than tS. If tS < T, then z will contain some
additional bits beyond the concatenation of ¢,q; . ..q;, in which case d includes those
extra bits as well. The total length of d will still be less than T = |z|.

We now demonstrate that the description d is sufficient to reconstruct z, and give
an algorithm for doing so. The function computed by this algorithm teils how our
description system s will handle descriptions of the form outlined above.

The algorithm will work by simulating M;’s operation in direction D starting from
configuration C;, and reading the identifiers of pebbled nodes from M;’s simulated
oracle tape as it proceeds. We can figure out which oracle queries correspond to which
nodes by referring to the stored times A7; and tags k;. Once we have extracted the
identifiers of all nodes pebbled in direction D, we print all the nodes out in the proper
order.

As an example, refer again to fig. 3-9. In the machine configuration marked at
time 7, nodes 2, 3, and 4 are pebbled. But note that the query string for node 2
can be found by simulating the machine backwards from time 7 until query (e), and
reading g, off of the oracle tape. And if ¢; is known, we can continue simulating
backwards until we get to time (c), and read g4 off the oracle tape as well. The ability
to perform this sort of simulation, for any arrangement of triangles, either forwards
or backwards in time as needed to find out at least half of the pebbled nodes is what
makes our incompressibility argument work. The algorithm is described and verified
in more detail in the appendix.

Given d, the algorithm produces z, and with n chosen large enough, the length
of the description will be smaller than z itself, contradicting the assumption of z's
incompressibility relative to s. Therefore for these sufficiently large n, all configura-
tions in which p nodes are pebbled must actually be larger than %pS. This completes
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the proof of lemma 2. B

Now, given the definition of the set of pebbled nodes from earlier (defn. 3), it is
easy to see how M;’s execution history can be interpreted as the playing of a pebble
game. Whenever M; performs a query g; and node g;;, was not already pebbled
immediately prior to this query, we say that M; is pebbling node q;;, as a move in
the pebble game. Similarly, whenever M; performs a query g;#g;+1 and node g;4, is
not pebbled immediately after this query, we say that M; is unpebbling node gq;,.
All other oracle queries and computations by M; are considered as pauses between
pebble game moves of these two forms. For example, in fig. 3-9, query (e) (the first
occurrence of g,#g¢; is not considered a move i the pebble game, since it doesn’t
change the set of pebbled nodes as defined by definition 3.

It is obvious that under the above interpretation, all moves must obey the main
pebble game rule, i.e. that the pebbled status of node g; can only change if j = 1 or if
node g;_; is pebbled during the change. The move is a query, and the presence of the
query means the node g;_; is pebbled both before and after the query, by definition
3, unless j = 1; qo is not considered to be a node.

To show that no nodes are initially pebbled is a only a little bit harder. Suppose
that some node g; was pebbled in M;’s initial configuration. Then a shorter descrip-
tion of z (for sufficiently large n) can be given as (j, A7j,z'), where z' is £ with g,
spliced out. This description could be processed via simulation of M; to produce z in
the same way as in lemma 2, except that this time, the starting configuration C can
be produced directly from the known values of M; and n, and need not be explicitly
included in the description. Cf course the description system s needs to be able to
process descriptions of this form. Then the incompressibility of x in s shows that the
assumption that g; is initially pebbled is inconsistent.

Thus M; exactly obeys all the rules of the Bennett pebble game. Now, Li and
Vitanyi have shown [86] that any strategy for the pebble game that eventually pebbles
a node at or beyond node 2¥ must at some time have at least k + 1 nodes pebbled at
once. So let us simply choose n large enough so that t(n) > 2* for some k > 4(c; + 1),
and also so that S > ¢;. Then at times 7 when p is maximum, M;’s space usage is
|Cr| > $pS > 3kS > (ci +1)S > ¢; +¢S.

The above discussion establishes that machine M; takes more than space ¢; + ¢;S
if it correctly decides membership in L(A) for inputs of length n; = n and takes only
time ¢; + ¢; T, so long as the oracle A is consistent with the definition above. Since
machine M;’s behavior on the input 0" only depends on the values of the successor
function f(b) for bit-strings b up to a certain size (call it 2), we are free to extend the
oracle definition to similarly foil machine M, by picking n;,; so that S(n;,) > z. If
one continues the oracle definition process in this fashion for further M;’s ad infinitum,
then for the resulting oracle, it will be the case that for any M; and constant c; in
the entire infinite enumeration, the machine will either get the wrong answer or take
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more than time ¢; + ¢; T or space ¢; + ¢;5 on input 0™. Thus, no reversible machine
can actually decide L(A) in time O(T) and space O(S), and so L(A) ¢ RST(S, T)4.

Note that this entire oracle construction, as described, is computable. If we are
given procedures for computing S(n) and T(n), we can write an effective procedure
that, given any finite oracle query, returns A’s response to the query. The details of
the oracle construction algorithm follow directly from the above definition of A, but
would be too tedious to present here.

This concludes our proof of theorem 3.1.

O

Note that in the above proof, we used the fact that the number of pebbles required
to get to the final node grows larger than any constant as n increases. But the actual
rate of growth can be used as well, to give us an interesting lower bound.

Corollary 1. Lower bound on space for linear-time relativizable reversible simula-
tion of irreversible machines. For all ST-constructible S, T and computable S’ such
that S < T < 25 and S' < Slog(T/S), there exists a computable, self-reversible oracle
A such that RST(S', T)4 # ST(S, T)A.

Proof. Essentially the same as for Theorem 1 part (b), but with $' in place of
S in appropriate places. In the last part of the proof, M; is shown to take more than
¢ + ¢;S' space by using Lemma 2 together with the fact that p > |lg|T/S]| pebbles
are required to reach the final node. [J

This result implies that any general linear-time simulation of irreversible machines
by reversible ones that is relativizable with respect to all self-reversible oracles must.
take space £2(Slog(T/S)).

The most space-efficient linear-time reversible simulation technique that is cur-
rently known was provided by Bennett ([19], p. 770), and analyzed by Levine and
Sherman [84] to take space O(S(T/S)!/(0-5818(T/5)) Bennett’s simulation can be easily
seen to work with all self-reversible oracles, so it gives a relativizable upper bound
on space. There is a gap between it and our lower bound, due to the fact that the
space-optimal pebble-game strategy referred to in our proof takes more than linear
time in the number of nodes. A lower bound on the number of pebbles used by linear
time pebble game strategies would allow us to expand our lower bound on space,
hopefully to converge with the existing upper bound.

3.4.3 Non-relativized separation

We now explain how the same type of proof can be applied to show a non-relativized
separation of RST(S, T) and ST(S, T) in certain cases, when inputs are accessed in
a specialized way that is similar to an oracle query.
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Input framework. Machine inputs will be provided in the form of a random-access
read-only memory I, which may consist of 2° b-bit words for any integer b > 0. The
length of this input may be considered to be n(b) = b2° bits; let b(n) be the inverse of
this function. The machine will have a special input access tape which is unbounded
in one direction, initially empty, and is used for revers<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>