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Abstract

We consider the problem of recovering a sequence of vectors_,, for which
the increments;, — x;_, areSy-sparse (withd), typically smaller tharb,), based
on linear measurementg, = Ay + ek)szl, whereA,, ande;, denote the mea-
surement matrix and noise, respectively. Assuming egclbeys the restricted
isometry property (RIP) of a certain order—depending omsg—we show that
in the absence of noise a convex program, which minimizesvsighted sum
of the ¢;-norm of successive differences subject to the linear nreasent con-
straints, recovers the sequer{eg ), exactly This is an interesting result be-
cause this convex program is equivalent to a standard c@sipessensing prob-
lem with a highly-structured aggregate measurement matrigh does not satisfy
the RIP requirements in the standard sense, and yet we cava&xact recov-
ery. In the presence of bounded noise, we propose a quadigiionstrained
convex program for recovery and derive bounds on the reagri&in error of the
sequence. We supplement our theoretical analysis withlatroos and an ap-
plication to real video data. These further support thedigliof the proposed
approach for acquisition and recovery of signals with twaeying sparsity.

1 Introduction

In the field of theoretical signal processing, compressivesig (CS) has arguably been one of the
major developments of the past decade. This claim is supgdantpart by the deluge of research
efforts (see for example Rice University’s CS repositorly {fhich has followed the inception of
this field [2, 3, 4]. CS considers the problem of acquiring aacbvering signals that are sparse
(or compressible) in a given basis using non-adaptive fine@asurements, at a rate smaller than
what the Shannon-Nyquist theorem would require. The woykJ2erived conditions under which
a sparse signal can be recoveemdéctlyfrom a small set of non-adaptive linear measurements.
In [3], the authors propose a recovery algorithm for the aafsmeasurements contaminated by
bounded noise. They show that this algorithm is stable, ihatvithin a constant of the noise
tolerance. Recovery of these sparse or compressible signa¢rformed using convex optimization
techniques.

The classic CS setting does not take into account the steyctug. temporal or spatial, of the
underlying high-dimensional sparse signals of interastetent years, the attention has shifted to
formulations which incorporate the signal structure ifite €S framework. A number of problems
and applications of interest deal with time-varying signahich may not only be sparse at any
given instant, but may also exhibit sparse changes fromrastarit to the next. For example, a video



of a natural scene consists of a sequence of natural imagem(essible signals) which exhibits
sparse changes from one frame to the next. It is thus realsotwabope that one would be able to
get away with far fewer measurements than prescribed byergional CS theory to acquire and
recover such time-varying signals as videos. The problemneadvering signals with time-varying
sparsity has been referred to in the literature as dynamicAQ8imber ofempirically-motivated
algorithms to solve the dynamic CS problem have been prahasg. [5, 6]. To our knowledge,
no recovery guarantees have been proved for these algsritivitich typically assume that the
support of the signal and/or the amplitudes of the coeffisiehange smoothly with time. In [5],
for instance, the authors propose message-passing algarior tracking and smoothing of signals
with time-varying sparsity. Simulation results show th@estiority of the algorithms compared to
one based on applying conventional CS principles at each ifistant. Dynamic CS algorithms
have potential applications to video processing [7], estiom of sources of brain activity from
MEG time-series [8], medical imaging [7], and estimatiortiofe-varying networks [9].

To the best of our knowledge, the dynamic CS problem has regtived rigorous, theoretical
scrutiny. In this paper, we develop rigorous results foraiyit CS both in the absence and in
the presence of noise. More specifically, in the absenceisénwe show that one caxactlyre-
cover a sequenc(a:k)szo of vectors, for which the increments, — x;_; areSi-sparse, based on
linear measurements, = Ay, and under certain regularity conditions a#y)%_,, by solving a
convex program which minimizes the weighted sum of th@orms of successive differences. In
the presence of noise, we derive error bounds for a quadlgticonstrained convex program for
recovery of the sequenéey,)%_.

In the following section, we formulate the problem of int&rand introduce our notation. In Sec-
tion 3, we present our main theoretical results, which wepkment with simulated experiments
and an application to real video data in Section 4. In thiefatection, we introduce probability-of-
recovery surfaces for the dynamic CS problem, which geizer#tie traditional recovery curves of
CS. We give concluding remarks in Section 5.

2 Problem Formulation and Notation

We denote the support of a vectere R” by supgz) = {j : z; # 0}. We say that a vector

x € RP is S-sparse ifi|z||, < S, where||z||, := |supdx)|. We consider the problem of recovering
a sequencexk)fzo of R? vectors such that; — x;_1 is Si-sparse based on linear measurements
of the formy, = Arxp + er. Here, A, € R™"**P ¢, € R™ andy, € R™ denote the measurement
matrix, measurement noise, and the observation vectgectsely. Typically,S, < ni < p,
which accounts for the compressive nature of the measursmieor convenience, we let, be the

RP vector of all zeros.

For the rest of our treatment, it will be useful to introduoceng notation. We will be dealing with
sequences (of sets, matrices, vectors), as such we letdbekrdenote the:™ element of any such
sequence. Lef be the set of indice$l, 2, --- ,p}. For eachk, we denote by{ax; : j € J}, the
columns of the matriXd;, and by.7. the Hilbert space spanned by these vectors.

For two matricesA; € R™**P andA; € R™2*P, ny < ni, we say thatd, C A; if the rows of A,
are distinct and each row of; coincides with a row of4;.

We say that the matrid € R"*? satisfies the restricted isometry property (RIP) or orsiéfi; for
all S-sparser € RP, we have

(1= 8s) llalf3 < [|Az]l; < (1+85) [|ll;, (1)
whereds € (0, 1) is the smallest constant for which Equation 1 is satisfied [2]
Consider the following convex optimization programs

min k-l

K
[lep — x
E _— s.t. = Agzy, k=12,--- K. P1
T1,@2, 0 TR v/ Sk Yk kLk ( )

K
. llor — 2p—1(1
min g —— st Ny — Arzille <€, k=1,2,--- K. (P2)
k=1 V'Sk

T1,T2, , TK



What theoretical guarantees can we provide on the perfarenaithe above programs for recovery
of sequences of signals with sparse increments, resplydtibie absence (P1) and in the presence
(P2) of noise?

3 Theoretical Results

We first present a lemma giving sufficient conditions for thejueness of sequences of vectors with
sparse increments given linear measurements in the absénoése. Then, we prove a theorem
which shows that, by strengthening the conditions of thisn&, program (P1) caexactlyrecover
every sequence of vectors with sparse increments. Finatlylerive error bounds for program (P2)
in the context of recovery of sequences of vectors with gpiaigements in the presence of noise.

Lemma 1 (Uniqueness of Sequences of Vectors with Sparse Increinents

SupposeéSk)szo is such thatSy = 0, and for eachk, S, > 1. Let A, satisfy the RIP of orde2S).
Letz;, € R? supported o7, C J be such thaf|z), — xx—1||, < Sk, fork =1,2,--- , K. Suppose
To = ) without loss of generality (w.l.0.g.). Then, givép andy, = Axxi, the sequence of sets
(Ty)E_,, and consequently the sequence of coefficients®_,, can be reconstructed uniquely.

Proof. For brevity, and w.l.0.g., we prove the lemma f@r= 2. We prove that there is a unique
choice ofz; andz, such that|z; — zol|, < S1, [|z2 — 21]|, < S2 and obeying; = A1z, yo =
Asx2. We proceed by contradiction , and assume that there €xigt =, anda}, # z2 supported
onT}] andT;, respectively, such that = Az, = A2, yo = Asxy = Agah, ||2) — x0l[, < S,
and||zf — z!||, < Sa2. Then||A;(z1 — z7)||, = 0. Using the lower bound in the RIP ¢f; and the
fact thatdas, < 1, this leads td|z; — :c’1||§ =0, i.e. 1 = 2, thus contradicting our assumption
thatz, # 2. Now consider the case ef andz). We have

0= As(zy — xh) = As(z2 — 11 + 11 — xh) = As(x2 — 11 + 7} — 7). @)

Using the lower bound in the RIP ofi; and the fact thatdes, < 1, this leads to
[[z2 — 21 + 2} —_:z:’2||§ =0, i.e. zo —x1 = x4 — z}, which impliesz}, = x5, thus contradict-
ing our assumption that, # 2. O

As in Candeés and Tao’s work [2], this lemma only suggeststwiay be possible in terms of
recovery of(z;, ), through a combinatorial, brute-force approach. By impgsinicter conditions

on (825, )% |, we can recovefz; )X, by solving a convex program. This is summarized in the
Pk k=1 k=1
following theorem.

Theorem 2 (Exact Recovery in the Absence of Noise)

Let(z)X_ , € R? be a sequence @ vectors such that, for eadh ||z, — z;_1]|, < Si for some
Sk < p/2. Suppose that the measurements= A,z, € R"* are given, such that, < p, 41 D

Ao, Ay = Asfork =3, K and(A)E_, satisfiesis, + dag, + 035, < 1fork=1,2--- K.

Then, the sequence)X_, is the unique minimizer to the program (P1).

Proof. As before, we consider the cake= 2. The proof easily generalizes to the case of arbitrary
K. We can re-write the program as follows:

min 12l N |2 — 21]],

where we have used the fact tht D As: Asxs — A1x1 = AaTs — A1Z1, Which impliesAds (zy —
ZC1) = AQ(J_TQ — jl)-

s.t. Al.CCl = Alzfl, AQ(«CCQ - xl) - AQ(:EQ - jl)v (3)

Letz; andx} be the solutions to the above program. Tet= supfz;) andAT, = Supdzs — Z1).
Assume Ty | < S; and|ATy| < Ss.

Key element of the proof: The key element of the proof is the existence of vectgrg, sat-
isfying the exact reconstruction property (ERP) [10, 11{.has been shown in [10] that given
s, + d2s, + 935, < 1fork=1,2:



1. (u1,a1;) = sgn(xy ;), forall j € Ty, and(ua, az;) = sgn(xs ;), forall j € AT,

2. [(u1,a1;)| < 1,forall j € Ty, and|{usg, as;)| < 1,forall j € ATy.

Sincez; andzy, — z; are feasible, we have

E3IR " 125 —2ill, _ 17l | 172 — &l )
V/S1 V/So RV \/So
IEIR |23 — 21l 1 _ . 1 .
+ = T1,+ (21 —T1,45) +—F—= T 5
\/S_l \/5—2 \/S_l Z | 1,5 ( 1,5 1-,J)| \/S_l Z | 1,J|
JeT: JETY
1 1
t o= Y may—dt (a3, -2 — (T2 — ) = Y lab, — 2
V52 ;5T V82 5
1 1
> —= > ST ) (T + (0] — F1y) + —= Y @ (u1, an))
\/Sl jGTlT\’_>/ \/Sl JETE
ul,a1;
1 _ _ — _ * * — =
+ 75 > SgN(Ta; — F15)(Tay — 1y + (3 — @} j — (T2 — T15)))
jenn, ————
(uz2,a2;)
1
t+ = Z (x5, — o7 ;){u2, az;)
V52 JEATS
1 1
= =D Il o= D al oy = Y o jaay)
51 jeT 51 jET JET
Alz’{ AT
1 1
t o= > Ty = Ful+ = (ug, Y (@5 — 2t )as; — Y (T2 — T j)az;)
52 JEAT, V52 jeJ JEAT,
Az (x5 —x7) Az (T2—71)
|Zally |, %2 — 2]y )
v/ 51 \/So

This implies that all of the inequalities in the derivatidyoge must in fact be equalities. In particular,

1 * 1 * *
\/—S_lz |21l + 75 > ez, el

JETE JEATS

1 \ 1 ) )
= NEN Z L1, (ui,a1;) + —\/5_2 Z (xlj — 551,3')<U2,a2j>

JETY JEATS

IN

1 1
— oy | {ur, a14)| +— xy - — 27 | [(ug, as;)].
\/S_l Z' 1,J||< 1 1J>| \/5_2 Z | 2,9 1,j||< 2 2.7>|

jeTs pe JEATS pe

Thereforex] ; = 0Vj € Tf, andz; ; — 27 ; = 0Vj € ATy, Using the lower bounds in the RIP of
A; andA, leads to '

0=[lAr(z] —21)ll, > (1 —02s,)|[2] — Zall, (6)
0=[Az(zy — a7 — (T2 —T))ll; = (1= d2s,) [[ay — a7 — (T2 = T1)l],, (@)
so thatr] = z1, andz) = z2. Unigqueness follows from simple convexity arguments. O

A few remarks are in order. First, Theorem 2 effectively assthat the program (P1) is equivalent
to sequentially solving (i.e. fot = 1,2, - - - , K) the following program, starting with the vector
of all zeros iNR?:

leionk_xZ—lul s.l. yk_Akxlt—l :Ak(fk—$2—1)a k= 1,2, 7K' (8)



Second, it is interesting and surprising that Theorem 2 dbold, if one naively applies standard
CS principles to our problem. To see this, if wedgt = x; — 251, then program (P1) becomes

K
: wll,
. =A 9
IR Dy el ®)
wherew = (wf, - ,wh ) € REXP y = (y},--+ yk) € R>i-1 ™ andA is given by
Ay 0 0
Ay | Ay |- 0
A= . . .
AK AK AK

As K grows large, the columns of become increasingly correlated or coherent, which irveliyi
means thatl would be far from satisfying RIP of any order. Yet, we get éxacovery. This is an
important reminder that the RIP is a sufficient, but not neasscondition for recovery.

Third, the assumption that; D A,, Ay = A for k = 3,--- , K makes practical sense as it
allows one to avoid the prohibitive storage and computafi@ost of generating several distinct
measurement matrices. Note that if a randérsatisfies the RIP of some order adg O A,, then
A, also satisfies the RIP (of lower order).

Lastly, the key advantage of dynamic CS recovery (P1) is thaller number of measurements
required compared to the classical approach [2] which waeolde K separate/;-minimization
problems. For eack = 1,---, K, one would requirex;; > CSj log(p/Sk) measurements for
dynamic recovery, compared tg. > C'S log(p/S;) for classical recovery. Due to the hypothesis
of S < S1 < p, i.e., the sparse increments are small, we conclude that #re less number of
measurements required for dynamic CS.

We now move to the case where the measurements are pertwribedibded noise. More specif-
ically, we derive error bounds for a quadratically-conisied convex program for recovery of se-
guences of vectors with sparse increments in the presencssH.

Theorem 3 (Conditionally Stable Recovery in Presence of Naise)

Let (zx)E_, € RP be as stated in Theorem 2, amg be the vector of all zeros iR”. Suppose that
the measuremenis, = Aiz, + e, € R™ are given such thafiex||, < ¢, and (Ak)szl satisfy
d35, + 3045, < 2, for eachk. Let(z})5_, be the solution to the program (P2). Finally, lef :=
(xx —xf_y) — (Tg — Tp—1), fork = 1,2,--- | K, with the convention that, := z§ := 0 € RP.
Then, we have:

K K K
Z”th2§Z2CSk6k+ZCSk AkZhg (10)
k=1 k=1 k=2 <k 9

where, foreachk =1,2,--- , K, Cg, is only a function obss, andéag, .

Proof sketch.Candes et al.’s proof for stable recovery in the presendsahded noise relies on
the so-called tube and cone constraints [3]. Our proof foedfam 3 relies on generalization of
these two constraints. We omit some of the algebraic deghilse proof as they can be filled in by
following the proof of [3] for the time-invariant case.

Generalized tube constraint: Letwy, = Z — T—1, w) = o}, —x;_,, fork =1,--- K. The
generalized tube constraints are obtained using a simpléecapon of the triangle inequality:
[[A1 (w1 —w])ll, < 2a (11)
[|Az(we —w3)|ly, < 2ez + ||A2h1]|, and more generally, (12)
|Ak(@r —willly, < 26+ |[Ax D he|| ,fork=2,--- K. (13)
1<k 2




Generalized cone constraint: To obtain a generalization of the cone constraint in [3], vwed
to account for the fact that the incremefits — x;._1)%_, (may) have different support sizes. The
resulting generalized cone constraint is as follows:

g hearill, g Ilhan 14)
= VO o Vo ’
whereAT), = supdzx — Zx—1). The proof proceeds along the lines of that presented inafish,
Cs 1+4/1/3 O

= T o35, "
V1754Sk*\/ 7

Equation (10) is an implicit bound: the second term in theyiradity reflects the fact that, for a
givenk, the errorz; — z;, depends on previous errors. Our bound proves a form of yathiat

is conditionalon the stability of previous estimates.The appeal of dynd®3 comes from the fact
that one may pick the constands;, in the bound above to be much smaller that those from the
corresponding conventional CS bound [3] (Equation (10hauit the second term). This ensures
that the errors do not propagate in an unbounded manner. @gebtain sharper bounds using
techniques as in [12]. In the next section, we use simulationcompare explicitly the average
mean-squared error (MSE) of conventional CS and our alyurit

4 Experiments/Simulations

We ran a series of numerical experiments to assess theyatfilihe convex programs introduced
to recover signals with time-varying sparsity. In the aleseof noise, the experiments result in
probability-of-recovery surfaces for the dynamic CS peob] which generalize the traditional re-
covery curves of CS. In the presence of noise, we comparenaigr@S to conventional CS in terms
of their reconstruction error as a function of signal-taseeratio (SNR). We also show an applica-
tion to real video data. All optimization problems were smwsingCVX, a package for specifying
and solving convex programs [13, 14].

4.1 Simulated noiseless data
Experimental set-up:

1. Selectny, fork =1,--- , K, andp, so that thed,’s aren, x p matrices; samplel; with
independent Gaussian entries, foe 1,2, --- | K.

2. SelectS; = [s1 - p], s1 € (0,1),andSy, = [s2 - p], s2 € (0,1),fork=2,--- | K.

3. Selectl’ of sizeS; uniformly at random and set; ; = 1 for all j € 7, and0O otherwise;
fork=2,---, K, selectAT), = supdZ; — Zx—1) of size Sy uniformly at random and set
Zpj — Tp—1,; = Lforall j € AT}, and0 otherwise.

4. Makeyy, = AyZy, fork = 1,2, | K; solve the program (P1) to obtajm; )X _, .
5. Compardz;)X , to (x})K .
6. Repeat 00 times for each sy, s2).

We compare dynamic CS to conventional CS applied indepdlydaheachk. Figure 1 shows
results forn, = 100, p = 200, andK = 2. We can infer the expected behavior for larger values of
K from the casd{ = 2 and from the theory developed above (see remarks below).

The probability of recovery for conventional CS ison the set{(s1,s2) : s1 + (K — 1)sg <

s*}, and0 on its complement, wherg* is the sparsity level at which a phase transition occurs in
the conventional CS problem [2]. The figure shows that, wihenmeasurement matricels,, for

k =2,---, K are derived from4; as assumed in Theorem 1, dynamic CS (DCS 1) outperforms
conventional CS (CCS). However, when we used different oreasent matrices (DCS 2), we see
that there is an asymmetry betwegrands,, which is not predicted by our Theorem 1. Intuitively,
this is because for smail, the program (P1) operates in a regime where we have not @y o
but multiple measurements to recover a given sparse vet®r [Program (P1) is equivalent to
sequential CS. Therefore, we expect the behavior of coinreadtCS to persist for largek’.
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Figure 1: Probability of recovery maps as a functiospindss.

4.2 Simulated noisy data

The experimental set-up differs slightly from the one oftibéseless case. In Step 2, we fix constant
values forS; andSy, k = 2,--- , K. Moreover, in Step 4, we formy, = Agxy + e, where thee,'s

are drawn uniformly if—«, «). In Step 6, we repeat the experiméfd times for eachv. In our
experiments, we used; = 100, S; = 5, ns = 20, S, = 1,fork = 2,--- | K, andp = 200. We
report results folk’ = 2 and X' = 10, and choose values afresulting in SNRs in the randg, 30]

dB, inincrements of dB.

Figure 2 displays the average MSE givenity- log,,(+ fo:l ||z — x;||§) of conventional CS
and dynamic CS as a function of SNR. The Figure shows thatrihgoged algorithm outperforms
conventional CS, and is robust to noise.

Average MSE, K =2 Average MSE, K =10
4 6
—— Conventional CS

2 —— Dynamic CS , 4
~ 0 1 —~ 2
S S
g 2 g 0
172} 172}
z ., =

-6 -4

-8 -6

5 10 15 20 25 30 5 10 15 20 25 30

SNR (dB) SNR (dB)

Figure 2: Average MSE as a function of SNR.

4.3 Real video data

We consider the problem of recovering the fitStframes of a real video using our dynamic CS
algorithm, and conventional CS applied to each frame séggraln both cases, we assume the
absence of noise. We use a video portraying a close-up of awamgaged in a telephonic conver-
sation [16]. The video has a frame ratel@f H z and a total ofi50 frames, each of siz&€76 x 144.
Due to computational constraints, we downsampled eacheftayra factor o3 in each dimension.
We obtained measurements in the wavelet domain by perfgraniwo-level decomposition of each
frame using Daubechieswavelet.

= * 12
In Table 1, we report the negative of the normalized MSE giwer 10 - Ioglo(l—l0 ,10:1 %)
2
in dB for various(n1, n2) measurement pairsf = no, fork = 3,--- ,10). Larger numbers indi-

cate better reconstruction accuracy. The table showsftira]l (n1,n2) considered, dynamic CS
outperforms conventional CS. The average performancegagsin,, n2) pairs is approximately
7 dB. Interestingly, for sufficient number of measurements aigit CS improves as the video pro-
gresses. We observed this phenomenon in the sspaligime of the simulations. Figure 3 shows
the reconstructed frames highlighted in Table 1. The fraraesnstructed using dynamic CS are
more appealing visually than their conventional CS coyags.



Table 1: Normalized negated MSE di®B for frames 1, 5, 10, and average over all 10 frames. Each
frame consist of 3000 pixels. Each row of the table corresponds to a diffe(ent n.) pair (refer
to text). Larger numbers indicate better reconstructiaugacy.

Frame 1 Frame 5 Frame 10 || Avg. (10 frames)
CCS|DCS|[CCS|DCS| CCS]DCS| CCS] DCS
(2400,2400)| 27.8| 27.8 || 285 | 38 28 | 411 28.2 35
(2000,2000)| 22.4 | 224 || 223 | 31.3 || 229 | 356 || 22.8 28.9
(2400,1200)| 27.8| 27.8 || 15.2| 24.2 || 14.8| 254 || 15.9 25.5
(1600,1600)| 19.1] 19.1|| 18.9| 25 | 19.8] 29.7 || 19.1 24.1
(1600,800) || 19.2| 19.2 || 8.4 | 176 | 9.3 | 16.7| 8.4 17.8

Frame 1 Frame 5 Frame 10

Original

CCS

DCS

Figure 3: Comparison of frames reconstructed using dyn&8iand conventional C%p1, ns) =
(2000, 2000).

5 Discussion

In this paper, we proved rigorous guarantees for convexrprog for recovery of sequences of vec-
tors with sparse increments, both in the absence and in #sepce of noise. Our formulation of
the dynamic CS problem is more general than the empiricaltiyivated solutions proposed in the
literature, e.g. [5, 6]. Indeed, we only require thatis sparse, as well as tliecrements Therefore,
there may exist values df such thatr; is not a sparse vector. We supplemented our theoretical
analysis with simulation experiments and an applicatiore&d video data. In the noiseless case, we
introduced probability-of-recovery surfaces which gatiee traditional CS recovery curves. The
recovery surface showed that dynamic CS significantly atdpas conventional CS, especially for
large sequences (lard€). In the noisy case, simulations showed that dynamic CSaalgzerforms
conventional CS for SNR values ranging frénto 30 dB. Our results on real video data demon-
strated that dynamic CS outperforms conventional CS ingafwisual appeal of the reconstructed
frames, and by an average MSE gapyébB.
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