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A self-consistent de:criptionlof the free electron laser instability
is developed for a relativistic electron beam with uniform density propa-
gating through a helical wiggler field §O = -gcoskozéx - ﬁsinkozéy. The
analysis is carried out for the class of solutions to the Vliasov-Maxwell
equations described by fb(:,g,t) = nOS(PX)G(Py)G(z,pZ,t) where P, and Py
are the exact canonical m:umzenta invariants perpendicular to the beam pro-
pagation direction. The Linearized Vlasov-Maxwell equations lead to an
exact matrix dispersion r=iation which is valid for perturbations about
general beam equilibrium G;(p,) and includes coupling to arbitrary harmonic
number (n) of the fundameutal wiggler wavenumber kgp. No a priori restric-
tion is made to low beam Fensity (as measured by w;/czké) or small wiggler
amplitude (as measured byzﬁc/cko = e§/§mc2ko). Moreover, no assumption
is made that any off-diagezal elements in the matrix dispersion relation are
negligibly small. A detziled numerical analysis of the exact dispersion
relation is presented for zhe case of a cold electron beam described by
Gg(pz) = 8(pz - PQ)- It Is shown that the instability bandwidth increases
rapidly with increasing wizgler amplitude ac/cko. Moreover, except for
very modest values of wigzler amplitude, it is shown that the growth rate
calculated from an approximate version of the dispersion relation can be
in substantial error for large values of (k + nkq) /kq. Preliminary

estimates of the influenc2 of beam thermal effects are also presented.




1. INTRODUCTION

In recent years there have been several theoret:ic:all—5 and exper-
iment:al6“8 investigations of the free electron laser which generates
coherent electromagnetic radiation using an intense relativistic electron
beam as an energy source. With few exéeptions, theoretical studies of the
free electron laser instability are based on highly simplified models
which often neglect beam kinetic effects and coupling to higher harmonics
of the fundamental wiggler wavenumber k;, or make use of very idealized
approximations in analyzing the matrix dispersion relation. The purpose
of the present paper is to develop. a fully self-consistent description of
the free electron laser instability based on the Vlasov-Maxwell equatioms.
The final matrix dispersion relation [Eq. (45)] includes all beam kinetic
effects and coupling to arbitrary harmonic number (n) of the fundamental
wiggler wavenumber ko. Moreover, the final matrix dispersion relation
[Eq. (45) ] makes no a priori assumption that any off-diagonal elements are

negligibly small.

The present analysis assumes a relativistic electron beam with uniform
cross-section propagating in the z-direction through a helical wiggler field

described by [Eq. (2)]

B0 = -Bcos kgzé - B sin koze
" X vy

where B = const. is the field amplitude and AO = 2m/kg is the wiggler
wavelength. Moreover, we consider the class of exact solutioms to the

Vlasov-Maxwell equations described by [Eq. (12)]5

fb(z,;\)‘,t) = nOS(Px)G(Py)G(z,pz,t),




where n, = const., Px and Py are the exact canonical momenta invariants

[Eqs. (6) and (7)], and spatial variations are assumed to be one-dimensional.
A detailed analysis of the linearized Vlasov-Maxwell equations (Secs. 2.B
and 3.A) leads to the matrix dispersion relation [Eq. (45)]
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where w, = eB/ymc is the relativistic cyclotron frequency, w; = 4ﬂn0e /Ym
, . = 2., .
is the relativistic plasma frequency-squared, ymc~ is the characteristic

electron energy, oq is a constant of order unity [Eq.(43)], the suscepti-

(2)

bilities xi}}w) and X,

(w) are defined in Eqs. (37) and (38), Di(m) is the
longitudinal (electrostatic) dielectric function defined in Eq. (39), and
Dz+l(w) are the transverse (electromagnetic) dielectric functions defingd
ingqs. (40) and (41). The striking feature of Eq. (45) is that the dis-
persion relation is valid for arbitrary harmonic number n. (No a priori
assumption has been made that n = +1). Moreover, the effective wavenumber
variables that occur in the various factors in Eq. (45) are k + nko,
k + (n+l)kO and k + (n—l)ko. In addition, Eq. (45) describes stability
behavior for perturbations about general beam equilibrium distribution
Go(pz), and no a priori restriction has been made to low beam density (as
measured by wp/czkg) or small wiggler amplitude (as measured by &c/cko).
Apart from the linearization assumption, no approximations have been made

in deriving Eq. (45). For example, we have not assumed a priori that

Di(m) ~ 0 and therefore neglected the corresponding term on the right-hand




side of Eq. (45). The latter point is very important. In Secs. 3.B and
3.C we present a detailed numerical analysis of the exact dispersion
relation [Eq. (45)] for the case of a cold electron beam described by
GO(pz) = G(pz - po). The exact stability results are then compared with
the approximate results obtained from Eq. (45) by assuming at the outset

that Dﬁ(w) Vv 0 and DE_ (w) ~» 0, which gives the reference dispersion

1
relation [Eq. (46)]
L T 1 0 (D
(o]
DD ) = 5 Tag X/l .

For sufficiently large wiggler amplitude (as measured by wc/cko), it
is shown in Sec. 3.C that the growth rate w, = Imw obtained from the
reference dispersion relation [Eq.(46)] can be in substantial error

for large values of (k + nko)/ko.

For completeness, and to orient the reader, it is useful to summarize

here the interaction wavenumbers and frequencies pertinent to the free

9,10

electron laser instability. We consider a cold electron beam (Secs.

3.B and 3.C) and look for simultaneous solutions to Di(w) = 0 and
Dn_l(w) = 0. Shown in Fig. 1 is a first-quadrant plot (w > 0 and

k + nk, > 0) of

0
w = (k+ nkO)Vb-i wp/Y
and
_ 2 2 241/2
w = [k + nk, ko) + wp]
versus k + nk,. Note that there are generally four intersection points.

0

Solving the above equations simultaneously, the upshifted wavenumbers




L
(intersections with k + nko > kO) are given by

w 1 1/2 )
1+ 2-—3-:——] + v8, =Bk,
cko ng ‘J — '"b cko 0

T
r _ =2
(etnk )T = ¥ kO[}+Bb

and the Jownshifted wavenumbers (intersections with k+nkq < kp) are given by

-

+ =2 i i v l. ]!'/‘ w
(ebmk )5 = ¥k |1-8, 11 % ) e L) +378 Py
\ cko Y8y, J J b ck0 0
- _ 2y—1/2 . 5
where vy = (1 - Bb) and Bb = Vb/c. In the limit of low beam density

with w;/czké << 1, ;28g , the intersection wavenumbers can be approximated by

(k+nko)§ = 8 )¥k, = K/ (1-8,),
and
(k+nkO:§ = - Y, = ko/(1+8,).

For sufficiently large ?, the upshifted wavenumber (k+nk0)i = (l+8b)§2k0
can correspond to very short wavelengths and is the intersection region

of interest for the free electron laser instability.”’

Depending on the
value of beam density (w;/czké) and wiggler amplitude (Gc/cko), however,
it is important to note that the dispersion relation (45) may also support

instability in the long wavelength intersection region corresponding to

(k + nko)j. (See Sec. 3.C and Fig. 3).




2. THEORETICAL MODEL AND ASSUMPTIONS

A. General Theoretical Model

The present analysis assumes a relativistic electron beam with
uniform cross section propagating in the z-direction. The beam density
is assumed to be sufficiently small that equilibrium space charge

effects are negligibly small with

E"=0 (1)
Moreover, the electron beam propagates through a helical wiggler
magnetic field described by 1,2,5
O=—§cosk ze -Bsink . ze (2)
% 0" "x 0"vy ?

where B=const. is the field amplitude, A0=2n/k0 is the wavelength,
and %x and éy are unit Cartesian vectors in the plane perpendicular
to the propagation direction. The vector potential associated

with Eq. (2) is given by
O - 3 . -
A _(ﬁ/ko)COSka%x+(B/kO)Slnka$y . (3)

It is also assumed that the beam density and current are sufficiently

small that the equilibrium self magnetic field can be neglected in

comparison with EO. 11
We consider perturbations in which the spatial variations are one-

dimensional in nature with 9/ x=0=0 /8y, and 3 /3 z generally non-zero.

Introducing the perturbed potentials,

S¢(z,t)

and

Gé(%,t)=6Ax(z,t)sx+6Ay(z,t)$y R




the electromagnetic field perturbations GE and 6% can be expressed in

the Coulomb gauge as

__ 3%¢ R R I 5
SE(x,t) v (z,t:)gZ Y éAX(z,t)gx ey GAy(z,t)gy , (4)
and
§B=- 3= SA (z,t)e + 2— 6A (z,t)s (5)
RT3z PRy IR 5z PP MRy

where 6E=—V6¢-(l/c)(3/3t)6é and 6B=VxSA. In the present geometry,
there are two exact single-particle invariants in the combined
equilibrium and perturbed field configuration. These are the canonical

momenta, Px and Py’ transverse to the beam propagation direction, i.e.,

=y - & 20,y_ .8 =

PX"Px c AX(Z) o 5Ax(z,t) const., (6)
- - 2 ,0,y_ & -

Py‘Py p Ay(z) c 6Ay(z,t)—const., (7

0, \_,z 0, \_,2 .
where Ax(z)—(B/ko)cosk z and Ay(z) (B/k0)51nkoz [Eq. (3)], and Py

0
and py are the transverse mechanical momenta.

The potential perturbations &¢(z,t), 6Ax(z,t) and 6Ay(z,t) are

determined self-consistently from the Maxwell equations

2 2
1 % 3 __ b4me [ 3 -0
(_2'_'7 - —7) AT e f p v (Epfy) @
¢ 3t oz

2 2
e .o
¢ttt ez y Y

32 3 0

;? 6¢=4ne[d P(fb‘fb) > (10)

where fg(z,g) is the equilibrium (3/3t=0) beam distribution, and fb(z,g,t)
in general solves the nonlinear Vlasov equation
0
P @ R

3 9 _ SN - =
s + v, 7 e(d%+ s ] 3E gfb(z,g,t) 0. (1)

In Eqs. (8)-(11), the particle velocity y and momentum p are related by




m){ﬂz/(]_4_22/111262 1/2.

Moreover, m is the electron rest mass, -e is the
electron charge, and c is the speed of light in vacuo.

For present purposes, we examine the class of exact solutions to

Eq. (11) of the form?

fb(z,g,t)=n06(Px)5(Py)G(z,pz,t) , (12)

where n0=const., and Px and Py are the exact invariants defined in

Eqs. (6) and (7). Note from Eq. (12) that the effective transverse
motion of the beam electrons is ''cold". Substituting Eq. (12) into

Eq. (11) and making use of Eqs. (6) and (7), we find that Eq. (12)
solves Eq. (11) exactly provided G(z,pz,t) evolves according to the one-

dimensional Vlasov equation
(v, Lo e, nm, v
] ] apz VA

where ﬁ is defined by

ﬁ(z,t)=mic2—e6¢(z,t) . (14)
In Eq. (14),
2., 24, 22 2,0 22,0 2,1/2
Y pme = [m"c +c pz+e (Ax+6Ax) +e (Ay+§Ay) s (15)

is the particle energy for Px=O=Py. Moreover, substituting Eq. (12)
into Egs. (8)-(11), the equations describing the nonlinear evolution of

the potential perturbations can be expressed as

2
2 2 4mn e dp dp
]
}3___:2_ - 3_2_ 8a_=- (2) ((A?{+6Ax)f—~—z- G-—Aﬁf -z GOJ ; (16)
¢ 9dt 0z mc Yr Y
2
2 2 4mn e dp dp
—17 9——2- - §—2)5A = - 02 ((AO+6A )f o G—Aof —= GO} . (17)
¢ at dz y mc YooYl o
82
—5 5¢=-4nenofdpz[c—co] , (18)

9z




where YTmc2 is defined in Eq. (15), Go(pz) is the equilibrium (3/5t =0)
beam distribution, G(z,p,,t) solves the nonlinear Vlasov equation (13),

and

2 2

Ymc2=(m2c4+c pz+e2§/k2 1/2

O (19)

is the energy in the absence of perturbations (GAX=O=6Ay). In obtaining

0,2 52,2

Eq. (19) from Eq. (15), use has been made of (Ag)2+(A )“=B /ko=const.

y
(Eq. (3)].

Within the context of the present model, Egqs. (13) and (16)-(18)
describeﬂthe exact nonlinear evolution of the system for perturbations
about the general beam equilibrigm GO(pz). In this regard, we note from

Eqs. (13) and (14) that the axial force Fz on an electron in the phase

space (z,pz) is given by

2
s et 3 0 0 2 2., 38¢
F=- 33 B — 3z (28,54 424 84 +(8A )7+ (8A ) T+ 28 . (20)
Y e

That is, the effective ponderomotive potential is proportional to

0 0 2 2
2Ax6Ax+2Ay6Ay+(6Ax) +(6Ay) .

B. Linearization Approximation

For pufposes of the stability analysis, we now consider the
linearized version of Eqs. (13) and (16)-(18). In this regard, it is

useful to introduce the dimensionless potentials defined by

5$= %é% ’ (21)
ymc

~ e ,

54,= = (6A2iSA) , (22)
yme

~0 e 0 0 &c

e T (AFTA)T g explrikyz) (23)

Yme 0

In Egs. (21)-(23), fmc2=const. denotes the characteristic mean energy
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of the electron beam, and
5 =28 (24)

is the relativistic cyclotron frequency associated with the wiggler
field amplitude B. Making use of Egqs. (21)-(24), the perturbed force
sz [Eq. (20)] and inverse relativistic mass factor Y;l [Eq. (15)] can be

approximated by

E)

a2 fle Y3 : 3 i A1 2 ss
§F =-yme {2 ckg ¥ 0% [exp(lkoz)éA_+exp( iky2z) 64, ] = 6¢} , (25)
and ii &C ) )
i _1_1 3-Ef— [exp(1ka)6A_+exp(—1ka)6A+] , (26)
Yo Y 2y 70

where Ymc2=(m2c4+c2 2

+ B /k )l/2 [Eq. (19)]. Substituting Egs. (25)
and (26) into Egs. (13) and (16)-(18), and combining Eqs. (16) and (17)
to give equations for 6AxiidA , the linearized equations for GG(z,pz,t),

6A_(z,t) and 6¢(z,t) can be expressed as

(27)

y 3 . I
%-3; [exp(ikoz)GA_+exp(—1koz)6A+]— 3z 6¢} 37, G (p ),

2

V]
59 = £ fdp 5 , (28)

[ad

- %__ [exp(ikoz)GA_+exp(‘ikOZ)52\+]

dp
-3 z
xy J——Y3 Go})’ (29)
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2
2 2 . w
l_.?——_i__—)éA =—-—P.
2 2 2 2
¢ 9Jt c

(30)

M

~

w
- - v 86 _1_c ; A _ ~ 123[dp
+ Cko exp ( 1koz) {yfdpz . > cko [exp(lkoz)éA_+exp( 1koz)6A+]Y f z Go%)-

In Eqs. (28)-(30),

47n e
wie —2 (31)
P In

is the relativistic plasma frequency-squared, and 6&, 6Ai and &c are
defined in Eqs. (21), (22), and (24). 1In the limit of zero wiggler
amplitude (&C+O), we note that Eqs. (27)~(30) give the usual

uncoupled electromagnetic and electrostatic dispersion relatiomns for

perturbations about a one-dimensional relativistic plasma equilibrium.
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3. STABILITY PROPERTIES

A. General Dispersion Relation

For the equilibrium configuration considered here, the electrons

. , 0__ _ 0_ner _ 0_,0
are constrained to move on surfaces with Px—px (e/c)Ax--O—py (e/c)Ay-Ey
and ymc2=(m2c4+c2p§+ﬁz/kg)l/2=const. This implies that the axial
momentum p, is a constant in the equilibrium field configuration.
Moreover, the corresponding electron trajectory that passes
through (z,pz) at time t'=t is given by

p
Voo 22 v
z'=z+ = (t. t) ,
(32)
]
pzszs
where pz/ym=vz is the axial velocity.
Without loss of generality we expand the field perturbations
in Eqs. (27)-(30) according to
6$=Z¢nexp[i(k+nk0)z—imt] y
n
exp(ikoz)6A_=§Ah_lexp[i(k+nk0)z-iwt] s (33)

. N : -
exp(—1k02)6A+—§Ah+l¢xp[1(k+nk0)z iwt] ,

where ) =2n/ko is the periodicity length of the wiggler field. Here

0
we assume that k is real and Imw > 0, corresponding to temporal growth.
A completely parallel treatment can be developed for spatially growing
perturbations (Imk < 0) and real oscillation frequency w. Substituting

Eq. (33) into Eq. (27) and integrating along characteristics, we obtain

for the perturbed distribution function 5G(Z,Pz,t)
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- 225
8§G=ymc 5;— Zl(k+nk0)exp[1(k+nko)z]
zn
1 %% i - +
X[Z cko Y (An—l+An+l)—¢n (34)
t
xf dt" exp (4 (kmke v, (£ -t)-int'] .
Integrating with respect to t' in Eq. (34) with Imw > O gives
- 9 BGO (k+nk0)
§G=ymc —~ exp[i(k+nk, )z-iwt]
apz Lo (k+nko)vz 0
(35)

1% ¥y = uF
¢ 2 (An—l+An+l)] ’

where v _=p_/ym and ymc2=(m2c4+c2pi+ﬁ2/kg)l/2-

From Eqs. (28)-(30) for the field perturbations, it is evident
that integrals of the form wsjdpzéc and wi?fdpzécly are required.
Therefore, comparing with Eq. (35), it is convenient to introduce the

effective susceptibilities xéJ)(m) defined by

(k+nk )3G./3p
0, - 22 07"70" "Fz
Xn (w)=yme ijdpz w—(k+nk0)vz ’ (36)
Xél)(w)=§mc2w2;f dpz (k+nk0)BGO/8pz 379
Py m—(k+nk0)v
. z
dp_ (k+nk.)3G./3p
(2), (.= 22-2(""z 07”0 "=z
Xn (w)=yme “pY jYZ w-(k+nk0)vz ' (38)

For future notational convenience we also introduce the longitudinal

and transverse dielectric functions defined by

Dﬁ(m)=c2(k+nk0)2+xéo)(w) , (39)
D:+l(m)=w2—c2[k+(n+l)k0]2~alw§ s (40)

DI (@)=u’=c2{k+(n=D)k,1%-a (41)

w2
1p°’

i
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where
_r dp,
al=yj ~ GO(pz) (42)
and
dp
o3 2 \
aq=Y f Y3 Go(p,) (43)

for future reference. Note that the constants al and a3 are of order
unity whenever G0 is strongly peaked around Y=v.
We substitute Eqs. (33) and (35) into the field equatioms (28)-(30)

and make use of the definitions in Egs. (36)f(43). After some straight-

: . . . + -
forward algebra, we obtain the matrix equation relating An+l’ An—l’ and ¢n

2 .2 .
T .1 % 2, (2) 1 % 2, (2) I (1;\ //+
Par1t 2 722 (@yo*x ") » 3 2,2 (@t ") s ck, *n / Antl
0 0
52 a2 a \
1 Y% 2 (@) To1 % 2 (@) ¢ (D ’ - .
2 2,2 (aqu+x;"7)s D %3 2.2 (aqug )s ck, *n Ap-1 |70
0 0 \ |
\ e Y% W ool A /
\ cko n ’ cko n ’ n/

(44)
The condition for a nontrivial solution to Eg. (44) is that the determinant

of the matrix vanish. This gives the dispersion relation

~2
“c
(D

DDl (@)D (@)= 5 2 T (D] ()]

2
0 (45)

A0 @120k )l P @13

which determines the complex eigenfrequency w in terms of k+nk0, ko, wi,
and w2/c2k2
0°
The striking feature of Eq. (45) is that it is valid for arbitrary
harmonic number n. (No a priori assumption has been made that n=%*1.)

Moreover, the effective wavenumber variable k'=k+nk0 occurs in every

factor in Eq. (45). In addition, Eq. (45) describes stability behavior
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for general equilibrium distribution Go(pz), and no a priori restriction
has been made to low beam density (as measured by wi/czkg) or small wiggler
amplitude (as measured by £L/Ck0)' Since Eq. (45) contains no approxima-
tions apart from the linearization approximation, we refer to Eq. (45)
as the full dispersion relation (FDR).

In circumstances where the beam density is low and the wiggler amplitude
is very small, Eq. (45) supports solutions near D (w) 0, D (w) 0
and D (w) 0. 1In this case,it is instructive to simplify Eq. (45)
near the simultaneous zeroes of D (w)=0 and D (w) 0. (Here we assume
T

Dn+l#0.) Equation (45) then reduces to the simplified approximate form
~2

w
Pl = 5% P wi?. (46)
0

ck
_In the subsequent analysis, we refer to Eq. (46) as the reference dis-

N

persion relation (RDR).

B. Dispersion Relation for a Cold Electron Beam

As a first application, we consider the dispersion relation (45)

for the case of a cold beam equilibrium described by
Gy(p)=8(p =g » . (47)

where Pg is related to the mean energy ;mc2 by

Tnc?=(n c‘*+c2pg+ 252 /i 2y1/2 (48)

It it straightforward to show from Egs. (47) and (48) that fdpzygco(pz)=;n
so that

a1=a3=l s (49)
follows from Eqs. (42) and (43). Substituting Eq. (47) into Egs. (36)-

(41), the effective susceptibilities and dielectric functions for a

S—
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cold electron beam can be expressed as

(0) By 2 w217
X, (w)==c” (ltnk ) 2 5 (50)
[w—(k+nkO)Vb]
[wB, —c(k+nk,)]
xél)(w)=c(k+nko)w2 b 0 5 s (51)
P [u=(ktnk,)V, ]
2
[2wB, —c (k+nk,.) (1+8°) ]
xiz)(w)=c(k+nko)w2 b 0 > b , (52)
P [w= (ktnk) V, ]
w2 /5
Dﬁ(w)=c2(k+nk0)2 1- 2 =1 (53)
[w-(k+nkO)Vb]
D3+l(m)=w2—c2[k+(n+l)k0]2—w§ , (54)
Dg_l(m)=w2—c2[k+(n—l)k0]2—w§ : (55)

In Egqs. (50)-(55), V =p0/§m is the beam velocity, and By 1is defined by

b
Bb=Vb/c. Substituting Egs. (50)-(55) into Eq. (45) and carefully
combining and simplifying terms on the right-hand side, the full dis-

persion relation (FDR) for the free electron laser instability can be

expressed as

2 2,-2 2 2 2 2
{[w—(k+nk0)Vb] -mp/y R [(k+nk0)—k0] ‘Qp}

2 2 2 2

-C k+nk .)+k -
x{w [( 0) O] wp}

;2
% 2.2 2 222 2
== 53 wp[w c” (kinky) "-c7kg wp] (56)

c ko

x{[w‘(k+nk0)Vb]2+2Vb(k+nk0)[w-(k+nk0)vb]

2 2,-2 2
-¢” (ktnkg) “/y -y }.

Note the exact cancellations that have occurred on the right-hand side of
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Eq. (56). Making use «of ;-2=l—8§, the full dispersion relation (FDR)

in Eq. (56) can be expressed in the equivalent form

([ Getmicg) v, 122771 f0%-c? Gtk ) -k 12-a2)

x{wz—cz[(k+nk0)+k0]2-w§}

~2 (57)

ul

c 2, 2 2 2 2.2 2

czkz wp[m cr(k+nka) -c ko-wP]
0

<lu?-c? (etnkg) “-u’)

Moreover, substituting Eqs. (50), (51), (53), and (54) into Eq. (46),
the reference dispersion relatioq (RDR), which is approximately wvalid

for low beam density ané very low wiggler amplitude, can be expressed as

{[w-(k+nk0)Vb]2-w§/;2}{mz-cz[(k+nko)—ko]2—w§}

(58).
[08, -¢ (ictnk) 12

=1
2

“2
) w4
2.2 7p 2

<“ky [w-(ktnk )V, ]

Approximating [w-(k+nko)Vb]2=m§/§2 in the denominator on the right-hand

side of Eq. (57), the reference dispersion relation (RDR) becomes

2 2,-2 2 2 2 2
{{w—(k+nk0)Vb] -wp/Y Hw"-c [(k+nk0)-k0] —@p
2 (39)
@
-2
=-% 2c2 wzy [wBb—c(k+nko)]2 .
c ko P

C. Numerical Analysis of Dispersion Relation

In this section, we summarize the results of numerical studies
of the reference dispersion relation (59) and the full dispersion
relation (57) for a broad range of dimensionless system parameters

N 2, 2.2 -
wc/cko, wp/c ko, and v.
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Typical results are summarized in Fig. 2 for y=2 and moderate values

2kg=0.4). For

of wiggler amplitude (&c/ck0=0.5) and beam density (wg/c
such large beam density and wiggler amplitude, we note from Eig. 2(a)
that the growth rate wi=Imm obtained from the reference dispersion
relation (59) can be in substantial error for large values of (k+nk0)/ko.
This follows since the dashed curve in Fig. 2(a) [Eq. (59)] deviates
significantly from the solid curve [Eq. (57)] for large values of
(k+nk0)/k0. On the other hand, from Fig. 2(b), both the reference
dispersion relation (59) and full dispersion relation (57) give very
similar values of the real oscillation frequency wr=Rem. Moreover, the
oscillation frequency w_ is linegrly proportional to (k+nko) over the
entire range of unstable wavenumbers. We also note from Eig. 2(a) that
the maximum growth assumes a relatively large value, [wi]maxz0.3 cko,
for (& _/ck wZ/czkz)s(O.S, 0.4).

¢"7707 Tp 0

To contrast with Fig. 2, we show in Fig. 3 a plot of normalized
growth rate wi/ck0 versus (k+nk0)/k0 for y=2, moderate beam density
(ws/c2k§=0.4), and small wiggler amplitude (&c/ck0=0.l). In this case
the reference dispersion relation (59) and full dispersion relation
(57) give nearly identical growth rate curves. Note also from Fig. 3
that there are two unstable wavenumber bands [corresponding to two

: , . L
intersection regions of the w versus k+nk. curves from Dn(w) = 0 and

0
DT (w)=0] for (& /ck mz/c2k2)=(0.l 0.4). Moreover, the maximum
n-1 c"T0 Tp 0 ? ?
growth rate assumes a relatively small value, [w.] =0.06 ck,, for
i'max 0

the small value of wiggler amplitude chosen in Fig. 3.

Shown in Fig. 4, for y=2 and small wiggler amplitude (Qc/ck0=0.l),
is a plot of normalized growth rate mi/ckO versus (k+nk0)/ko [Eq. (57)]

for several values of normalized beam density mg/czkg. An important

feature of Fig. 4 is the fact that the instability bandwidth remains
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reasonably narrow for mi/czkg in the range 0.1 < wﬁ/czkg < 1. This is in

contrast to Fig. 5 where wi/ck0 is plotted versus (k+nk0)/k0 [Eq. (57)

=0.5), and values of wi/czk

O N e

for y=2, moderate wiggler amplitude (ch/ckO
identical to Fig. 4. The rapid increase of instability bandwidth
with normalized wiggler amplitude G)C/ckO is also evident from Fig. 6
where the growth rate is plotted for y=2, mi/c2k3=0.4 and several
values of G)c/ck0 [Eq. (57)].

We now examine the case where y is large. Figures 7-11 show

plots of normalized growth rate wi/ck versus (k+nk0)/kO for

0
y=50 and a wide range of values of normalized wiggler amplitude
('bc/ckO and beam density wi/czkg. In all cases, we note from
Figs. 7-11 that the instability béndwidth is large. This is in contrast
with the low—; case where the bandwidth is relatively narrow for small
values of &)c/ck0 (Fig. 3). We also find (Figs. 7 and 8) that the
growth rates determined from the reference dispersion relation (59)
and the full dispersion relation (57) are different for both small
wiggler amplitude (Fig. 8) and moderate wiggler amplitude (Fig. 7).
This is in contrast with the low-y case where the reference dispersion
relation (59) gives a good estimate of the growth rate for small values
of G)C/ck0 (Fig. 3). Comparing Figs. 4 and 9, for small wiggler
amplitude (&C/cko=0.l), it is evident that the growth rate is considerably -
larger for large values of Y. On the other hand, comparing Figs. 5 and
10, for moderate wiggler amplitude (Qc/ck0=0.5), the growth rate is only
slightly larger for large values of Y.

Finally, for (k+nk0)2V§ >> mi/?z, we expect the strongest interaction

between the longitudinal and transverse modes, Dﬁ(w)=0 and Dg_l(w)=0,

to occur for the critical value of wavenumber given in Sec. 1, i.e., for

(k+nk0)u=(1+Bb)~?2k0 . (60)
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For Bb=1 and y=50, Eq. (60) gives (k+nk0)s=5000 k For y=50, we note

0
from Figs. 7-11 that the maximum growth rate indeed occurs for (k+nko)/k025000.

D. Influence of Beam Thermal Effects on Stability Properties

The main purpose of this paper is to develop a stability formalism
for general beam equilibrium distribution Go(pz) (Seecs. 2.A-3.A) and to
study detailed stability properties for the case of a cgld electron beam
with Go(pz)=6(pz-p0) (Secs. 3.B and 3.C). For completeness, however,
in this section we make some preliminary estimates of the influence of
beam thermal effects on stability behavior. As a simple example, we

assume a beam equilibrium distribution of the form

1 : (61)

8
Co(pp)= 7 (o —p.) 242
P,7Pg 0

where AO is the characteristic momentum spread about the mean momentum Pg-

We further assume that the momentum spread A, is small in comparison

0

with the dirqcted momentum pg, i.e.,

A (62)

0o ““Po -

Making use of Eqs. (36), (39), (61), and (62), the longitudinal dielectric

function can be approximated by

w_ /Yy
Dﬁ(m)=c2(k+nk0)2 1- P - 2} (63)
[m-(k+nkO)Vb+1|k+nk0|Aolym]
for AO << py- In Eq. (63), ;mc2=(m2c4+c2pg+e2ﬁ2/kg)l/2 is the mean

energy [Eq. (48)], and V =p0/;m is the directed beam velocity. We

b
note from Eq. (63) that the fundamental longitudinal mode obtained from

Dﬁ(w)=0 is heavily Landau damped by thermal effects whenever
2 Ag f;

(ko)™ 33> 27 - (o4)

Yy n Y
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It is useful to express the effective momentum spread Ao in
terms of an equivalent energy spread Ay. From Ymcz—(m2c4+c2 2+ 2B /k )l/2
we estimate Ay=p0A0/;m2c2, or equivalently Ay/;=8bA0/§mc. Equation (64)

can then be expressed as

2
w
o2 (k) 2 oy /) 2>8 £, (65)
0 b -2
Y
for AO << Pg» ©OF equivalently for Ay/y << 82 If we estimate the wave-

number of interest for the free electron laser instability by (k+nk0)=

(1+8,)7 %k, [Eq. (60)], then Eq. (65) gives

82 w2
(av/1? > —2— 16 2 (66)
(1+8,) <k,

Equation (66) gives an estimate of the energy spread required for heavy
Landau damping of the fundamental longitudinal mode obtained from Di(w)=0.
Whenever Eq. (66) is satisfied, the waves are heavily damped (linearly)
and the free electron laser instability does not occur. Equation (66):
constitutes a very stringent requirement on energy spread. For example,
for y=5, Bb=l and wi/czkg=0.5, Eq. (66) predicts stabilization for

(Ay/?)2 > SXIO—6, i.e., for a fractional energy spread Ay/y of about 0.3%.

From a practical point of view, for given values of Y and energy

spread Ay, the reverse of the inequality in Eq.'(66) can be used to
determine the range of normalized beam density wi/czké required for

the free electron laser instability to occur, i.e.,

2 2
w _ o, (1+8.)
—2—2 5 > e avin? —————zb : (67)
ko Bb

Whenever Eq. (67) is satisfied, it is important to note that the inequality
in Eq. (65) will provide stabilization of thg instability growth rate
for sufficiently large values of wavenumber (k+nk0). This implies a
natural tendency of beam thermal effects to limit the instability bandwidth,

which should be contrasted with the cold-beam stability results in Sec. 3.C.
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4, CONCLUSIONS .t

In this paper, we have developed a fully self-consistent description
of the free electron laser instability based on the Vlasov-Maxwell equa-
tions. As summarized in Sec. 2, the present analysis assumes a relativis-
tic electron beam with uniform cross section propagating through a helical
wiggler field By = - Bcos koz 'é\\,x - Bsin koz E,Y [Eq.(2)]. Moreover, we
consider the class of exact solutions to the Vlasov-Maxwell equations
described by fb(z,g,t) = noé(Px)é(Py)G(z,pz,t) [Eq. (12)]. A detailed
analysis of the linearized Vlasov-Maxwell equations (Secs. 2.B and 3.A)
leads to the exact matrix dispersion relation in Eq. (45). The striking
feature of Eq. (45) is that the dispersion relation is valid for arbitrary
harmonic number n. Moreover, Eq; (45) describes stability behavior for
perturbations about general beam equilibrium distribution Go(pz), and
no a priori restriction has been made to low beam density (as measured
by w;/czké) or small wiggler amplitude (as measured by ac/cko). In Secs.
3.B and 3.C we present a detailed numerical analysis of the full disper-
sion relation [Eq.(57)] and the reference dispersion relation [Eq.(59)]
for the case of a cold electron beam described by Go(pz) = G(pz-po).
Except for very modest values of wiggler amplituae, it is shown in Sec. 3.C
that the growth rate w, = Imw obtained from the reference dispersion
relation can be in substantial error for large values of (k4-nk0)/k0.

An important feature of the stability analysis in Sec. 3.C is the fact
that the instability bandwidth increases rapidly with increasing ac/cko.
Moreover, the instability bandwidth is considerably larger for large

values of Y (Figs. 7 = 11) than for moderate values of y (Figs. 2 - 6).
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Finally, in Sec. 3.D, we have made preliminary estimates of the influence
of beam thermal effects on stability behavior. In particular, assuming
that GO(pz) is given by the Lorentzian distribution in Eq.(61l), it is
found that waves with wavenumber (kﬁ-nko) = (l%—Bb)§2k0 are heavily Landau
damped whenever the fractional energy spread Ay/Y exceeds the rather

modest value in Eq. (66).
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FIGURE CAPTIONS

Intersection of dispersion curves Di(w) = 0 and D:—l(w) = 0.

Plot of normalized (a) growth rate wi/koc and (b) real oscillation
frequency wr/koc versus normalized wavenumber (k+~nk0)/k0

for vy = 2, ac/cko = 0.5 and w;/czké = 0.4. Solid curves are
obtained from full dispersion relation [Eq. (57)]. Dashed

curves are obtained from reference dispersion relation [Eq. (59)].

Plot of normalized growth rate wi/koc versus (k+-nk0)/k0 for

Y =2, Gc/cko = 0.1 and w;/czké = 0.4 obtained from Eq. (57)

(solid curves) and Eq. (59) (dashed curves).

Plot of normalized growth rate wi/koc versus (ki—nko)/ko obtained

from Eq. (57) for vy = 2, &C/ckO = (0,1 and several values of

2

2,2
wp/c ko

Plot of normalized growth rate wi/koc versus (k-l-nko)/kO obtained
from Eq. (57) for vy = 2, a)c/ck0 = 0,5 and several values of
G;/czké.
Plot of normalized growth rate wi/koc v;rsus (k4—nk0)/ko obtained.
from Eq. (57) for vy = 2, w;/czké = 0.4 and several values of
ac/cko. '

Plot of normalized growth rate wi/koc versus (k4—nk0)/k0 for

Yy = 50, Gc/cko = 0.5 and w;/czké = 0.4 obtained from Eq. (57)
(solid curve) and Eq. (59) (dashed curve),




Fig. 8.

Fig. 9.

Fig. 10.

Fig. 11.
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Plot of normalized growth rate wi/koc versus (k*i-nko)/k0
for v = 50, ac/ckO = 0.1 and w;/czké = 0,4 obtained from

Eq. (57) (solid curve) and Eq. (59) (dashed curve).

Plot of normalized growth rate wi/koc versus (k*—nko)/ko

obtained from Eq. (57) for y = 50, c?)c/ck0 = 0.1 and several

2

2.2
values of mp/c ko

Plot of normalized growth rate wi/koc versus (k%-nko)/ko

obtained from Eq. (57) for y = 50, Gc/ckO = 0,5 and several

values of w?/c?k2.
P 0

Plot of normalized growth rate wi/koc versus (k4-nk0)/k0
obtained from Eq. (57) for y = 50, w;/czkg = 0,4 and several

values of wc/cko.




27

wox:t: 2(Oqu+y) | P(Oqu+y) P(%yu+y)
a— (u+y) / / \
_ | "
_ ! _
_ i .._
| _ |
| | .
_ _
_ _
|
! !
_
! |
o
|
| |
“ Taoo +~on_nov_:+5~o_u3
£790 -9 (Oyusy) = | ¢/l
|

£ /790 + I\ (Oyuer)= @

Fig. 1



28

O% /(% u+y)

0]
_, _ B
\
\
\
\
// 0=/
: 2:=A




29

(0F4

O3%/( %% u+ )
o]

_

Fig. 2(b)



30

O /(®Nu+Y)

m_m O,
I —$00 uox
| T
HAY — — — A LPERLVEL soo
1'0 = 9% o
404 — >4




31

Ol

O/ (°%u+y)
G

_

900




32

0)4

%/ (YU + o)
0l

_ \

0o
22/ gm

1’0 =

G'0:=2%°¢ ‘2=«

|

5



33

0¢

Oy /7 (°NU+Y)

P y O dpn e _

o]
|

G'0=3%/°

70




34

- 00001

O% /(O%u +¥)

0006 0
_ _ O

|

|

|

[

/

G0 = 2°4/°0 \

140,




35

0000!

O%/ (°Nu+Yy)
0006

GO0 90y

IO

Fig. 8



36

O000I

%%/ (°Hu+y)
000G

24/

1'0
0¢G =

m

A

¢0




37 -

0000!

®% 7 (OHu+)
0006 %

10 = 29 x\

|

90




38

0000l

O /(°%u + ¥)

000S

_

1'0=

G0= 2%/

60= 2% /%

11



