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A self-consistent de.cription of the free electron laser instability

is developed for a relativistic electron beam with uniform density propa-

gating through a helical ,;iggler field B0 = -B coskz, - B sinkozey. The

analysis is carried out fzr the class of solutions to the Vlasov-Maxwell

equations described by fb*z,p,t) = no6 (Px)6(Py)G(z,pz't) where x and Py
are the exact canonical m_::enta invariants perpendicular to the beam pro-

pagation direction. The Linearized Vlasov-Maxwell equations lead to an

exact matrix dispersion rlation which is valid for perturbations about

general beam equilibrium G 2 (pz) and includes coupling to arbitrary harmonic

number (n) of the fundamemtal wiggler wavenumber k0 . No a priori restric-

tion is made to low beam iansity (as measured by w/c2 k ) or small wiggler

amplitude (as measured by sc/ck0 = eB/ymc2 k0). Moreover, no assumption

is made that any off-diagcial elements in the matrix dispersion relation are

negligibly small. A detailed numerical analysis of the exact dispersion

relation is presented for zhe case of a cold electron beam described by

GO(pz) = 6 (pz - Po)- It 's shown that the instability bandwidth increases

rapidly with increasing wfggler amplitude Wc/ck 0 . Moreover, except for

very modest values of wiggier amplitude, it is shown that the growth rate

calculated from an approx.ntate version of the dispersion relation can be

in substantial error for large values of (k + nko)/k 0 . Preliminary

estimates of the influenc2 of beam thermal effects are also presented.
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1. INTRODUCTION

In recent years there have been several theoretical 5 and exper-

6-8
imental investigations of the free electron laser which generates

coherent electromagnetic radiation using an intense relativistic electron

beam as an energy source. With few exceptions, theoretical studies of the

free electron laser instability are based on highly simplified models

which often neglect beam kinetic effects and coupling to higher harmonics

of the fundamental wiggler wavenumber k0 , or make use of very idealized

approximations in analyzing the matrix dispersion relation. The purpose

of the present paper is to develop. a fully self-consistent description of

the free electron laser instability based on the Vlasov-Maxwell equations.

The final matrix dispersion relation [Eq. (45)] includes all beam kinetic

effects and coupling to arbitrary harmonic number (n) of the fundamental

wiggler wavenumber k0 . Moreover, the final matrix dispersion relation

[Eq. (45)] makes no a priori assumption that any off-diagonal elements are

negligibly small.

The present analysis assumes a relativistic electron beam with uniform

cross-section propagating in the z-direction through a helical wiggler field

described by [Eq. (2)]

B0 = -B cos kOze - B sin kozaVx Uy

where B = const. is the field amplitude and A0 = 27r/k0 is the wiggler

wavelength. Moreover, we consider the class of exact solutions to the

Vlasov-Maxwell equations described by [Eq. (12)]5

fb(z,p,t) = n06(P )6(P)G(z,pzt),
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where n0 = const., P and P are the exact canonical momenta invariants

[Eqs. (6) and (7)], and spatial variations are assumed to be one-dimensional.

A detailed analysis of the linearized Vlasov-Maxwell equations (Secs. 2.B

and 3.A) leads to the matrix dispersion relation [Eq. (45)]

^2

DL ()DT ()DT (W) i [D T () TMD () Dn+ ()Dn- 1  c2 k 2  n+l + 1  ]
0

x I(1()]2 3 ()a + (2) )I

^ ̂  -)[ 2
2

A2 A

where Wc = eB/Ymc is the relativistic cyclotron frequency, w2 = n0e /ymC p
-2is the relativistic plasma frequency-squared, ymc is the characteristic

electron energy, a 3 is a constant of order unity [Eq.(43)], the suscepti-

bilities X ) and X(2)(w) are defined in Eqs. (37) and (38), DL(W) is then n n

longitudinal (electrostatic) dielectric function defined in Eq. (39), and

T
D +() are the transverse (electromagnetic) dielectric functions definedn+l

in Eqs. (40) and (41). The striking feature of Eq. (45) is that the dis-

persion relation is valid for arbitrary harmonic number n. (No a priori

assumption has been made that n = +1). Moreover, the effective wavenumber

variables that occur in the various factors in Eq. (45) are k + nk0 '

k + (n+l)k0 and k + (n-l)k0. In addition, Eq. (45) describes stability

behavior for perturbations about general beam equilibrium distribution

G O z), and no a priori restriction has been made to low beam density (as

measured by w /c2 k ) or small wiggler amplitude (as measured by wC/ck 0).

Apart from the linearization assumption, no approximations have been made

in deriving Eq. (45). For example, we have not assumed a priori that

D () % 0 and therefore neglected the corresponding term on the right-handn
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side of Eq. (45). The latter point is very important. In Secs. 3.B and

3.C we present a detailed numerical analysis of the exact dispersion

relation [Eq. (45)] for the case of a cold electron beam described by

G (p ) z - P0). The exact stability results are then compared with

the approximate results obtained from Eq. (45) by assuming at the outset

L T
that D () A 0 and D-_ (W) ' 0, which gives the reference dispersionn n-1

relation [Eq. (46)]

2
L T c (1)W2
n Dn 2 c 2kI n

For sufficiently large wiggler amplitude (as measured by w c/ck 0) it

is shown in Sec. 3.C that the growth rate w = Imw obtained from the

reference dispersion relation [Eq.(46)] can be in substantial error

for large values of (k + nk0) /k0 *

For completeness, and to orient the reader, it is useful to summarize

here the interaction wavenumbers and frequencies pertinent to the free

electron laser instability.9'10 We consider a cold electron beam (Secs.

3.B and 3.C) and look for simultaneous solutions to D (w) = 0 and
n

D T(w) = 0. Shown in Fig. 1 is a first-quadrant plot (w > 0 and

k + nk0 > 0) of

w (k + nk0 Vb W/Y

and

wc2 k + nk k )2 + W2 11/2
0 0 p

versus k + nk0' Note that there are generally four intersection points.

Solving the above equations simultaneously, the upshifted wavenumbers
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(intersections with k + nk0 > k 0) are given by

02 0 11/Z
(k+nk ) = Y2k0}+[ 1 + 2 p Y P k0)u 0 b ck0 Yb - bck 0

0

and the iownshif ted wavenumbers (intersections with k+nk < k ) are given by

(k+nk )+ = 2 2 k - y5 -2--k0 d 0 bk b ck 0
L.0 b j 0

where y = (1- -1/2 and Sb b/c. In the limit of low beam density

with w2/c2k2 << 1, Y2 2 , the intersection wavenumbers can be approximated by
p 0 b

(k+nk0 ) = (1+b Y2k0  = k b

and

(k+nk0  (( b)y2ko = k /(U+Sb

For sufficiently large y, the upshifted wavenumber (k+nk0)± = (+b)y 2k0

can correspond to very short wavelengths and is the intersection region

9,10
of interest for the free electron laser instability. 9 Depending on the

value of beam density (W 2 /c2k ) and wiggler amplitude (Wc/ck0), however,

it is important to note that the dispersion relation (45) may also support

instability in the long wavelength intersection region corresponding to

(k + nkO)d. (See Sec. 3.C and Fig. 3).
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2. THEORETICAL MODEL AND ASSUMPTIONS

A. General Theoretical Model

The present analysis assumes a relativistic electron beam with

uniform cross section propagating in the z-direction. The beam density

is assumed to be sufficiently small that equilibrium space charge

effects are negligibly small with

0E =0.

Moreover, the electron beam propagates through a helical wiggler

magnetic field described by 1,2,5

=-Bcosk ze -Bsink ze (2)
0 x 0 sy

where B=const. is the field amplitude, X0=27/k 0 is the wavelength,

and and e are unit Cartesian vectors in the plane perpendicular

to the propagation direction. The vector potential associated

with Eq. (2) is given by

40=(t/k0 )cosk0z x+(i/k0)sinkozk^ . (3)

It is also assumed that the beam density and current are sufficiently

small that the equilibrium self magnetic field can be neglected in

comparison with ,0 11

We consider perturbations in which the spatial variations are one-

dimensional in nature with a x=O=a/ y, and 3/az generally non-zero.

Introducing the perturbed potentials,

W$(zt)

and

6A(x,t)=6A (Z,t)^e +6A (zt)^1\ 11x ,x y IVy
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the electromagnetic field perturbations 6E and 6B can be expressed in

the Coulomb gauge as

6E(x,t)=- 3"(z,t)e - 6A (z,t)e - 6A (z,t) , (4)1. ~% 3 )ZC t x %x c 9t y

and

6B=- 2- 6A (z,t)e + 6A(z,t) , (5)
a Z y n~x ~z(5

where 6E=-V60-(l/c)(3/3t)6A and 65=Vx6A. In the present geometry,

there are two exact single-particle invariants in the combined

equilibrium and perturbed field configuration. These are the canonical

momenta, P and P , transverse to the beam propagation direction, i.e.,

P =p - -tA (z)- 6A (z,t)=const., (6)

P =p - - A (z)- - 6A (z,t)=const., (7)
y c y c y

0 0
where Ax(z)=(B/k)cosk z and A (z)=(B/k0 )sink0z [Eq. (3)], and p

and p are the transverse mechanical momenta.

The potential perturbations 6$(z,t), 6A (z,t) and 6A (zt) arex y

determined self-consistently from the Maxwell equations

'1 2 24ie/30

- 6A =- 4 fd p v (fb b

- A =- d3p v (f 0 )
Kc2at 2 az 2 Ay 7 j d P yfbfb)

a 6$=4Tre d 3P(f b-f 0 (10)

where f (z,p) is the equilibrium (3/3t=0) beam distribution, and fb(z,p,t)

in general solves the nonlinear Vlasov equation

vx (B 0+6B)
+ v -e 6E+ f fb ,,t)= . (11)

In Eqs. (8)-(11), the particle velocity v and momentum are related by
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mv=k/(+ 2 2C2) 1/2. Moreover, m is the electron rest mass, -e is the

electron charge, and c is the speed of light in vacuo.

For present purposes, we examine the class of exact solutions to

Eq. (11) of the form 5

fb(z,pt)=n0 6(Px )6(Py )G(z,pZ,t) , (12)

where n =const., and P and P are the exact invariants defined in

Eqs. (6) and (7). Note from Eq. (12) that the effective transverse

motion of the beam electrons is "cold". Substituting Eq. (12) into

Eq. (11) and making use of Eqs. (6) and (7), we find that Eq. (12)

solves Eq. (11) exactly provided G(z,pzt) evolves according to the one-

dimensional Vlasov equation

a +v - - j(z,t) G(z,pzt)=0 , (13)

where H is defined by

2
H(z,t)=yTmc -e6$(z,t) . (14)

In Eq. (14),

2=. 2 4 2 2 2 0 2 2 0 21/
YT mc -2 c +c p2+e (A +6A ) +e (A +6A )2 1/2 (15)Tz x x y -y

is the particle energy for P =O=P . Moreover, substituting Eq. (12)

into Eqs. (8)-(11), the equations describing the nonlinear evolution of

the potential perturbations can be expressed as

i 2 a2  4nedp dp
12 - 6A = - mc A +6A ) G-A G-n (16)

1 a 2  a2  4n 0e dpz dp
c a -- m-I--Y fYT6A = - 2 (A +6A ) dp G-Aj -- G , (17)
\c23t2 /z y mc2 ~ yy yT yj y

2 6=-47en0jdp.[G-G 0  , (18)
az
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where YTmc is defined in Eq. (15), GO(pz is the equilibrium (3/3t =0)

beam distribution, G(z,pz,t) solves the nonlinear Vlasov equation (13),

and

2 2 4 2 2 2- 21/2
Ymc =(m c +c p +e B/k ) (19)z 0

is the energy in the absence of perturbations (6A =0=6A ). In obtaining

Eq. (19) from Eq. (15), use has been made of (A 0)2+(A 0)2 2/k=const.

[Eq. (3)].

Within the context of the present model, Eqs. (13) and (16)-(18)

describe the exact nonlinear evolution of the system for perturbations

about the general beam equilibrium G (p). In this regard, we note from

Eqs. (13) and (14) that the axial force Fz on an electron in the phase

space (z,p z) is given by

2
F =- H=- .-[ 6A +2A06 A )2+(6A ) ]+e . (20)z z 2yTmc2 3z x x y y x y ;z

That is, the effective ponderomotive potential is proportional to

0 0 2 2
2A 6A +2A 6A +(6A ) +(6A )2
x x y y x y

B. Linearization Approximation

For purposes of the stability analysis, we now consider the

linearized version of Eqs. (13) and (16)-(18). In this regard, it is

useful to introduce the dimensionless potentials defined by

6 p 2 (21)

e m

6 = _2 (6A ±i6A ) (22)
y mc

-0 e 0 0 c
A =- (A iA ) exp(±ik z) . (23)

ymc 0

-2
In Eqs. (21)-(23), ymc =const. denotes the characteristic mean energy
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of the electron beam, and

eB (24)c ymc

is the relativistic cyclotron frequency associated with the wiggler

field amplitude B. Making use of Eqs. (21)-(24), the perturbed force

6F [Eq. (20)] and inverse relativistic mass factor yT1 [Eq. (15)] can be

approximated by

6Fz=-ymc 2 k y [exp(ik 0z)6A +exp(-ik z)6A+]- 6; (25)

and 
-2

- 1 1 c exp(ik0 z)6A_+exp(-ik0 z)6A+] , (26)

YT =(Y - 2 Y 3cp2 0 k2
0

where ymc2 2c +c2p 2+e22 2/k )1/2 Eq. (19)]. Substituting Eqs. (25)

and (26) into Eqs. (13) and (16)-(18), and combining Eqs. (16) and (17)

to give equations for 6A ±idA , the linearized equations for 6G(z,p zt),

6A (z,t) and 6 (z,t) can be expressed as

(3+ V a 6G

(27)

=Ymc2 { c [exp(ik 0 z)6A+exp(-ik0z)6A]- 6 G (p

a2 2 pz6G (28)

2 z
3z c

2 2 21 0

c 3t z c

+ exp(ik Z) fdp 6G exp(ikz)6+exp(-ik0 z)6A+c0 0 zy 2 ck0 [e 0 k05

)J 3J dp o (29)
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a' a _=- W 6^ _ p GO
c 3t 3z c

(30)

+ c exp(-ik z) Y dpZ 6 - [exp(ik0 z)6A +exp(-ik 0z)6A+y 3 G
c0 0 z 003 0

In Eqs. (28)-(30),

2 4n 0
2 0 (31)

Ym

is the relativistic plasma frequency-squared, and 60, 6A+ and c are

defined in Eqs. (21), (22), and (24). In the limit of zero wiggler

amplitude (w c+0), we note that Eqs. (27)-(30) give the usual

uncoupled electromagnetic and electrostatic dispersion relations for

perturbations about a one-dimensional relativistic plasma equilibrium.
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3. STABILITY PROPERTIES

A. General Dispersion Relation

For the equilibrium configuration considered here, the electrons

0 0 0 0
are constrained to move on surfaces with P =p -(e/c)A =O=p -(e/c)A =P

x x x y y .y
2 2 4 2 2 -2 2l/2

and ymc =(m c +c p2+B /k0 ) =const. This implies that the axial

momentum pz is a constant in the equilibrium field configuration.

Moreover, the corresponding electron trajectory that passes

through (z,p z) at time t'=t is given by

z'=z+ -(t'-t),

(32)

P'=Pz,

where pz/ym=vz is the axial velocity.

Without loss of generality we expand the field perturbations

in Eqs. (27)-(30) according to

6^=<nexp[ik+nk0 )z-iwt]
n

exp(ik0 z) 6A =ZAn 1exp [i(k+nk0) z-iwt] , (33)
n

exp(-ik 0z)6A +=J An+l exp[i k+nk0 )z-iwt],
n

where X0 =2-n/k 0 is the periodicity length of the wiggler field. Here

we assume that k is real and Imw > 0, corresponding to temporal growth.

A completely parallel treatment can be developed for spatially growing

perturbations (Imk < 0) and real oscillation frequency w. Substituting

Eq. (33) into Eq. (27) and integrating along characteristics, we obtain

for the perturbed distribution function 6G(z,pzt)
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6G~ymc2  (+nk 0 )exp(i(k+nk0 )z]
apz n 00

x c (A- +An+1 (34)

x dt'expi(k+nk 0)v z(t'-t)-iwt'.

Integrating with respect to t' in Eq. (34) with Imw > 0 gives

2G (k+nk 0 )6G=ymc w-(k+nk )v exp[i(k+nk 0)z-iwt]

(35)

(AI +A(A-
x[n4 2 cko Y n-l+An+lj

where vzp /ym and ymc2 2 c4 +c2p2 /k 2)1/2

From Eqs. (28)-(30) for the field perturbations, it is evident

that integrals of the form w dpz 6G and w dp z6G/y are required.

Therefore, comparing with Eq. (35), it is convenient to introduce the

effective susceptibilities Xn (w) defined by

(0) - 2 2 ' (k+nk0 )G 0/ap z(36)
Xn ()ymc dPZ w-(k+nk0 )vz

(1) - 2 2- dpz (k+nk0 )G /apZ
Xn (w ymc 

w-(k+nk
0)vz

(2) - 2 2-2 dpz (k+nk0 )G 0 .3 z
' (w)=ymc W y w(k+nk0 )vz (38)

For future notational convenience we also introduce the longitudinal

and transverse dielectric functions defined by

DL (W)=c 2 (k+nk )2 +X 0() W (39)

D T (w)=w 2-c 2[k+(n+l)k 2 -aw , (40)

DT_ W)=W -_c2 [k+(n-l)k0 2_aw , (41)
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where

a =Y G(p) (42)

and

CX3=-3 Gp O (;Pz) (43)
Y

for future reference. Note that the constants a1 and a3 are of order

unity whenever G is strongly peaked around y=y.

We substitute Eqs. (33) and (35) into the field equations (28)-(30)

and make use of the definitions in Eqs. (36)-(43). After some straight-

forward algebra, we obtain the matrix equation relating An+l, An-1, and

2 .2

DT + C( 2 (2) . ( W 2 +(2) c () +
n+l 2 c2k2 3 P n 2 c2k2 3 p n , ck- Xn n+l

0 0
.2 0-2

1 Wc ( 2 (2) DT + 1 Wc 2 (2) - c (1) A =0.

2 c2k 2  3 p n n-1 2 c2k2  3 p n ck0  n n-1

c (1) c (1) L
ck0 n k0 n n

(44)

The condition for a nontrivial solution to Eq. (44) is that the determinant

of the matrix vanish. This gives the dispersion relation

D L(w)D T MD T M) 2 2c2 [D T(w)*+D T(w)]
n ( +l -l 2n2 n n+l n-i

c k
.0 (45)

Q (1) Ml 2 _DL (~ 2+ (2) (1
x{[Xn 2-n 3 2)

which determines the complex eigenfrequency w in terms of k+nk0, k0 9 W'2

and 2 /C2k .
c 0*

The striking feature of Eq. (45) is that it is valid for arbitrary

harmonic number n. (No a priori assumption has been made that n=±l.)

Moreover, the effective wavenumber variable k'=k+nk0 occurs in every

factor in Eq. (45). In addition, Eq. (45) describes stability behavior
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for general equilibrium distribution GO ), and no a priori restriction

has been made to low beam density (as measured by w /c 2k ) or small wiggler
Ip 0

amplitude (as measured by ( IC/ck 0). Since Eq. (45) contains no approxima-

tions apart from the linearization approximation, we refer to Eq. (45)

as the full dispersion relation (FDR).

In circumstances where the beam density is low and the wiggler amplitude

L T
is very small, Eq. (45) supports solutions near D Lw)=O, D T+M=0

n n+1

and Dn- (w)=0. In this case, it is instructive to simplify Eq. (45)
n- 1

near the simultaneous zeroes of D (w)=O and D-_ (W)=0. (Here we assume
n n-I

D n+J 0 .) Equation (45) then reduces to the simplified approximate form

^2
L T 1 Wc (1) 2 (6
D (w)D (W 2 ) Ml (46)

c 0

In the subsequent analysis, we refer to Eq. (46) as the reference dis-

persion relation (RDR).

B. Dispersion Relation for a Cold Electron Beam

As a first application, we consider the dispersion relation (45)

for the case of a cold beam equilibrium described by

GOz)=6(pz (47)

- 2
where p0 is related to the mean energy ymc by

- 2 2 4 2 2 2^2 2 1/2
ymc =(m c +c p0+e B /k) (48)

It it straightforward to show from Eqs. (47) and (48) that fdpY nGO (p)=n

so that

a 1 = 3= 1(49)

follows from Eqs. (42) and (43). Substituting Eq. (47) into Eqs. (36)-

(41), the effective susceptibilities and dielectric functions for a
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cold electron beam can be expressed as

2 -2

(0)(w)=-c 2(k+nk0)2 p 2 (50)
0 w-(k+nk0 Vb]2

(1) 2 b -c~k

X (w)=c(k+nk0 )w 2 c(k+nk0 )
n P [w-(k+nkv0 b]2

(2) c [2 wsb-c(k+nk )(l+S )
Xn (w)=c(k+nk )w , (52)
n p [w-(k+nk)0 Vb] 2

2 -2

D L(w)=c2(k+nk )2 p (53)
n 

0  [W-(k+nk Vb 
(

D (w)=w 2-c 2[k+(n+l)k0 2w 2 (54)

Dn (w)w 2-c 2[k+(n-l)k0 2-w . (55)

In Eqs. (50)-(55), Vb=Po/ym is the beam velocity, and Sb is defined by

SbVb/c. Substituting Eqs. (50)-(55) into Eq. (45) and carefully

combining and simplifying terms on the right-hand side, the full dis-

persion relation (FDR) for the free electron laser instability can be

expressed as

{{w-(k+nk0 Vb /Y {w 2-c2 [(k+nk0 )-k0 2_2wp

x{w2c2 [(k+nk 0)+k0 2_w 2

"2
c 2  2-c 2 (k+nk )2-c2k 2 2 (56)

C2k2  (kn 0) -c k~p
k0

x{[w-(k+nk Vb 2+2Vb(k+nk0 [w-(k+nk O)VbI

-c 2 k+nk ) 2 /Y2_2
0 tp

Note the exact cancellations that have occurred on the right-hand side of

1
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-_2= 2
Eq. (56). Making use-of y- 1-6 b, the full dispersion relation (FDR)

in Eq. (56) can be expressed in the equivalent form

{[w-(k+nk)0 )b 2 -2 2 -c[(k+nk0)-k0 2 W

x2-c2 [(k+nk0 )+k0 2_W 20 0 p

2 (57)

c 2 22 2 2 2 2
ckW [W -c (k+nk0 ) -c k0-W

22 2 2
x[W2-c (k+nk0 ) ~_ 2w

p

Moreover, substituting Eqs. (50), (51), (53), and (54) into Eq. (46),

the reference dispersion relation (RDR), which is approximately valid

for low beam density and very low wiggler amplitude, can be expressed as

{[W-(k+nk0 )Vb 2 2 w2-c2 [(k+nk 0 )-k0 12-W2

2 (58)

1 c 4 b-c(k+nk0

c2k [w-(k+nk b 2

Approximating [w-(k+nk )Vb] 2=w 2 in the denominator on the right-hand

side of Eq. (57), the reference dispersion relation (RDR) becomes

{i[-(k+nk0 Vb 2_/Y 2{ c 2 [(k+nk 0)-k0 p2 W2
p

-2 (59)

_1 WC 2-2

- W 2 w b-c(k+nk 22 C2 2 pY b 0/
c 0

C. Numerical Analysis of Dispersion Relation

In this section, we summarize the results of numerical studies

of the reference dispersion relation (59) and the full dispersion

relation (57) for a broad range of dimensionless system parameters

2 22 -

6C /ckoW "p/c k0 , and Y.
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Typical results are summarized in Fig. 2 for 7=2 and moderate values

of wiggler amplitude (O /ck =0.5) and beam density (w /C2k 2=.4). For

such large beam density and wiggler amplitude, we note from Fig. 2(a)

that the growth rate w =Imw obtained from the reference dispersion

relation (59) can be in substantial error for large values of (k+nk0 )/k0 '

This follows since the dashed curve in Fig. 2(a) [Eq. (59)3 deviates

significantly from the solid curve [Eq. (57)] for large values of

(k+nk0 )/k0. On the other hand, from Fig. 2(b), both the reference

dispersion relation (59) and full dispersion relation (57) give very

similar values of the real oscillation frequency w r=Rew. Moreover, the

oscillation frequency wr is linearly proportional to (k+nk0 ) over the

entire range of unstable wavenumbers. We also note from Fig. 2(a) that

the maximum growth assumes a relatively large value, [w ]max~ 0.3 ck

for (6j/ck0 ' W /c2k )=(0.5, 0.4).

To contrast with Fig. 2, we show in Fig. 3 a plot of normalized

growth rate w /ck0 versus (k+nk0 )/k0 for y=2, moderate beam density

(W /c 2k =0.4), and small wiggler amplitude (6 /ck =0.1). In this casep 0 C 0

the reference dispersion relation (59) and full dispersion relation

(57) give nearly identical growth rate curves. Note also from Fig. 3

that there are two unstable wavenumber bands [c6rresponding to two

intersection regions of the w versus k+nk curves from DL (W) = 0 and
0 n

D 1(M)=0] for (ic/ck0, 
2 /c2k )=(0.1, 0.4). Moreover, the maximum

growth rate assumes a relatively small value, [w ] ~0.06 ck0 , for

the small value of wiggler amplitude chosen in Fig. 3.

Shown in Fig. 4, for y=2 and small wiggler amplitude ( C/ck 0=0.1),

is a plot of normalized growth rate w /ck0 versus (k+nk0 )/k0 [Eq. (57)]

2 2 2for several values of normalized beam density W /c k . An important

feature of Fig. 4 is the fact that the instability bandwidth remains
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reasonably narrow for w 2 /c2 k2 in the range 0.1 < 2 /c2 k -< 1. This is in
p 0 0

contrast to Fig. 5 where wi /ck0 is plotted versus (k+nk0)/k0 [Eq. (57)]

for y=2 , moderate wiggler amplitude ( c/cko=0.5), and values of w /c2 k

identical to Fig. 4. The rapid increase of instability bandwidth

with normalized wiggler amplitude C/ck0 is also evident from Fig. 6

where the growth rate is plotted for Y=2, w2 /c2k =0.4 and several
p 0

values of c/ck [Eq. (57)].

We now examine the case where y is large. Figures 7-11 show

plots of normalized growth rate w /ck0 versus (k+nk0 )/k0 for

y=50 and a wide range of values of normalized wiggler amplitude

2 2 2
6c/ck0 and beam density w /c k 0. In all cases, we note from

Figs. 7-11 that the instability bandwidth is large. This is in contrast

with the low-y case where the bandwidth is relatively narrow for small

values of c/ck0 (Fig. 3). We also find (Figs. 7 and 8) that the

growth rates determined from the reference dispersion relation (59)

and the full dispersion relation (57) are different for both small

wiggler amplitude (Fig. 8) and moderate wiggler amplitude (Fig. 7).

This is in contrast with the low-y case where the reference dispersion

relation (59) gives a good estimate of the growth rate for small values

of c/ck0 (Fig. 3). Comparing Figs. 4 and 9, for small wiggler

amplitude ( c/ck 0=0.1), it is evident that the growth rate is considerably -

larger for large values of y. On the other hand, comparing Figs. 5 and

10, for moderate wiggler amplitude (ii /ck =0.5), the growth rate is only

slightly larger for large values of y.

2 2 2 -2
Finally, for (k+nk0 b W/Y , we expect the strongest interaction

between the longitudinal and transverse modes, DL (w)=0 and D T_ ()=O

to occur for the critical value of wavenumber given in Sec. 1, i.e., for

(k+nk0 )U(+ab)y k0 (60)
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For Bb=1 and y=50, Eq. (60) gives (k+nk0 )=5000 k0. For y=50, we note

from Figs. 7-11 that the maximum growth rate indeed occurs for (k+nk0 )/k0 5000.

D. Influence of Beam Thermal Effects on Stability Properties

The main purpose of this paper is to develop a stability formalism

for general beam equilibrium distribution GO(pz) (Secs. 2.A-3..A) and to

study detailed stability properties for the case of a cold electron beam

with G z z~0) (Secs. 3.B and 3.C). For completeness, however,

in this section we make some preliminary estimates of the influence of

beam thermal effects on stability behavior. As a simple example, we

assume a beam equilibrium distribution of the form

G ( )= 1 (1
0G z 7 2 2 (61)

z 0

where A0 is the characteristic momentum spread about the mean momentum p0.

We further assume that the momentum spread A0 is small in comparison

with the directed momentum p0, i.e.,

0 << 0  
(62)

Making use of Eqs. (36), (39), (61), and (62), the longitudinal dielectric

function can be approximated by

2 -2

DL ()=c 2 (k+nk ) _- A0/ym2 (63)

0 L w-(k+nk0 vb+ilk+nk ym)

for A0 0. In Eq. (63), -mc2 
2c+c 2 p+e 2 /k2)l/2 is the mean

energy [Eq. (48)), and Vb=PO/ym is the directed beam velocity. We

note from Eq. (63) that the fundamental longitudinal mode obtained from

D (w)=0 is heavily Landau damped by thermal effects whenever
n

2 2

(k+nk0 -22 > . (64)
y m y
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It is useful to express the effective momentum spread A 0in

2 2 4 2 2 2^2 2 1/2
terms of an equivalent energy spread Ay. From ymc =(m c +c pz +e B k0)

2 2
we estimate Ay=p0 0 /y m c , or equivalently Ay/y=b A0/ymc. Equation (64)

can then be expressed as

2

c 2(k+nk0) (Ay/y) > -2 p (65)
Y

2
for A0 < P0, or equivalently for Ay/y << b. If we estimate the wave-

0 b

number of interest for the free electron laser instability by (k+nk0

-2
(1+ab-)y k0 [Eq. (60)], then Eq. (65) gives

2 2
-2> b 1 p (66)(Ay/y) > 2-6 22 (6

(1+ b) y c k0

Equation (66) gives an estimate of the energy spread required for heavy

Landau damping of the fundamental longitudinal mode obtained from D ()=0.n

Whenever Eq. (66) is satisfied, the waves are heavily damped (linearly)

and the free electron laser instability does not occur. Equation (66)

constitutes a very stringent requirement on' energy spread. For example,

for y=5, ab=1 and W 2 /c2k =0.5, Eq. (66) predicts stabilization for

(Ay/y)2 > 8x10-6, i.e., for a fractional energy spread Ay/y of about 0.3%.

From a practical point of view, for given values of 7 and energy

spread Ay, the reverse of the inequality in Eq. (66) can be used to

determine the range of normalized beam density w /c 2k required for

the free electron laser instability to occur, i.e.,

2 2
p -6 -2 b____

2 2 (Ay/y) 2 (67)

ck 0  b

Whenever Eq. (67) is satisfied, it is important to note that the inequality

in Eq. (65) will provide stabilization of the instability growth rate

for sufficiently large values of wavenumber (k+nk 0  This implies a

natural tendency of beam thermal effects to limit the instability bandwidth,

which should be contrasted with the cold-beam stability results in Sec. 3.C.
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4. CONCLUSIONS

In this paper, we have developed a fully self-consistent description

of the free electron laser instability based on the Vlasov-Maxwell equa-

tions. As summarized in Sec. 2, the present analysis assumes a relativis-

tic electron beam with uniform cross section propagating through a helical

wiggler field -B cos k z e - B sin k z [Eq.(2)1. Moreover, we

consider the class of exact solutions to the Vlasov-Maxwell equations

described by fb(z,p,t) =n0 (PX)6 (P y)G(z,pzt) [Eq.(12)}. A detailed

analysis of the linearized Vlasov-Maxwell equations (Secs. 2.B and 3.A)

leads to the exact matrix dispersion relation in Eq. (45). The striking

feature of Eq. (45) is that the dispersion relation is valid for arbitrary

harmonic number n. Moreover, Eq. (45) describes stability behavior for

perturbations about general beam equilibrium distribution GO(p ), and

no a priori restriction has been made to low beam density (as measured

by w2/c2k ) or small wiggler amplitude (as measured by wc/ck0). In Secs.

3.B and 3.C we present a detailed numerical analysis of the full disper-

sion relation [Eq.(57)] and the reference dispersion relation [Eq.(59)]

for the case of a cold electron beam described by G (p) = 6 (p -

Except for very modest values of wiggler amplitude, it is shown in Sec. 3.C

that the growth rate w= Imw obtained from the reference dispersion

relation can be in substantial error for large values of (k+nk0)/k0 '

An important feature of the stability analysis in Sec. 3.C is the fact

that the instability bandwidth increases rapidly with increasing w c/ck0'

Moreover, the instability bandwidth is considerably larger for large

values of y (Figs. 7 - 11) than for moderate values of T (Figs. 2 - 6).
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Finally, in Sec. 3.D, we have made preliminary estimates of the influence

of beam thermal effects on stability behavior. In particular, assuming

that GO(p ) is given by the Lorentzian distribution in Eq.(61), it is

found that waves with wavenumber (k+nk0 ) = (1+ Sb)y 2k0 are heavily Landau

damped whenever the fractional energy spread AY/y exceeds the rather

modest value in Eq. (66).
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FIGURE CAPTIONS

L T
Fig. 1. Intersection of dispersion curves D (w) = 0 and Dn_ (w) = 0.

n n-i

Fig. 2. Plot of normalized (a) growth rate w /k 0c and (b) real oscillation

frequency w r/k c versus normalized wavenumber (k+nk0 )/k0

for y = 2, w /ck0 = 0.5 and w /c2 k = 0.4. Solid curves are

obtained from full dispersion relation [Eq. (57)]. Dashed

curves are obtained from reference dispersion relation [Eq. (59)].

Fig. 3. Plot of normalized growth rate w /k c versus (k+nk0 )/k0 for

y = 2, w /ck 0  0.1 and w2/c2k0 = 0.4 obtained from Eq. (57)

(solid curves) and Eq. (59) (dashed curves).

Fig. 4. Plot of normalized growth rate w /k c versus (k+nk0 )/k0 obtained

A

from Eq. (57) for y = 2, w c/ck0 = 0.1 and several values of

W 2/C2 k .
P 00

Fig. 5. Plot of normalized growth rate w /k c versus (k+nk0 )/k0 obtained

from Eq. (57) for y = 2, w c/ck0 = 0.5 and several values of

^2/C2k2.p k0

Fig. 6. Plot of normalized growth rate w /k c versus (k+nk0 )/k0 obtained

from Eq. (57) for y = 2, w 2 /c2k = 0.4 and several values of

w /ck0 *

Fig. 7. Plot of normalized growth rate w /k c versus (k+nk0 )/k0 for

y = 50, w C/ck = 0.5 and w /c k = 0.4 obtained from Eq. (57)

(solid curve) and Eq. (59) (dashed curve).
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Fig. 8. Plot of normalized growth rate w /k0 c versus (k+nk0 )/k0

for y = 50, w /ck = 0.1 and w/c 2 k2 = 0.4 obtained from
c 0 p '0

Eq. (57) (solid curve) and Eq. (59) (dashed curve).

Fig. 9. Plot of normalized growth rate w /k c versus (k+nk0 )/k0

obtained from Eq. (57) for y = 50, w ck 0 = 0.1 and several

values of W
2 /c2k 2
p 0,

Fig. 10. Plot of normalized growth rate w /k c versus (k+nk0 )/k0

obtained from Eq. (57) for y = 50, wc/ck0 = 0.5 and several

values of w 2 /c2k 2
p 0*

Fig. 11. Plot of normalized growth rate w /k c versus (k+nk0 )/k0

obtained from Eq. (57) for y = 50, w2/c2k2 = 0.4 and several

values of w /ck 0
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