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Enhancement of cyclotron damping is theoretically evaluated

based upon the wave E-field polarization which is modified by the

two-ion hybrid resonance. The degree of enhancement and its

asymmetry about the plasma center is consistent with experimental

observations. The enhancement factor is very large at low plasma

densities at which most of the past damping strength measurements

have been reported, but approaches unity at high densities. This

implies the predominance of pure cyclotron damping in future

reactor-like deuterium plasmas in spite of the presence of

minority protons. A simple antenna and a pair of limiters are

sufficient to couple rf power with an overall power deposition

efficiency of about 75 %. There is no evidence that parasitic

loading accounts for a significant amount of the power.

1

*This work was supported by the United States Department of
Energy through Contract EY-76-C-023073.



1. IntroductiQn

One promising method of additional heating for bringing a

tokamak plasma to thermonuclear temperatures is irradiation of

the 'plasma by electromagnetic fields in the ion cyclotron range

.of frequencies ("ICRF" heating)*. The impressed radio frequency

(rf) field near the ion cyclotron frequency generates in the

plasma fast compressional Alfven waves whose energy is absorbed

by the ions (and possibly by electrons) through various

field-particle interactions. One possible mechanism for

dissipating wave energy is ion cyclotron damping.

In one-ion species plasmas immersed in the inhomogeneous

B-field of a tokamak, fundamental and harmonic cyclotron

resonances occur at different major radius locations for a given

wave frequency. Damping of the fast wave is governed by the

small left-handed component (E+) of the wave E-field in the

resonance layer. In the fundamental resonance layer, where the

wave frequency equals the fundamental cyclotron frequency of the

constituent ions, ions experience acceleration proportional to

the magnitude of the E+. However, their coherent motion tends to

shield the E+-field nearly completely from the resonance layer.

The fundamental cyclotron damping is consequently weak in one-ion

species plasmas. In the second harmonic resonance layer ion

acceleration is proportional to the ion Larmor radius ( e* ) and

*A historical review of the subject can be found in ref. 1.
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to the perpendicular gradient of the E+. The gradient can be

approximated by kjE+Iin one-ion species plasmas, and the wave

damping strength is proportional to 1/2e(kJE)Z.

In' recent tokamak experiments using deuterium as the working

.gas, small concentrations of protons were always found as

impurities. Such a mixture represents a more complicated

situation: the proton fundamental cyclotron and the deuteron

second harmonic cyclotron resonances occur at the same location,

and, furthermore, a new resonance between these ion species

("two-ion hybrid resonance") comes into existence. Because of the

proximity of the cyclotron and hybrid resonance layers mutual

influence of these resonances plays an important role in

determining the dominant damping processes and division of the

absorbed power among different species. In this mixture

shielding of the E+ from the proton fundamental resonance layer

is incomplete and the protons keep accelerating in a familiar

spiraling motion. This so-called minority species damping is

proportional to the magnitude of the E+.-field, and can be much

stronger than the second harmonic damping when the proton

concentration is small (a few percent). However, the relative

damping strengths depend strongly on the parallel phase speed.

The two-ion hybrid resonance surface lies very close to the

cyclotron surface for low proton concentrations and has two

principal effects on the waves: alteration of the wave E-field

polarization in the ion cyclotron resonance layer and
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introduction of mode conversion near the hybrid resonance layer.

Mode conversion is important whenever cyclotron damping at the

hybrid surface is weak. This situation arises either when the

proton concentration is large and the hybrid resonance surface

lies well outside the cyclotron resonance layer, or when the

waves are nearly perpendicularly incident on the hybrid layer.

Alteration of the polarization caused by the hybrid resonance is

important when the proton concentration is a few percent. A

significant increase in the magnitude and gradient of the

E+-field on the side. of the ion cyclotron resonance layer closer

to the hybrid surface results in strong enhancement of the

deuteron second harmonic damping. The minority species damping is

also significantly greater than in the absence of the hybrid

resonance.

In their pioneering work Adam and Samain 2) calculated the

second harmonic cyclotron damping strength in one-ion species

plasmas and the fundamental cyclotron damping by the minority

species in two-ion species plasmas. Stix 3), who analyzed

temporal evolution of the ion velocity distribution under fast

wave heating, obtained similar results for the damping strength.

The roles played by mode conversion at the two-ion hybrid

resonance were analyzed independently by Swanson 4) and

Perkins 5). Enhancement of the cyclotron damping caused by the

two-ion hybrid resonance through modification of the wave E-field

polarization was first recognized by Takahashi 1,6). The present

paper extends these earlier results to quantitative evaluation of
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the enhancemen.t of the cyclotron damping.

A series of ICRF heating experiments was conducted in the ATC

tokamak 7), and was the first under the conditions in which the

ion heating could be critically evaluated. The principal results

.of these experiments, showing substantial heating of the plasma

core, have already been reported in a short letter 8). In the

present paper those aspects of the experiments concerning wave

generation, propagation and absorption are reported. These

experimental results are interpreted in terms of the theory of

enhanced cyclotron damping. These interpretations are in

contrast to other experiments explained in terms of mode

conversion damping at the two-ion hybrid resonance.

In this paper the phrase, "proton fundamental cyclotron", is

abbreviated as PFC as in PFC resonance. The phrase, "deuteron

second harmonic", is shortened as DSH as in DSH heating. The

phrase, "two-ion hybrid", is represented by IHB as in IHB mode

conversion.

2.1 Wave Coupling System and RF Instrumentation

A schematic of the wave coupling system used in the ATC tokamak

is shown in Fig. 1. The overall electrical system and mechanical

structure exterior to the tokamak vessel are similar to those

used in the earlier experiments in the ST tokamak 9). The

internal structure of the ATC coupler is different in two
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important respects: the absence of an electrostatic shield; and,

the presence of limiters to protect the antenna from direct

contact with the dense plasma. The absence of a shield makes the

ATC structure considerably simpler to fabricate and install.

The central element in the coupling structure is an antenna

located on the outer side (larger major radius side) of the

plasma torus. It subtends an arc-angle of 135 degrees in the

poloidal plane about the plasma center, which is nominally

located at a major radius of 0.9 m, and has an inside radius of

0.19 m. The antenna is made of a copper strip, 1 in. wide and

1/4 in. thick, and is encased in a ceramic sheath. The limiters

lie in poloidal planes separated by 0.2 m along the meridian

plane and are located symmetrically on either side of the

antenna. The sides of the limiters facing the antenna are covered

by ceramic plates. The inside radius of each limiter is 0.17 m

and the ceramic plate is recessed by 1/8 in. The limiters are

electrically grounded to the vessel and have slits cut in the

radial direction to reduce the rf return current near the plasma

edge that would tend to cancel the rf field created by the

antenna current.

In order to achieve efficient coupling in the face of

relatively small radiation resistance it is important to obtain a

high antenna current. This is accomplished through a resonant

impedance matching network which is adjusted to bring a current

maximum (voltage minimum) of the standing wave pattern to the
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antenna center. and is tuned for a resonance. The impedance of

this tuned circuit is matched to the line impedance by a pair of

stub tuners. As plasma reactive effects vary, the network

becomes detuned and the antenna current diminishes. However,

these effects are small under the heating experiment conditions

.and the matching remains good. The measured root-mean-square

(RMS) antenna current reaches 450 amperes but is typically

200-300 amp. The incident and reflected powers are measured by

two 50 db directional couplers. The reflected power is no more

than 10 % of the incident power. This means that the power

coupling efficiency (net coupled power/incident power) of the

ICRF antenna in ATC is better than 90 %. A net rf power of up to

200 kw is coupled into ATC by this system without encountering a

limit set by electrical breakdown.

The rf current in the antenna is monitored by a one-turn

magnetic loop which is half an inch in diameter and placed

3/4 in. behind the antenna slightly below the antenna midpoint

(see Fig. 1). This current transducer has a sensitivity of about

0.1 volt/ampere measured across a 50 ohm termination. A voltage

null probe is also located 1/2 in. behind the antenna slightly

above the antenna midpoint. The probe, similar in construction to

a spherical Langmuir probe (1/16 in. in diameter), is used

primarily to locate the voltage minimum point, but also to

estimate the plasma density behind the antenna. A crude

interpretation of the ion saturation current from this probe

leads to an estimate of plasma densities of less than 1017 /m3
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behind the antenna.

There are arrays of probes that measure the toroidal component

of the wave B-field. The relative phase of two probe signals is

determined either by observing them directly on an oscilloscope

.or by means of an analog phase comparator constructed for this

purpose. The phase measurements yield information on the poloidal

mode number and toroidal wavelength of the fast wave.

One important measure of the antenna performance is its

equivalent series loading resistance. It is defined as the ratio

of the net rf power (RMS) fed into the antenna to the square of

its rf current (RMS), and is determined by means of an analog

device which will be referred to as the loading resistance (RV-)

computer in this paper. The computer is useful in following

rapid variation of the loading resistance caused by toroidal

eigenmodes. The loading resistance is typically 1-2 ohms under

plasma heating conditions compared to about 0.1 ohm in the

absence of the plasma. Thus, only about 5-10 % of the coupled

power is dissipated in the circuit.

2.2 Discharge Characteristics

ATC is a tokamak with toroidal compression capability 7). All

ICRF heating is, however, applied to uncompressed deuterium

plasmas with a major radius between 0.84 m and 0.9 m. The rf

generator frequency is fixed at 25 MHz which corresponds to the
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DSH cyclotron frequency at 1.64 T. All attempts to heat the

plasma are performed at moderate-to-high densities

(ne,>2x1019 /m3 ) and with the cyclotron resonance layer placed

near the plasma center. In this paper we refer to these

conditions as "plasma heating conditions". For wave measurement

purposes both the field and density are varied over much wider

ranges: n,,0 =0.5-4.2x10 %/m3 and Bo=1.2-1.9 T. The discharge

typically lasts 40 ms with a 10 ms rf pulse usually applied

20-25 ms aftef discharge initiation.

The most important impurity for the considerations of wave

absorption is hydrogen. An accurate measurement of its density is

difficult, but the proton-to-deuteron ratio is estimated 10) to

be at most 5 %. This upper bound is obtained from the fact that

no recognizable peak exists in the wing of the DI spectral line

at a location where the Ho line is expected. Small

proton-to-deuteron ratios found in ATC are in contrast to those

(~20 %) in TFR experiments 11), and are among the reasons for

interpreting the observed wave damping strength in terms of

enhanced cyclotron damping rather than mode conversion.

Throughout this paper the proton concentration

(proton-to-electron ratio) is taken to be small (<5 %) and is

arbitrarily assumed to be 3 %, whenever a numerical value is

needed. More detailed descriptions of the experimental facilities

and environment can be found in a laboratory report 12).
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.3.1 Fast Wave Propagation in ATC

In ATC plasma the wave damping length is large compared to the

(minor) radial extent of the plasma. This makes the wave

propagation and damping amenable to separate analyses:

propagation characteristics and field structure of undamped waves

are first obtained and the damping strengths are then calculated

based upon the known field structure. We first consider the fast

waves in a straight cylindrical waveguide partially filled with a

cold uniform plasma and immersed in a uniform longitudinal

magnetic field. Eigenmode solutions for such a system were

obtained by Bernstein and Trehan 13) for general non-axisymmetric

modes. A theory of excitation of azimuthally symmetric

eigenmodes was developed by Stix 14). The theory 15) used here is

an extention of the latter to more general non-axisymmetric cases

using the eigen-solutions of the former. Wave energy density,

Poynting flux, group velocity, and radiation resistance are also

calculated. (The term, "radiation resistance", is used for the

antenna loading resistance in the absence of toroidal effects.)

In particular, the group velocity averaged over the waveguide

cross-section is computed as the ratio of the time-averaged

Poynting flux integrated over the waveguide cross-section to the

wave energy per unit length of the waveguide. Both the Poynting

flux and wave energy consist of contributions from the plasma and

vacuum regions within the waveguide, and the computed group

velocity depends upon the size of the vacuum region.
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The ATC vacuum vessel is oblong in cross-section (see Fig. 1),

encloses a large vacuum space on the small major radius side and

is difficult to model accurately in theoretical calculations. On

one hand, theoretically calculated group velocity tends to be too

smal'l because of the failure to account for the large vacuum

space. Calculations of the loading resistance, on the other

hand, depend critically on the relative sizes of the plasma,

antenna and vacuum vessel. The vacuum vessel is represented by a

torus of circular cross-section with a minor radius of 0.21m.

Were the theoretical vessel to enclose the same volume as the

actual vessel, its equivalent radius would be 0.27m. Eighty

percent of the actual vessel walls are made of bellows structure,

but the theoretical model assumes smooth stainless-steel walls.

The inhomogeneous plasma is represented in theory by a plasma of

constant density equal to the volume average of the actual

density. Ion and electron temperature variations with time are

taken from a typical discharge at each density level.

A discrete fast wave eigenmode * in a plasma filled waveguide

can be identified by a set of radial(l) and azimuthal(m) mode

numbers. It is convenient to speak in terms of the perpendicular

(NLkVA/a) and parallel (N1 =k11VA/w) Alfven refractive

indices 3), where kL, k11, VA and (4 are, respectively, the

perpendicular and parallel wave numbers, Alfven speed, and wave

angular frequency. At sufficiently low densities the fast waves

*See, e.g., Fig. 2 of ref. 3 or Fig. 6 of ref. 12.
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in a completely filled waveguide suffer a cut-off (N,<0) and are

unable to propagate along the waveguide. In a partially filled

waveguide the cut-off exists for the m=O and all negative-m

azimuthal modes (for the field variation of the form

exp l(k1z+mO -wt)). However, the lowest radial modes of all

.positive-m modes propagate at very low densities *. (They can

presumably propagate at all densities.) As the density

increases, a cut-off mode may become propagating, at which point

N=1 and N =O. We term this condition the "onset" of a new

propagating mode. As the density increases further, the parallel

wavelength becomes progressively shorter. Because of the

different dependence of the PFC, DSH and IHB damping strengths on

the parallel wavelength, the mode goes through different phases

in each of which a different mechanism is responsible for the

wave damping. The exact plasma conditions under which the onset

of a mode takes place is sensitively dependent on the radial

density profile 17) and the presence of the vacuum space.

Because of the approximate nature of the representation of the

actual ATC vacuum vessel and the uniform plasma model used in the

present theory, the model's prediction of the onset conditions is

not expected to be accurate.

Toroidal effects on wave propagation are accounted for by

superposing the fields of the waves circumnavigating around the

*This was demonstrated by numerical examples by Paoloni 16) for
m=O and +1 modes. Similar calculations indicate that the same is
true for all positive-m modes.

12



torus. The resultant fields depend upon both the phase shift and

damping that the waves suffer as they go around the torus. Under

such conditions processes of wave generation, propagation, and

damping are closely intertwined and isolated investigation of

each process is difficult in practice. Nevertheless, studies of

the loading resistance and wave amplitude under different plasma

conditions provide evidence for wave generation and clues for the

physical mechanisms of wave damping.

Suppose that the antenna carrying unit rf current generates a

wave field of amplitude, s, in the absence of the toroidal

effect. In a toroidal geometry with dissipation, the waves

experience a complex phase shift ik11L each time they go around

the torus, where kU is the complex parallel wave number and L the

toroidal circumference. The total field for an rf current of I

for the waves propagating around the torus many times is obtained

by summing an infinite series,

S = sI(1 + exp ik 1L + exp 2ikL +...)

= sI/(1 - exp ik1,L) (1)

When the plasma conditions are appropriate for a constructive

interference of the wave fields, the cavity becomes resonant. As

the conditions (principally the density) vary with time, a series

of such toroidal cavity resonances should be observed. At a

resonance and at an anti-resonance (n is a half-integer) S is

pure real and is given respectively by,
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SR= sIR/(1 - ( ) (2)

SA = SIA/(1 + O( ) (3)

where c( =exp(-ktL) and kL is the imaginary part of the parallel

wave number. IR and IA are the rf currents at the resonance and

anti-resonance, respectively. These two quantities are

experimentally measureable. It should be noted that the toroidal

resonance can be a travelling (as opposed to a more usual

standing) wave resonance: the waves travelling in only one

direction can cause a resonance. This has some practical

consequences 1). Its wavelength can be determined simply by

measuring the relative phases of the wave field at two or more

points around the torus. The travelling waves also deposit

energy more uniformly around the torus than the standing waves.

If the so-called mode splitting, caused by unequal influence of

the poloidal B-field on the left- and right-running waves, is

indeed present, all experimentally observed resonances, other

than the m=O modes with no mode splitting, must be the travelling

wave resonances. (No experimental demonstration of this fact has

been reported in the literature.)

The oscillogram in Fig. 2 shows time variation of the wave

amplitude (rf envelope) measured by the probes located at 90

degrees around the torus away from the antenna nearly directly

above(T) and below(B) the plasma axis. The different amplitudes
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of the two signals are caused by a slightly off-centered plasma.

The peaks and troughs of the wave amplitude evidently correspond

to the occurence of toroidal resonances and anti-resonances. The

theoretical calculations of the wave amplitudes corresponding to

the ' experimentally observed density variations confirm the

.presence of the peaks and troughs. However, one-to-one

correspondence of these peaks cannot be established in the ATC

experiments, becuase of the approximate nature of the theoretical

model. It was shown in the earlier experiments 9) in the ST

tokamak, however, that the density and B-field dependences of the

loading resistance peaks closely followed the fast wave

dispersion relation. For these experiments the circular

waveguide model was a better representation of the actual vacuum

vessel and the theoretical calculations accounted for the density

inhomogeneity.

3.2 Wave Damping Measurements

A set of Re-computer signals is shown in Fig. 3. The toroidal

B-field is different for each of the oscillograms. (The plasma

conditions are also slightly different.) In each case the

density increases monotonically by a factor of two or less over

the pulse period, except in the left-most oscillogram for which

the density reaches a maximum during the pulse. The locations of

the DSH (deuteron second harmonic) cyclotron resonance surface

are indicated in the figure. The data are taken at density

levels sufficiently low (neo=7.5-9.6x10 /m3 at the mid-point of
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the pulse) that the m=O and all negative-m modes are cut-off.

The prominent peaks in these oscillograms are determined to be

the m=+1 mode by phase measurements of magnetic probe signals.

(However, small-amplitude, higher azimuthal modes (m>+1) may also

be present simultaneously in the signals.) Toroidal wavelength

measurements of selected resonant peaks indicate toroidal mode

numbers of 2-4. When the cyclotron resonance surface is within

the plasma, the toroidal resonance is broader, indicating the

presence of damping processes on or near the resonance surface.

Quantitative evaluation of the damping strength can be made

from the magnetic probe signals such as those shown in Fig. 2.

The quantity, s, in eqs. (2) and (3), which is proportional to

the radiation resistance, is in general, not directly measurable.

However, this can be eliminated by taking the ratio of the wave

amplitude at a resonance to that at an adjacent anti-resonance,

if the variation of the radiation resistance for a small change

in plasma parameters is neglected. The ratio is related to the

wave damping length(LD) through *,

LD/L [ln(T +1)/( T -1)] (4)

where T =IASR/IRSA. The normalized damping length (LO/L) is the

number of times the waves go around the torus before their

amplitudes e-fold. The wave damping length is related to the

*Typographical errors in eq. 9 of ref. 1 are corrected here.

16



resonant cavity quality factor (Q) through,

LD = 1/k; =2Qu1/C4 (5)

where u3 is the parallel group velocity. It should be noted that

the group velocity varies widely depending upon the mode and that

a large Q mode does not necessarily imply a large Lt mode. In

experiments either the damping length or the Q-factor is directly

determined and the other is derived through eq. (5). Some

ambiguities would be introduced through this conversion unless

the group velocity is accurately known.

The damping length determined using eq. (4) is shown 18) in

Fig. 4(a) for the conditions corresponding to the oscillograms

shown in Fig. 3. The abscissa is the major radius location of

the DSH (or PFC) resonance surface. The observed modes are the

m=+1 azimuthal modes, but may include different toroidal mode

numbers in the range of 2-4. When the resonant surface is

outside the plasma on the high field side (R(S2.=2)=70 cm), the

damping is weak and the waves go around the torus some 13 times

before their amplitudes e-fold. This damping is interpreted as

the damping caused by the wall resistance. The measured damping

length is one-twentieth the theoretical wall resistive damping

length computed for these modes in circular cylindrical waveguide

made of perfectly smooth stainless-steel walls. The observed

damping length appears reasonable, however, because of the

increased path lengths of the wall currents due to (1)the
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elongated vacuum vessel cross-section (a 1.6-fold increase in

poloidal circumference), (2)the partial bellows structure (an

average of five-fold increase in toroidal circumference), (3)the

presence of ports and other obstructions to the wall current

paths and (4)the surface roughness (0.8-13.0pm) * comparable to

the skin depth (8.5}.m), all of which tend to increase wave

damping strength. In the following calculations the wall damping

length is taken to be one-twentieth the value for the perfect

cylindrical surface. When the resonant layer is within the

plasma, the normalized damping length is reduced to about 2. The

ratio, 13/2=6.5, of the damping lengths with and without the

resonance is a measure of the effectiveness of energy deposition

by the fast wave: about 90% (6.5/(1+6.5)=0.87) of the power is

deposited within the plasma and about 10% in the walls. These

observations lead to an optimistic view for fast wave heating of

tokamak pasmas.

When the resonant layer is outside the plasma on the low field

side (R(.a =2)=110 cm), the damping is stronger than on the high

field side indicating the presence of some additional damping

mechanisms. The nature of these damping mechanisms is not well

understood. There are, however, indications observed on the

charge exchange (CX) analyzer signals that suggest possible

non-linear processes taking place on or near the cyclotron

surface in the tenuous plasma outside the nominal plasma radius.

*The range of roughness of commercially available cold rolled
stainless-steel sheets.

18



In Fig. 5 oscillograms of the charge exchange neutral analyzer

and R.7-computer signals are shown together with a schematic

showing the relative locations of the plasma, antenna and

cyclotron resoanace layer. Very large-amplitude, sharp spikes are

observed on the high-energy channels of the CX analyzer nearly

exactly coincident with the appearance of a toroidal resonance

peak in the loading resistance. The CX signals rise and fall

very rapidly with a time scale comparable to the time constant

(300.sec) of the analyzer, indicating that the energetic ions

are contained only for a very short time. This suggests that the

observed phenomenum is taking place in the plasma periphery.

When the resonance layer is deep inside the main body of the

plasma, or, outside the plasma on the high field side, no such

spikes are observed. One possible explanation for the absence of

spikes under these conditions can be either that the energetic

ions are not contained long enough to reach the analyzer unless

they are created right in front of it, or that the neutrals

created upon charge exchange of the energetic ions can not

penetrate through the dense main body plasma to reach the

analyzer without being reionized. However, the difference of the

wave damping strengths when the resonance is on the opposite

sides of the plasma suggests that the observed phenomenum takes

place mostly on the low field side. Furthermore, the coincidence

of the spikes with the occurence of a toroidal resonance, at

which the wave electric field becomes large, is indicative of a

threshold nature of the phenomenum.
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A notable fe.ature of the damping curve in Fig. 4(a) is that the

region of the maximum damping is not symmetric with respect to

the plasma axis at RO=87 cm and is shifted toward the larger

major radius side 19). This shift was also observed in TFR

expeiiments 20). Another manifestation of the asymmetry 21) is

shown in Fig. 4(b). The abscissa is identical to that of

Fig. 4(a). The ordinate is the output voltage of a bolometer

facing the plasma and is proportional to the power loss due to

charge exchange and radiation integrated over the period of rf

pulse. The net difference between discharges with and without

the heating pulse is plotted. A broad peak is located on the

larger major radius side of the plasma axis where the center of

the strong damping region is also located. Under these conditions

the rf power is evidently more efficiently absorbed by the ions,

some of which become lost through charge exchange and intercepted

by the bolometer.

Another set of output signals * from the R..-computer is shown

in Fig. 6. The resonant surface (R(.C.=2)=88 cm) is located in the

vicinity of the plasma center (Ro=87-89 cm) for all cases except

the lowest density case (No. 1). The electron density levels are

different for each case and are shown in the figure. The lowest

density case (No. 1) is taken under conditions nominally

identical to those of the center oscillogram of Fig. 3. Toroidal

resonance peaks of the loading resistance become progressively

*The incorrect label of the ordinate of Fig. 4 and numbering of
oscillograms in Fig. 5 of ref. 1 are corrected here.
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broader at higher densities and are difficult to recognize at the

highest density level. The latter is a typical condition under

which most heating experiments are undertaken. In the absence of

isolated resonant peaks in these high density cases the

experimental determination of the damping strength based upon

*eq. (4) is not possible.

3.3 Cyclotron Damping

We first compare the experimentally observed time variations of

the loading resistance and wave damping strength with predictions

based upon the theory of cyclotron damping. One low density case,

for which direct experimental measurements of the damping

strength are made, and one high density case, for which the

measurements are not available, are examined in some detail. The

electron Landau damping and transit time magnetic pumping (TTMP)

are also included in the calculations, but their effects on the

fast waves are weak under the ATC conditions. The damping

strengths needed in eqs. (1)-(3) are derived from Stix's

results 3) given in terms of the quality factor of a resonant

cavity. They are for the minority (Q1 ), second harmonic (Q ),

and Landau/TTMP (Q ) damping given respectively by,

2 (a 2 n. + 9 1nHu1)2] (6)
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Here, a and r are respectively the plasma minor radius and the

distance between the cyclotron resonance layer and the plasma

axis. n and nH are, respectively, the deuteron and proton

densities. u1j, vH and v. are, respectively, the wave parallel

phase speed, proton, and deuteron thermal speed. (3e is the

ratio of the electron thermal pressure to the magnetic pressure.

In deriving these results Stix accounted for the reduction of

the E+-field at the cyclotron surface due to the presence of

resonant minority protons. However, the E+ and its gradient were

evaluated at the resonance surface and were taken to be constant

across the thin resonance layer. These were reasonable

approximations for one-ion species plasmas, but neither

enhancement of the cyclotron damping nor the mode conversion,

both caused by the presence of the two-ion hybrid resonance, was

included. Further approximations introduced in Stix's analysis

were the assumptions that the E+ was also constant along the

resonant surface and that N =1. The latter would result in an

over-estimate of the second harmonic damping strength by a factor

up to four for those modes that are not near their onset.
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It is often stated that minority damping is much stronger than

second harmonic damping when the minority concentration is a few

percent. However, the strong wavelength dependence of Q in

eq. (6) should be noted. As the wavelength of a new propagating

mode becomes progressively shorter with rising plasma density,

the dominant damping mechanism rapidly changes from the second

harmonic to the minority damping. Higher radial modes with a

large kg and small k1l are more strongly damped by the second

harmonic damping. Near the onset, both damping strengths are

proportional to the ion temperature. Away from the onset and at

sufficiently high temperatures, QE becomes independent of

temperature, which may have interesting consequences because the

second harmonic damping becomes dominant for all wavelengths in

high temperature reactor-like plasmas. Note the symmetry of the

second harmonic damping with respect to the relative locations of

the resonant layer and plasma axis (eq. (7)). This is in

contrast to the experimental observations discussed earlier

(Fig. 4(a)).

Theoretical loading resistance variation for the low density

case is shown in Fig. 7(a) and should be compared with the

oscillogram at the center of Fig. 3. Toroidal resonances are

designated by sets of radial(l), poloidal(m) and toroidal(n) mode

numbers. The radiation resistance is first computed based upon

the theoretical model outlined in Sec. 3.1 and the toroidal

effect is intrduced through eq. (1). The imaginary part of the

parallel wave number needed in this equation is obtained from
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Q-factors give.n in eqs. (6)-(8) by converting them to the damping

length through eq. (5). By using time-varying density, the

effects on the loading resistance of each mode going through

different phases of its "life span" can be simulated. There are

only' two poloidal modes (m=+1 and +2) that carry appreciable

.power. The loading resistances of the individual modes up to

m=+3 as well as the total resistance are shown in Fig. 7(a). The

damping lengths predicted from theory are too large, so that the

theoretical toroidal resonant peaks which can reach 6.3 ohms are

much larger than the largest experimental values of 0.5 ohms.

Note the ambiguities introduced by converting the Q-factors to

the damping length: the discrepancies caused by too large

Q-factors predicted by the theory are partly offset by a too

small group velocity used in the conversion. Without this

offsetting effect the difference between experiment and theory

would be bigger.

The theoretical values of the minority(I), second harmonic(II),

electron Landau/TTMP(E), wall resistive(W), and total(T) damping

lengths are tabulated in Table I for each toroidal mode shown in

Fig. 7(a). The damping lengths predicted by this theory are

comparable for the PFC and DSH damping for these toroidal modes,

and are much greater than the wall resistive damping length. If

these predictions were true, then most of the power would be

dissipated in the walls and there would be no significant change

in the measured damping length as the resonant layer moved into

the plasma. The previous section shows that this is not the case:



the measured damping length is smaller than the tabulated values

by factors between 18 and 120, depending upon the modes. No

entries are made for the electron Landau/TTMP damping in the

table because it is completely negligible (L./L>10 ) for these

cases.

Fig. 8(a) shows the computed loading resistance variation for

the high density case which should be compared with the top right

oscillogram (No. 5) of Fig. 6. There are five propagating modes

that carry appreciable power (the first radial modes of m=-1

through m=+2 and the second radial mode of m=+1). The loading

resistance of each mode and the sum over all modes are shown in

the figure. (The m=+1 curve is the sum of its first and second

radial modes.) The theoretical radiation resistance of a mode is

in general highest at its onset, and is further enhanced by the

fact that the long wavelength n=1 toroidal mode comes into

resonance immediately following the onset. The first radial mode

of m=-1 poloidal mode and the second radial mode of m=+1 mode

have the onset at nearly identical times (at about 23 ms). The

n=1 toroidal modes of these poloidal modes create a high peak of

the loading resistance. Such abrupt changes in the loading

resistance are not observed in the experiments, and are

considered to be due to the deficiency of the uniform plasma

model. The other resonant peaks in Fig. 8(a) are more prominent

than the experimentally observed ones, indicating actual damping

strengths stronger than the theoretical predictions. However, the

differences are not as pronounced as in the low density case
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(Fig. 7(a)).

Theoretical values of the minority(I), second harmonic(II),

electron Landau/TTMP(E), wall resistive(W), and total(T) damping

strengths are tabulated in Table II for each toroidal mode shown

in Fig. 8(a). The DSH damping is the strongest mechanism for all

low toroidal number modes (n .< 3). The m=-1 poloidal modes and

the 1=2 radial modes appear only at high densities and are much

more strongly absorbed by the DSH damping than the PFC damping.

These modes would deposit most of their energy directly into

deuterons and make fast wave heating less susceptible to "thermal

runaway" of the minority species 22). Unlike the low density

case, the theoretically predicted total damping is now dominated

by power dissipation in the plasma rather than in the walls. The

theoretical power deposition efficiency ranges from 74 % to 97 %

for these modes. The efficiency is generally better for those

modes that carry large shares of the total power. Although no

direct measurements are available, comparisons of the theoretical

loading curve with the experimental one indicate that the

computed damping strengths are still an underestimate of the

actual values. The actual efficiency is therefore expected to be

greater than these figures. Electron Landau/TTMP damping is

completely negligible (L0/L>10 ) except where entries are made

in the table.

The theory in this section is based upon a uniform plasma model

with the cyclotron and Landau/TTMP damping strengths obtained by
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Stix. The uniform plasma model is inaccurate in predicting the

mode onset, and one-to-one correspondence of the toroidal

resonant peaks cannot be obtained. This discussion has shown that

the predicted damping lengths at low densities

(neo=0.5-1.0x10 9/m 3 ), where the experimental measurements for

individual modes can be made, are too large by a large factor

(18-120). The dependence of the damping length on the resonant

layer location also fails to predict the observed asymmetry about

the plasma center. Although the damping strength of individual

modes cannot be measured at higher densities, where many

overlapping modes are present, the predicted time variation of

the loading resistance indicates that the discrepancies are much

smaller.

3.4 Enhanced Cyclotron Damping

We next consider whether better agreement can be found between

theory and experiments if enhancement of the cyclotron damping

caused by the presence of the two-ion hybrid resonance is

included. For small proton concentrations (Cm~ 3 %) the

proton-deuteron hybrid resonance surface lies only a small

distance (,v 1 cm) away from the cyclotron resonance surface. *

The cyclotron and hybrid resonance layers overlap with each other

and their mutual influence must be taken into account. The fast

*The geometry of the two-ion hybrid resonance surface, cyclotron
resonance surface and fast wave cut-off surface can be found,
e.g., in Fig. 6 of ref. 1 and in ref. 5.
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wave has only a sinall left-hand polarized electric field

component in one-ion species plasmas. However, the hybrid

resonance (an electrostatic resonance) tends to produce a linear

E-field polarization (i.e., E+=E..) and thus to enhance the

magnitude of E+-field. The proton cyclotron resonance (an

.electromagnetic resonance) tends to make the polarization both

circular and right-handed and thus to reduce the magnitude of

E+-field. (The theories by Adam and Samain 2) and by Stix 3)

include only the latter effect.) Within the region between the

two resonance surfaces both the magnitude and gradient of the

E+-field are greater than in the absence of the hybrid resonance.

The magnetic field inhomogeneity across the plasma cross-section

must be included into the analysis, and a treatment in

cylindrical geometry becomes difficult. However, because of the

relatively thin and straight geometry of the cyclotron and hybrid

resonance layers in the important central plasma region, the

situation may be amenable to an approximate treatment in a

simpler slab geometry.

Boundary value problems in slab geometry with an inhomogeneous

B-field and a non-uniform warm plasma were solved numerically by

Takahashi 1) to obtain the E-field structure. The theory was

based upon a second-order differential equation (eq. (23) of

ref. 1) that treated the PFC damping in a self-consistent manner,

but the DSH damping was not included. Thus, the theory was

strictly valid only when the latter had small effects. Because

of the proximity of the cyclotron resonance layer, the hybrid
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resonance is heavily damped: the real and imaginary parts of the

perpendicular wave number computed for the local plasma

properties were comparable and the real part of the coefficient

of the second order derivative term in the differential equation

did 'not vanish at the hybrid layer. A criterion for such weak

.resonances was obtained earlier 1). The resonance is weak when

the following inequality is satisfied:

2

H 1. 082 Da 2 19)
eL D aPDJ

Here, CO=nD/ne, ao=. : e/(o , D, and Wg , cJ, and c

are, respectively, the deuteron cyclotron and plasma frequencies

and the speed of light in vacuum. In the present paper we are

also concerned with such weak resonance cases.

In Fig. 9 the E-field structures for specific cases are

reproduced from ref. 1. The x-coordinate is in the direction of

inhomogeneity with its origin at the slab center. The abscissa of

the figure is R,-x, where R,=0.9 m is the scale length of the

B-field inhomogeneity ("major radius") at the center. The tokamak

axis is to the right of the figure. The slab half-width ("minor

radius") is, a=0.17 m, and neo=2.5x10 /m . The top figures are

variations of the E.-field across the slab for three different
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values of magnetic field: one for which the PFC resonance is

located at the center and two others for which the resonance is

displaced by 0.06m on either side of the center. The lower

figures are variations of the E+-field for the corresponding

three cases. (Note the ten-to-one difference in the ordinate

between the two groups of figures.) Locations of the ion

cyclotron (ICR) and two-ion hybrid (HBR) resonance surfaces are

indicated in these figures.

Effects of the weak hybrid resonance appear as small bumps on

the E.-curves (The E is little affected) in Fig. 9. The effects

are stronger on the low field side of the axis, evidently as a

result of the fact that the field and density gradients are in

the same direction there. However, influence of the hybrid

resonance on the Et is significant. Compare the CH=O and 3 %

cases shown in the lower central figure. The large difference is

a consequence of the fact that the field polarization is

strongly altered by the IHB and PFC resonances. Particularly

noteworthy here is the appearance of a very steep gradient of the

E+ over a narrow region between the cyclotron and hybrid

resonances. In the case shown in the lower left figure the

gradient in this region is enhanced by one order of magnitude

over the value obtained in the absence of the hybrid resonance.

It is then expected that the DSH damping should be enhanced by

two orders of magnitude. Since the magnitude of the E+ can also

be greater than without the hybrid resonance, the PFC damping

could also be enhanced. Furthermore, the dependence of both of
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these damping strengths on the resonance layer location is

asymmetric with respect to the plasma center. A more

quantitative analysis is presented in the remainder of this

section.

Ions that move across the cyclotron resonance layer receive a

kick in their perpendicular energies due to the cyclotron

acceleration. The power absorbed by the ions can be calculated

by taking a statistical average of these incremental energy

gains. For a slab of unit height and depth the power absorbed by

the protons and deuterons is given respectively by 6),

2
pD C (x)12 J 2 (10)

II 1) 4 + Xx I
C

Here, x. and R. are the x-coordinate and the "major radius" of

the cyclotron resonance surface. Nand P are,

respectively, the proton plasma frequency and the deuteron Larmor

radius. The integrals, J, and JI , are given by,

J, rdC.I E(.)12 exp - 2
dH H(1

ir 1/2 0(12)
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II 71/2 fo D ( 3

where

(u11/vM)(x - xC)/RC (14)

(x) = E+(x)/E+(x) (15)

0(x) = a[dE+(x)/dx]/E+(xc) (16)

Dimensionless quantities, E(x) and *(x), are the E+-field and

its gradient normalized by the E+at the resonance surface. The

subscript, M, in eq. (14) refers to either proton(H) or

deuteron(D) and v. is the most probable speed of the M-species

ions. In this analysis the wave number, k , (y axis

perpendicular to the x-coordinate and- B-field) is assumed to be

zero.

If the E+ is evaluated at the resonance surface and assumed

constant across the resonance layer, then 8(x)=1 and J3

integrates to unity. Thus, the approximation used by Stix would

correspond to J,=1 and the actual value of JI represents the

"enhancement factor" of the PFC power absorption. Similarly, if

the E+ gradient is approximated by kiIE+j and evaluated at the

resonance surface, JI equals to (kia) . Stix further assumed

2A
NJ =1, or equivalently, k =k~l where kA is the Alfven wave number

( W/VA)- JI/(kAa) is therefore the enhancement factor for the
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DSH power absorption. The results of the calculations for some

specific cases are presented in the remainder of this section.

For these calculations the integrals in eqs. (12) and (13) are

evaluated numerically using the field variation obtained from the

solutions of the boundary value problem discussed in an earlier

.paragraph. The parameters common for all cases are: a=0.17 m,

R0 =0.9 m, CH=3 %, and the on-axis ion tempeature, T,. =200 eV.

Several computed quantities for four different locations of the

cyclotron surface are presented in Table III. PL and Pi are,

respectively, the power absorbed by the PFC and DSH damping

within a slab of unit height and depth. These values are for the

waves travelling in one direction only, and are normalized in

such a way that the Poynting flux is 1 MW per unit height of the

slab. Power absorption by both mechanisms is strong when the

resonance surface is located in the low field side of the center,

which is consistent with the observed asymmetry in the wave

damping (Fig. 4(a)). The asymmetry is particularly pronounced for

DSH damping. If the deuterons absorb much more power when the

resonance surface is in the low field side, power loss from the

plasma through deuteron charge exchange should also be much

greater under these conditions. This expectation is not

inconsistent with the observed asymmetry of the bolometer signals

discussed earlier (Fig. 4(b)). The eigenvalue for the parallel

refractive index (n,,) is about 30 for all cases and thus would

correspond to the toroidal mode number of 15. This is

considerably greater than the toroidal mode numbers shown in
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Figs. 6 and 7. (The slab geometry leads to the parallel

wavelength considerably shorter than the cylindrical geometry

with the same peak density. This is partly due to the fact that

k is taken to be zero.) In these computed cases the PFC damping

is about one order of magnitude stronger than the DSH damping,

and thus the assumption underlying the theory is valid. When the

resonance surface is located at the plasma center, the

enhancement factors are respectively 1.8 and 5.2 for the PFC and

DSH damping, but if the resonance surface is located at 0.04 m

away from the plasma center on the low field side, the

enhancement factors are respectively 2.8 and 13 *.

In Fig. 8(b) variation of the loading resistance is shown for

the same case as (a), but with the PFC and DSH damping strengths

multiplied respectively by 1.8 and 5.2. Since the enhanceme-nt

factors should be different for different modes, the results

given here are only approximations. However, they indicate that

the modest enhancement factors expected from the theory of the

two-ion hybrid resonance are sufficient to suppress the prominent

toroidal resonance peaks and to make the appearance of the

loading curve reasonably similar to experimental observations.

The abrupt rise of the loading resistance at the onset of the two

*When the resonance surface is further away from the center and
comes too close to the fast wave cut-off surface, these
enhancement factors become very large, but the normalizing factor
(the E+ at the resonance surface) tends to zero. The enhancement
factors lose their significance in these cases, since Stix's
results were obtained based upon the plasma properties of the
central core.
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new modes and .subsequent gradual fall-off (instead of gradual

rise seen in Fig. 6) of the resistance are the principal

discrepancies that are still evident.

Each mode with a given set of radial and poloidal mode numbers

.has a given radial variation of the E+-field, and hence the

radial power deposition pattern. The lowest radial mode of the

m=+1 poloidal mode has the pattern peaked near the plasma

periphery. This is the most prominent mode in small-sized,

low-density tokamaks. Higher radial modes of any poloidal mode

have in general much more favorable power deposition pattern.

These modes become propagating in larger, denser tokamak plasmas.

The total radial power deposition pattern is obtained from the

sum over all modes weighted in accordance with their loading

resistances such as those shown in Figs. 6 and 7. Enhancement of

the loading resistance by toroidal eigenmode resonances must be

taken into consideration in calculations of the weighted sum,

since the loading resistance of a lightly damped mode (such as

the m=+1) is enhanced strongly by the resonance.

In Table IV the results of computations for four different

densities are summarized. At high densities the enhancement

factors are close to unity. This shows that the damping strengths

at high densities predicted by the present theory tend toward

those of Stix's theory for "pure" PFC and DSH damping. At high

densities (and also at high ion temperatures) cyclotron damping

at the location of the IHB resonance is strong enough to suppress
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it unless it is far away from the cyclotron resonance layer

(i.e., high proton concentration). This has a significant

implication for future ICRF heating of reactor-like plasmas: in

spite of the inevitable presence of a few percent impurity

protons in deuterium plasmas, the dominant mechanism is

.essentially pure cyclotron damping. DSH damping, which deposits

energy directly in deuterons, should also dominate over PFC

damping under reactor-like conditions. For a given amount of

Poynting flux, greater power is dissipated at lower densities by

both mechanisms. This tendency is particularly strong for the

DSH damping. The power dissipated by this mechanism reaches

nearly 15 % at the lowest tabulated density. The enhancement

factos are 15 and 590 for the PFC and DSH damping for this case.

However the latter is likely to be an overestimate because the

significant effect of the DSH damping is not included in the

E-field calculations and the validity of the theory is

questionable.

In Fig. 7(b) the time variation of theoretical loading with

enhanced damping is shown. The enhancement factor for the PFC

damping is taken to be 15 from Table III, but the factor for the

DSH dampng is arbitrarily taken to be 100 rather than 590 as

indicated in the table. Although one-to-one correspondence of

individual peaks is again impossible to obtain, the general

appearance and the level of the loading resistance are much

closer to the experimental results (Fig. 3). This shows that the

experimentally observed damping strengths are not incompatible
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with enhanced.cyclotron damping.

The lack of mode structure in the loading curve was interpreted

by some researchers as an indication of anomalous power

depo'sition unrelated to fast wave generation. Such "parasitic"

.loading was thought to be especially severe for antennas without

electrostatic shields. However, interpretation of the present

experiments is different. At low plasra densities m=+1 mode is

the only mode that can carry significant rf power, whereas at

higher densities more propagating poloidal modes become available

to carry away rf power. Higher radial modes, which may also

become propagating, are especially efficient in this respect.

Thus, as the density level increases, the level of the loading

resistance also rises as seen in Fig. 6. In the highest density

case (No. 5) the apparent lack of structure is caused by

overlapping of strongly damped modes. When the damping is

sufficiently strong, the loading resistance should approach the

radiation resistance. The observed loading resistance of

0.8-2 ohms is in good agreement with theoretically predicted

radiation resistance. It is recalled that most ATC plasma

heating experiments are conducted at these high densities. This

indicates that most of the rf power is indeed radiated as the

fast wave, and that it is not necessary in the ATC experiments to

consider anomalous phenomena to account for the bulk of the power

coupled into the tokamak vessel.

In the preceeding paragraphs interpretations of the
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experimental .results are presented in terms of the enhanced

cyclotron damping due to the presence of the two-ion hybrid

resonance. A few words of explanation are in order at this point

regarding their relation to interpretations based upon mode

conversion damping at the two-ion hybrid resonance. The previous

.analysis is based upon a simple model for the plasma dielectric

tensor that results in a second order differential equation. In

the limit of the cold plasma approximation the coefficient of the

highest order derivative in the equation vanishes at the hybrid

resonance, and higher order terms must be retained to describe

the wave propagation in the vicinity of the resonance. The

analysis in the previous section deals with physical conditions

under which thermal effects, primarily PFC and DSH damping, are

strong enough such that the second order term remains more

important than the higher order terms. Such physical situations

would arise when the proton concentration is small, ion

temperature is high, or the parallel wavelength is short.

Equation (9) expresses a quantitative criterion for the presence

of the weak hybrid resonance. The ATC plasmas belong to this

category under most plasma heating conditions, and the wave

damping data are interpreted in this light * (However, modes near

their onset with a long parallel wavelength may not satisfy this

criterion and the mode conversion may be important for them.)

*There are theoretical treatments 4,5,23) based upon mode
conversion. However, none of them solved boundary value problems
to obtan the E-field structure in a bounded plasma, and so were
only applicable when the wave absorption was so strong that no
waves reflected from the boundaries need be considered. The ATC
experimental conditions clearly do not correspond to such cases.
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4. Conclusions

The damping length (rather than the cavity-Q factor) of the

fast wave propagation in ATC tokamak is measured directly at low

plasma densities. The wave damping strength deduced from these

.measurement is found to be much greater than that predicted by

the "pure" PFC and DSH damping theory. Asymmetric location of the

region of the strongest damping about the plasma center is also

in contrast to the theoretical predictions. The discrepancy in

the damping strength is much smaller at higher densities. This

implies the predominance of pure cyclotron damping in dense

reactor-like deuterium plasmas in spite of the inevitable

presence of a few percent impurity protons.

These discrepancies between theory and experiments are

attributed to the two-ion hybrid resonance. Unlike

interpretations of other experiments based upon linear mode

conversion at the hybrid resonance, the current results are

explained in terms of enhancement of the cyclotron damping: the

hybrid resonance alters the polarization of the wave E-field in

such a way as to enhance both the PFC and DSH damping. The

enhancement is asymmetric with respect to the plasma center.

These explanations are applicable only when the proton

concentration is small and the hybrid resonance layer lies close

to the cyclotron resonance layer.

Satisfactory performance can be obtained from a simple wave
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coupling strticture without an electrostatic shield commonly used

in the past ICRF heating experiments. The success of the ATC

antenna represents a step forward towards a more rugged

(presumably all-metal type) structure which could be used in a

thermonuclear environment.

The major part of the power coupled into the tokamak vessel is

radiated as fast waves and there is no evidence that significant

power is lost through so-called "parasitic loading". This is not

to say that no rf power is channeled into plasma phenomena other

than the fast wave generation. If there are any parasitic

effects, they are not of major consequence in dissipating the rf

power.

A coupling efficiency (net coupled power/incident power) in

excess of 90 % is routinely attained. The total loading

resistance is 1-2 ohms under typical plasma heating conditions,

and the wave generating efficiency (wave power/net coupled power)

of 90-95 % is achieved. The power deposition efficiency (power

deposited in plasma/wave power) is about 90 %. The overall

efficiency of delivering the power to the plasma is the product

of all these efficiencies: approximately 75 % of the generator

output power is actually deposited in the plasma. Only that part

of the power which is deposited in the central plasma core

contributes significantly to plasma heating, and "the heating

efficiency 8)" is lower than "the power deposition efficiency"

quoted here.
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Figure Captions

Fig. 1

Schematic of the wave coupling structure (shown in part).

Fig. 2

Time variation of the wave amplitude (rf envelope) observed by

two magnetic probes located 90 degrees around the torus away from

the antenna nearly directly above(T) and below(B) the plasma

axis.

Fig. 3

Oscillograms of the loading resistance computer outputs. The

toroidal magnetic field is different for each oscillogram. The

locations of the DSH or PFC resonance surface are indicated.

Fig. 4

(a)Variation of the wave damping length normalized by the

toroidal circumference as the toroidal field strength is varied.

The abscissa is the major radius location of the DSH or PFC

resonance layer. The region of the minimum damping length is

asymmetric with respect to the nominal plasma center at 87 cm.

(b)Variation of bolometer signal which registers power loss

through charge exchange and radiation. The difference between

discharges with and without rf pulse is plotted. The nominal

extent of the plasma region is indicated. The outer limiter is

positioned at 107 cm.
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Fig. 5

Oscillogram in the middle shows the perpendicular charge exchange

signals at three different energies. Sharp spikes are observed on

the two high energy signals coincident with the appearance of a

toroidal resonance. The lower oscillogram shows the loading

resistance in the expanded time scale. The second peak at 3 ms

after the initiation of the rf pulse is coincident with the

spikes. The top diagram shows the relative locations of the

plasma, antenna and cyclotron resonance layer. The space between

the main body plasma and the antenna is filled with a tenuous

plasma.

Fig. 6

Oscillograms of the Rg7-computer output. The cyclotron resonance

surface is located near the plasma center in all cases. Variation

of the central electron density for each case is also shown.

Fig. 7

Theoretical loading resistance corresponding to the experimental

conditions of the center oscillogram of Fig. 3. (a)Damping

strengths based upon minority and second harmonic damping

obtained by Stix. (b)Minority damping strength multiplied by an

enhancement factor of 15 and the second harmonic damping strength

by 100.

Fig. 8

46



Theoretical loading resistance for the experimental conditions of

the top-right oscillogram of Fig. 6. (a)Damping strengths based

upon minority and second harmonic damping obtained by Stix.

(b)Minority damping strength is multiplied by an enhancement

fact'or of 1.8 and the second harmonic damping strength by 5.2.

Fig. 9

(a)Variation of the E.-component of the wave electric field

across the slab for three different values of the confining

B-field : one for which the proton cyclotron resonance falls at

the plasma center (0.9 m) and two others for which the resonance

is displaced by 0.06 m on either side of the center. The slab

half-width is 0.17 m. The hybrid resonance has only small

effects on the E., but they are asymmetric with respect to the

center. (b)Variation of the E+-field for the same three cases.

The hybrid resonance has strong effects on the E+. Note the

appearance of a very steep gradient between the hybrid and

cyclotron resonance layers.
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Table Captions

Table I

The theoretical wave damping length normalized to the toroidal

circumference for the toroidal eigenmodes shown in Fig. 7(a).

The normalized damping length is the number of times the waves go

around the torus before their amplitudes e-fold. A set of

radial(l), poloidal(m) and toroidal(n) eigenmode numbers

identifies the resonant mode. The damping lengths are computed

based upon "pure" cyclotron damping theories for the proton

fundamental cyclotron(I) and deuteron second harmonic(II)

damping. The electron Landau/TTMP damping(E) is completely

negligible. The wall resistive damping(W) lengths are

one-twentieth the values computed for these modes in a

cylindrical waveguide made of smooth stainless steel walls. The

right-most column(T) lists the total damping lengths.

Table II

The theoretical wave damping length normalized to the toroidal

circumference for the toroidal eigenmodes shown in Fig. 8(a).

See captions to Table I for symbol explanations. The electron

Landau/TTMP damping is completely negligible except where entries

are made.

Table III

Influence of the two-ion hybrid resonance on the proton

fundamental cyclotron (subscript I) and deuteron second harmonic



(subscript II). damping. Some computed quantities are shown for

four different locations of the cyclotron resonance layer (Re).

n,, is the parallel refractive index, P the power absorbed in a

slab of unit height and depth normalized in such a way that the

Poynting flux is 1 MW per unit height of the slab, J1 and

.J-2 /(kAa) the enhancement factors, Q the quality factor, and

Lb/L the damping length normalized by the toroidal circumference.

Table IV

Influence of the two-ion hybrid resonance on the proton

fundamental cyclotron and deuteron second harmonic damping. Some

computed quantities are shown for four different values of the

on-axis plasma density (neo). See captions to Table III for

symbol explanations.
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Table I

(1, m, n) I II E W T

(1, 1, 3) 170 230 - 13 12
(1, 1, 4) 56 100 - 11 9

(1, 2, 3) 240 410 - 17 16
(1, 2, 4) 79 150 - 13 11

(1, 3, 4) 95 220 - 17 14

50



a

Table II

(1, m, n) I II E W T

(1,-1, 1) 76 1.7 - 55 1.6
(1,-1, 2) 29 2.4 - 27 2.0

(1, 0, 6) 5.0 5.4 160 9.2 2.0

(1, 1,10) 3.1 24 80 17 2.3
(2, 1, 1) 81 1.7 - 54 1.7
(2, 1, 2) 33 2.7 - 23 2.3

(1, 2, 8) 6.5 20 140 8.6 3.1

(1, 3, 8) 7 20 160 9.6 3.3
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Table III

ni

P1t
P1

JI
Jl/(kAa)

QI
QJ

(Lo/L)z
(LO/L) Z

m 0.98

28

25
1.6

kW/m 2

kW/mz

7.2
64

0.94

29

78
4.0

2.8
13

180
3400

4.5
89

0.90

30

55
2.0

1.8
5.2

230
6500

6.4
180

0.86

31

6.0
0.11

1.2
2.1

2100
120000

58
3100

560
8500

14
220
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Table IV

J/k ) 2
JE/ ( kAa )

(Lo/L)
(LD/L)

1L

0.8

14

300
44

15
590

570
3900

1.2
7.1

1.5

22

95
12

3.1
54

150
1200

3.7
30

53

neo

ni

P,
P3E

10 '/m3

kW/m
kW/m'

2.5

30

55
2.0

1.8
5.2

230
6500

6.4
180

3.5

36

40
0.55

1.3
1.1

360
26000

8.8
640
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