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The free electron laser instability for a solid relativistic
electron beam prop;gating in combined transverse helical wiggler and
~uniform axial guide fields is investigated within the framework of
the linearized Vlasov-liaxwell equations. It is assumed that v/yb << 1,
where v is Budker's parameter and ybmc2 is the electron energy.
Stability properties are investigated for the choice of equilibrium
distribution function in which all electrons have the same value of the
linear combination of transverse and helical invariants, C, - szmwah =
const., and a Lorentzian distribution in the axial invariant Cz.
{Here wb is a constant.,) The instability growth rate is calculated
including a determination of the optimum value ofAthe ratio of beam
radius to conducting wall radius (RO/RC) for maximum growth. It is
found that the maximum growth -rate for a solid electron beam is
comparable to that for a hollow beam with similar parameters. Moreover,
the introduction of a small axial momentum spread (A/ybmc v oa few

percent) significantly reduces the instability growth rate.




I. INTRODUCTION

In recent years, the free electron laser :'mstabilit:yl_9 has been
extensively investigated with pérticular emphasis on applications
to intense microwaQe generation. For the most part, previous theoretical
analyses of this instability have been carried out either for uniform
density beams3—6 with infinite transverse dimension, or for annular

electron beams. ’

The present paper examines the influence of finite
radial geometry on the free electron laser instability for a solid
electron beam propagating in combined transverse helicaliwigglér and
uniform axial guide fields. The analysis is carried out within the
framework of the linearized Vlasov-Maxwell equations, including a
determination of the optimum value of beam radius RO for maximum
growth rate.

The present analysis is carried out for an infinitely long relativ-
istic electron beam propagating in the combined transverse wiggler and
uniform axial guide fields described by Eq. (1). Equilibrium and stability
properties are calculated for the specific choice of electron distribution
function [Eq. (5)1],

0 '39 §(C, = 2vyymuy G — 2 uT )G(C )
- L Yb™¥e,“h Yp ~L/PANVY,
where Ngs Wy Yy and fl are positive comnstants, C,, Ch’ and Cz are
the transverse, helical, and axial invariantle defined in Egs.
(6) - (8), and the axial distribution function is normalized according
to jm dCzG(CZ) = 1. Equilibrium properties are investigated in Sec. I1I,
and ;:ability properties are examined in Secs. III énd IV, assuming

that v/yb << 1, where v is Budker's parameter, ybmc2 is the characteristic

electron energy, and m is the electron rest mass.




In Sec. III, making use of the linearized Vlasov-Maxwell equations,
Qe obtain the coupled eigenvalue equations (33), (37), (40), (45), and
(46) that describe free electron laser stability properties in
circumstances where the perturbed transverse fields can be approximated
by the vacuum waveguide fields. For short wavelength perturbatioms,
the axial component of the perturbed longitudinal field can be approximated

by [Eq. (49)],

-~

~(n) b,s'75 By o1 T/Rg) » 0 5T <Ry,
l:'z l(r) -

o, otherwise ,
where Jz(x) is the'Bessel function of the first kind of order £,
s ] . 2 .
Bl,s' is the s'th zero of Jl(Bz,s') 0 and ¢2,s' is a constant. In
Sec. IV, substituting Eq. (49) into the coupled eigenvalue equationms,
we obtain closed algebraic dispersion relations for the transverse

electric (TE) and transverse magnetic (TM) polarizations.

Introducing the normalized dimensionless function [Eq. (59)],

2 Ji(X)
Cpgr (X) = 4By o1 2 -2 2
By s

it is shown in Sec. IV that the coupling between the longitudinal and

transverse perturbations is proportional to st'(a1+1,sRO/Rc)

for the TE mode, and to G RO/R ) for the ™ mode. Here
s s S C

'(Bz+1

a ) = 0 and J

] -
qnd B£+1 are the sth zeroes of J ( ) =0,

i+1,s s S 2+l 2+1(Bg+l,s

0‘51+1,s

respectively, Rc is the radius of the outer conducting wall, and the prime
denotes (d/dx)Jl(x). Assuming that the maximum of the function st'(x)

occurs at x = xls" we note that the maximum instability growth rate

occurs at a value of RO/RC given by RO/RC = for the TE

xQs'/uﬁl,s

‘mode, and by Ry/R, = for the TM mode. This result is

%o /8041,

different from that obtained for a hollow electron beam.




4

A detailed numerical analysis of the TE mode [Eq. (62)] and TM
mode [Ea. (63)] dispersion relations is presented in Sec. IV. Two

features are noteworthy from the numerical analysis. Fjirst, for the optimized

value of RO/R , the instability growth rate for the TM mode is comparable
c

to that for the TE mode. Moreover, the growth rate is reduced substantially

by introducing a small amount of axial momentum spread (A/ybmc » 0.01).




II. EQUILIBRIUM THEORY AND BASIC ASSUMPTIONS

The equilibrium configuration consists of a relativistic electron
beam propagating in the combined transverse wiggler and uniform axial

guide fields described by

0“" A—a '7’\ H - 1z - o
B = ~-8Bcos (9 kou)%r + &Bsin(® Loz)ge + BO% . 1)

2

where B0 and 6B are constants, and kpy is the axial wavenumber of the

helical wiggler field. 1In Eq. (1), cylindrical polar coordinates (r,0,z)
are used, with z-axis along the propagation direction, and %r’ %6 and éz
are unit vectors in the r-, 6-, and z-directions, respectively. In

the present analysis, we assume that the axial wavenumber of the helical

.wiggler field is sufficiently large that

< kyRy (2)

IwO T e BO
where wy = kOVb, w, = eBO/ybmc is the electron cyclotron frequency,
2
Ro is the characteristic beam radius, Yime is the characteristic

electron energy, c is the speed of light in vacuo, Vb = C(Yi - l)l/z/Y

b
is the mean axial velocity of the electron beam, and -e and m are the
electron charge and rest mass, respectively.

It is also assumed that
viyp << 1, (3)
. w 2 2 . .
where v = K e /me” is Budker's parameter,
Zm Rc 0
N = de f dr r n_(r, 6 - k.z) , (4)
b 0 0 b 0

is the number of electrons per unit axial length of the beam, ng(r, 6~ koz)
is the equilibrium electron density, and R, is the radius of the conducting

wall. The inequality in Lq. (3) indicates that the beam is very tenuous,




and the perturbea elecgromagnetic fields, to lowest order, are approximated
by the vacuum waveguide fields.8 Consistent with the low-density
assumption in Eq. (3), we also neglect the influence of the (weak)
equilibrium self-electric and self-magnetic fields associated with the
lack of equilibrium charge and current neutrality.12

For present pdrposes, we assume an equilibrium distribution

function of the form10

n
0 ., T
fb = ;"5(C;_' ZmembCh = 2meTx)G(Cz) ’ (5)

where Ry Wy, and T, are positive constants, and C;, Ch’ and'Cz are the

three single-particle constants of motion defined bylo
2eBg
C =p2+p + = (p_ - v,mV,)
1 r 6 ck0 z b b
(6)
_ 2edB . '
- P.co s(® - k z) + —— ck Gs1n(9 koz).,
0 0
- 1 - esB ; -
Ch = Pe + ko (pz ymeb) + cko rsin(@ koz) s @)
d 7
an
eB 2 eB 2
z cko z cko
(8)
2edB 2edB . )
ck P, cos(6 - k z) i 2931n(6 - koz)
0 0 .
The axial distribution function is normalized according to
J_m dCZG(Cz) =1. 9)
In Eqs. (6) - (8), R = (Prs Py pz) = ymy is the mechanical momentum,

Pe = r(pe - eBOr/Zc) is the canonical angular momentum associated with

2 4 ZRF)l/Z

the axial field BO’ and‘Ymc2 = (m"c + ¢ is the relativistic

electron energy.




In the parameter regimes of practical interest for free electron
laser applications, the axial distribution function G(Cz) is strongly
peaked about Cz = meVb = const., with characteristic half-width
ACz << ybmvb. Moreover, in the present analysis,.if is also assumed

that the axial motion is nonresonant with
#uw o, (10)

where v, = pz/ym is the axial velocity of a typical beam electron.

We therefore approximate Eq. (8) bylO

wGB
Cz = (u _— )B [p cos(8 - k z) - p651n(6 koz)];

(11)
Making use of Egs. (6), (7), and (11), it is straightforward

to show that the combination C; - 2ybmw C, in Eq. (5) can be expressed as10

b h
[ esBfY " “ ?
C, - 2mewah = ipr -~ Cko( g - @ )cos(e - koz)]
esB {0 " % ?
+ {Pe T oYple T+ cko (m0 Sy )sin(e - koz)) (12)

+ yim2¢o(r, 8 - koz)

where w

0= koVi» @, = eBD/ybmc, and the effective potential wo(r, 6 - k z)

0
is defined by

ko By

2 2
Wn — w 2 w - w
0~ % c f8BY.2 2 c b
—(wo - w ) 2 (B )Vb + m( wg )Vb(cz - mevb)

' _ 2, 2 Ye T %\ r B
wo(r, 8 - koz) = (wbwC - wb)r + 2wcwb (wo ) sin(g ~ kOZ)

(13)
c

As a simple example, we consider an axial distribution function

in which all electrons have a same value of Cz, i.e.,




6(c,) = 8(c, - Ypmv,) - (14)

After some straightforward algebraic manipulation that makes use of
Eqs. (5), (12), and (14), it can readily be shown that the lowest-
order (azimuthally symmetric) electron density profile described by

Eqs. (5) and (14) can be approximated bylo

ng(r) - (15)

vhere .the mean radius RO is defined by

~ _ 2 2 .
2T, +(mo mb)ie(@)sz
y, Wy = W 2\B b
7 b 0 ¢ w, 0
R, = 3 > (16)
(v, = W)

and use has been made of Eq. (2). Additional general equilibrium
properties associated with the distribution function in Eq. (5,
including helical distortions of the beam equilibrium for finite GB/BO,

are discussed in Ref. 10.




9

III. LINEARIZED VLASOV-MAXWELL EQUATIONS FOR A TENUOUS BEAM

In this section, we make use of the linearized Vlasov-Maxwell
equations to investigate the free electron laser stability properties
, 0of a relativistic sélid electron beam described by the equilibrium
distribution function in Eq. (5). We adopt a normal-mode approach in
which all perturbations are assumed to vary with time and space

according to

- (n)

Sw(x,t) = ¥, (r)exp{if2e + (k + nko)z - wt]} , a7z

L,n
where lmw > 0. Here, w is tne complex eigenfrequenéy, k+-nk0 is the

axial wavenumber, and £ and n are integers. DMoreover, it is also assumed

. that the perturbations are close to resonance with
fw - x + nko)Vbl < uwgs W, s (18)

where wy = kOVb and w, = eBO/ybmc.

The Maxwell equations for the perturbed electric and magnetic field

amplitudes can be expressed as

Y x E® = iw/aB ,
19
y x %(x) = (4n/c)i(§) - i(m/c)%(ﬁ) s
Qhere
i é(g) = -e J d3p v Eb(§,g) , (20)
is the perturbed current density. In Eq. (20),
£, (xp) = eji dr exp(—iwt)[r%(,}\i') g4 xf(%') . 22, £,
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is the perturbed distribution function, T = t' - t, and the particle
trajectories é'(t') and R'(t') satisfy dg'/dt' = y' and dp'/dt' = —ey' x Qo/c,
. . '3 1 . 1 | R - 1 r _
with "initial" conditions ¥ (t'. = t) = ¥ and v (' = t) = -
Within the context of Eqs. (3) and (18), the perturbed distribution

function in Eq. (21) can be approximated by

0

%b(ﬁ’R) = - ig~j_m dt exp(—iwr){Z(ymiw(X' . %)
(22)
- v 9§ 30 vL 9 gy 40
P, azf‘@)} 7 & + (¥ Bz’%)ap £l
Py z
) 2,221/2
where y = (1 + 2 /m~¢”) , and use has been made of Eq. (19). To lowest
order, the axial motion of an electron is free~streaming with10
P,
z'=z+— (t' -t) . (23)
ym

Moreover, within the context of Eq. (18), on the right-hand side of

Eq. (22) we retain contributions to v; and v! in the orbit integral of

6
the form8
w
v o c_SB - - :
Ve TV, T o B cos (9 koz kovzr) . 24)
0 c 0
and
“Ye 6B
| P oSy : - -
Ve = 7V, og - Bo sin(6 - kgz kovzr) . (25)

Finally, since the oscillatory modulation of the radial and azimuthal

orbits is small amplitude [Eq. (2)], we approximate
r' =r, 8' =9 , (26)

in the arguments of the perturbation amplitudes on the right-hand side of

Eq. (22).
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Substituting Eqs. (23) - (26) into Eq. (22), we obtain the perturbed

distribution function

p 2(n) .
£, (x,p) = RZH £, exp{ilee + (k + nky)z]}
fec exp{i[26 + (k + nxo)z]} -~ (n) 5B @
= w - (k + nk.)v AuBzEz Z(I)‘+ 2 w, ~ W
@ g,n 0/ "z i 2yme ko 0 c
*(n+1) 2 (n+l) ~(n-1) _ .5(n-1)
x {An+l[Er,£-l(r) ARy 1 A G () - B ()
(27)
wiaere the function An.(E,w,k) is defined by
. A of) 2ty
by e - 'y, __b . [} b
Agr(pswsk) = 2[ymw = (k + n'kg)p ] 3p2 + (k + n'kj) 79, (28)
1

. and Bz = vz/c. In Eq. (27), the term proportional to An is the
longitudinal portion of the perturbed distribution function.

Similarly, the terms proportional to An 1 and An—l in Eq. (27) are the

+

transverse electromagnetic portions of the perturbed distribution function.

Consistent with Eq. (18), the eigenfrequency w can be approximated

2

by w = (k + nkO)Vb.' We therefore approximate wz/c2 - (k + nkO + ko) by
2,2 2 (k + nkp)” 2
w/c” - (k + nkg + ko) = - 7 + ZkO(k + nko) + kO <0,
b
(29)

for k + nkO > 0. Evidently, Eq. (29) indicates that the n + 1 mode in

Eq. (27) is a non-propagating wave in a vacuum waveguide. Without loss

of generality, for a tenuous beam, we therefore assume

(n+1)

o g1 (®) =0, (30)

A(n+l) _ PN
Er,£—l(r) = E

in the subsequent analysis. Making use of Eq. (30), fb(¥,g) in Eq. (27)

can then be expressed as
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£ (x,p) = tee ) bl i Yt 2.8 E™ ()
b RoR © w - (k + nko)vz n oz z,8
(31)
~(n-1) ~(n-1)
A B ph1 (F) - 3B 1 ()]
where the dimensionless parameter A is defined by
w
A = eGBz, 0 , (32)
2y, mck, Y0~ “e
"¢ %o

and use has been made of the approximation y = Vg which is consistent
with Eq. (18).
- * 1 1 . T ‘ = ‘ N
From Poisson s.equatlon, v %({) 4np(%), and the
Maxwell equation (19), we obtain the differential equation,
4ri(k + nk )

2
[vi + ¥ - (k + nk >] " - —2 oMW, (33)
C Yb .

for the axial (iongitudinal) component of the perturbed electric
field E( ). In Eq. (33), p( )( ) = fd pf( n) is the perturbed charge

density, Vi = r Ya/ar)(xa/ar) - 22/x%, and use has been made of J(n)(r)
V5™ ().

In the tenuous beam limit [Eq. (3)], the transverse field

& (n-1)

Ej £+l(r) in Eq. (31) can be approximated by the wvacuum

components £
waveguide fields.8 ‘In this context, the present stability analysis
utilizes the vacuum transverse electric (TE) and transverse magnetic
(™) waveguide modes as a convenient basis to represent the general

~(n-1)

2+l(r), which is determined from1l

electromagnetic field perturbation E

2

w _ 2 A(n 1)
z° (k +nky ~ ko) 1By o7 ()
(34)
d (n-1), , _ . w: (n-1)
Z* 3z Ez £+l($) 1¢c &2 % Xle 2+l(§)

Making use of Egs. (19) and (34), and neglecting the perturbed

current density, the vacuum waveguide fields can be expressed as




13
3(n-1)
z 2+l(r) 1+1,st+1(a2+l,sr/Rc>
(35)
Dy gDy oo e r/R )
r L+l 6 L+1 co. +l,s87 ¢ 0LSL+1,s c’ ?
2+1,s
' for the TE mode, and
~(n-1) -
a1 () = ey Y041 Bpa1, 7R
(30)
7 (n- D (ry - g (0" 1)()=1(kJ'“ko'ko)Rc8 3G /R
r L+1 6 L+1 B£+1,s L+1l,8 8 " R+1,s c
for the TM mode. In Egqs. (35) and (36), b2+l,s and 62+l,s are constants,
J2|(X) is the Bessel function of first kind of order L', and al+1 <
\] - =
and 81+l,s are the sth roots of J +l(a1+l ) = 0 and J1+1( 2+1, s) 0,
” s T _
respectively. Here the prime (') denotes JQ+1(X) = (d/dx)J2+l(x).

After some straightforward algebraic manipulation of Eqs. (19), (35), and

(36), it can be shown that

2
2 a o r
W _ 2 _ 2tl,s L+1,s )
{ 7 - (k+nky - k) 2 bz+1,st+1( R
c RC c
(37)
__4r “(m=1), \; _ *(n-1)
T T re { [r3g g1 (01 - 2 + 13} FICEC)
for the TE mode, and
2
( 2 B B r
W _ 2 "tl,s +1,s )
l 7~ (k+nky - k) 2 Ez+1,sjz+1( R
c RC J o]
, (38)
“(n-1) w (n 1)
4ﬂ1[(k + nky - k )p2+l (r) - z 2+l( r)| ,
for the TM mode. Moreover, making use of the continuity equation,
s(n=-1)_ . . . _ o yi(-1) 13 j(n-1) i(x +1) ~(n-1)
1wd g 1(k + nk, kg)d, g4l = T ar (BY) 2+1] + Jo, 041 °

(39)




14

~(n-1) . (n-1)

the approx1nat10n J Q+l( r) = pr2+l

(r) [consistent with Eq. (3)],
and approximating k + ok, = kO/(l - Vb/c) on the right-hand side of

Eq. (38), we find that Eq. (38) can be expressed as

2

(2 _ B ! B r
W . L. 2 “&tl,s +1,s

[ 5~ (k + 0k = kj) 7 | Se+l,s 2+1( R )
c RC c

(40)

- ‘:%{ [ J(nz_}_i(r)] + 1(1+1)Jénz}ri(r)} i

for the TM mode.
For convenience of notation in the subsequent analysis, we intro-

duce the effective susceptibility,

k)
2 3 '(E’m
Xn,n'(w’k) = fme fd P o= (k + nk )v (41)
Moreover, to simplify the present analysis, we also assume that the
beam rotation is slow with

wy << w., Wy (42)
Within the context of Eq. (42), we can show from Eq. (12) that the
equilibrium distribution function is an even function of

Pr = 2ybchcos(e - koz) (43)
and

Py -+ 2ybch51n(e - koz) s (44)

for the beam rotations satisfying Wy << @l Wy Making use of

Egs.

03]

(31), (41), and (43), the perturbed charge and current densities
are given by

“(n 1) 2A

(n 1)
To, 941 (T) = 77, Cplwnks r) =

3PV @ =™ (45)

where the function Gﬁ(w,k,r) is defined by
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_ (n)
Gl(w,k,r) = Xn,nBzEz,ﬁ(r)

(46)

é(n~l)

[ - (n-1)
n,n-1""r,+1

(r) - iE

+AX ‘9, 2+1

(r)]

, Equations (33), (37), and (40), when combined with Eq. (45), constitute
one of the principal results of this paper and can be used to investigate
stability properties for a broad range of system parameters. Moreover,
in limiting cases, the dispersion relation for the free electron laser

instability can be obtained in a closed form (Sec. IV).
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1IV. FREE ELECTRON LASER STABILITY PRCPERTIES

In this section, simplified expressions are obtained for the longi-
tudinal perturbations in Eq. (33),and the results are used to derive the
dispersion relation for several values of azimuthal harmonic number £.

The present analysis assumes short wavelength perturbations with
2 2 2,2 2
lqnl = |(k + nko) - w /] > ]_/RO ) (47)

Moreover, for w = (k + nko)Vb and k + nko = ko/(l - Vb/c), the inequality

in Eq. (47) can be expressed in the equivalent form,

2

(L + 9, /c) yzkgRg o> 1, (48)

. which is readily satisfied in the parameter regimes of present experimental
interest. As shown in Appendix A, for short wavelength perturbations
satisfying Eq. (48), the axial component of the perturbed electric field

ﬁini(r) in Eq. (33) can be approximated by

- ¢, +J, (B, 4r/R)) , 0 <r <R ,
Eini(r) - L,8'78 8,8 0 0 (49)
’ c, otherwise .
In Eq. (49), Bl,s' is the s'th root of J (6, _+) =0, and ¢, ., is a

R L,s

constant.
Substituting Egqs. (35) and (49) into Eq. (46), multiplying Egs.

(33) and (37) by rJQ(Bl S,r/RO) and rJ ( r/RC), respectively,

o+l Yerl, s

and integrating fromr = 0 tor = Rc’ we obtain two homogeneous equations
i i i and b . Fo e
relating the perturbation amplitudes ¢£’S, d 91, s r the TE
mode polarization, these are
~ R

. ¢ | 1 2
%,S.J dr r 8(Ry - ) ( 7 %an T 9t
0 Yb

(50)




(k + nkO)Rc b RC o : (a£+l’sr )J. (Ekgs'r )
o v+l,s) Xn,n-1"2 R, 2 R, ,
A +1,s8
and
R 2 a2 ] o T
c w .82 a+l,s 2 2 (7etl,s
b9,+l,sj dr r 175 = (k+ kg - k) 2t Xn,n—lJJJHl( =)
0 c RC c
' (51)
B t ~ R g 'Y ¢ r
S 7% - c - 2,8’ (_ﬁil’_S._
(k + nk Ry _A¢2,s'f0 dr r8(k, r)Xn,nJSL( R, )Jz+1 R_ ) ’

winere ®(x) is the lieaviside step function defined by

1, x>0,
8(x) = (52)
0, otherwise .

Similarly, for the T mode polarization, we obtain

2
R B 1 B 1T
- c 1 2 9,8 2( "g%,s
¢ ( dr r ®(R; - 1) (~§-Xn,n + Q-+ __;_“> 3 (.__L___)

]
sty v e /4 Ro
(53)
= =i W A Rc dr r J ( Bl+l’sr)J ( BQ‘JS'r
“26 VEaHl,s o Xn,n-1"2 R, [} RO
{b +1,s8
and 2
R 2 B+l 2 Vo [BpeT
c Yo o~ 32 o atl,s “atl,s
©4+1,s J dr 1}75 = (k+nkg = k) 7+ 0 g aen [Tl
0 c RC c
(54)
B ' R B 1T
s 2,8 - c _ L,8
BT SN M’z,s'fo ar r 8y - Dy, I N )

E r
x J 2,+l,5 ),

£+l( RC

wnere use has been made of o = (k + nkO)Vb and (k + nko) S kO/(l - Vb/c).
In the present analysis, it is assumed that the axial distribution

function has the form

6(c) =& L , (55)

T 2 2
(Cz - meVb) + A

where A is the characteristic spread in Cz about the mean value Cz = y,me.

b
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We further assume that the characteristic spread A is small in comparison

with mevb. Substituting Eqs. (5) and (55) into Eqs. (28) and (41),

we obtain the approximate expression

2 _ . 2
4o Y (k + nko)(k + n Lo)c

, 0 <r <R

- 1

2 .
YbRO [w - (k + nko)Vb + i (56)

o RO <r < RC

3.2
k + nk0|A/ybm]

" In obtaining Eq. (56), use has been made of Ea. (18). Making use of the

definition of Budker's parameter in Eqs. (3) and (4), the term Av/beg

9
in Eq. (56) can also be expressed as 4v/YbR6 = méb/cz, where wib =

4nn0e2/ybm is the plasma frequency-squared.
The condition for a nontrivial solution to Egs. (50) and (51)

is that the determinant of the coefficients ¢£ S and b2+ be equal
“ < ’

1,s

to zero. After some algebraic manipulation, we find that the TE mode

dispersion relation can be expressed as

2 2
[k + nk;|a} 2 a
R 0 w . 2 _ 2,+l,S
[m - (k + nkO)Vb + i 3 {—7~- (k + nko - ko) _—ff—-}
L (bm C RC
( [k + nko|A\2 e
x {iw - (k +nk, )V, + 1 ———————~—~w - G e
0" b 3 3.2
l Yp YpRo
2 )
2 o o R 2
3 2 vc . _ _atl,s E g+1l,s 0 ) veC
= 4 R ky(k + nky - k) = J sts'( & 4 3
Ybe ¢ Yvo0
2
a R |k + nk,|a)
+1,8°0 | o . 0
+ sts'( R )'w (k + nkO)Vb i 3 ]
c { Y
a R .
Ve 2tl,s O
-4 3.2 sts'( R ) ’ (57)
YbRO c
. . E . .
where the coupling coefficient Qgs '(a2+1,sR0/Rc) is defined by
2
a G (%)
E “o+1, 95"
Qe (%) = % : 2 25 ’ (58)
Q2+l,s -G+ D JQ+l(a2+l,s)

and the functions Gls'(x) and Hﬂss'(x) are defined by
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2 Iy
Cogr (¥) = 48y v —5——5— (59)
( - B,Q 1)
and ) ’
J (x) - J (x)J (%)
Tl g F) 042
hzss,(x) = GQS'(X) (60)

In Eq. (57), the subscript s and s' represent the radial mode numbers
of the transverse and longitudinal perturbations, respectively.
For small wiggler amplitude (¢ << 1), we investigate free electron

laser stability properties for w and k + nkg near the simultaneous

zeros of the transverse dispersion re_lation,.w2 - (k + nkO - k0)2c2 -
2 - 2,2 e o . .
a£+l,sc /RC = 0, and the longitudinal dispersion relation
% + nkOIA ’ vcz
w —(k+nkO)Vb+l—-—"§:——- —4—5‘1:2-=0. (61)
b b0

In this regard, making use of Eq. (61), the TE mode dispersion relation

in Eq. (57) can be approximated by

2 2
k + nk.|A
23 - (k + nk, - k )2 - g&illé' w=- (k+nk,)V, +1i l——~—:L£ﬂ—J
2 0 0 Rz 0’'b 3 J
¢ c Yb
2
2 o Q R
ve _ .2 ve _ _&ili§} E A+l,s 0
RN A 7 |kl + kg = k) 2 J Qst'( R )'
YbRO » YbRc Rc c
(62)
In a similar manner, from Eqs. (53) and (54), we obtain the
approximate TM mode dispersion relationm,
2 V2
2 B _ |k + nk,. |4
W 2 2+l,s _ . o
5 - (k + nko - ko) - > [m (k + nkO)Vb + i 3 ]
c R me
N ) (63)
2 2 g R R
ve _ a2 ve ( ) 1,5 M 2+1,8 0
-4 32( & 7 {folk ¥ nkg ~ k) %) Qest R_ ),
Yb 0 Yb\c { c
L . M . :
where the TH mode coupling coefficient les'(82+1,sR0/Rc) is defined by
L ) =6, /32 ) (64)
ies! s’ 242 g+1,8”

and the function qu,(x) is defired in Eq. (59).
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Figure 1 shows plots of st,(x) versus x obtained from Eq. (59)
for (a) Bl,s' = 80,1 and (b) Bl,s' = 81,3. Except in the case

B

LS = 30’1, the plots of GQ’S,(X) for arbitrary Bz g1 are similar

»

to those for 2 ) = 81;3

£,8
¢ = G (x ) and x
gs' gs' s "

in Fig. 1(b). As shown in Fig. 1(b), the

quantities G denote the maximum value of

gs’

Gls'(x) and the corfesponding value of x for a specified B2 g For
b}

example, in Fig. 1, (xl d

o st.) = (0, 0.69) for B, _, = 8

0,1 an

(xls' , QES.) = (9.8, 0.064) for Bz’s, = g Shown in Fig. 2 are

1,3°
plots of (a) Xy 1 and (b) the corresponding values of Gts' =
st'(xﬁs' ) for several different values of the/azimuthal and
radial mdde numbers §{ and-s'. It is evident from Fig. 2(b) that
Gis' decreases rapidly with increasing values of the mode numbers 2

and s'. lMoreover, we note from Fig. 2(a) that x__, can be approximated by

18

X 1 =B v s' # 1. (65)

In this regard, for s' # 1, Cts' can be approximated by

¢ . = 32 (q vy
CQS' = GQS'(BQ,S') JQ+1(6Q,S')’ s' # 1. (66)

Shown in Fig. 3 are plots of (a) QESS,/qu, for the TE mode

M /G , for the TM mode, obtained from Eqs. (58) and (64)

and (b) Qﬁss' 05

respectively. Note that the curves in Fig. 3 are independent of the
. longitudinal radial mode number s'. Evidently, the values of Qiss,/st‘
and Q?ss'/cfs' increase with increasing values of azimuthal and
trans?erse radial mode numbers, £ and s. After careful examination

of Egqs. (58) and (64), we find that the maximum coupling between the

transverse and longitudinal modes occurs for a value of RO/RC given by




21
x /o » TE mode ,
RO/RC - s Te+l,s (67)
xzs'/82+1 ¢ > T mode .
9
Equation (67) is valid only when Xos' = %41,s for the TE mode, and
X, ::62+1,s for the T™ mode. For Xogr a£+l,s (TE), or Xogr 7 62+l,s

(TM), the maximum coupling occurs for RO/Rc = 1. The maximum coupling
coefficients corresponding to Eq. (67) can be determined from Figs. 2(b)
and 3. For example, for (f,s,s') = (3,2,1), we determine that the
.maximum coupling coefficient and tﬁe corresponding ratio‘RO/Rc, are
given by (Qiss' RO/Rc) = (1.607, 0;625) for the TE mode, and (Q%ss" Ro/R.)
(1.53, 0.52) for the T™ mode.
It is instructive to examine the present results for perturbations

with the lowest mode numbers, i.e., (2,s,s') = (0,1,1), particularly

for a beam-filled waveguide with RO/RC = 1. In this limit, from Fig. 1(a),
we obtain Gls'(al,l) = 0.4 for the TE mode, and Glsr(sl,l) = 0.045 mode.
We therefore conclude that the TE mode polarization is the most unstable.
Multiplying st'(al,l) = 0.4 by Qiss'/czs' = 4.2 in Fig. 3(a), the
coupling coefficient is given by lel = 1.7. Assuming zero axial

nomentum spread (A = 0) and short axial wavelengths (kgRi >> 1),

the TE mode dispersion relation in Eq. (62) can be approximated by

2
2 ) w
W Do 1 32 - . 2 _ 7pb\ _ 22,2
| CZ (k + 1'11\0 LO) [w (k + nkO)Vb] Yz 3.4 wpbko ,
b (68)

for the (%,s,s') = (0,1,1) perturbation and R_O/RC = 1. Equation (68)
is similar in form to the result obtained by Davidson and Uhm3 for
a uniform density beam with infinite cross section. 1In particular,
the constant numerical factor on tne right-hand side of Eq. (68) is

equal to 3.4, whereas in Ref. 3 the constant numerical factor is equal to 8.
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Finally, we have investigated detailed stability properties
by solving the dispersion relations in Eqs. (62) and (63) numerically
for a broad range of system parameters. Defining the normalized

Doppler-shifted eigenfrequency by
= [w- (k+ nkO)Vb]/koc s (69)

we calculate the normalized growth rate Qi = Im§ from Eqs. (62) and
(63). Shown in Fig. 4 are plots of the normalized growth rate Qi

' = N = = =
versus (k + nko)/kO for (2,s,s') (3,2,1), kORC 10, Yy 10, v/yb
0.02, and A% = 0.01, with (a) Ry/R_ = x,,/

for the TE mode, and

%317%, 2

(b) R /R. = x../B for the TM mode. For these optimized choices of
0" "¢ 31°74,2
RO/RC, the instability growth rate for the TM modeis comparable to
that for the TE mode. Moreover, the growth rate is reduced substantially

by introducing a small amount of axial momentum spread (A/mec ~ 0.01).

Y

We conclude this section by pointing out two areas in which the
analysis can be extended. First, the restriction to very short wave-
length perturbations [Eq. (48)] can be removed in a relatively straight-
forward manner. Second, paralleling the self-consistent theoretical
formalism developed in previous studies,8 the stability analysis can

also be carried out without making the approximation that the transverse

perturbations are represented by the vacuum waveguide fields.
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V. CONCLUSIONS

In this paper, we have examined the free electron laser instability
for a solid relativistic electron beam propagating in the combined
transverse wigglef and uniform axial guide field given in Eq. (1).

The analysis was carried out within the framework of the linearized
Vlasov-Maxwell equations. The equilibrium (Sec. II) and stability (Secs.
III and IV) properties were investigated in detail for ;he choice of
“distribution function in which all electrons have the same value of
the. linear combination of transverse and helical invariants, c, - 2mewah,
and a Lorentzian distribution in the axial invariant Cz [Egqs. (5) and
(18)]. One of the most important conclusions of this analysis is that

the maximum instability growth rate for a solid electron beam is comparable
to that of a hollow beam with similar parameters.8 lMoreover, it is also
found that the maximum growth rate occurs at a value of RO/Rc corresponding

to Rg/R, = /o for TE mode perturbations, and RO/Rc = xzs,/B

Xos %41, s 9+1,s

for TM mode perturbations. For these optimized values of RO/RC, the
instability growth rate for the TM mode is comparable to that for the TE
mode. Moreover, the growth rate is substantially reduced by introducing

a small amount of axial momentum spread (A/ybmc v 0.01).
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FIGURE CAPTIONS

Plots of st,(x) versus x [Eq. (59)] for (a) BQ’S. = bO,l and

(b) BQ,,S' = 81’3‘

. ¢ -
Plots of (a) Xog and (b) the corresponding GQs' Gls'(xzs') for

several values of azimuthal and radial mode numbers, £ and s'.

Plots of (a) Qiss,/G ,and (b) Q_,/¢, , [Eqs. (58) and (64)]

s

for several values of % and s.
Plots of normalized growth rate Qi versus (k + nkO)/kO for
(£,8,s') = (3,2,1), y, = 10, v/y, = 0.02, and 2% = 0.01,

with (a) RO/RC = /

X3 a4’2for the TE mode and (b) RO/RC = x31/84,2

for the ™ mode.
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APPENDIX A

LONGITUDINAL PERTURBATICNS FOR THE FREE ELECTRON LASER INSTABILITY

In this Appendix, we investigate properties of the longitudinal
perturbations about an electron beam propagating through a cylindrical
waveguide with radius RC. In the present analysis, it is assumed that

the perturbations have short wavelength with
2] = |+ np? = WPre?| s /RS (A.1)

which can also be expressed as

2222
= (1 +V,/c) kaORO >> 1, (A.2)

2.2

R

L)

for the frequencies of interest for free electron laser applications.
Equation (A.2) is easily satisfied in parameter regimes of present

experimental interest. In the limit of a small wviggler amplitude (A - 0),

we obtain the longitudinal eigenvalue equation,

2
13 38 _ & _ (n)
(rarrar r2 qn)zl)
(A.3)
W, M) e -

[w- (k + nk )V + 1‘k + nkolA/y3 2

from Eqs. (33), (45), (46), and (56). 1In Eq. (A.3), ®(x) is the Heaviside

. step function defined in Eq. (52), and wz = 4vc2/be3 is the plasma-

pb
frequency-squared.

For notational simplicity, we define

.

sot(r) n(“)( ) . (4.4)

Inside the electron beam (0 <r < RO), Eq. (A.3) can be expressed asl
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13 3 12 "l L
(;-5; ri7 - ;§-+ T ) 8¢"(r) =0, O =sr <Ry, (A.5)
where
’ wz /Y2
T2 . q? pb’ 'b

35 - 1). (a.6)
[0 = (k + nkg)Vy + 1]k + nk,[4/y;m] '

Outside the electrop beam (R0 <r < Rc)’ Eq. (A.3) reduces to the free-

space eigenvalue equation

139 é___ 2 2 2 -
(r 5z ¥ a1 rz qn)6¢ (r) 0, RO <r < RC . (A7)

The. solution to Eq. (A.3) that remains finite at r = 0 is

697 (X) = $,J,(TR) , 0 <r <R (A.8)

O b

where JQ(X) is the Bessel function of the first kind of order %, and

~

¢ 1is a constant. Notin 02R2 >»1 in Eq. (A.2), we can express the
L & 9%

solution to Eq. (A.7) as
2’ = —
Sdout () = C[Il(an)Kk(anc) Kk(an)Ig(anc)]’ Ry <t <R, (4.9)

where Il and Ki are modified Bessel functions of order £, and C is a

constant.

The boundary conditions on 6¢%r) at the surface of the electron

beam are given by

(A.10)

and

'3
ot

[0 Axes 1 o = (sl 1 o s (a.11)

r=R0 0

from Eq. (A.3). Substituting Eqs. (A.8) and (A.9) into Egs. (A.10) and

(A.11) gives
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JE(TRO)
TR, = h(q_)
0 JQ(TRO) n
: (A.12)
1 - 7
o I;(q RyK (q R) - I, (q RIK (qR,)
B

%, — < s
0 Iz(anO)Kz(anc) Iz(anc)kz(anO)
where the "prime" notation denotes derivative with respect to the complete

argument of the Bessel function, e.g., JQ(TR = [dJl(x)/dx] The

) [
0 x—TRO
expression for the longitudinal wave admittance h(qn) in Eq. (A.12)
can be simplified in several limiting cases, including short wavelength

perturbations with [qiRg[ >> 1. In this case, h(qn) can be approximated by

h(qn) = —anocothqn(RC - RO) R | (A.13)

and Eq. (A.12) reduces to

Jk(TRO)
-lRO jz?iﬁgy = anOCOthqn(Rc - RO) . (A.14)

Evidently, the right-hand side of Eq.(A.1l4)is a very large positive

number, and the lowest-order longitudinal dispersion relation (for A - 0)

can be approximated by

JQ(TRO) =9, (A.15)
where T is defined in Eq. (A.6). It follows from Eq. (A.1l5) that

T RO =8 v o s'=1,2, ..., (A.16)

where B2 , is the s'th zero of Jl(x) = 0, In this regard, Eqs. (A.8)

b

and (A.9) can be approximated by

d) 'Jl(Bz,S'r/RO) ’ 0 _<I' (RO N

2,8 (A.17)

6¢2(r) =

o, otherwise ,

where &, o' is a constant. Substituting Eq. (A.6) into Eq. (A.16)

Xy
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and making use of Eq. (A.2), we obtain the longitudinal dispersion relationm,

|k + nk|4)2 wf)b
w - (k + nkO)Vb + i 3 - = 0, (A.18)
me Yb

where the term proportional to Bi s has been neglected.
H
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