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The free electron laser instability for a solid relativistic

electron beam propagating in combined transverse helical wiggler and

uniform axial guide fields is investigated within the framework of

the linearized Vlasov-Maxwell equations. It is assumed that v/yb <1

2.
where v is Budker's parameter and ybmc is the electron energy.

Stability properties are investigated for the choice of equilibrium

distribution function in which all electrons have the same value of the

linear combination of transverse and helical invariants, C1 - 2yb mTwb Ch

const., and a Lorentzian distribution in the axial invariant Cz.

(Here wb is aconstant.) The instability growth rate is calculated

including a determination of the optimum value of the ratio of beam

radius to conducting wall radius (R0/Rc) for maximum growth. It is

found that the maximum growth -rate for a solid electron beam is

comparable to that for a hollow beam with similar parameters. Moreover,

the introduction of a small axial momentum spread (A/ybmc v a few

percent) significantly reduces the instability growth rate.
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I. INTRODUCTION

In recent years, the free electron laser instability has been

extensively investigated with particular emphasis on applications

to intense microwave generation. For the most part, previous theoretical

analyses of this instability have been carried out either for uniform

density beams3-6 with infinite transverse dimension, or for annular

electron beams.7,8 The present paper examines the influence of finite

radial geometry on the free electron laser instability for a solid

electron beam propagating in combined transverse helical wiggler and

uniform axial guide fields. The analysis is carried out within the

framework of the linearized Vlasov-Maxwell equations, including a

determination of the optimum value of beam radius R0 for maximum

growth rate.

The present analysis is carried out for an infinitely long relativ-

istic electron beam propagating in the combined transverse wiggler and

uniform axial guide fields described by Eq. (1). Equilibrium and stability

properties are calculated for the specific choice of electron distribution

function [Eq. (5)],

fb - 6(C - 2YbmwbCh - 2yb'T)G(C.)

where n0 ' 'b' Yb' and i, are positive constants, Cs, Ch, and Cz are

the transverse, helical, and axial invariants10 defined in Eqs.

(6) - (8), and the axial distribution function is normalized according

to dCz G(Cz) = 1. Equilibrium properties are investigated in Sec. II,

and stability properties are examined in Secs. III and IV, assuming

that v/yb << 1, where v is Budker's parameter, ybmc2 is the characteristic

electron energy, and m is the electron rest mass.

f



3

In Sec. III, making use of the linearized Vlasov-Maxwell equations,

we obtain the coupled eigenvalue equations (33), (37), (40), (45), and

(46) that describe free electron laser stability properties in

circumstances where. the perturbed transverse fields can be approximated

by the vacuum waveguide fields. For short wavelength perturbations,

the axial component of the perturbed longitudinal field can be approximated

*by [Eq. (49)],

() ,J (a0Zsr/R -< r < RO
E (r) =

0 , otherwise

where J (x) is the- Bessel function of the first kind of order Z,

a is the s'th zero of J (a ,) = 0 and $ is a constant. In

Sec. IV, substituting Eq. (49) into the coupled eigenvalue equations,

we obtain closed algebraic dispersion relations for the transverse

electric (TE) and transverse magnetic (TM) polarizations.

Introducing the normalized dimensionless function [Eq. (59)],

2

G ,(x) = 4, 2 2 2'
2s k (x - a ,)

it is shown in Sec. IV that the coupling between the longitudinal and

transverse perturbations is proportional to G , (a +,sR 0/R )

for the TE mode, and to Gs' ,(+ 1 ,sRO/Rc) for the TM mode. Here

a +1,s and Y+1,s are the sth zeroes of J+ (ak+1,s) = 0 and J+1 2+1,s) = 0,

respectively, Rc is the radius of the outer conducting wall, and the prime

denotes (d/dx)J (x). Assuming that the maximum of the function GY ,(x)

occurs at x = xts,, we note that the maximum instability growth rate

occurs at a value of R /Rc given by R /Rc = X s /+1,s for the TE

mode, and by R/Rc = x ,/+,s for the TM mode. This result is

different from that obtained for a hollow electron beam.8
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A detailed numerical analysis of the TE mode [Eq. (62)] and TM

mode [Eq. (63)] dispersion relations is presented in Sec. IV. Two

features are noteworthy from the numerical analysis. First, for the optimized

value of R 0/R, the instability growth rate for the TM mode is comparable

to that for the TE mode. Moreover, the growth rate is reduced substantially

by introducing a small amount of axial momentum spread (A/y mc ' 0.01).
b "
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II. EQUILIBRIUM THEORY AND BASIC ASSUMPTIONS

The equilibrium configuration consists of a relativistic electron

beam propagating in the combined transverse wiggler and uniform axial

guide fields described by

B0 = -6Bcos(6 - k z)e + 6Bsin(e - k z)e + B ez
k 0~ "sr 0 Iv 0%z

where B0 and 6B are constants, and ko is the axial wavenumber of the

helical wiggler field. In Eq. (1), cylindrical polar coordinates (r,O,z)

are used, with z-axis along the propagation direction, and r' te and z

are unit vectors in the r-, 6-, and z-directions, respectively. In

the present analysis, we assume that the axial wavenumber of the helical

.wiggler field is sufficiently large that

c 0 << k': , (2)
IWO ~C B 0 0

where w = k OVb' wc eB/ybmc is the electron cyclotron frequency,

2
R is the characteristic beam radius, ybmc is the characteristic

electron energy, c is the speed of light in vacuo, V = C(2 1/2

is the mean axial velocity of the electron beam, and -e and m are the

electron charge and rest mass, respectively.

It is also assumed that

v/Yb << 1, (3)

where v = be 2/mc2 is Budker's parameter,

2rR 0
Nb = 2 do c dr r n(r, 0 - k z) , (4)

0 0

0
is the number of electrons per unit axial length of the beam, nb(r, 0- k z)

is the equilibrium electron density, and Rc is the radius of the conducting

wall. The inequality in Eq. (3) indicates that the beam is very tenuous,



6

and the perturbed electromagnetic fields, to lowest order, are approximated

by the vacuum waveguide fields. Consistent with the low-density

assumption in Eq. (3), we also neglect the influence of the (weak)

equilibrium self-electric and self-magnetic fields associated with the

lack of equilibrium charge and current neutrality.1 2

For present purposes, we assume an equilibrium distribution

function of the form10

0 n0^
fb = 6(C- 2yb MW bCh - 2ybmT±)G(C), (5)

where n0, W b and Ti are positive constants, and CL, Ch, and Cz are the

three single-particle constants of motion defined by1 0

2 2 2eBO
C=pr +e ck0  Y bmVb)

(6)

-2e6B 2e6B
-ck prcos(O - k~z) + -ek- posin(8 - k0z0 0

Ch P + I (p bmb) rsin(O - Z) (7)
h 6 k0 z YbmVb)c L±1\

0 0

and

eBo 2 p eBo2( = (p e)
(z ck 0 z ck 0

(8)

+ 2e6B (6 - k z) _ 2e6B -

ck0 s- k psin( k0z)

The axial distribution function is normalized according to

f dCzG(Cz) = 1 .
(9)

In Eqs. (6) - (8), (Pr, Pe, Pz) = ym, is the mechanical momentum,

P = r(p0 - eB0r/2c) is the canonical angular momentum associated with

2 2 4 2 2 1/2
the axial field Bo, and ymc = (m c + c P), is the relativistic

electron energy.



7

In the parameter regimes of practical interest for free electron

laser applications, the axial distribution function G(C z) is strongly

peaked about Cz yb nb = const., with characteristic half-width

ACz < b b Moreover, in the present analysis, it is also assumed

that the axial motion is nonresonant with

k2v2 2 , (10)0 z c

where vz = p /ym is the axial velocity of a typical beam electron.

We therefore approximate Eq. (8) by10

w6B
z = + c -[)pO cos(6 - k z) - p sin(6 - k z).z z (W, 0-WC)B 0  r0 0

(11)

Making use of Eqs. (6), (7), and (11), it is straightforward

10
to show that the combination C, - 2ybmwb Ch in Eq. (5) can be expressed as

2

2 e6B c bkZ
CL - 2YbmCh r ck ) Cos(

2
e 6B (0 b %

+ p - Ybmwbr + I - J sin(e - koz) (12)
0 0 c

2 2
+ Ybm 0 (r, 0 - kOz)

where o= k0 Vb' C = eBO /Ybmc, and the effective potential i0(r, o - ko)

is defined by

2 2 fc b r6B .
Oe(r, - k0 z) = (wbwc - b)r + 2 weWb \( w c/k 0 B0 sin( - kz)

- 40 "b c (6B 2 + 2_ c ~ wb)bC -ymb~ 2 0  0  b Ybm( b(C - Ybmb)

As a simple example, we consider an axial distribution function

in which all electrons have a same value of C, i.e.,
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G(CZ) = 6(CZ - YbmVb) (14)

After some straightforward algebraic manipulation that makes use of

Eqs. (5), (12), and (14), it can readily be shown that the lowest-

order (azimuthally symmetric) electron density profile described by

10
Eqs. (5) and (14) can be approximated by

0 () n 0 , O< r < RO P'15
nb(r) 0 (15)

b0, RO < r < Rc

where .the mean radius RO is defined by

(2T 2 2 2
('0 'b (' 6B 2

2 ybm W0 c 2 B0 bj

R2 '(16)0 (W Wc - Wb2
b c b

and use has been made of Eq. (2). Additional general equilibrium

properties associated with the distribution function in Eq. (5),

including helical distortions of the beam equilibrium for finite 6B/B 0,

are discussed in Ref. 10.
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III. LINEARIZED VLASOV-MAXWELL EQUATIONS FOR A TENUOUS BEAN

In this section, we make use of the linearized Vlasov-Maxwell

equations to investigate the free electron laser stability properties

of a relativistic solid electron beam described by the equilibrium

distribution function in Eq. (5). We adopt a normal-mode approach in

which all perturbations are assumed to vary with time and space

according to

6(x,t) = n) (r)exp{i[tO + (k + nk0 )z - wt]} , (17)

i,n

where 1mw > 0. Here, w is the complex eigenfrequency, k+ nk0 is the

axial wavenumber, and Z and n are integers. Moreover, it is also assumed

that the perturbations are close to resonance with

1w - (k + nk0 )Vbi " w0' , (18)

where o = k0 Vb and wc = eBO/Y bmc.

The Maxwell equations for the perturbed electric and magnetic field

amplitudes can be expressed as

x E(x) = i(w/c)B(x)

(19)

V x B(x) = (4w/c)j(x) - i(w/c)E(x)
%I IVV

where

(x) = -e d3p b f '(,k (20)

is the perturbed current density. In Eq. (20),

0 v' x B(x')
b(X,P) = eJ dT exp(-iWt) EQX t ) + ci f'~ (21)
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is the perturbed distribution function, T = t' - t, and the particle

trajectories x'(t') and p'(t') satisfy d'/dt' = and d'/dt' -e x B 0/c,

with "initial" conditions '(t'. = t) = and v'(t' = t) = v.

Within the context of Eqs. (3) and (18), the perturbed distribution

function in Eq. (21) can be approximated by

f = - dT exp(-iwT)12(ymiw(v'

(22)

- z v' -uT, f bO+ (' -V 3, , 6a
P.L z

2 2 2 1/2
where y = (1 + k /m c ) , and use has been made of Eq. (19). To lowest

order, the axial motion of an electron is free-streaming with
10

z' = z + - (t' - t) . (23)
ym

Moreover, within the context of Eq. (18), on the right-hand side of

Eq. (22) we retain contributions to v' and v' in the orbit integral ofr0

the form8

V' = V c 6B cos(e kz - k0 v T) , (24)
r Z W 0 - wC B 00 z

and

v -v c sin( - koz - k0V T) . (25)

Finally, since the oscillatory modulation of the radial and azimuthal

orbits is small amplitude [Eq. (2)], we approximate

r' r, 0' = 6 , (26)

in the arguments of the perturbation amplitudes on the right-hand side of

Eq. (22).
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Substituting Eqs. (23) - (26) into Eq. (22), we obtain the perturbed

distribution function

^(n)
fb bZ exp{i[ie + (k + nk0 )z]}

Y,n

- iec exp{i[P6 + (k + nk0)z]) ( e6B _ _0

-ic+ k )v - A E (r)+ 2 -
W ,n - (k + nk0)vz i z z 2ymc2 k0  0 ~ Wc

x n n+l (r) + E(n+l (r)] + An E (r) iE (n-(r)],x jn~r rk- e'-ln-i [Ir,R,+lr -ie,2i+

(27)

waere the function A , (k,w,k) is defined by

3f0O 0

A,( ,w,k) =p2[ym- (k + n'ko z] + (k + n'k0 ) -, (28)

and z = v z/c. In Eq. (27), the term proportional to An is the

longitudinal portion of the perturbed distribution function.

Similarly, the terms proportional to A and A n- in Eq. (27) are the

transverse electromagnetic portions of the perturbed distribution function.

Consistent with Eq. (18), the eigenfrequency w can be approximated

by w ~ (k + nk 0 )V b'' We therefore approximate w2/C - (k + nk0 + k0 2 by

y 2 2 (k + nkO)b2 2
W /c - (k + nk0 + k0 2 + 2k0(k + nk0) + k 0 <

b 
(29)

for k + nk0 > 0. Evidently, Eq. (29) indicates that the n + 1 mode in

Eq. (27) is a non-propagating wave in a vacuum waveguide. Without loss

of generality, for a tenuous beam, we therefore assume

iEn+1 )(r) =E &+l)(r) = 0 , (30)
r,k-l Ok-1

in the subsequent analysis. Making use of Eq. (30), f ( ) in Eq. (27)

can then be expressed as
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iec exp{i[fk + (k + nk0 )z]} (n)
b It W w w - (k + nk 0 )v ftz z,X

(31)

+ AX n-l r 2.+l(r) - n-l (r)]

where the dimensionless parameter A is defined by

e6B Li 0

A eB2 W-~ , (32)

2ybmc k0  0 c

and use has been made of the approximation y Yb, which is consistent

with Eq. (18).

From Poisson's equation, - E( ) 4np(x), and the

Maxwell equation (19), we obtain the differential equation,

F2  2 )]_() 4ri(k + nko)LV + - (k + nk0)
2 4Ewkrk0 ( =n) (r) , (33)

for the axial (longitudinal) component of the perturbed electric

field Z() . In Eq. (33), Pn (r) = -eid Pf is the perturbed charge

density, V = r- 1(3 r)(ra/ar) - Z2 /r , and use has been made of (r ) ~

(n)Vbp2  (r). In the tenuous beam limit [Eq. (3)], the transverse field

components &-l)+(r) in Eq. (31) can be approximated by the vacuum

waveguide fields.8 In this context, the present stability analysis

utilizes the vacuum transverse electric (TE) and transverse magnetic

(TM) waveguide modes as a convenient basis to represent the general

electromagnetic field perturbation E 1,t+(r), which is determined from

2.+

- (k + nk - k 2 ]

(34)

._ a (n- 1) (X) e XV f(n-1) W
3z z,2+l c u z L z, +l%

Making use of Eqs. (19) and (34), and neglecting the perturbed

current density, the vacuum waveguide fields can be expressed as
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i(n-l) b J (c+ r/R
z,Z+1( = +1,s 2+1 2.+1,s c

(35)

(n-i) .- (n-i) wRE,1 (r) ,iE 1(r)=- c b i +, r/R'r~zl .O,.+lcaZ~ 2. +1,s x. 2+l,s C'

for the TE mode, and

k(n-1) ( c J 0 r/R
z,2.+1 = +1,s 2+1 2+1,s c

(36)

(n-() . (n-1) (k + nk0 - k0)R l
r,Z+1(r) E, 2+1 ( = l ( 0+1,sr/R '

2.+1,s 2s2+~

for the TM mode. In Eqs. (35) and (36), bt+1,s and E+1,s are constants,

J z(x) is the Besspl function of first kind of order ', and a +1,s

and 6 +1,s are the sth roots of JZ'+(k+ , s) = 0 and Jk+1 (+l, s) = 0,

respectively. Here the prime (') denotes J'+(x) = (d/dx)J (.2.+l( = 9+1

After some straightforward algebraic manipulation of Eqs. (19), (35), and

(36), it can be shown that

2

- (k + nk - 2 _ +,s b+1 2+J 1 r, sr

c20 0) R J 2.+1,s Rc
c 

(37)

- [rJ ()] - i(2 + )J (r)rc {ar },~ ~~

for the TE mode, and

2

- (k + nk - k) 2 _ %+ls E

-Rc 
(38)

((n-i) W (n1
=47i I(k + nk0 - k0 ) 1  (r) - J . +i(r),

for the TM mode. Moreover, making use of the continuity equation,

(n-1)- k(n-1) _ 1 3 ^ (n-1) i(P, + 1) ^(n-1)-w i(k + nk0 - k )J - rJ I+
+, 0 0 z,2+1 r 3r r,Z+l r e,z+1'

(39)
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. ^(n-1) (n-i)
the approximation J (r) ~ Vbz+ (r) [consistent with Eq. (3)],

and approximating k + nk0 k0/(1 - Vb/c) on the right-hand side of

Eq. (38), we find that Eq. (38) can be expressed as

f2 2 2 r
- (k + nk0 - k0 ) 2 _ +,s C+i,s +( +ls

IR 0kI RC
C (40)

_4nr ja (n-1) 1(-l= r [rr -)(r)] + rrc ir r,t+1 P,.+1 )

for the TM mode.

For convenience of notation in the subsequent analysis, we intro-

duce the effective susceptibility,

Xn n(w2k) = 4we2d3 'n' (k, ,k) (41)

X,(k =40p - (k + nk 0 )v z

Moreover, to simplify the present analysis, we also assume that the

beam rotation is slow with

Wb < W O 0 (42)

Within the context of Eq. (42), we can show from Eq. (12) that the

equilibrium distribution function is an even function of

Pr - 2ybmcAcos(6 - koz) (43)

and

p0 + 2ybmcAsin(e - koz) , (44)

for the beam rotations satisfying wb << wc' Wo. Making use of

Eqs. (31), (41), and (43), the perturbed charge and current densities

are given by

-n (r) = G (w,k,r) = iJ (r) = ic (r) , (45)e,2Z+l 4 Trw z2.kl

where the function G (w,k,r) is defined by
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(n)
G (w,k,r) = x S E (r)

n,n zz,z

(46)

+ AX n,n-lE (r) - ()

Equations (33), (37), and (40), when combined with Eq. (45), constitute

one of the principal results of this paper and can be used to investigate

stability properties for a broad range of system parameters. Moreover,

in limiting cases, the dispersion relation for the free electron laser

instability can be obtained in a closed form (Sec. IV).
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IV. FREE ELECTRON LASER STABILITY PROPERTIES

In this section, simplified expressions are obtained for the longi-

tudinal perturbations in Eq. (33),and the results are used to derive the

dispersion relation for several values of azimuthal harmonic number X.

The present analysis assumes short wavelength perturbations with

Iq = (k + nk0 )
2  2/C2 2> /R (47)

Moreover, for w = (k + nk0 )Vb and k + nk0  k0 /(l - Vb/c), the inequality

in Eq. (47) can be expressed in the equivalent form,

(1 + Vb/c) Yb k 0R 0 1 (48)

which is readily satisfied in the parameter regimes of present experimental

interest. As shown in Appendix A, for short wavelength perturbations

satisfying Eq. (48), the axial component of the perturbed electric field

E(n) (r) in Eq. (33) can be approximated by
z,Z

'(n) Cr$s' Z 0 Ys, r/R 0  0 < r < RO
ZE ( , otherwise

In Eq. (49), a , is the s'th root of J ( ,) = 0, and k's, is a

constant.

Substituting Eqs. (35) and (49) into Eq. (46), multiplying Eqs.

(33) and (37) by rJ Z(a9, r/R0 ) and rJ +l (ak+ 1 ,sr/Rc), respectively,

and integrating from r = 0 to r = Rc, we obtain two homogeneous equations

relating the perturbation amplitudes 5Z, and b2+ls. For the TE

mode polarization, these are

rR1 2 + Zs, _2,sr

c dr r @(R0 - r) 2 Xnqn Z 2 R
0 Y(50)
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(k + nk 0 )R Ab r 
2 " b+i,s 0  n,n-l R + , R s
b k+1,s

)
R !2 2ta

b + e dr r - (k + nk0 - k) 2 +l, s + A 2X 2+l s2A1, sf 0  n2k0  0) R 2  n~n-1jZ+J r-
c 

(51)

Z,s' ^ C d 0(P )J ,9tr U r
k + nk0)R0 2,s' 0 dr rX(R - r)XJ+i

where 0(x) is the leaviside step function defined by

1 , x > 0 ,
e(x) = (52)

0 , otherwise .

Similarly, for the TM mode polarization, we obtain

, cdr r 0(R 0 - r) Xn,n

(k + nk0)R

2 *1, s
Yb k+1,s

+

2

+ Ls

R0

2(

JR dr r Xn,n-l +s)
CCc

(53)

s , )
R0

and

iF+,s R C dr r 2 - (k + nk0

k 0 c2 0

(k + nk )RO A ,s'

2

k) 2 s +
R

A 2Xn,n-1 2 + R(4C
(54)

f R dr r (R0  - r)X J +iY s

0 0 nnZl R0

x J 1 +i'

where use has been made of w (k + nk0 Vb and (k + nk ) ~ 0 b/c).

In the present analysis, it is assumed that the axial distribution

function has the form

G(C ) = A 1
z 7 (Cz Ybmvb)2 + A2

(55)

where A is the characteristic spread in Cz about the mean value Cz =b MVb'

and

)
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We further assume that the characteristic spread A is small in comparison

with YbmVb' Substituting Eqs. (5) and (55) into Eqs. (28) and (41),

we obtain the approximate expression

4v 2 - (k + nk0)(k + n'k0)c2

Xnn= YbRO [ w- (k + nk0)vb + ilk + nk0jA/y b 0 (56)
0 , RO < r < Rc

In obtaining Eq. (56), use has been made of Ea. (18). Making use of the

definition of Budker's parameter in Eqs. (3) and (4), the term 4v/ybR2

2 2 2 2in Eq. (56) can also be expressed as 4v/y R w 2 /c , where w b
b 0 pb pb

4n 0e 2 /ybm is the plasma frequency-squared.

The condition for a nontrivial solution to Eqs. (50) and (51)

is that the determinant of the coefficients 2,s, and b +1ls be equal

to zero. After some algebraic manipulation, we find that the TE mode

dispersion relation can be expressed as

k + nk |A 2  2 a2
- (k +nk )vb+ i 3 + - (k + nk0 - k 2 _ Y+l,s

bm cc

k + nk0 l'2 VC2
x w (k +nk b + i 3 4 3 2

Ybm - bRO

2 a2 a R2
4A2 vc k (k + nk k +ls E R+l,sR0 4 vc2

2 0 0 0 2 ss' R 3 2
Yb c c J c YbRO

a+ +ls' R k + nk0jA 2
css - (k + nkOb + 3 3
c b m

4 c2 H , +s) , (57)

YbRO

E
where the coupling coefficient Q E +(,sR5 /R) is defined by

______ ZZs' 0(x

S(X)-+1,s 2 , (58)
Z s C+1 s2 ( + 1) 21 C+ ,nG (r d Z+ Z+l s

and the functions G ks(xW and H s(x) are defined by
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2

x = ;s' 2 2 2
(x -6 ,

1 Wssjh ZsJX 9+1 G 1 +2

htss' Gs,(x)

(59)

(60)

In Eq. (57), the subscript s and s' represent the radial mode numbers

of the transverse and longitudinal perturbations, respectively.

For small wiggler amplitude ( < 1), we investigate free electron

laser stability properties for w and k + nk0 near the simultaneous

zeros of the transverse dispersion relation, 2 - (k + nk 0 - k0) 2c 2

OL 2 c2/R2 = 0, and the longitudinal dispersion relation£+lsc

fk + nk0 A- 2 2
w - (k + nk) 4 C ' (61)

Ybm ybRO

In this regard, making use of Eq. (61), the TE mode dispersion relation

in Eq. (57) can be approximated by

2 2
- (k + nk0 - k0 ) ' -

2 2 2 R
- 4 C2 4 C2 ,2 k0 (k + nk0

YbRO ~ bRc

In a similar manner, from Eqs. (53)

approximate TM mode dispersion relation,

22 2
2

2 (k + nk0 - k 2
c 2e 0 0

-4 c3 2
Yb t R

where the TK mode

k + nk 0 JA2
- (k + nkO b+i 3 + nI

Yb m

0 R Qk55  R
Rj cc (62)

and (54), we obtain the

k + nkj 2
- (k +nkO b+i 3 m

bm
2 .

4A k0(k + nk0 - k0) 2c+1 s 1,sc

Yb 1C Re -

coupling coefficient Q , (+1R/R) is defined by
kssv R±ls 0c

Q, , (x) = G , 2 Z+ls ,
Zi s, X/,i G (64)

and the function G , (x) is defired in Eq. (59).

and
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Figure 1 shows plots of Gis, (x) versus x obtained from Eq. (59)

for (a) 6Z, =6 and (b)6 , = ,3 Except in the case

"s' = 0,1, the plots of G ,(x) for arbitrary Xs, are similar

to those for £2Zs, 1,3 in Fig. l(b). As shown in Fig. 1(b), the

quantities Gs G,(x ,) and xq, denote the maximum value of
ks' is is 9s

S9,(x) and the corresponding value of x for a specified ks,. For

example, in Fig. 1, (xi,, G ,) = (0, 0.69) for , = 60,1 and

(x , , G%,) = (9.8, 0.064) for = 6,. Shown in Fig. 2 are
.X z's, 1,3-

plots of (a) x , and (b) the corresponding values of G _,

Gis (x ) for several different values of the azimuthal and

radial mode numbers k and s'. It is evident from Fig. 2(b) that

G0s, decreases rapidly with increasing values of the mode numbers i

and s'. lMoreover, we note from Fig. 2 (a) that x , can be approximated by

x , ,, ' # 1 . (65)

In this regard, for s' # 1, C , can be approximated by

G, ,( ,) = J (1 ,), s' # 1. (66)
s s ks +1 I,s

E
Shown in Fig. 3 are plots of (a) Q /Gs for the TE mode

and (b) Q ,/G , for the TM mode, obtained from Eqs. (58) and (64)
Zss, ks

respectively. Note that the curves in Fig. 3 are independent of the

E
longitudinal radial mode number s'. Evidently, the values of Q E /Gis'

and Q , /G , increase with increasing values of azimuthal and
kss ts

transverse radial mode numbers, k and s. After careful examination

of Eqs. (58) and (64), we find that the maximum coupling between the

transverse and longitudinal modes occurs for a value of R0 /R given by
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R0/R C {x ts'/D, t+ 1 , , TE mode (67)

xt ,/%+ls TM mode

Equation (67) is valid only when x _< a +1,s for the TE mode, and

x for .the TM mode. For x , > a (TE), orPs' - k+1,s ts, at+1,s (T) o s' > +1,s

(TM), the maximum coupling occurs for R0/RC = 1. The maximum coupling

coefficients corresponding to Eq. (67) can be determined from Figs. 2(b)

and 3. For example, for (t,s,s') = (3,2,1), we determine that the

maximum coupling coefficient and the corresponding ratio R0 /R, are

given by (QE , R /R) (1.607, 0.625) for the TE mode, and (Q M RO/Rc)

(1.83, 0.52) for the TM mode.

It is instructive to examine the present results for perturbations

with the lowest mode numbers, i.e., (t,s,s') = (0,1,1), particularly

for a beam-filled waveguide with R0/Rc = 1. In this limit, from Fig. 1(a),

we obtain G, (a1  ) = 0.4 for the TE mode, and G9, (0 ) = 0.045 mode.

We therefore conclude that the TE mode polarization is the most unstable.

Multiplying G, a1 ) = 0.4 by QE /G , = 4.2 in Fig. 3(a), the

E
coupling coefficient is given by Q011 = 1.7. Assuming zero axial

22
momentum spread (A = 0) and short axial wavelengths (k 0R >> 1),

the TE mode dispersion relation in Eq. (62) can be approximated by

2' 2W Jn)b 2  34A2 w~2bk27 - (k + nk0 - k0)2} - (k + nk- 2 3. bo

(68)

for the (k,s,s') = (0,1,1) perturbation and R0 /Rc 1. Equation (68)

is similar in form to the result obtained by Davidson and Uhm3 for

a uniform density beam with infinite cross section. In particular,

the constant numerical factor on the right-hand side of Eq. (68) is

equal to 3.4, whereas in Ref. 3 the constant numerical factor is equal to 8.
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Finally, we have investigated detailed stability properties

by solving the dispersion relations in Eqs. (62) and (63) numerically

for a broad range of system parameters. Defining the normalized

Doppler-shifted eigenfrequency by

L = [w - (k + nk0 Vb]/koc , (69)

we calculate the normalized growth rate Q = lm2 from Eqs. (62) and

(63). Shown in Fig. 4 are plots of the normalized growth rate 2

versus (k + nk0)/k 0 for (Z,s,s') = (3,2,1), k0RC = 10, Yb = 10' b
2

0.02, and A = 0.01, with (a) R /RC 31 4,2 for the TE mode, and

(b) R0/R = x3 1 /4,2 for the TM mode. For these optimized choices of

R0/Rc, the instability growth rate for the TM modeis comparable to

that for the TE mode. Moreover, the growth rate is reduced substantially

by introducing a small amount of axial momentum spread (A/ybmc g 0.01).

We conclude this section by pointing out two areas in which the

analysis can be extended. First, the restriction to very short wave-

length perturbations [Eq. (48)] can be removed in a relatively straight-

forward manner. Second, paralleling the self-consistent theoretical

formalism developed in previous studies,8 the stability analysis can

also be carried out without making the approximation that the transverse

perturbations are represented by the vacuum waveguide fields.
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V. CONCLUSIONS

In this paper, we have examined the free electron laser instability

for a solid relativistic electron beam propagating in the combined

transverse wiggler and uniform axial guide field given in Eq. (1).

The analysis was carried out within the framework of the linearized

Vlasov-Maxwell equations. The equilibrium (Sec. II) and stability (Secs.

III and IV) properties were investigated in detail for the choice of

distribution function in which all electrons have the same value of

the-linear combination of transverse and helical invariants, C1 - 2yb b h'

and a Lorentzian distribution in the axial invariant C [Eqs. (5) and

(18)]. One of the most important conclusions of this analysis is that

the maximum instability growth rate for a solid electron beam is comparable

to that of a hollow beam with similar parameters.8 Moreover, it is also

found that the maximum growth rate occurs at a value of R0 /Rc corresponding

to RO/Rc = X s,/a +1,s for TE mode perturbations, and R0/Rc = x 2+1,s
for TM mode perturbations. For these optimized values of R0/Rc, the

instability growth rate for the TM mode is comparable to that for the TE

mode. Moreover, the growth rate is substantially reduced by introducing

a small amount of axial momentum spread (A/ybmc o 0.01).
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FIGURE CAPTIONS

Fig. 1 Plots of G (x) versus x [Eq. (59)] for (a) 6 ,= , and

(b) ',o = 1,3*

Fig. 2 Plots of (a) x , and (b) the corresponding G, = G ,(x ,) for
Zs s ks,

several values of azimuthal and radial mode numbers, k and s'.

Fig. 3 Plots of (a) Q ,/G , and (b) Q ,IG, [Eqs. (58) and (64)]
kss ks Zss' ks

for several values of 2 and s.

Fig. 4 Plots of normalized growth rate Q versus (k + nk0 )/k0 for

2
- (k,s,s') = (3,2,1), yb = 10, V/Yb = 0.02, and A = 0.01,

with (a) R0/Rc = x3 1 /a 4,2 for the TE mode and (b) R0 /Rc 31 4,2

for the TM mode.
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APPENDIX A

LONGITUDINAL PERTURBATIONS FOR THE FREE ELECTRON LASER INSTABILITY

In this Appendix, we investigate properties of the longitudinal

perturbations about an electron beam propagating through a cylindrical

waveguide with radius R C. In the present analysis, it is assumed that

the perturbations have short wavelength with

q2 = (k + nk0)
2 _2/C2 >> 1/R2 (A.1)

which can also be expressed as

q R 2 (l + Vb/c) y k R >> 1, (A.2)nO0 b YbkOR0

for the frequencies of interest for free electron laser applications.

Equation (A.2) is easily satisfied in parameter regimes of present

experimental interest. In the limit of a small wiggler amplitude (A -+ 0),

we obtain the longitudinal eigenvalue equation,

r1 a k 2 2 ^(n) r
r r r r 2 n z'k

2 2 2i (n) (A.3)
(Wpb/Y )q E (r)@(R - r)

(w - (k + nkO )Vb + ilk + nk0 IA/y 3m] 2'

from Eqs. (33), (45), (46), and (56). In Eq. (A.3), O(x) is the Heaviside

.step function defined in Eq. (52), and b = 4vc/yb R is the plasma-

frequency-squared.

For notational simplicity, we define

j (n)
(r) .E z (r) . (A.4)

12
Inside the electron beam (0 _< r < R0 ), Eq. (A.3) can be expressed as
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ar + T2  6 () = 0 , 0 _<r < Ro(A.5)
r

where

2 22
2 7=2 pb b

- (k + nk b + ilk + nk0  3 2  (6)

Outside the electron beam (R < r < R ), Eq. (A.3) reduces to the free-0 c

space eigenvalue equation

(ia a 2k 2 2.
r r Tr- -2 q (r) = 0 , Ro < r < R . (A.7)

r

The. solution to Eq. (A.5) that remains finite at r = 0 is

6$z (r) = $ J (TR) , 0 < r < Ro, (A.8)

where J (x) is the Bessel function of the first kind of order 2, and

2 2
9, is a constant. Noting qn R0 >>l in Eq. (A.2), we can express the

solution to Eq. (A.7) as

k t(r) = C[I (q r)K (qR) - K (qnr)I (qR) R 0 <r < RC,(A.9)

where I and 1 are modified Bessel functions of order 2, and C is a

constant.

The boundary conditions on 6$ (r) at the surface of the electron

beam are given by

in r=R out r=R (A.O)

and

[ r)6/Pr=R oUt r=R , (A.ll)

from Eq. (A.3). Substituting Eqs. (A.8) and (A.9) into Eqs. (A.10) and

(A.ll) gives
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J' (TR 0
TRO J (TR 0  h(q )

(A.12)
I' (q RO)K (q R) I (q R ) nK(q RO)

~ qnJO I (q R )K (q R)c Ik(q nR )K (q n R
n 0Z nc kn c Z. n0

where the "prime" notation denotes derivative with respect to the complete

argument of the Bessel function, e.g., J'(TR0 ) = [dJ (x)/dxlx . The
2. 09 x=TR 0

expression for the longitudinal wave admittance h(q ) in Eq. (A.12)

can be simplified in several limiting cases, including short wavelength

perturbations with |q R >> 1. In this case, h(q) can be approximated by

h(qn =-q nR 0 cothq (Rc - R 0  (A.13)

and Eq. (A.12) reduces to

J (TR )
-TRO J (TR 0  in R 0 cothq n (Rc - R0 ) . (A.14)

Evidently, the right-hand side of Eq.(A.14)is a very large positive

number, and the lowest-order longitudinal dispersion relation (for A -+ 0)

can be approximated by

J k(TR0) 0 , (A.15)

where T is defined in Eq. (A.6). It follows from Eq. (A.15) that

T R = , , s' = 1, 2, ... , (A.16)
0 Z ,s

where 6k, is the s'th zero of J (x) 0. In this regard, Eqs. (A.8)

and (A.9) can be approximated by

2 s' k sr/R 0 0 < r < RO
6p (r) = ' 2 (A.17)

0, otherwise,

where is a constant. Substituting Eq. (A.6) into Eq. (A.16)
,'s
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and making use of Eq. (A.2), we obtain the longitudinal dispersion relation,

k + nkO|A 2 2

w - (k + nkO b + i 3 = 0 (A.18)
t bm y

2where the term proportional to , has been neglected.
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