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1. Introduction

The original proposal of an Augmented Lagrangian. method by Hestenes (1969)

and Powell (1969) may be viewed as a significant milestone in the recent history of

the constrained optimization area. Augmented Lagrangian methods are not only

practically important in their own right, but have also served as the starting

point for a chain of research developments centering around the use of penalty

functions, Lagrange multiplier iterations, and Newton's method for solving the

system of necessary optimality conditions.

Augmented Lagrangian methods became quite popular in the early seventies

but then yielded ground to algorithms based on Newton's method for solving the

system of necessary optimality conditions usually referred to as recursive qua-

dratic programming (RQP) techniques. The author believes however that Augmented

Lagrangian methods will very likely maintain for a long time a significant posi-

tion within the arsenal of computational methodology for constrained optimization.

In fact their value may be appreciated further as interest shifts more towards

large problems. I will try to outline some of the reasons for this assessment

and briefly survey the state of the art of Augmented Lagrangian methods in the

next section.

On the other hand there is extensive evidence that for many problems, partic-

ularly those of relatively small dimension, RQP techniques are considerable more

efficient than Augmented Lagrangian methods. Locally convergent variants-of these

methods have been known for many years and have seen considerable use in control

theory and economics. Their broad acceptance in mathematical programming practice

became possible, however, only after a methodology was developed that allowed

global convergence based on descent using exact penalty functions. The use of a

nondifferentiable exact penalty function for this purpose was originally proposed

by Pschenichny (1970), (1975). His work became widely known in the Soviet Union
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but went largely unnoticed in the 1West where nondifferentiable exact penalty

functions were independently introduced in connection with iterations based on

RQP by Han (1977). The work of Powell (1978) showed how to-use effectively

Quasi-Newton approximations within the nondifferentiable exact penalty-RQP

framework and contributed significantly to the popularization of the overall

approach. There are many significant contributions in this area and they will

be covered extensively in other papers in this volume. It is interesting to

note that the RQP direction together with a unity stepsize does not necessarily

lead to a decrease of the value of the nondifferentiable exact penalty function

even arbitrarily close to a solution as noted by Maratos (1978). This is a

potentially serious shortcoming since it may prevent superlinear convergence in

situations where it otherwise might be expected. To bypass this difficulty it is

necessary to introduce modifications in the algorithm such as those suggested by

Mayne and Polak (1978) and Chamberlain et al (1979).

Recently there has been some interest in the use of differentiable exact

penalty functions in connection with RQP. A class of such functions has been

proposed by DiPillo and Grippo (1979). There is an interesting connection be-

tween the Newton direction for minimizing any function in the DiPillo-Grippo

class and the Newton direction for solving the system of necessary optimality

conditions which has been noted independently in connection with second deriv-

ative algorithms in Bertsekas (1980a) and in connection with Quasi-Newton methods

in Dixon (1980). It is also interesting that a class of exact penalty functions

proposed by Fletcher (1970) can be derived (and indeed expanded) via the DiPillo-

Grippo class [Bertsekas (1980a)]. A further link in the chain of these develop-

ments was established in Bertsekas (1980b) where it was shown that the RQP direc-

tion based on positive definite approximations to the Hessian of the Lagrangian [in-
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cluding those obtained by the formula of Powell (1978)] is a descent direction

for any function in Fletcher's class arbitrarily far from a solution as long as

the penalty parameter is sufficiently large. Furthermore a unity stepsize near

the solution decreases the value of the penalty function, so the difficulty

noted by Maratos (1978) in connection with nondifferentiable exact penalty

functions does not arise. These results which will be described in Section 3,

have placed differentiable exact penalty functions on an equal footing with non-

differentiabie ones in terms of desirable descent properties. More research

should be expected in this area as evidenced by recent work by Boggs and Tolle

(1981) and Han and Mangasarian (1981) reported during the meeting. We mention

also a two-parameter differentiable exact penalty proposed independently by

Boggs and Tolle (1980) which has also been related to Fletcher's class of penalty

functions and to Newton's method for solving the system of necessary optimality

conditions.

In what follows we will restrict ourselves exclusively to the equality con-

strained problem

minimize f(x) (ECP)

subject to h(x) = 0

where f: Rn + R and h: Rn + Rm are assumed to be three times continuously dif-

ferentiable.

Primary attention will be focused at local minima-Lagrange multiplier

pairs (x*,X*) satisfying the following second order sufficiency assumptions for

optimality

V L (x*,X*) = 0, h(x*) = 0 , x*SX* (S)

z2 V L (x*,X*)z > 0, z 0, Vh(x*)'z = 0
xx o0



where L Rn m+ R is the (ordinary) Lagrangian function
0

Lo (x,) = f(x) + X'h(x)

and X* is the set given by

X* = {x | Vh(x) has rank ml.

In our notation all vectors are considered to be column vectors. A prime denotes

transposition. The usual norm on the Euclidean space Rn is denoted by I 1

[i.e., lxi = (x'x)1 / 2 for all xn]. For a mapping h: Rn + Rm , h = (hl,...,hm)'

we denote by Vh(x) the nxm matrix with columns the gradients Vhl(x),...,Vhm(x).

Whenever there is danger of confusion we explicitly indicate the arguments of

differentiation.

For the most part we make no attempt to state results precisely, and give

complete references to individual contributions. A detailed analysis of each

point made in the paper together with references may be found in the author's

book "Constrained Optimization and Lagrange Multiplier Methods", Academic Press,

1982. For surveys of analytical and computational properties of Augmented La-

grangian methods we refer to Bertsekas (1976) and Rockafellar (1976).

2. Augmented Lagrangian Methods

The basic form of the Augmented Lagrangian method consists of solution of

a sequence of problems of the form

minimize L (x, k) 
ck k

subject to xERn

where for c > 0, L : Rn+m - R is the Augmented Lagrangian function

- cx 2

Lc(x,X) = f(x) + X'h(x) + - Ih(x)l 2 (2)

III--I~~I--~~~_ 1__ 1 11 1~~____lll~-CI--~.~_1_~ _~ 11c~ ~
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and the sequence of penalty parameters { k } satisfies 0 < ck < ck+ for all k.

The initial multiplier vector Xo is given and subsequent multiplier vectors

Xk' k > 1 are generated by some updating formula such as the first order iter-

ation

kil S= k + Ck h(xk) (3)

where xk solves (perhaps approximately) problem (1). There is also a second

order iteration

Xk+l k + Ak (4)

where k = Sk + ckh(xk) is the first order iterate, and AXk together with some

vector Axk solves the systemk

VHk VVh (X Ak L k)]

2 -
where Hk is either the Hessian V xxL(xk Xk) of the ordinary Lagrangian function

Lo evaluated at (xk·Xk), or some Quasi-Newton approximation thereof. Note that

the system (5) is also the focal point of RQP methods a fact that points to the

significant relations between Augmented Lagrangian methods and RQP.

The convergence properties of the method are quite well understood. There

are several results in the literature which state roughly that under second

order sufficiency assumptions one can expect convergence of (3) or (4) from an

initial multiplier A0 which is arbitrarily far from a solution provided the

penalty parameter ck becomes eventually sufficiently high. The rate of conver-

gence of {Xk,i) is typically linear if the simple first order iteration (3) is

used and {Ck} remains bounded and superlinear otherwise.

There is a large number of variations and extensions of the Augmented La-
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grangian method idea. For example extensions are available to handle one-sided

or two-sided inequality constraints, as well as nondifferentiable terms in the

objective function or constraints. It is possible to use quadratic penalty

functions for this purpose although these introduce second derivative discon-

tinuities in the Augmented Lagrangian. An alternative that the author has found

useful on several occasions and which does not suffer from this shortcoming is

to use one of several possible nonquadratic penalty functions--for example an

exponential function. Other variations include alternative stepsize choices in

the first order iteration (3), and methods based on partial elimination of con-

straintso For example if in (ECP) there are additional nonnegativity constraints

on x, i.e. the problem has the form

minimize f(x)

subject to h(x) = 0, x > 0,

it may be more convenient to eliminate only the (presumably more difficult) con-

straints h(x) = 0 via a penalty. Minimization of L (.¶,Xk) should then be car-
ried out subject to the remaining constraints x Ok

tied out subject to the remaining constraints x > 0. This points to an important

advantage of the Augmented Lagrangian method namely the flexibility it affords

in changing the structure of a given problem to one that is more favorable.

This can prove decisive in solution of large problems where much depends on

being able to exploit the existing structure. Finally there is a rich theory

associated with Augmented Lagrangian methods which revolves around duality, con-

vexification of nonconvex problems, the proximal point algorithm, and related

subjects which can play an important role in analysis of specific problems as

well as provide the basis for the development of new algorithms.

Typical advantages cited in favor of the Augmented Lagrangian approach

are its robustness, and its ease in programming and tuning for a given problem.
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Furthermore the method is broadly applicable since it is capable of solving

problems for which the second order sufficiency conditions are not satisfied

(although not quite as efficiently as when these conditions are satisfied).

Its disadvantages versus other competing methods are primarily in two areas.

First feasibility of the generated iterates is not maintained, so if the algo-

rithm is prematurely terminated it will not provide a feasible solution. For

some problems this can be an important or even decisive drawback. The second

disadvantage manifests itself primarily in small problems and is based on a

comparison of the relative efficiency of the method versus RQP techniques. A

substantial amount of computational evidence points to the fact that (well tuned)

RQP methods require considerably fewer iterations to converge than Augmented

Lagrangian methods. On the other hand each iteration of the Augmented Lagrangian

method requires less overhead particularly for problems of large dimension. It

is difficult to make a precise comparison since much depends on the relative

cost of function and derivative evaluations for a given problem. It seems ac-

curate to conclude however that for every type of problem there is a critical

size (or dimension) above which either a first order or a second order Augmented

Lagrantian method is computationally more efficient than RQP methods, and below

which the situation is reversed.

3. Differentiable Exact Penalty Methods

An interesting class of differentiable exact penalty functions for (ECP)

was recently introduced by DiPillo and Grippo (1979). Its basic form is

Po(x,X;c) = L (x, X) () + ) (6)0 0

A more general version which is essentially the same as one proposed in DiPillo,

Grippo, and LanmparielaHo (1978) is given by
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PT(x,X;c) = L (x,X) +' Ih(x) 2 I(X)V L (x,X) 2 (7)
T 0 2 + h o x~x ) 12 (7)

In (6) and (7) it is assumed that c > 0, T > 0 and M(x) is an mxn twice con-

tinuously differentiable matrix function on the set X* ={x Vh(x) has rank ml

such that M(x)Vh(x) is invertible for all xcX*. For example one may choose

M(x) = Vh(x)' or M(x) = [Vh(x)'Vh(x)] lVh(x)'. When T = 0 the function (7) is

identical to the one of (6) but it seems that the presence of a positive value

of T can have a substantial beneficial effect. in algorithmic applications.

The main fact concerning the function (7) is that, roughly speaking, for

any value of T > 0, local minima-Lagrange multiplier pairs (x*,X*) of (ECP) can

be identified with local minima (with respect to both x and X) of P(-,-a;c)

provided c exceeds a certain threshold value. There is an extensive analysis

that clarifies the "equivalence" just stated and quantifies the threshold level

for c, but in view of space limitations we cannot go into details. It is worth to

point out however that this threshold level depends on eigenvalues of certain

second derivative matrices and is largely unrelated to the magnitude of Lagrange

multipliers which in turn determines the corresponding threshold level for non-

differentiable exact penalty functions.

There is an interesting connection between Newton-like methods for minimiz-

ing PT(-,.;c) and Newton's method for solving the (n+m)-dimensional system of

necessary conditions VLo(x,X) 0 O. It can be shown that the Newton (or second-

order RQP) direction

2 -l
dN = V Lo(x, ) VLo(x,X)

can be expressed as

dN = B (x,A;c)VP (xX;c)

where B ( -,';c) is a continuous (n+m)x(n+m) matrix satisfying
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B (x*,X*;c) = [V2P (x*,X*;c)]l

for any local minimum-Lagrange multiplier pair (x*,X*) of (ECP) satisfying the

sufficiency assumptions (S). In other words the RQP direction asymptotically

[near (x*,X*)1 approaches the Newton direction for minimizing P (-,-;c), This

is potentially interesting as it shows that the DiPillo-Grippo penalty function

can serve locally [within a neighborhood of (x*,X*)] as a descent function for

RQP methods. However a result that is more interesting from a practical

point of view is that a descent property of this type holds globally within an

arbitrarily large compact subset of X*. We ·will present a version of this

result shortly in connection with an exact penalty function depending only on

x which was introduced in Fletcher (1970).

For x£X* consider the function

P (x;c) = min PT (x,;c).
T

Since P is, for each x, a positive definite quadratic function of X, one can

carry out the minimization with respect to X explicitly. A straightforward

calculation yields the minimizing vector

2 2
X(x) = -[Vh(x)'M(x)'M(x)Vh(x) + ÷Th.(x)I ]- [h(x) + Vhi(x)'M(x) 'M(x)Vf(x)]

and the equation

P (x,X) = P [x,X(X);c],

For specific choices of M and T this equation yields penalty functions in the

class of Fletcher (1970). For example if T = 0 and M(x) = [Vh(x)'Vh(x)] Vh(x)'

we obtain P (x,X) = L [xX(x)] + c- h12( =[hh fwe obtain P (x, ) - Lofx,(x)] + cl -h(x)2 where A(x) = -[Vhh ('Vh(x)] lVh(x)'Vf(x ).

The penalty function P (x;c) also has nice (and global) descent properties
T

in connection with directions generated by RQP techniques as showm in the follow-

ing proposition [Bertsekas (1980b),(1982)]:



Proposition 1: Let X be a compact subset of the set X* = {xlVh(x) has rank m},

let H be a bounded set of symmetric nxn matrices, and let b, b be two positive

scalars. There exist scalars c > 0 and w > 0 (depending on X, H, b, b) such that

for every xCX and every matrix HsH satisfying

2 2
b Iz2 < z'Hz < b Iz12 V zER n with Vh(x)'z = 0,

the solution (Ax,X) of the system

H VhIx) x = VfC(x)
Vh(X W 0 X = h(x)_

exists, is unique, and satisfies for all c > c

2
VPT (x;c)'Ax < -wlVPT(x ;c) l

Proposition 1 shows that the algorithm

Xk+l = xk + icaXk (8)

where Axk together with some vector Xk+1 is obtained by solution of a system of the

form H}lk Vh(xk] [Ax] Vf(xk )

Vh (Xk)' h(xk)

has global convergence properties provided c is chosen sufficiently large. The

following proposition clarifies its superlinear rate of convergence properties.

Let us consider the case where ak is chosen by the Armijo rule with unity initial
mk

stepsize, i.e. ak = B where mk is the first nonnegative integer m satisfying

P (xk;c) - P(xk+mrAxk;c) > -' VP (xk;c) 'Ax (10)

and c 1(0,-).

Proposition 2: Let x* be a local minimum of (ECP) which together with a Lagrange

~:'luit.lip e''. ),,":' .;:.1I:.i.:¢ li:''.,- thle{ SU . 'iCi.{. I'j-l...s (V). .'..'..;I:. rii ,t~a, tile e [4o-



rithm (8)-(10) generates a sequence {xk} converging to x* and that the Sequence

{Hk} in (9) is bounded and satisfies

AX[Hk - V2 L (x*, X*)Z* + 

where Z* is an n x(n-m) matrix the columns of which form a basis for the tangent

plane T* = {z|Vh(x*) z = O}. Then:

a) There exists an index k such that for all k > k the stepsize ctk equals unity.

b) The rate of congergence of {Ixk-x*I} is (Q) superlinear.

The conditions of Proposition 2 are always obtained if Hk = V2xLo(xk,),

and usually in practice if Hk is generated by the variable metric formula of

Powell (1978).

It is not possible at present to provide a comparison between RQP techniques

that use differentiable and nondifferentiable exact penalty functions for descent.

Both types of methods behave identically sufficiently close to a solution where

the superlinear convergence property takes effect. Far from a solution their

behavior can be quite different and furthermore the threshold values for the

penalty parameter in both methods can differ greatly on a given problem (these

values can have a substantial influence on algorithmic behavior when far from a

solution). Methods based on differentiable exact penalty functions require

more overhead per iteration in view of the fact that they involve more complex

expressions [although not as much overhead as may appear at first sight--see

Bertsekas (1982)], and their extensions available at present to deal with in-

equality constraints are not very "clean". On the other hand they have the

theoretical advantage (which may translate into a practical advantage) that

they do not require modifications to induce superlinear convergence.
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