ICEMENDR: Intelligent Capture Environment
for Mechanical Engineering Drawing
by
Manoj D. Muzumdar

Submitted to the Department of Electrical Engineering and
Computer Science
in partial fulfillment of the requirements for the degree of

Master of Engineering in Electrical Engineering and Computer
Science

at the
MASSACHUSETTS INSTITUTE OF TECHNOLOGY
May 1999
oone VOO
© Manoj D. Muzumdar, MCMXCIX. All rights reserved.

The author hereby grants to MIT permission to reproduce and

distribute publicly paper and electronic copies of this thesis ARCHIVES
document in whole or in part. MASSggf}légﬁLTong\leyru"'-rs '
JUL 151999
LIBRARIES

Author ..
D?pa.n@ﬁt of Electrical Engineering and Computer Science
May 21, 1999
Certified by .. RETEETPERRRPRRRRRS N ettt et e
Randall Davis
Professor of Electrical Engineering and Computer Science
ZFPhesis Superpvisor
Accepted by i,

Arthur C. Smith
Chairman, Department Committee on Graduate Students

ICEMENDR: Intelligent Capture Environment for
Mechanical Engineering Drawing
by
Manoj D. Muzumdar

Submitted to the Department of Electrical Engineering and Computer Science
on May 21, 1999, in partial fulfillment of the
requirements for the degree of
Master of Engineering in Electrical Engineering and Computer Science

Abstract

I designed and implemented an intelligent environment for recognizing simple me-
chanical engineering sketches. This involves the analysis of complex mechanical engi-
neering parts and their components and consists of creating a hierarchical recognition
system capable of parsing these parts with simpler geometric primitives. The system
seeks to provide an intuitive pencil-and-paper-like interface for sketch recognition by
allowing incremental recognition of what a user draws on the system. The system’s
knowledge is arranged in simple Recognizer modules that have very specialized infor-
mation on a particular aspect of recognizing a part.

Thesis Supervisor: Randall Davis
Title: Professor of Electrical Engineering and Computer Science

Acknowledgments

I would like to thank my thesis advisor, Randall Davis, as well as Luke Weisman, and
Christine Alvarado for their suggestions, advice, and discussion time. I would also
like to thank MIT AI Intelligent Room for the use of its computer facilities, and Ford
Motor Company for its generous funding. A special thank you goes to Chi Un Kim
for last minute proofreading help, and of course, I would like to thank my parents

Deepak and Vijaya Muzumdar for their constant words of encouragement.

Contents

1 Introduction

1.1 Motivation
1.2 General Approach
1.3 Success Criteria
14 Impact
1.5 Structure of thisthesis

2 Previous Work

2.1 Electronic Cocktail Napkin
22 GRANDMA
2.3 Drawing Analogies
24 Summary

3 Interface, Architecture, and Implementation

3.1 Imterface
3.2 Architecture and Implementation
321 recui.
322 recutil
3.23 recgeo
3.2.4 TEC.SYS
3.25 rec.core
3.26 recmeche,
3.3 Summary

10
14
15
15

16
16
17
18
18

4 Conclusion
4.1 Future Work

4.2 Summary .

Bibliography

................................

................................

List of Figures

1-1 Sketch of a rivet settingtool 11
1-2 Alternative sketch of a rivet setting tool 12
1-3 Acam 12
1-4 Acompressionspring, 13
1-5 Afixed pivot 13
1-6 Aforce. 13
1-7 Aframe 13
1-8 Ascrew 14
1-9 Awasher. 14
3-1 Rectanglerecognition 26
3-2 RectangleRecognizer 28
3-3 Ball and socket recognition 30
3-4 Barrecognition 30
3-5 Belt recognition L L 31
3-6 Camrecognition. 32
3-7 Chain recognition 33
3-8 Compression Spring recognition 33
3-9 Fixed Pivot recognition 34
3-10 Force recognition, 34
3-11 Frame recognition 34
3-12 Gear recognition 35
3-13 Mass recognition 35

3-14 Motor recognition 36

3-15 Nut recognition 37
3-16 Piston recognition L, 37
3-17 Screw recognition L 38
3-18 Solenoid recognition 38
3-19 Tension Spring recognition 39
3-20 Washer recognition 40

List of Tables

3.1 Important GShapemethods 23
3.2 Important Recognizer methods 23
3.3 Important Widget methods 24
3.4 Important VisibleWidget methods 24
3.5 Important WPart methods, . .. 29

Chapter 1
Introduction

Engineers need an intelligent environment for developing their ideas. This thesis
focuses on the design, implementation, and evaluation of ICEMENDR (Intelligent
Capture Environment for Mechanical ENgineering DRawing), an intelligent environ-

ment for recognizing simple mechanical engineering design sketches.

1.1 Motivation

An intelligent environment for engineering should facilitate design development and
design rationale capture. I envision an environment where engineers can sketch their
ideas, and have a computer watch them and give them feedback. For engineers to
find the environment desirable, it has to have an inobtrusive interface. Thus, it seems
best to bring the computer to the engineer. As mechanical engineers are accustomed
to sketching their ideas out with pencil and paper, a practical environment for engi-
neering design should include a pencil-and-paper-like interface.

An environment consistent with this idea would be one in which the computer
“watches” the engineer draw and communicates with him about what is happening.
By speaking to the computer, the engineer could tell the computer what he is drawing,
answer any questions, and correct mistakes the computer made. The computer could
communicate to the engineer through speech synthesis. The engineer could continue

talking to the computer without interrupting his work, his eyes on his paper and his

hand on his pen.

1.2 General Approach

ICEMENDR takes the first step toward creating an intelligent environment for me-
chanical engineering design. ICEMENDR is a Java program capable of recognizing a
subset of mechanical engineering design sketches. The user uses a digital tablet and
stylus to interact with ICEMENDR. Error correction is done through GUI interaction
with buttons for various operations such as undo and redo.

ICEMENDR allows an engineer to quickly create simple design sketches. Mechan-
ical engineering sketches are composed of simple parts which themselves are composed
of geometric primitives. ICEMENDR is a scalable system that features different levels
of recognition. As the engineer draws, ICEMENDR actively tries to recognize what
he is trying to draw. Conceptually, the drawing paper is a Surface. The objects drawn
on the Surface are called Widgets. The system’s recognition knowledge is stored in
Recognizers. Each Recognizer knows how to convert a set of lower-level Widgets to
higher-level Widgets. It removes lower-level Widgets and adds higher-level Widgets
to the Surface.

For example, a triangle Recognizer takes three line Widgets in a triangle configu-
ration and replaces them with a single triangle Widget. The Recognizer encapsulates
the knowledge to accomplish this task. Each Recognizer is interested in a set of
Widgets on the Surface that relate to one another in a certain way; when it finds
them it replaces them with other Widgets. These new Widgets, along with other
Widgets already on the Surface, then trigger other Recognizers to act. By using this
technique, ICEMENDR allows fairly complex parts to be recognized by applying this
hierarchical recognition on each of the user’s strokes. For example, figures 1-1 and
1-2 show two separate designs of a rivet setting tool drawn using ICEMENDR. Fig-
ures 1-3 through 1-9 represent the parts used in the rivet sketches. In addition, all

non-part polygons are masses and all non-part lines are bars.

10

A
I

e

Figure 1-1: Sketch of a rivet setting tool

11

N/

B
1

Figure 1-2: Alternative sketch of a rivet setting tool

Figure 1-3: A cam

12

Figure 1-4: A compression spring

s>

Figure 1-5: A fixed pivot

l

Figure 1-6: A force

s

Figure 1-7: A frame

13

LTSS

Figure 1-8: A screw

=

Figure 1-9: A washer

1.3 Swuccess Criteria

ICEMENDR recognizes eighteen primitive mechanical engineering parts:

. ball and socket
bar

. belt

. cam

chain

. compression spring
. fixed pivot

. force

. frame

10. gear

11. mass

12. motor

13. nut

14. piston

15. screw

16. solenoid

17. tension spring
18. washer

DU LN

ICEMENDR also can be easily integrated with speech to be used with the MIT
Al Laboratory’s Intelligent Room and its underlying system Metaglue. The environ-

ment accomplishes part recognition by using a hierarchy of Recognizers to parse the

mechanical engineering parts into simpler geometric primitives.

14

1.4 Impact

ICEMENDR'’s impact will come when it is integrated with other interfaces to create
an intelligent drawing environment for mechanicai engineering drawing. There has
been extensive research on drawing recognition, voice interaction, and computer-
aided design. There has also been some research in applying knowledge systems to
drawing. However, these separate branches have not been integrated. As a result
of this lack of integration, all products from these research endeavors have failed to
produce a product that is easily accessible and useful. By creating ICEMENDR, 1
have taken one of the first steps toward creating a system where a user can work
in an environment that is both familiar and helpful in the design process. Such an
environment would be able to aid and record pertinent information generated both

knowingly and unknowingly by the engineers who use it.

1.5 Structure of this thesis

Chapter 2 contains a summary of work that is related to this thesis. Chapter 3 de-
scribes the the interface and architecture of ICEMENDR, and presents the eighteen
simple mechanical engineering parts. Finally, Chapter 4 discusses future work involv-
ing ICEMENDR and presents some conclusions that can be drawn from the results

of this thesis.

15

Chapter 2

Previous Work

Three major projects lay the foundation for ICEMENDR. They are the Electronic
Cocktail Napkin project, GRANDMA, and “Drawing Analogies.” In this section, I
will briefly discuss each project and which features relate to ICEMENDR.

2.1 Electronic Cocktail Napkin

The Electronic Cocktail Napkin (ECN) project has made much progress towards goals
common to their work and mine. It is a computer-based environment for sketching
and diagramming during conceptual design. The computer extracts knowledge about
raw sketches and uses database queries to gather design images for architectural
planning. ECN centers around methods for extracting knowledge from a sketch;
it analyzes sketches based on bounding boxes, spatial relations, and diagram-based
query and retrieval.

ECN uses a three-step recognition process. It recognizes pen-drawn “glyphs”
on a table!. Next, it uses spatial relations among diagram elements to analyze the
“glyphs.” Finally, it searches across previously defined configurations to match ele-
ments on the diagram to the “glyphs.” This final step is parsing the diagram with

“glyphs.”
ICEMENDR uses ECN’s idea of parsing, but ICEMENDR’s implementation dif-

! A glyph is ECN’s terminology for a simple multi-stroke symbol.

16

fers in several important ways. First of all, ICEMENDR does not try to match multi-
stroke symbols. It deals with one stroke at a time. ECN has two separate databases
on which it searches: the one for the low-level “glyphs” and the one for the higher-
level diagrams. ICEMENDR has no distinction between how lower- and higher-level
recognition are done. All of this knowledge is put into a Recognizer. Thus, when
another part or diagram needs to be added to ICEMENDR, another Recognizer is
created. With ECN, the databases must be altered and the recognition of new parts
must be done in the “glyph” and diagram databases. Hence, ICEMENDR differs
from ECN in knowledge arrangement.

Both ICEMENDR and ECN use a paper-and-pen interface implemented with a
tablet and stylus. Overall, the Electronic Cocktail Napkin project centers around

knowledge extraction and not the interface [5].

2.2 GRANDMA

Dean Rubine implemented GRANDMA (Gesture Recognizers Automated in a Novel
Direct Manipulation Architecture), a toolkit for reducing the effort involved in creat-
ing a gesture-based interface. GRANDMA creates a recognition interface from a set
of examples of how to draw the gestures to be recognized. For example, a circle would
be drawn five times into the system, and then GRANDMA, would construct a circle
recognizer for the system. GRANDMA uses a mouse-driven interface to train the rec-
ognizer as well as for input. GRANDMA can create recognizers only for single-stroke
gestures.

ICEMENDR differs from GRANDMA in both how recognition is done and in
what interface is used. ICEMENDR does not train its Recognizers. They are hand-
crafted for a particular interface. Although this does not allow for the automation
provided by GRANDMA, it allows for recognition of multi-stroke gestures and gives
future Recognizer creators leeway to create a particular Recognizer in the way best
for its particular application field. Also, ICEMENDR’s paper-and-pen interface is

more natural than using a mouse [8].

17

2.3 Drawing Analogies

Ellen Yi-Luen Do and Mark Gross created “Drawing Analogies,” a shape-based re-
minder program that uses freehand sketches to index and retrieve visual references
for creative designing [2]. They present four recognition matching schemes: element
count match, element type match, relations match, and element “type&relations”
match. Element count match states that two drawings are identical if they have ex-
actly the same number of elements. The element type match says that two drawings
are identical if they have exactly the same element types regardless of the num-
ber of elements. The relations match states that two drawings are identical if they
contain exactly the same spatial relations regardless of the elements involved. The
element “type&relations” match says two drawings are identical if they are identi-
cal in the element count match, the element type match, and the relations match.
The element “type&relations” match is important because it combines the previous
matching schemes to analyze sketches as being composed of smaller drawing primi-
tives in a particular spatial relationship. Each of ICEMENDR’s Recognizers acts as
an element “type&relations” matcher [1].

Mark Gross has argued for the importance of interacting with the computer
through sketching. He believes that such an interface would free the creative minds
of users and not limit them. He also maintains that the environment should be aes-
thetically appealing and easy to use. Gross’s work provides defense and motivation

for my work [4].

2.4 Summary

Previous work has produced a several mechanisms for recognizing, but they have
not made the jump to an integrated environment for designing. ICEMENDR is
one of the first steps in creating such an environment. It takes the some of the
better recognition approaches from ECN, GRANDMA, and Drawing Analogies and

combines them with scalability through the use of recognition units, Recognizers.

18

ICEMENDR provides a sketching interface which will easily integrate into a voice-

enabled mechanical engineering design environment.

19

Chapter 3

Interface, Architecture, and

Implementation

This chapter describes ICEMENDR’s interface, architecture, and implementation. It
discusses the foundation on which ICEMENDR’s mechanical engineering recognition

capabilities are built.

3.1 Interface

ICEMENDR is a Java application which presents one window when executed. The
window has two parts: a large drawing area and a smaller panel on bottom of which
contains a row of buttons. There are buttons for undoing and redoing operations
as well as two buttons for indicating when the user is done drawing a portion of
his sketch. The first button indicates when the user is done with an ambiguous part.
When this button is pressed, the default mechanical part that matches the ambiguous
part is drawn in place of the ambiguous part. The second button indicates when the
user is done with the entire sketch. When this second button is pressed, the system
replaces all ambiguous parts with their default parts, and indicates to the user via
pop-up dialog boxes whether there is anything more to be recognized.

The user interacts with ICEMENDR using a digital tablet and stylus. The stylus

is tracked across the tablet like a mouse. Pressing the buttons on the interface is

20

accomplished by tapping the button with the stylus. Drawing is accomplished by
drawing on the tablet. The system recognizes each user stroke created by a pen down
and then pen up. After each such stroke, ICEMENDR tries to recognize and, if it
can, replace Widgets on the Surface until there is nothing left to recognize. When a
Widget is recognized, its color changes on the Surface. Basic strokes and polygons
are colored black. Ambiguous mechanical engineering parts are colored cyan, and
recognized mechanical engineering parts are colored blue. The drawing is complete
when all Widgets on the Surface are blue, because this indicates that all the Widgets
on the Surface correspond to some mechanical engineering part.

ICEMENDR reads an initialization file that specifies the Recognizers to be loaded
at start up. Each of these Recognizers is grouped into a Module. There are Modules
for basic strokes, polygons, selectors, and mechanical engineering parts. Basic strokes
consist of lines, arcs, and circles. Lines are used in polygon recognition. Basic stroke
and polygon Recognizers are used in mechanical engineering part recognition. The
selector Recognizers are used to select, move, delete, copy, and rotate Widgets on the
Surface. Clicking on a Widget selects it. Once a Widget is selected it can be moved,
deleted, copied, or rotated, and it can be deselected by clicking on the Surface away
from the selected Widget. To move a selected Widget, the user draws a line from
the Widget to the point to where the Widget should be moved. To delete a selected
Widget, the user clicks on the Widget. To copy a selected Widget, the user draws
a circle around the center point for the new Widget. Finally, to rotate a Widget,
the user draws an arc around the Widget to indicate how many degrees to rotate the
Widget and in which direction. A selected Widget is colored red. When a selected

Widget is deselected, it returns to its original color.

3.2 Architecture and Implementation

ICEMENDR is object-oriented. It is organized into six Java packages! as follows:

1A package in Java is a library of related classes.

21

rec.ui
rec.util
rec.geo
rec.sys
rec.core
rec.meche

In this section, I will briefly describe each of the packages and their constituents.

I will then explain how they fit together.

3.2.1 rec.ui

Rec.ui consists of the actual ICEMENDR program as well as classes associated with
loading in initialization files. It interfaces with rec.util and rec.sys to set up the

ICEMENDR program and lets these packages handle the actual recognition.

3.2.2 rec.util

Rec.util includes all of ICEMENDR'’s shared utility classes. It contains classes for
data structures, sorting, and file parsing. It also contains the Displayable interface
that all Widgets are required to implement so that the system can draw them properly

on the Surface.

3.2.3 rec.geo

Rec.geo is comprised of the basic geometry classes used throughout ICEMENDR. It
contains the shapes that all the Widgets are composed of. It also has a class called
Geometry with useful methods for calculating distances, angles, bisectors, and other
geometric concepts. The shapes that compose the Widgets all derive from the base
class GShape, ensuring that all Widgets have the properties of GShapes. Table 3.1

describes GShape’s important methods.

3.2.4 rec.sys

Rec.sys contains the main classes that form ICEMENDR. The basic classes are Mod-
ule, Recognizer, Squiggle, Surface, Transition, Widget, and VisibleWidget.

22

| Method [Description

copy Returns a copy of the GShape.

reflect Reflects the GShape by swapping the x and y axis.

translate | Moves the GShape a relative distance.

rotate Rotates the GShape a relative angle.

size Returns the relative size of the GShape.

getBounds | Returns the rectangular bounding box of the GShape.

includes Returns whether a point is within a certain distance of
the GShape.

Table 3.1: Important GShape methods

| Method | Description |
recognize Is called by Surface when the Surface gets a Widget that
interests the Recognizer.

getInputTypes | Returns the Widgets that interests the Recognizer.
getOutputTypes | Returns the Widgets that the Recognizer creates.

Table 3.2: Important Recognizer methods

Surface represents the paper that is drawn on. It keeps track of all Widgets on
itself as well as Recognizers associated with it and changes that have been made
to it via Transition objects. Recognizers are grouped into Modules as described in
section 3.1. They operate on Widgets that they are interested in by replacing them
with Widgets that they create. Table 3.2 shows the major Recognizer methods. A
Widget represents a object on the surface. Table 3.3 displays the important Widget
methods. A VisibleWidget is a visible object on the Surface. An example of a
VisibleWidget is a line, and an example of an invisible widget is a click. The simplest
VisibleWidget is the Squiggle which is the immediate result of a user’s drawn stroke.
Table 3.4 illustrates the major methods that a visible widget has in addition to the
methods derived from Widget.

Conceptually, the user draws on the Surface. This creates a Squiggle. The Surface
then cycles through each Module until a Module says that it recognizes the Squiggle.

A Module does this by cycling through its Recognizers one at a time and when one

23

| Method | Description

copy Returns a copy of the Widget.

move Moves the Widget to an absolute point.

rotate Rotates the Widget a relative angle.

size Returns the relative size of the Widget.

getLocation | Returns location information about the Widget.

getBounds | Returns the rectangular bounding box of the Widget.

removed Is called by Surface when the Widget is removed off of
the Surface.

replaced Is called by Surface when the Widget is replaced by an-
other Widget on the Surface.

altered Is called by Surface when the Widget has some property
altered.

Table 3.3: Important Widget methods

| Method | Description

draw

Is called by Surface to draw the Widget.

includes

Returns whether a point is within a certain distance of
the Widget.

Table 3.4: Important VisibleWidget methods

24

of its Recognizers recognizes the Squiggle it signals the Surface. The Recognizer then
removes the Squiggle from the Surface, adds the Widgets it creates to the Surface,
and gives the Surface a Transition that indicates the changes it has made to the
Surface. When a Widget is added to the Surface, it is actually put on a queue
that is reprocessed by the Surface’s Modules until the queue is empty. Also, as
soon as the Surface is signaled to remove, replace, or alter a Widget, it calls the
appropriate callback method on the Widget in question. Widget’s callback methods
corresponding to removing, replacing, and altering are called removed, replaced, and

altered, respectively.

3.2.5 rec.core

Rec.core contains the basic Recognizers and Widgets that are built on rec.sys. It in-
cludes Recognizers and Widgets for selection, rotation, moving, copying, and deleting
as well as Recognizers for creating the primitive Widgets that are used by rec.meche
to recognize mechanical engineering parts. The basic Recognizers and the Widgets

they create are:

o ArcRecognizer creates WArc.

o LineRecognizer creates WLine.

e OvalRecognizer creates WOval.

e TriangleRecognizer creates WTriangle.

e QuadrilateralRecognizer creates WQuadrilatera).
e PentagonRecognizer creates WPentagon.

e HexagonRecognizer creates WHexagon.

e PolygonRecognizer creates WPolygon.

° Equi%ateralTriangleRecognizer creates WEquilateralTriangle.
e RectangleRecognizer creates WRectangle.

e SquareRecognizer creates WSquare.

WArcs and WLines are created from Squiggles. A WOwal is formed by two
WArcs. The polygons are formed from the appropriate number of WLines. The
PolygonRecognizer recognizes polygons with greater than six sides. WEquilateralTri-
angle, WRectangle, and WSquare are formed from their associated polygons. Also all
polygons are derived from WPolygon. For example, a WRectangle would be created

by the following sequence of events:

25

Figure 3-1: Rectangle recognition

Squiggle is drawn by the user on the Surface.

LineRecognizer converts a Squiggle that “approximates” a line to a WLine.
Squiggle is drawn by the user on the Surface.

LineRecognizer converts a Squiggle that “approximates” a line to a WLine.
Squiggle is drawn by the user on the Surface.

LineRecognizer converts a Squiggle that “approximates” a line to a WlLine.
Squiggle is drawn by the user on the Surface.

LineRecognizer converts a Squiggle that “approximates” a line to a WLine.
QuadrilateralRecognizer converts four WLines in “approximate” quadrilateral
formation into a WQuadrilateral.

RectangleRecognizer converts WQuadrilateral which “approximates” a rectan-
gle into a WRectangle.

© PN W N

—
e

Figure 3-1 shows a rectangle being drawn from top to bottom. “Approximate” is
where the knowledge lies. Each Recognizer knows how to calculate the appropriate
“approximate” for whichever Widgets it recognizes. To illustrate this better and to
understand how one would go about adding additional Recognizers to the system let

us analyze the code for the RectangleRecognizer (see figure 3-2).

26

The RectangleRecognizer imports several packages so it has access to the classes
in them. Vector is located in package java.util. Surface, Widget, and Recognizer are
located in package rec.sys. The RectangleRecognizer derives from class Recognizer
just like all Recognizers®>. The RectangleRecognizer is interested in WQuadrilaterals
as indicated in the getInputTypes() method and creates WRectangles as indicated in
the getOutputTypes() method. RectangleRecognizer’s work occurs in the recognize()
method. Here the Recognizer checks to see if the WQuadrilateral has equal angles
by using the WQuadrilateral’s hasEqualAngles() method. This method returns true
if the angles are within ten degrees of ninety degrees. The RectangleRecognizer then
replaces a WQuadrilateral with a WRectangle if the WQuadrilateral’s angles are
approximately equal.

The rec.core, rec.sys, rec.geo, and rec.util packages form the basis for the rec.meche
package. The next chapter will discuss the rec.meche package, the heart of ICE-

MENDR'’s mechanical engineering part recognition capabilities.

2Extending a class is how Java derives classes.

27

package rec.core;

import java.util.*;
import rec.sys.*;

public class RectangleRecognizer extends Recognizer

{
public RectangleRecognizer()
{
} 10

public boolean recognize(Surface s, Widget w)

{
WQuadrilateral = (WQuadrilateral)w;

if(g.hasEqualAngles()) {
WRectangle r = new WRectangle(q);
s.replaceWidget(q, r);
return(true);

} 20

return(false);

}

public Enumeration getInputTypes()

{
Vector v = new Vector();
v.addElement("rec.core.WQuadrilateral”);
return(v.elements());

} 30

public Enumeration getOutputTypes()

{
Vector v = new Vector();
v.addElement("rec.core.WRectangle");
return(v.elements());

}
}

Figure 3-2: RectangleRecognizer

28

[Method | Description |

create Overriden by subclasses to return the array of GShapes
that make up the WPart.

getComponents | Returns the array of GShapes that make up the WPart.

getCenter Returns the center point of the WPart.

getAngle Returns the orientation angle of the WPart in radians.

size Returns the relative size of the WPart.

move Moves the WPart to an absolute point.

rotate Rotates the WPart a relative angle.

getLocation Returns location information about the WPart.

getBounds Returns the rectangular bounding box of the WPart.

draw Is called by Surface to draw the WPart.

includes Returns whether a point is within a certain distance of
the WPart.

Table 3.5: Important WPart methods

3.2.6 rec.meche

The rec.meche package consists of the Recognizers, Widgets, and utility classes used
to create the mechanical engineering part recognizers. This subsection will present
all the mechanical engineering parts and analyze how they are recognized.

All the mechanical engineering part Widgets are derived from the rec.meche utility
class WPart. A WPart is derived from VisibleWidget. Table 3.5 describes WPart’s
major methods. Creating a new mechanical engineering Widget is accomplished by
deriving from WPart and overriding the create method to return an array of GShapes
that make up the WPart. For example, a screw Widget consists of an array of WLines
which correspond to the screws sides and its threads.

A ball and socket is represented by a WMBallAndSocket Widget (See figure 3-3.).
A WMBallAndSocket is formed by two intermediate parts, the WMSocket Widget
and the WMBall Widget. A WLine and a WArc form a WMSocket and a WLine and
a WCircle form a WMBall. If the ends of the WMSocket and WMBall Widgets are
close to one another a WMBallAndSocket Widget is formed.

A bar is represented by a WMBar Widget (See figure 3-4.). A WMBar is formed
by a WLine. Once the user presses a button on ICEMENDR’s interface to indicate

29

Figure 3-3: Ball and socket recognition

Figure 3-4: Bar recognition

30

Figure 3-5: Belt recognition

that the Surface should be cleaned up, all WLines are replaced with WMBars.

A belt is represented by a WMBelt Widget (See figure 3-5.). A WMBelt is formed
by a Squiggle that is closed and does not interesect itself.

A cam is represented by a WMCam Widget (See figure 3-6.). A WMCam is formed
by two concentric WCircles with two WLines crossed approximately perpendicularly
in the inner WCircle.

A chain is represented by a WMChair Widget (See figure 3-7.). A WMChain is
formed by a WBelt with two WCircles anywhere on the WBelt.

A compression spring is represented by a WMCompressionSpring Widget (See
figure 3-8.). A WMCompressionSpring is formed by a WMSpring with two WLines
connected perpendicularly to the WMSpring, one at each end. A WMSpring is an
intermediate mechanical engineering part that is formed by a Squiggie that is wide
and pleated from one end to the other.

A fixed pivot is represented by a WMFixedPivot Widget (See figure 3-9.). A
WMFixedPivot is formed by a small WCircle. Once the user presses a button on
ICEMENDRs interface to indicate that the Surface should be cleaned up, all WCir-
cles with small radii are replaced with WMFixedPivots.

A force is represented by a WMForce Widget (See figure 3-10.). A WMPForce
is formed by three WLines. The two “arrowhead” WLines are approximately at a
forty-five degree angle from the “base” WLine.

A frame is represented by a WMFrame Widget (See figure 3-11.). A WMFrame
is formed by five WLines. The four WLines coming off of the “base” WLine are

31

O

©

Figure 3-6: Cam recognition

——
-, -
"~ T,
. -~
-— '~
- -
> -
P /_,—
- -~
- -
", ~
-, -,
-~ "~
-~ -
X, s
-~ -
- -~
- "~
- -~
~
- -
.. ™
EN -~
-~ -2
- -
- ~
+ -~
. "~
-~ -
- -
= H
- LY

Figure 3-8: Compression Spring recognition

D

Figure 3-9: Fixed Pivot recognition

AN
7

Figure 3-10: Ferce recognition

[/
[/
777777

Figure 3-11: Frame recognition

34

jslejegele

Figure 3-12: Gear recognition

approximately parallel and have approximately the same length.

A gear is represented by a WMGear Widget (See figure 3-12.). A WMGear is
formed by a WCircle surrounded by four WLines of approximately the same length
which are just out of the WCircle’s radius and which angle toward the center of the
WCircle.

A mass is represented by a WMMass Widget (See figure 3-13.). A WMMass is
formed by a WPolygon. Once the user presses a button on ICEMENDR’s interface

Figure 3-13: Mass recognition

35

Figure 3-14: Motor recognition

to indicate that the Surface should be cleaned up, all WPolygons are replaced with
‘WMMasses.

A motor is represented by a WMMotor Widget (See figure 3-14.). A WMMotor
is formed by a WRectangle and two WLines in an approximate “T” formation on
either “short” side of the WRectangle. The WLine approximately parallel to the
“short” side must be approximately as long as that side, and the other WLine must
be approximately half as long as the side.

A nut is represented by a WMNut Widget (See figure 3-15.). A WMNut is formed
by a WRectangle and two WLines that are approximately parallel to the “short” side
of the WRectangle. The WLines are also approximately evenly spaced between the
two “short” side of the WRectangle.

A piston is represernted by a WMPiston Widget (See figure 3-16.). A WMPiston is
formed by a WRectangle and two WLines that are in an approximate “T” formation
with one WLine in the middle and approximately parallel to the “short” side of the
WRectangle and the other one projecting out from the WRectangle.

A screw is represented by a WMScrew Widget (See figure 3-17.). A WMScrew is
formed by two WRectangles in an approximate “T” formation.

A solenoid is represented by a WMSolenoid Widget (See figure 3-18.). A WM-

36

[

L

Figure 3-15: Nut recognition

Figure 3-16: Piston recognition

37

T

Figure 3-17: Screw recognition

Figure 3-18: Solenoid recognition

38

Figure 3-19: Tension Spring recognition

Solenoid is formed by two WMRectangles. One of the WRectangles is inside and
projects out of the other WRectangle.

A tension spring is represented by a WMTensionSpring Widget (See figure 3-19.).
A WMTensionSpring is formed by a WMSpring with two WArcs connected to the
end of the WSpring, one at each end, drawn outwards like hooks.

A washer is represented by a WMWasher Widget (See figure 3-26.). A WMWasher
is formed by two concentric WOvals whose major axes have approximately the same

angles.

39

-
-,
O

Figure 3-20: Washer recognition

3.3 Summary

ICEMENDR is written in a highly modular, object-oriented fashion. Several Java
packages encompass the graphical interface, the underlying recognition system, and

the mechanical-engineering-specific recognition knowledge.

41

Chapter 4

Conclusion

This chapter discusses what the system can do and what future work can be done,

and makes some conclusions about ICEMENDR.

4.1 Future Work

ICEMENDR is able to do simple recognition of eighteen mechanical engineering parts.
It implements error correction through buttons on a graphical user interface. Al-
though ICEMENDR forms a solid basis for mechanical engineering sketch recognition,
there is a variety of areas for future work.

ICEMENDR’s use of stylized recognition can be improved through Recognizer re-
dundancy. Although the drawing order of the Widgets does not matter when drawing
a mechanical engineering part under ICEMENDR, the number and type do matter. In
order to make ICEMENDR even more useful, multiple Recognizers for each mechan-
ical engineering part should be created to account for different drawing preferences.
For example, it takes eight properly arranged WLines to create a WMScrew. It is
possible for a user to sketch a WMScrew using one continuous stroke for the top rect-
angle and another continuous stroke for the lower rectangle. To allow for this to work
with the current WMScrew recognizer, the RectangleRecognizer must be expanded
to recognize a single Squiggle as a WRectangle if it approximates a rectangle. It is

also possible for the user to draw a “T” and add some threads to it. The user might

42

expect this to be recognized as a WMScrew because he is used to sketching screws
this way. In order to make ICEMENDR easier to use, it must be able to recognize
many common ways that a sketch could be drawn.

ICEMENDR can be augmented with part interaction. ICEMENDR currently
does not account for part interaction. Figure 1-2 illustrates that when a WMWasher
is put over a WMScrew they do not interact in any way. This interaction could be
accounted for by adding Recognizers which watch for specific part interactions, or a
special mechanism could be put into the system specifically for part interactions that
works on the surface level. Such a mechanism could require each Widget to define
multiple draw and includes methods. This would account for the different “views”
of the Widget that the user might see on the Surface depending on which other
Widgets it interacts with. For example, WMWasher and WMNut can be specified
to interact with WMScrew. When Surface draws all the VisibleWidgets, it notes
where WMWashers and WMNuts are with respect to WMScrews. If WMWashers and
WDMNuts are within a certain distance of a WMScrew, the Surface calls a draw method
and passes in the adjacent WMWashers and WMNuts as arguments. The Surface
then skips calling the draw method for the adjacent WMWashers and WMNuts. The
includes methods of WMWasher, WMNut, and WMScrew could be modified to check
the Surface to see if there are any interactions between these parts on the Surface.
If there are, then Surface calls the WMScrew’s includes method with the adjacent
WMWashers and WMNuts as arguments, and the result would be returned as the
resuit of the initial includes call.

Several improvements can be made with ICEMENDR’s user interface. Instead
of using buttons, the Surface correction commands can be activated through voice
recognition. Additionally, facilities for adding and removing modules on the fly could
be added so that the system can be kept constantly running. ICEMENDR could in-
terpret stylus button clicks as actions and could have methods for serializing Widgets
so that they can be saved and accessed on different drawing sessions.

Finally, ICEMENDR could use many more Recognizers. Recognizers for more

specific parts, for resizing Widgets, and annotating parts could make ICEMENDR

43

much more useful. Currently, the Recognizers use relative sizing to do recognition.
A single relative sizing Recognizer could be converted to several absolute sizing Rec-
ognizers to account for more specific parts. For examples, there are different types of

screws, such as flat and Phillips, with different lengths.

4.2 Summary

ICEMENDR is an intelligent environment for recognizing simple mechanical engineer-
ing design sketches. Its power lies in its mechanism for hierarchical recognition which
allows for parsing of complex mechanical engineering parts with simple geometric
primitives. Although ICEMENDR provides a solid base for recognizing mechanical
engineering design sketches, it is only a first step towards the ultimate goal of having
an intelligent environment for mechanical engineering design that is both easy to use

and helpful.

44

Bibliography

[1] E. Yi-Luen Do and M.D. Gross. Shape based reminding as an aid to creative
design. The Global Design Studio, Proc. International Conference on Computer
Aided Architectural Design Futures, 1995.

[2] E. Yi-Luen Do and M.D. Gross. Drawing analogies, supporting creative architec-
tural design with visual references. Preprints Computational Models of Creative

Design, pages 37-58, 1996.

(3] E. Yi-Luen Do and M.D. Gross. Drawing as a means to design reasoning. Arti-
ficial Intelligence and Design, 1996.

[4] M. D. Gross. Recognizing and interpreting diagrams in design. International
Conference on Image Processing, pages 308-311, 1995.

[5] M. D. Gross. The electronic cocktail napkin-a computational environment for

working with design diagrams. Design Studies, 17(1), 1996.

[6] Vladimir Hubka, M. Myrup Andreasen, and W Ernst Eder. Practical Studies in
Systematic Design. Buttersworths, Boston, Massachusetts, 1988.

[7] Jerome F. Mueller. Standard Application of Mechanical Details. McGraw-Hill,
New York, New York, 1985.

[8] D. Rubine. Specifying gestures by example. Computer Graphics, 25(4), 1991.

[9] E. Saund and T.P. Moran. Perceptual organization in an interactive sketch

editing application. Proc. International Conference on Computer Vision, 1995.

45

[10] E. Tjalve, M. M. Andreasen, and F. Frackmann Schmidt. Engineering Graphic

Modelling, A Workbook for Design Engineers. Newnes-Buttersworths, Boston,
Massachusetts, 1979.

46

THESIS PROCESSING SLIP

FIXED FIELD: il name

index biblio

» COPIES: ro Dewey @ Hum

Lindgren Music Rotch Science

TITLE VARES: »[]

NAME VARIES: »m/ Deeg)ﬂ(

IMPRINT: (COPYRIGHT)

» COLLATION: L'Lﬂ P

» ADD: DEGREE: » DEPT.:
SUPERVISORS:
NOTES:
cat'r: _date
page:
»DEPT: Eﬂa. 4 j?SD chf

» YEAR:__\QAX _ » DEGREE: H. T ﬂgr
»NAME:_ A\)7 LM DA R ﬂgg@’;\ D,

