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Abstract

A general, linear theory of coupling electromagnetic fields from free-space waveguides to an

inhomogeneous plasma in a magnetic field is presented. Full account is taken of all the waveguide

modes and the complete electrodynamics of the cold, inhomogeneous plasma in the coupling

region. Far away from the coupling region the plasma is assumed to be absorptive (or to have a

known reflectivity) and the waveguides to propagate only their dominant modes. The formulation

is geared to obtain the reflection coefficients in the waveguides and the excitation of waves in the

plasma. The results are applicable to RF heating of plasmas whose size is large compared to the

waveguide array, as would be the case in a fusion reactor, and valid for the frequency regimes of

either ion-cyclotron (harmonic), or lower-hybrid, or electron-cyclotron (harmonic) heating.

* Work supported by 1)0k Contract DF-AC02-78E1 -51013 and NSF Grant No. LNG 79-07047.

1



I. Introduction

In what is generically known as "RF heating" and current generation of plasmas, electromag-

netic (EM) energy from high-power sources external to the plasma is used to excite electromagnetic

fields that propagate into the plasma and eventually dissipate their energy and momentum on the

charged particles of the plasma, thus achieving the desired heating and/or current generation. One

important aspect of such interactions is the coupling of power from the EM sources in free-space to

the EM fields in the plasma. In magnetically confined plasmas with appreciable bulk temperatures,

which are of interest in achieving fusion temperatures in a quasi steady-state, coupling structures

cannot be inserted into the plasma and such coupling must take place at the plasma edge. Under

these circumstances, and for technological reasons which we will not go into here, it is useful to

consider EM sources at high frequencies whose energy can be brought conveniently to the plasma

edge by waveguides. Specific heating and current generation schemes require that the excited fields

have a prescribed spatial spectrum. This then requires that the waveguides be fed with specific

relative amplitudes and phases, thus forming waveguide arrays.

In this paper we formulate a general linear theory to describe the coupling of EM power

from waveguides to a plasma in a magnetic field. The coupling region (see Fig. 1) is taken as

the inhomogeneous plasma extending from the free-space waveguide openings in the plasma wall

to where the desired plasma modes are excited. The excited plasma modes are assumed to be

dissipated beyond the coupling region, further into the plasma core. The plasma is taken to be of

sufficiently large (reactor) size so that the limited extent of the coupling region can be modeled in

slab geometry. (See Figs. 2 and 3.) For definiteness, the plasma in the coupling region is described

by the cold plasma model with inhomogeneous density and magnetic field in one direction, into

the plasma. This can be readily extended to include corrections due to finite temperatures and their

variations, as needed. The walls of the plasma and waveguides are assumed perfectly conducting,

and the waveguides are allowed to be of arbitrary cross section; the medium in the waveguides is

taken as free-space. Far from the plasma wall the waveguides are assumed to propagate only their

dominant mode. Given the amplitudes and phases of the incident fields in each of the waveguides

and the unperturbed characteristics of the plasma in the coupling region, we show how to deter-

mine the reflection coefficient in each of the w'aveguides and the excited fields and power flow into

the plasma modes in and beyond the coupling region.

The plasma modes amenable to waveguide excitation for heating a reactor type plasma fall
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into three frequency ranges: (a) ion-cyclotron range of frequencies (ICRF), from the ion-cyclotron

frquency (Q2/27r) to a few times (fi 1/27r); (b) lower-hybrid range of frequencies (LHRF) which

is around the ion plasma frequency (wpi/2w); (c) electron cyclotron range of frequencies (ECRF)

from the electron cyclotron frequency (0e/2w) to a few times (Qe/ 27r). For magnetically confined

fusion plasmas, in externally applied magnetic fields in the range of 5-10 Tesla, the ICRF would

involve waveguides whose cross sectional dimensions would be comparable to a reactor plasma

radius; for plasma densities in the range of 1020 - 10 21 /m 3 the LHRF fall in the usual microwave

regime and the waveguide dimensions become smaller than a reactor plasma radius; finally, in the

ECRF the waveguides are much smaller than the plasma radius. In all cases, the finite size of all the

cross sectional dimensions of the waveguide relative to the plasma dimensions must be accounted

for in the coupling problem.

Previous analyses of the waveguide-plasma coupling problem have concentrated on the

LHRF [1,2,3,41. All of these analyses were carried out in detail in only two dimensions: the

waveguides were assumed to be perfectly conducting parallel-plates of infinite extent in the direc-

tion perpendicular to the confining magnetic field E,,, and the excited plasma modes were thus

forced to have no variation in that direction. These analyses were also concerned mainly with

the dominant mode in the waveguides and neglected all of the higher-order modes that are re-

quired for a proper description of the fields at the plasma wall where the waveguide ends. In the

present analysis these restrictions are removed; full account is taken of the finite dimensions of

the waveguides in both the direction along P0 and the direction perpendicular to R., and all the

higher-order waveguide modes are accounted for in the vicinity of the waveguide opening in the

plasma wall. In addition, we do not restrict ourselves to any particular frequency regime. Instead,

the differential equations describing the fields in the inhomogeneous plasma, in the coupling

region, are derived to apply to any of the frequency regimes. In general, these are four coupled

first-order differential equations with nonconstant coefficients, and without further approximations

their solutions must be arrived at by numerical techniques. Such numerical integrations are not

carried out in this paper, but as a guide to work in the future several approximate solutions are

outlined in an appendix. This together with the mode expansion for the fields in the waveguides is

shown to lead to a complete solution of the linear coupling problem.

Section II describes the mode expansion of the waveguide fields. Section III describes the

plasma fields and their Fourier transforms in the two directions of assumed plasma homogeneity.

Section IV gives the solution of the coupling problem from a single waveguide. Section V general-
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izes the solution of the coupling problcm to multiple waveguides (waveguide arrays) independently

fed in amplitude and phase. Section VI summarizes the results and discusses the limitations of

the assumed model and analysis. The detailed description of the waveguide mode formalism used

in the paper is given in Appendix A, and the differential equations for the plasma fields in the

coupling region, as well as some of their approximate solutions, are derived in Appendix B.

HI. The Waveguide Fields

We consider an arbitrary cylindrical waveguide, i.e. one which is uniform in the x-direction

and of arbitrary cross section transverse to x. Figure 2 illustrates a waveguide of rectangular cross

section, but our description is equally applicable to any other cross section, e.g. circular or ellipti-

cal. For simplicity we shall assume that the waveguide walls are perfectly conducting, and that the

plasma does not penetrate into the waveguide so that the medium enclosed by the waveguide walls

is taken as free-space (fo, po). The solution of Maxwell's equations in such cylindrical waveguides

is well known [5]. The electromagnetic fields can be expressed as the superposition of an infinite set

of orthogonal E (or TM) modes and H (or TE) modes which are complete. A summary of these

modes, in a conveniently normalized form, is given in Appendix A. For our purposes, we assume

that at the frequency of interest the waveguide propagates only its dominant (lowest-order) mode,

and all other (higher-order) modes are below cutoff. The transverse fields in the waveguide can

then be written as follows:

RV+0  ikdx +Re-ikda edxyZ) + V eanzzH(yz)
T ! +Re edI (1)5" -e" ,(,z

H

U= Yd"V+ 0 (eikdX - R e-ikd ) hd(Y, Z) + H. YH~VHjj eaHll§( z (2)

The dominant mode is characterized by (see Appendix A) wavenumber kj = (27r/'g), normalized

transverse field patterns ed and Eh, waveguide admittance Y"' , incident field amplitude V+0

(referenced to x = 0, or any place an integer multiple of X,/2 to the left of x = 0), and complex

reflection coefficient R. The higher-order modes are all evanescent from x = 0 toward z < 0

with spatial decay rate all (see Appendix A) and field amplitude V1 ,; the summation subscript H

stands for all the TE and TM modes in this category.
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III. The Plasma Fields

In the coupling region, near the waveguide openings in the perfectly conducting wall (see

Figs. 2 and 3), at a given radian frequency w, the plasma will be assumed to be described by

its cold, inhomogeneous dielectric tensor. For simplicity, the inhomogeneity in the unperturbed

density no and applied magnetic field P0 = iBo will be taken in the x-direction. The electromag-

netic fields in the plasma can then be Fourier analyzed in y and z, and the complete solution for

the fields, through Maxwell's equations, is determined by the solution of four coupled first-order,

ordinary differential equations (o.d.e.'s) in x representing the coupling of "slow" and "fast" waves

[6][7]. This is outlined in detail in Appendix B where the coupled o.d.e.'s are for the y and z

Fourier analyzed tranverse (to x) fields 9T(x, kj, k.) and %T(x, ky, ks), where 9T = Y8y + Z9,

and %T = Dv + i%,. Without further approximations these equations must be solved numeri-

cally as follows. At the end of the coupling region into the plasma the "fast" and "slow"-wave fields

will be assumed uncoupled and described by their WKB form. Furthermore, assuming that the

plasma beyond the coupling region is absorptive, we can take the WKB form for each as outgoing

waves of, say, unit amplitudes. The differential equations can then be integrated backwards in z

to obtain9T0 =T(Z = 0, k, k,) and %To = R(x = 0, ky, k.) for all ky and k, of interest.

The integration of the coupled differential equations for 9T and %T must be carried out with care

so that resonant (absorptive) or cutoff (evanescent) regions are properly taken into account for each

pair of ky and k,. Further details of this are discussed in Section VI. The integration of the coupled

differential equations can be considered to determine the matrix Y(x) that gives

AT(X) = Y(z) - 9T(X) (3)

where Y, = YV(x, ky, kz) is the plasma admittance matrix, defined in Appendix B (Eq. B13). The

electromagnetic fields transverse to x in-the plasma at x = 0 are then obtained by computing the

inverse Fourier transform of 97 (x = 0) _91,o and %T(X = 0) = %ro

dT(k=0) - T TO e kT-T (4)
f(21r)2

HT(z=0) JfOei*TT (5)

where kT = Dk + Uk_ and rT = py + z, and using (3)
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%TO = YP(z = 0) -9To' YPo - To

IV. The Waveguide-Plasma Coupling

For coupling with a single waveguide, as shown in Fig. 2, the waveguide transverse electric

and magnetic fields at x *- 0 must match onto the plasma fields, i.e.

ET(X=0) = Z(-=0) (7)

and

(8)

Using (1), (2), (4), (5), and (6) we can write (7) and (8) as

V+, ed + E V- H = fd 2k eTT

H

Y Vjj~j vi -c 'wv- dukTo -TO eik'r

where we note that

Y-R Y"d +R d

(9)

(10)

(11)

is the admittance of the plasma presented to the dominant mode of the waveguide. Equations (9)

and (10) determine, in principle, this admittance (and hence R) as well as the amplitudes of the

higher-order modes per unit of incident field amplitude, i.e. (V-./V+) --. To write this out

explicitly, we take the Fourier transform in y and z of(9) to obtain

(12)9TO = V+. Ed + EV-"n
HI

6
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where j = f d 2 rT j exp(-ikT - _rf is the Fourier transform of Ej, and substitute (12) into (10)

to find

YPh fU Yp0T ld + V~ e'kTe. (3

H (27r) [ H J
Now, using the orthogonality properties of the waveguide field patterns (see Appendix A), and

introducing the coupling admittances

fY -~k Yp. (14)

where 9 = f d2r r hi exp(-ik T rT) in the Fourier transform of hi, we extract from (13)

Y - YdHV/-H =Ydd (15)
H

and

1(Y'tH H + YHiH)i'IH = YH'd. (16)
H

Equations (15) and (16) can be solved for the normalized higher-order mode field amplitudes V

and Y w which by (12) determines the complex reflection coefficient R

R = P where 'Pw .d (17)
'+Yd d1 + Y Yd

Note that (15) represents the coupling of the dominant mode to the higher-order modes, and (16)

gives the coupling of the higher-order modes among themselves.

The importance of higher-order modes can be determined by solving various truncated forms

of (15) and (16). If we ignore all the higher-order modes, then from (15) we have simply

YdW = Ydd (18)

If account is taken of one higher-order mode, say H = 1, (15) and (16) give a two-by-two matrix

of equations which solves readily to give
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Yi = Ydd - Y Y (19)
Y( + Y19

and

V-1 = (20)
yv+ Y'

In general (15) and (16) form a square matrix of equations of order equal to the number of

higher-order modes plus one. For computational purposes proper ordering and truncation can be

determined from estimates of (14) for different pairs of modes. '

Having determined Y' and the V., Eqs. (9) and (10) give

9TO = V+0 {d + _ i/Z] (21)
H

IGTO V+ p 7 , V-H #H] (22)
H

Using (B12) and (B13) we can then obtain the electromagnetic field spectra in the plasma as excited

by the dominant mode incident field amplitude (V+,) in the waveguide, and the power flow into

the plasma by Eqs. (B-14).

V. Coupling from Waveguide Arrays to the Plasma

In order to have more control on the excited spectrum of fields in the plasma it is common to

use multiple wave-guides appropriately phased, i.e. waveguide arrays, as shown for example in Fig.

3. The coupling analysis of the preceding section is easily generalized to this case. The matching of

the tangentialE and H fields, (7) and (8), take on the more general form

+[ V r 2 TOe (23)
W H

+0 -( 
2 k~ - (24)
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where the summation over the superscript w is over all the waveguides in the array. The Fourier

transform of (23) gives

9TO=Z +V_* (25)
w H

where V"(ky, k,) e f"(y, z) is a Fourier transform pair, and using (25) in (24) we obtain

w H w H

(26)

Let the waveguides be designated by superscripts w = a, , .. ., and the modes in each

waveguide by the vertically aligned subscript (i, j) = d or H. Using the orthogonality properties

of the a-waveguide field patterns, and introducing the coupling admittances

f f 2 kT (27)w
Y3 -o -27r(27)

where i, k2) - h(y, z) is a Fourier transform pair, we find from (26)

d WV = ya+ Yaw

-H - + 0"yaw (28)
H WO wy aH

and

-an wa a a w(Ya, 6, 1 1 + YHH)V +H T, d -(Y9V-H VI - yaa 2 YH'd +
H w5aH

where the mode amplitudes have been normalized to the incident dominant mode amplitude of

waveguide a,

W V wa V
V+ - / and f/wo V w (30)

+0 +0 +0

The first two terms on the left-hand sides of (28) and (29) and the first terms on their right-hand

sides are of course the same as in (15) and (16), respectively, and represent the coupling of all the
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modes in waveguide a. The last term on the left-hand side of (28) represents the coupling of the

dominant mode in waveguide a to the higher-order modes in all the other waveguides, and the last

term on the left-hand side of (29) is due to the coupling of the higher-order modes in waveguide a

to the higher-order modes in all the other waveguides. Finally, the second terms on the right-hand

sides of (28) and (29) represent the driving by the incident dominant mode fields in all the other

waveguides of, respectively, the dominant and higher-order modes in the a-waveguide. Note from

(30) that the normalized, complex amplitudes ^ contain the relative phasings in the incident

dominant mode fields of the various waveguides.

Proceeding in a similar manner to apply to (26) the orthogonality properties of the field

patterns of the other waveguides #, -y, ... we obtain a set of equations (28) and (29) for each

waveguide by simply replacing a with 0, y. The simultaneous solution of all these sets of

equations gives the higher-order mode amplitudes and reflection coefficient (through Y and

(17)) in each of the waveguides. Again, proper ordering and truncation of all these equations can

be arrived at from estimates of the coupling admittances (27). Thus using the results in (25) we can

finally also find the electromagnetic field spectra in the plasma, (B12) and (B13), as excited by a

given set of dominant mode incident field, complex amplitudes (V+.) in the waveguide array, and

the power flow into the plasma (1314).

VI. Summary and Discussion

We have derived a general formalism for the treatment of waveguide coupling in any fre-

quency range, provided the slab geometry adopted for the plasma edge is valid. In particular,

coupling in the ICRF and ECRF frequency ranges as well as LHRF can be treated by this method.

Furthermore, the formalism accounts for finite waveguide dimensions both along and across B.,

a feature neglected in all previous treatments of the problem, and allowance is made for the

interaction of all possible waveguide modes.

The plasma is characterized by four coupled first-order differential equations which have to

be solved for a complete spectrum of wavenumbers. In certain domains of wavenumber space,

these equations can be uncoupled and solved analytically. This is illustrated in Appendix B. In

general however, solutions must be found by numerical integration, and this was assumed in the

text. We can proceed as follows. First, we specify a density profile which joins smoothly to

a region of constant density far from the waveguides. In this region of constant density, plane
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waves propagate, and by choosing only outgoing waves we satisfy the radiation conditions. Starting

with arbitrary amplitudes, we integrate back to the waveguides at z = 0. This yields linear

transfer matrices for 9T(x) and CT(X) in terms of the amplitudes of the plane waves at large z.

Eliminating these amplitudes yields the admittance matrix Yp(x) defined in Eq.(3), and with this

admittance known, the problem is reduced to solving a set of linear equations in the waveguide

mode amplitudes, as outlined in Sections IV and V, respectively, Eqs. 15 and 16 for a single

waveguide and Eqs. 28 and 29 for multiple waveguides, i.e., waveguide arrays. In general the

unknown waveguide mode amplitudes consist of the reflected wave of the dominant mode and all

the higher-order modes. The coupling of these amplitudes in the linear equations, just mentioned,

is given by Eqs. 14 and 27, respectively, for the single waveguide and the waveguide arrays.

We note that the backward, numerical integration of the plasma equations (B8-B11) assumes

that the resonance KL -- 0 does not occur in the coupling region. This is so in the LHRF where

the LHR is chosen to be in the central part of the plasma. However, in the ICRF it may be that

K 1 -+ 0 in the edge plasma region, indicating that coupling can occur to the slow-wave. In such

cases Eqs. (B8-1312) may have to be supplemented with thermal correction terms.

Finally we would like to point out two limitations of the model and analysis presented. The

first relates to the assumption that the plasma does not extend into the waveguides. Waveguides

containing a plasma in a magnetic field can have very different mode structures [7] from empty

waveguides and this may modify the linear coupling problem in an important way. Secondly, non-

linear effects in the edge plasma, due to pondermotive forces [8], can modify the plasma dynamics

and hence the coupling problem. Much attention has been given to this recently for coupling in the

LHRF [91, [10], [11], [12].
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Appendix A

In a uniform cylindrical waveguide with perfectly conducting walls of arbitrary cross section

and free-space (eo, po) medium the electromagnetic fields at a radian frequency w = 27rf can

be expressed by a superposition of an infinite set of orthogonal E (or TM) modes and H (or TE)

modes. Together, these form a complete set and can represent an arbitrary electromagnetic field

at a discontinuity in the waveguide. This representation of the fields is well-known and can be

found in any standard text on electromagnetic fields, s.g. [5]. Here we summarize a convenient

orthonormal form for these modes which we use in the text.

We take the direction of uniformity of the waveguide to be x and let all field quantities vary as

exp(-iwt) where w is taken as real. Each field quantity is expressed as the product of a function

of x containing the propagation or evanescent properties and a function of rT, the two coordinates

transverse to z, containing the mode functions that satisfy the boundary conditions on the par-

ticular cross section (C) of the waveguide. The transverse mode functions are found by solving the

following Helmholtz equations with boundary conditions and normalization conditions:

E-modes U-modes

VT +p2=0 V +p 2  =0 (Al)

k=OonC A-VT =0 onC (A2)

p2 f12d2 2rT p2f m2d2=rT 1 (A3)

Then

T -VTO hT = T )
hT=xET ?T=-ZXET (A5)

are the transverse field pattern mode functions.
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For each type of mode we obtain an infinite set of p-values and corresponding , , aT and

hT functions. The propagation functions in z for either type of mode are given by:

V(z) = V+ e" + V- C-1 (A6)

I(z) = YW(V+ e" - V-.. e-'') (A7)

where

2 p2 - ko ; ko = w AM)
C

for k' > p 2  , -y ik (propagation)

for k2 < p 2  , -y -a (evanescence)

and

= f=(iko/-)Yo forE-modes

(-y/iko)Yo for H-modes

with Yo 120xhms

The complex electromagnetic fields can then be written as follows:

ET = V.(z) an(fT) (All)
n

HT = 7In(z) h.(fT) (A12)
n

E.=~ n o I0 z ,n(X ) (A 13)

nV
H= ~ 3Yo Vn(z) ln(Ty). (A14)

In (All) and (A12) n runs over all E-modes and H-modes; in (A13) n runs over only the E-

modes; in (A14) n runs over only the 11-modes.

The transverse field pattern mode functions satisfy the following orthogonality relations:
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E-modes

p #i(*) 2rT = 6,j

i-e(*)

hi d2rT = 6ij

I h

-r 0

H-modes

pf OpVp(*) d2 == ij

] { .* d 2r' = tjj

f e - j d 2rr =64;

ei x hi

f i . hj d 2rT = 0

(A15)

(A16)

(A17)

and among E-modes (sub e) and H-modes (sub h)

f . d2rT = 0
I e X hh

?h X he

(A18)

where the parenthesis around the star superscript on the function denotes that the equation holds

with or without taking the complex conjugate of the function, and where 5ij is the Kronecker

function (i.e. equal to 1 for i = j, and equal to zero for i 3 j)..

The time-averaged power flow in the waveguide is given by

(A19)

where the sum is only over those modes that are above cutoff, i.e. ko > pm.

For illustrative purposes, we also give the mode functions for the rectangular waveguide

shown in Fig. 2:

E-modes

sin CMn sin sin z (A20)C'mn ,a b

( 7)2 = )2 + (n)2 m = , ...
n = 1,2...

14

=/Re( 1ET X in;*). ld'r = Y Y(V+.12 -_IVm "12)
2 m
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Cem= 2
mn

- Ch cos y?Pmn - mn CSa b OST

(ph2 = - 2 + 2 m 0, 1, 2..
0, , 2..

(A22)

(A23)

m+n=0 (A24)

fomnn
V2/phVman for mn =0

(A25)

Note that each mode requires two subscripts. Thus in (All-14) the

taken to stand for a double subscript.

Note that the cutoff frequency of a mode is given by

f PC'
fc = (

Thus, a mode is propagating if f > fe, and then, by (A9), -y = ik with

summing subscript must be

(A26)

k = k ( .) (A27)

On the other hand, a mode is evanescent if f < f, and then, by (A9), -y _ -a with

a = p - . (A28)

For a > b, the dominant mode (i.e. the mode having the lowest cutoff frequency) is the H10

(i.e. TE10) mode with p,( = (7r/a); if b < (a/2), the next, higher-order mode is 1120 with

p20 = (27r/a); on the other hand, if b > (a/2) the next, higher-order mode would be HIk with
h =p01 (7r/b).

15
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Appendix B

In this appendix we develop the electromagnetic field equations for an inhomogeneous, cold

plasma in a magnetic field. The geometry is taken as shown in Figs. 2 and 3: the externally applied

dc magnetic field BO is in the z-direction, and the gradients in the unperturbed plasma density

n0 and in Bo are both in the x-direction; the plasma is assumed homogeneous in the y and z

directions.

We assume linear dynamics for the plasma particles and let the time dependence of all field

quantities be exp(-iwt). Maxwell's equations for the electromagnetic fields in the plasma are

then given by [7]

VX = iwpo1 (B1)
V X 1 = ieo K(X, w) -E (B2)

where

KLi -iKx 0

. Y(z, w) = iKx KL 0 (B3)

0 0 K1

with

K_i_ = (K,.+ K)/2 , Kx. = (K,. -- K)/2 (B4)

K,(x, w) = I - P 2 ) +_______ (B5)

K(z, w) = 1 - - (B6)

2 X,
KII(x, w) = I - 2 (B7)

,= (Z e)2n o(z)/mco, 0 = ZeBo(x)/m, a designates the species of charged particle in the

plasma, and p, is the sign of the charge of particle s. In the above we have ignored collisions, but

these can be easily included in properly modifying the above elements of K.
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We normalize coordinate distances to (c/w), e.g. -(wz/c) = E, and take the Fourier transform

of the fields y and z: 9(E, ny, n.) --+ E and X(e, n., n,) - 77, where n. = (cky/w) and n. =

(ck/w) are the indices of refraction in y and z, respectively, and k. and kz are the wavenumbers in

these directions. Eliminating 9, and %, from Maxwell's equations, Fourier-transformed in y and

z, we find:

d8y Kx' nynzZ n'
-ny+ 9 i K e K Z X (B8)

dg = Kx n nynZ
n gy - i K " z (B9)

dZXy

= diy n.y + i(n2 - K 1)9. (B1O)

d Z,,z K2 Kx Kx
d nz- K K ) + K 1  + K ny Z,,%, (BI)

In all of the above equations K_, Kx and K11 are functions of E,and Z. = Vpo/e;. These equa-

tions are all first order and are well suited for a numerical treatment. The only singularity in the

coefficients occurs when K 1 -+ 0, which is simply the hybrid resonance (lower or upper hybrid). If

we impose the values of 9. and 9, at x = 0, and require that only outgoing or evanescent waves

exist as z -+ oo, then these boundary conditions determine completely the solution of Eqs.(B8-

B 11). We thus obtain

9T(Z) = 3(X) - ( = 0) (B12)

In particular,%M(x) and Xjx) are linear functions of gy(z) and 9,(x), and this can be expressed

by the plasma admittance matrix Yp(z):

T(X) = P(Z) - 9T(z) (B13)

The plasma admittance matrix YPO = Fp(x = 0), which enters into all the coupling admit-

tinces (Eqs. 14 and 27), can be determined numerically as outlined in Section II. Finally, the time-

averaged power flow in x, into the plasma, is given by
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00 00

P = dy dzRe(ET x HT)

-00 -00

00 00

f/ kyf Re l(9T X 5 T)- (B14)
-00 -00

where the last expression is obtained by using Parseval's theorem.

In the rest of this Appendix we consider regimes where Eqs.(B8-B11) can be treated analyti-

cally. Simplified and familiar equations can be obtained if we set K' = 0= K' where the

prime denotes the derivative with respect to e (but retain K11, K_, and Kx as functions of (), and

ny = 0. Eliminating % and %-. we then find:

+K -n, = - 'z(B15)

K- K ( nzKx
. , _ K11, K = Kx (B16)

In the LHRF (lower-hybrid range of frequencies), K >> 1 near the plasma edge and (B15-B16)

are essentially uncoupled, the first giving the "fast wave" equation (9, ~ 0) and the second one

giving the "slow wave" equation (gy c_ 0). In the ICRF (ion-cyclotron range of frequencies)

9, _ 0 and 9' ~ 0, and (B15) then gives the "fast wave" equation. Thus the uncoupled equations

(B15and B16) have been solved for slow-wave coupling in LHRF [1], fast-wave coupling in LHRF

[4], and fast-wave coupling in ICRF [13]. In the ECRF regime, Eqs.(B15-B16) do not uncouple as

simply because near the edge fast and slow waves have comparable perpendicular wave numbers

(since K11 ~ K_, x). Thus when w ~ Qe the full fourth order system has to be solved.

For ny / 0 an approximate decoupling can be obtained in the LHRF, at least in most

regions of n., n, space. As a first approximation, we set K'I ~ 0, where the prime denotes a

spatial derivative. For the fast-wave we set 9, = 0. It can be shown that the correction is roughly

9, ~K2 /K2IIy < 8,; thus, letting y = 91-, we find approximately near the plasma edge

91 + +K -n 2 _ n 2+ 9. = 0(B17)
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and hence the fast-wave field components:

g(F) gF (B18)
F()

) (B19)

For the slow-wave, noting that for K2 < (-KII), it is found from Eqs.(B8-B11) that for the

largest terms to balance, we need 8, z [nyn,/(n. - Kj]&2; letting 8, = s, we find ap-

proximately

± - I(n2 -KL)-nJs =0 (B20)

and the approximate slow-wave field components are:

S8 Kn n 9(B21)

98)'1 S (B22)

The analytical solutions of (B17, B20) are straightforward. We assume LHRF parameters, and take

K L:= 1, K11 = ax and Kx = Ox in the coupling region, where a > 1. We find the solutions:

U(a, 21/ 2 /(1 - n)/ 4) (B23)

Ai(e- / 3al/ 3 (n 2 
- 1)1/3 z)

19s(X) = Ai(0) (B24)

where 9F,s(O) - 1 and where U and Ai are the parabolic cylinder and Airy function respectively[14.

Branch cuts are so defined that for InzI -: I we have (1 - n)/ 4  1 - n /4, (n - 1)1/3 =

e 3 1 - nz/ 3 and for jnI > 1 we have (1 - n2 )'/ 4 = - 1|I/, (nz - 1)1/3 -

ei21I/3, /. We have also defined:

( n -2)1/2(O,
a = +In2 2 n 2) (B25)

Eqs.(1B17.1120) are valid provided we assume fast and slow waves satisfy uncoupled differential

equations. Careful inspection of the system (B8-1311) shows that the uncoupling assumption breaks
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down when either n; -+ 1 or when n2 + n; -+1. In the first case, the conflucnce of slow and

fast waves, as indicated by the local dispersion relation, occurs very close to the edge, and it is not

surprising that the corresponding differential equations become strongly coupled. In the second

case, the free-space wavelength at the edge becomes infinite as n2 + n, -+ 1, and decoupling the

equations by arguing that one wave is much shorter than the other is not valid.

To use the approximate equations (B17, B20), we find the magnetic fields from Faraday's law

in terms of 9, and ?,. We find

%T = YTT. ST +Y: - dE 9T (B26)

where

inzKx 0

n2Y=Y K J
YTT = Y

-inyKx 
0

n2X-KL

(B27)

and

YTT' = Y

-inynz

n2 K L

n -K

n2 - K

-n2 - K_
n2 z- Kj

injnz j
n2 -Ks J

where we have written n2 + n2 y n .For Eqs.(B17, B20) wc then have:

Ypo(n, nz) = Y( 1 r (0) +
0 0

where:
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n-1 j (0) (B29)+ YO 2 i -nynz

nYzI 
(n 2 1)z



9's(0) = a!/3e-(n _ 1 )1/ 3 (O) (B30)
1/2 Ai(O)

9'/(0) = + (B31)
( ,-n)1/4 r(-{ T

where "a" is given in Eq.(B25). This expression for rpo(ny, n,) can then be used in the integral

of Eq.(14) or (27). A problem arises however with the resonant denominators in the second

term of Eq.(B29), because some of the singularities are not integrable. This is because, as noted

above, Eqs.(Bl7and B20) break down when InI --+ 1 or when Iny --+ 1. In fact the resonant

denominators in Ypo should disappear when the full sytem of equations is treated correctly

in the limit In.|, Inyz| -+ 1. Presumably this can only be done by numerical means. Thus

Eq.(B17,B20,B29) are useful only if the excitation spectrum has little energy near these resonances.

In this case, the singularities in the integration of Eqs.(14) or (27) can be avoided by arbitrarily

setting the spectrum to zero near these resonances.

For the ICRF the interest has been to couple to the fast wave. The simplest analysis has set

n. = 0, KI = 0, K'X = 0, and ignored coupling to the slow-wave by assuming 9_ = W' = 0,

ab initio [13]; this then results in Eq.(B15) with the right hand side equal to zero, which can be

readily solved. Recently, the effects of nonzero ny have been shown to require the study of a more

complex equation which follows from Eqs.(B8-Bll) by retaining KI and K'X while still assuming

9=' 0 [15]:

+ f(e) + g(), = 0 (B32)
dE2 +

where:

n2K'
()= ( - 2 - n) (B33)(Ki - n )(K ny_ g

g( ) = K- - n2 Kx 2+ n K' nyKxK'I n (B34)Y Ks - n KL - n 2 (Kj_ - nl)(KL - n2 n.2)

The assumption of neglecting the coupling to the slow wave can be partially justified by assuming

that at the exciting structure the plasma density is finite so that K11 is sufficiently large to short-out

21



the 9, field, and K_ ,6 0. To gauge the importance of nonzero n, calculations have been carried-

out (for current sheets rather than waveguides) on a simplified equation that retains K 1 (E) and

Kx (E) but sets KI =Kx = 0 [16]. This is just Eq.(B15) with the right-hand side set equal to

zero and the second term supplemented by n2y. More recent calculations show however that this

local approximation is not always valid[17]. Finally, we remark that great interest attaches also to

the possibility of coupling with a waveguide to the slow-wave in the ICRF[18]. This of course can

also be treated by the formalism developed in this paper.
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Figure Captions

Figure 1

Waveguide-plasma coupling geometry. The coupling region extends from the plasma wall

into the edge plasma; it does not include the hot, central plasma where the excited waves are

assumed to be dissipated. For a large plasma the coupling region can be modeled in slab geometry.

Figure 2

Geometry used in the analysis of coupling from a single waveguide to a plasma.

Figure 3

Geometry used in the analysis of coupling from multiple waveguides - waveguide arrays - to

a plasma.

26



PLASMA
WALL

WAVEGUIDE
ARRAY

CENTRAL
PLASMA

EM
SOURCES

EDGE
PLASMA

Bo

I no
To

COUPLING
REGION

FIGURE 1



CONDUCTOR WALL

FREE - SPACE
WAVEGUIDE-a

PLASMA

Vno, VBo

zBo

FIGURE 2

PERFECT



PE

FR
WA
AR

RFECT CONDUCTOR WALL

- - - -------------

EE-SPACE
VEGUIDE PL
RAY Bo

FIGURE 3

oSVBo


