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ABSTRACT

An instability is observed whose onset occurs for electron drifts well below the threshold of the

linear ion acoustic instability, and which, ultimately, dominates the nonlinear evolution of the linear

instability. -Detailed phase space diagnostics show that the fluctuations: (1) can be triggered by

thermal level fluctuations; (2) occur over a broad velocity range including regions of large negative

(I)0Jav; (3) have growth rates of the order of the trapping time; and (4) have dimensions that

are typically a fraction of the thermal velocity and a few Debye lengths. The simulation results are

consistent with the theoretical predictions of electron and ion clump regeneration. Although the

simulation was one dimensional, similar phenomena theoretically are predicted to occur in three

dimensional systems in the presence of a magnetic field and spatial density gradients. Therefore

the simulations results have important implications for the role of linear theory, both in determining

plasma stability and as a component of turbulence theory.
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We report numerical experiments that show an instability well below the threshold predicted

by linear theory. We studied a simulation plasma with mass ratio mi/me = 4 and temperature ratio

T,/Ti = 1 in which, initially, the average electron distribution ((f) = (2rv2)-1/ 2 exp[-(v-vd) 2 /2I))

drifts relative to the average ion distribution ((fi) = (21rv)-1/ 2 exp(_V2 /2v?)). According to linear

theory such a plasma is unstable (the ion-acoustic instability for physical mass ratios) for drifts

exceeding a certain threshold, vd = 3.924vi. We observed an instability for vd > 1.5vi.

For our simulations we used a highly optimized, one dimensional, electrostatic code with

N = 102, 400 particles per species. We treated a periodic system of length L = 32.42, where Nd

(= vi/wp,) is the Debye length and wp, is the ion plasma frequency. Various diagnostics were per-

formed which provide information about the fluctuations 8f of the distribution function: Sf = f-(f).

For our spatially periodic and homogeneous system, the ensemble average () was approximated by

a spatial average. The two basic diagnostics we used were the mean square electric field and the

mean square fluctuation (SN 2) of the number of particles, N (electron or ion), in a phase space

cell of size Az, Av. Here, SN = N - (N) where (N) is the mean number of particles in a cell.

We would have preferred to measure the correlation function (Sf(1)Sf(2)) = (Sf(zI, vj)6f(X2, 2))

directly, for small z = zi -zz and small v- = v, -2. Unfortunately, our value of nod = 3259.5

(no = N/L) was not large -enough to provide adequate statistical accuracy. Our diagnostics,

however, derive from the correlation function since the mean square electric field involves velocity

integrals over (Sf6f), while (SN 2 ) and (5f6f) are related through'

(6N2 = ((no [+ dz f d' Sf(x, v)

= f dz(Az -Iz-) dv. (Av - Iv_)(6f(1)Sf(2)). (1)

Since (SN) is a double integral of (6f1f), it is less sensitive to statistical error. The latter point

is clearer when one realizes that Eq. (1) can be solved for the correlation function in terms of a

fourth derivative of (SN).

We can write, for each species,

(Sf(1)Sf(2)) = t-'6() S(v-) (f(l)) + gd(1, 2) + gv(I, 2), (2)
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where the first term of Eq. (2) is the discrete particle self-correlation function and gd(1, 2) accounts

for correlated fluctuations which shield the discrete particles. g,(1, 2) represents the effects of

fluctuations over and above this level. Using the first term of Eq. (2) in Eq. (1), we find that

the self-correlation contribution to (6N 2) is (N)-the value for randomly located discrete particles.

This value is modified by the contribution from gd; in particular, as the linear stability threshold is

approached, the zeroes of the dielectric function will enhance (5N 2) through the emmission and

absorption of weakly damped waves. We have calculated2 this contribution to (8N 2) and have

found it to be, consistently, much lower than the values of (5N 2) observed in the simulations

(cf. Fig. 1). Our observations of (N 2) are, therefore, evidence for collective fluctuations g,(1, 2)

well above the dressed test particle level.

We measured (6N2) in cells of size .05vi < Av < 3v; by .2)'d < Az < 3Xd. The characteristic

sizes of the fluctuations in space (Ax) and in velocity (At) were inferred from the dependence of

(N 2)/(N) on Ax, Av, given by Eq. (1). For Ax, Av less than the characteristic size, (6N 2)/(N)

increases with Ax, Av since (6N 2) = n02(6 2)(Az Av)2 and (N) = no(f)Az Av. For Ax, Av greater

than the characteristic size, (n2) A nfA!x A dz f, dv_(6f(1)6f(2)) so that (N 2)/(N)

approaches a constant value. For Ax <Ax, Av > A and vice versa, (N 2 ) becomes proportional

to Az and Av respectively. Fig. 2 is a typical plot of (5N2 )/(N), for the ions, versus cell size. It

indicates that the ion fluctuation curves stopped increasing and turned over when Ax 4Xd and

Av s .1=1. Thus, these values of Ax and Av represent the characteristic sizes Av and Ax.

Fig. I shows the time dependence of (N 2)/(N) for the ions for a run with vd = 2.5vi. After

starting at unity, (N 2)/(N) had risen by wpt = 150 to the shielded discrete particle level, which

we calculated to be 2.2. Subsequently, growth occurred until W,,t = 300. Following this unstable

growth phase, the instability saturated when the electron distribution function formed a plateau in

velocity space. We measured the fluctuation levels at -vi, 0, vi and 2vi. Fluctuations with phase

velocities of v and 2vi grew, while those at 0 and -vi decayed. This would seem to indicate

that the instability grows in regions of opposing velocity gradients of (J) and (Ai). Furthermore, we

note that the instability occurred in regions of large negative a(fi)/av 3A 0-a region where linear
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theory would predict strong damping of the fluctuations. Fig. 3 shows that the fluctuations are

unstable over a wide region of velocity space (0 < v < 4vi). This is evidenced by the ion tail

and distorted electron distribution at 400w- 1 . These distortions in (fj) and Vfe) are not the result
Pe

of discrete particle collisions, since the collisional relaxation time is substantially larger than the

run time of the simulation. Moreover, ion acoustic waves cannot be responsible, since, according

to linear theory, they are stable.

Numerous runs were made to study various features of-the instability: First, we examined the

effect of using different initial conditions to start the simulation. These included: quite starts with

(6N 2)/(N) < 1; "thermal level" starts with (N 2)/(N) m 1; and "noisy" starts with (N 2)/(N) s 4.

In all cases an instability was observed for vtd 1.5vi. Thus, to trigger the instability we did

not require large amplitude fluctuations. In fact, the amplitude (N 2)/(N) ~ I corresponds to

C(#2)1/2/"%? ~= 10-2, where (02) is the mean square potential.

Second, we investigated the dependence of the instability on Vd. Aside from the growth rate,

there were no apparent qualitative differences between the runs for 1.5vi vd < 4.5vi. After an

initial growth stage, the instability saturated by forming a quasi-linear plateau. The ion distribution

function developed a tail and the electron distribution function became significantly flattened as

indicated in Fig. 3. We emphasize that these distortions were evident for vd both below and above

the linear stability threshold. The dependence of -y, the observed growth rate, on vd is illustrated in

Fig. 4. The measurements were made, for the ions, at approximately the same amplitude (6N2)/(N)

for each run (the electron (6N 2)/(N) gave similar growth rates). The error bars indicate the spread

in the measured values of the growth rate when different methods were used to obtain -y. These

methods consisted of measuring -y from the mean square electrostatic field, and from the time

dependence of (8N 2)/(N) at different phase velocities (v/v = .5, 1, 2), and different cell sizes

(4X/Xd = 1, 2, Av/vi = .1, .2). Also shown on Fig. 4 is the linear growth rate -fL for the most

unstable wavenumber. It is clear that the nonlinear effects dominated in the linearly unstable, as

well as the linearly stable, region since 'yL < -.

The third feature we examined was the effect of varying the parameter 710. When we
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decreased NOhd to 815, no change in -y occurred. From this, we concluded that discrete particle

collisions, apparently, did not play an important role. Below the nonlinear threshold, we saw the

fluctuations decay. For vd = 0, we measured the same decay rate observed in a series of one

species calculations with ?nOXd = 65, 190 reported elsewhere'.

The measured characteristics of the instability are consistent with the non-linear theory of ion

and electron "clump" regeneration4. In a Vlasov plasma, clumps result from the mixing of the

incompressible phase space density by turbulent fluctuations58 . If the clump production rate is

equal to their destruction rate (through velocity streaming and the turbulent electric fields) the

clump spectrum will regenerate. Overregeneration implies an instability. In Ref. 4 it was theoretically

predicted, for the parameters of this simulation, that a clump spectrum would regenerate in regions

of opposing velocity gradients for vd > 2.5vi. In addition, the spectrum would exhibit a wide phase

velocity spread (L. the order of v) and characteristic scales (Az, Av) similar to those observed

in this simulation. Moreover, approximate calculations7 show that for a mass ratio of 4, the clump

instability has an amplitude. dependent growth rate proportional to the inverse ion trapping time

( 3i/3i). The constant of proportionality (which is of the order of unity) increases rapidly

with vd and -O(f,)/6va(fj)/Ov. The observed values of Zz and Xvj lead to a trapping time of the

order of 80w; 1 which is consistent with the measured growth rates (cf. Fig 4).

The existing calculations of clump regeneration omit a number of terms that describe the

effects of self-binding of the fluctuations. Clumps are enhancements (8f > 0) or depletions (6f <_ 0)

in the local phase space density . The depletions, or "holes", have the property of being self-

bindings. Such an effect would decrease the destruction rate of the fluctuations and therefore

reduce the predicted drift velocity threshold. This would also be consistent with the slow (about

O.r;,1) decay rate observed at vd = 0. It is interesting to note that a single, isolated phase space

hole has been shown to be unstable for all vii > 09. This isolated hole instability is driven by

opposing velocity gradients of (Ji) and (fh) and is the analogue to the turbulent clump instability.

Although the nonlinear instability discussed in this Letter is one dimensional and driven by

velocity gradients, we believe that it is representative of an important new class of instabilities
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since clump and hole phenomena are predicted to occur in three dimensions with a magnetic

field. For instance, it has recently been shown that a single phase space hole in a magnetic

field is unstable to a spatial density gradient9 . This result implies that the clump instability will be

driven by a spatial density gradient. Furthermore, our simulation indicates that large amplitudes

are not necessary for its onset. Indeed, we have observed the instability growing out of thermal

level fluctuations.

This work is supported by the National Science Foundation and the Department of Energy.
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Figure Captions

Figure 1. Ion (6N 2)/(N) for a phase space cell of dimensions Ax = 1. 9634d, Av = .lvj versus

time for vd = 2.5vi. The points are the simulation values measured at different velocities (x) -vi;

(+)0Ov; (*)v;; and (O)2vi. The dashed line is the shielded discrete test particle level.

Figure 2. Ion (6N 2)/(N) for a phase space cell of dimensions Ax, Av. The points are the

simulation values: (+) (N 2)/(N) vs. 20Av/vi at fixed Ax = .9 8Ad; (x) (N 2)/(N) vs AX/A at

fixed Av = .lv.

Figure 3. The spatially averaged distribution functions for the ions and electrons for vd = 2.5vi at

wpt = 400 (solid curve) and at 0 (dashed curve).

Figure 4. The simulation values of the growth rate y versus the electron drift vd. (+) denote single

measurements while the error bars include several measurements. The growth rate -yL obtained

from linear stability theory is also plotted.
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