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ABSTRACr

The effect of turbulent electron diffusion from stochastic electron orbits on the stability of low beta

fluctuations is considered. A set of coupled self-adjoint equations is derived for the fluctuation potentials

and A,,. For the tearing mode, it is shown that stability is obtained for sufficiently large values of the diffusion

coefficient, Provided D, - 1/n, this implies that a density threshold must be surpassed before the tearing

mode is observed. Numerical calculations also support this conclusion.
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One of the main concerns of tokamak research is the prevention of major plasma disruptions. It is

generally considered that such major disruptions must be eliminated in an actual fusion reactor to prevent

prohibitive damage to the first wall. The prevailing theoretical picture of major disruptions features low

poloidal mode number (low m) tearing modes which saturate to produce magnetic islands. It is possible for

such magnetic islands overlap to form large stochastic magnetic regions which enhance particle diffusion, and in

the case of major disruptions, lead to catastrophic plasma confinement loss [1,3,4]. Control of such disruptions

requires elimination or suppression of these tearing mode magnetic islands.

Traditionally, the tearing mode is analyzed using resistive MHD (magnetohydrodynamic) theory which

predicts instability for A' > 0, a condition which is generally satisfied by experimental profiles when m = 2

[5]. Here A' is the jump in the logarithmic radial derivative of the perturbed magnetic potential, All, across the

rational surface. Recent experimental results from ALCATOR C, however, show that a threshold in plasma

density must be surpassed before the m == 2 tearing mode is observed, even though A' > 0 [5]. This

observation, which is in qualitative disagreement with resistive MHD theory, motivated the present work.

In this paper, a fully kinetic approach to the tearing mode is used which includes the effects of turbulent

electron diffusion resulting from stochastic electron orbits [6]. A system of coupled self-adjoint equations is

derived for the perturbed potentials Al and . This system follows from Ampere's Law and quasi-neutrality

applied to the linear ion response and the nonlinear electron response resulting from the normal stochastic

approximation (NSA) [6]. The NSA includes the effects of electron diffusion in the electron response and is

valid in regions where the electrons experience stochastic orbits. In this limit the NSA is essentially equivalent

to the direct interaction approximation (DIA) [7]. The resulting system of coupled equations is globally valid

and includes the effects of collisions, equilibrium current, diffusion and shear. In the appropriate limit this

system yields both the finite 3 drift wave [8] and the tearing mode. Since the system is self-adjoint, a variational

principle can be formed. In this problem the tearing mode exists in a background of microturbulence such as

that due to drift waves. This same set of coupled equations yields unstable finite 3 drift waves when analyzed

for high m modes, from which a turbulent diffusion coefficient is calculated [8]. This microturbulence is the

source of the electron diffusion, and hence the diffusion coefficient is a known quantity independent of the

tearing mode. This system of coupled equations for Al and 0 reduce to ideal MHD at large z (Eu < 0 and

marginal stability for A l). For the tearing mode, the equations decouple to leading order in the small parameter

/, = (ktVe) 2De/3, (typically, w/we w ~e/wc i0' for the m = 2 tearing mode), yielding inde-

pendent equations for and All. This allows the tearing mode to be analyzed entirely in terms of the magnetic

potential A11.

Two analytical results are derived. First, it is proved from the full integral equations that a system unstable
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in resistive MHlD, A'(0) > 0, becomes stable at sufficiently large De. Second, an approximate expression for

the dispersion relation is derived. Stabilization at sufficiently high values of D, is shown by identifying the

appropriate terms in the variational integral as the energy drive for the tearing mode. In the ideal MHD limit,

this drive yields the quantity A'(0). However, using the full kinetic operators, the energy drive goes to zero

for large values of the diffusion coefficient. The dispersion relation indicates that the tearing mode has a real

frequency equal to the electron diamagnetic frequency, We, and a linear growth rate proportional to A'(ze),

where Z = Wc/k 1 Ve. This result is similar to the classic collisionless tearing mode as calculated by Laval et

al., [9], where they find - ~ A'(0). Numerical calculations indicate A'(z) to be a decreasing function of z;

hence, stability is given by z > Zo, where A'(xo) = 0. This condition for stability, 4'(z) = 0, indicates that

the magnetic energy involved in All and Jjje outside the tearing region, Ixi > xe, is zero and thus there is no

available free energy to drive the tearing mode. This is analogous to nonlinear estimates of the magnetic island

saturation width, w, given by the value where A'(w) = 0[2,3]. Physically, electron diffusion prohibits the

tearing region from becoming too small (limited to a width xe), whereas in resistive MHD the layer thickness is

limited only by dissipation, which alters the growth rate without affecting stability.

In this problem, slab geometry with a sheared magnetic field is -used; 8 = Bo(k + z/Ly) where

L, = Rq2 /rq'. In the final dispersion relation, the effects of the region outside the tearing layer, jzj > z,

only appear through the term A'(xc). Hence, generalization to cylindrical geometry involves primarily the

appropriate numerical determination of the function A'(z).

The nonlinear electron response is calculated by applying the NSA to the drift kinetic equation and ex-

tracting the adiabatic piece of the response in the renormalization [6]. This process yields the perturbed electron

response, f, = (eO/T)k + he, where

a52 C V)11 efoO a Vl1  (I
+vl -V-D- = S(x) - Al) X b V(fo + )- -A).

Here fi represents the current-carrying piece of the equilibrium distribution function.

Using the classical linear ion response and applying quasi-neutrality and Ampere's Law yield the coupled

system

[ - (A + X2 + (w - w.e)Ro + iw*erjRi)

+ (W - w*e)Ri - ZWe7JR 2 + eX A= 0 (2)
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- b + x a2 + Vi( - w*,)R 2 - T e2

VA - VAI

+ (W - W*6)Rj W*er.R2 + X 0 (3)

where

A I+T--PO r+t d =(ro -ri) 'r+tf

x 2 ro + I+ W Z( a 2 = V, 1-0( + Z( -+kjjv k v V2

where rj = -(2L9JIl/Ox)/env,b = pk, T TelT , = w/kvj and where Z(x) = Plasma Dispersion

Function and the resonant operators, R11, are given by

R.[i L= dvll J dx' / drG(x, x'; v11, -r) ()fo(vII)(z')
-OO f 0 f Ve

with the kernel,

G(z, X'; V11, r) = exp[i(w - k'llvlx)T - I(kllvi)2Dr3 - (x - x' - iDkvlr 2)2/4Dr].
/'4iDr

It can be shown that the above system is self-adjoint. Denoting equations (2) and (3) by L1  + L2All = 0 and

L 2Alj + Lx = 0, where Lx represents the coupling operator, a quadratic form, S, can be constructed

S = fiadx Li + A jL 2A1 + 2 LA 1] (4)

which upon variation, 6S = 0, yields equations (2) and (3), assuming the boundary conditions 4, All = 0 at

the edge of the plasma, ±a.

In the case of the tearing mode, the above operators scale with respect to f -= W _e/w _ z 10-1 as L, ~ 1,
L2 ~ c, L_ ~ c. Hence, the contributions of the coupling terms to the dispersion relation are subdominant

by order e. Thus, in effect, equations (2) and (3) decouple to leading order, leaving Lj4 = 0, L2 Al = 0. It

is possible to show in more detail that for Ixj > x, and |xj < x,, this decoupling occurs to higher order in

f. Thus, defining the tearing mode as primarily a magnetic fluctuation reduces the problem to that of solving

L2Aj y= 0. Also, at large z, IxI > x, equations (2) and (3) reduce to the ideal MHD equations
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d 2 _ 47rp kyJ1
0 -b- p k Al =0. (5)

Likewise, the corresponding terms in the quadratic form, S, [eq. (4)], reduce to the ideal MHD energy principle.

As a side note, the standard dispersion relation for the resistive tearing mode is recovered by replacing the spa-

tial diffusion operator, -DA, with a krook collision operator, vej, in equation (1). Evaluating the variational

form, S, in this limit yields the well known resistive MHD dispersion relation [IQ].

A proof is now given stating that the tearing mode is stabilized for sufficiently large values of the diffusion

coefficient. The energy drive for the tearing mode is identified as the negative energy resulting from the

following terms in the variational form.

S'= ad )+b h Je{A (6)
dc c

C TV2~

where it is assumed that All [±a] = 0.

It is helpful, as a source of motivation, to note that the above expression for the negative energy drive,

S', reduces to a term proportional to A'(0) in the ideal limit. In the limit where z > ze, ze, outside the

tearing layer, the perturbed current operator, JI1,, reduces to the third term in the ideal MHD equation for A,
[equation (5)]. Notice that in this limit the operator )IIe is singular at the rational surface, z = 0. The integration

in equation (6) is then redefined up to ±eO about x = 0, and the limit as x -+ 0 is taken. Doing this, and

requiring All to satisfy equation (5), yields the following expression for the negative energy drive, S'

_ -rvA 2 A/
S'/ A 0 '; where A', = lim Al . (7)

Hence, A' represents the available negative energy necessary to drive the tearing mode unstable. A detailed

study of the magnetic driving energy is given by E. A. Adler et al. [11]

Notice in equation (6) that negative energy can only result from the term involving the perturbed current

operator Jiel[Aii](the other two terms are stabilizing). In the ideal MHD limit, this operator is unbounded as

z -+ 0, whereas the full kinetic operator is finite at the rational surface. Retaining this full kinetic operator,

a bounded integral, &%, is defined over the perturbed current term in equation (6), AIIJ 1[AII], which is a well

behaved function of De. In fact, it can be shown analytically that %o -+ 0 as D, -+ oo,which then justifies the

conclusion that the tearing mode is stabilized for sufficiently large values of the diffusion coefficient.
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To determine a dispersion relation for the kinetic tearing mode, the equation L2 Al = 0 is solved for

the fluctuation vector potential Al. Using the assumption Izc/zr| < 1, z 1  [d In All/dz], the resonant

operators, R,, can be approximated numerically to yield multiplicative operators [12]. The equation L 2A0l = 0

reduces to the approximate leading order relations

d 2  47r 2 kyj'11 (82  - p Au = 0, |z| > X(

( d2  
V2  41 A= 0, Ix, < x(IzI+ 2z ( (9)
TA W

Equation (8) for the region Ixz > z is again the marginal stability equation for All from ideal MHD. The

solution to this equation is denoted as the ideal MI-D solution (A+ for z > ze and A- for z < -z).

Solving equation (9) for the region IzI < z and requiringA I, and A' to be continuous at x = ±Z yields

the leading order dispersion relation

A'(ze) c- -i V2 (W (10)
2V k1 e,

where A'(ze) = A'+- A' A+ = (A'/A+), and A'_ = (A'/A)

Numerical calculations of A'(x) for ALCATOR C profiles indicate that A'(x) is a monotonically decreas-

ing function of z, with A'(0) > 0. Hence, stability is obtained for z > xo, where A'(xo) = 0. This stability

criterion can be written as De > 3k1: vxO; k 1 = mq'/Rq2 , where the functional dependence of xo on various

quantities must be determined numerically. This equation indicates that increased turbulent electron diffusion

stabilizes the tearing mode. Consequently, if De P1/n, then there exists some critical density below which the

tearing mode is stabilized.

A related analysis reported by Meiss et al. [13], arrived at a much different conclusion, namely that

diffusion had virtually no effect on the tearing mode. The results of the present work differ only by the inclusion

of the additional physical effect of turbulent smearing of the perturbed current which thus reduces the available

energy, A'(ze). The analysis of reference [13], by asymptotically matching an inner solution to an ideal MHD

solution at large z, intrinsically contained the full MHD energy, A'(0), and could not consider this effect. In all

other respects, although difftrent in approach, the present results agree with those of reference [13].

In conclusion, the tearing mode is stabilized for sufficiently large values of turbulent electron diffusion.

Provided D, - 1/n implies that a density threshold must be surpassed before m = 2 tearing modes are ob-

served. Physically, turbulent electron diffusion prevents a perturbed current from forming within a correlation

distance, Ze, of the rational surface. Hence, turbulent diffusion cuts into the available magnetic driving energy,
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A'. 'Theoretically predicted values of the critical density are in approximate agreement with experimental

values; however, the experimental scaling of n, - B2 [5] has not been explicitly derived unless De ~ B2.

Numerical solutions of the basic equations (2) and (3) also demonstrate stabilization for sufficiently large De and

support the analytical expression for stabilization given by x, - O, A'(xO) = 0.
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