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1. Introduction

In magnetic fusion research interface problems arise naturally froi the requirement that a thermonuclear

plasma be confined and isolated from the outside world by a vacuum magnetic field (Fig. 1). In the early

investigations this goal was thought to be realizable by the technique of pinch implosion, leaving behind a hot

plasma of high density and separated from the vacuum region by a sharp boundary layer in which skin-currents

are flowing. Ideally, this interface represents a surface of discontinuity where the description of the state of the

system changes abruptly. The plasma would be described as an infinitely conducting fluid, whereas the little

material that is left behind in the outer region would be assigned zero conductivity.

Historically, this ideal picture has played an important role in identifying and analyzing the most global

instabilities, like external kink modes, resulting in a violent destruction of the plasma as a whole. With the

supcess of tokamak performance and the concomitant decline of O-pinch research, the stress has shifted more to

the analysis of diffuse plasma configurations where there is hardly any space left for regions that would qualify

as a vacuum. As is always the case with changing fashions, this has tended to obscure some of the previous

insights obtained from the sharp-boundary model and, also, it has led away from an area of research where

there might have been more benefit from developments in other parts of fluid dynamics. [The latter insight

dawned on the author while attending the International Conference on Fronts, Interfaces, and Patterns.]

This paper is an attempt at reviewing some of the developments in magnetohydrodynamics (MHID) as they

are relevant to the subject of interfaces, both in a narrow sense as pertaining to the phenomena described by

skin-current models and in a wider sense as pertaining to a description of the global plasma motion of confined,

i.e., inhomogencous plasmas. It should be added at this point that this review is strongly biased toward

some aspects of spectral theory of 11) systems and methods of analyzing 21) problems where certain personal

prefer-ences are obvious [1]. Some of the older literature pertinent to the subject of ideal magnetohydrodynamic

equilibrium and stability is found in Refs. [2,31. For more up to date reviews of the subject matter the reader is

referred to Rcfs. [4-61.

In Sec. 2 ideal MHID is introduced as a relevant model for the study of toroidal plasma confinement

properties. Interface problems and characteristics are discussed in Sec. 3 to illustrate the complementarity of

global and local approaches. Sec. 4 presents some of the basic issues of spectral theory of I1) MIHID systems, in

particular the gravitating slab and the diffuse linear pinch. In Sec. 5 some 21) toroidal confinement problems

are outlin-d and a method of solving them by means of conformal mapping is discussed. Explicit res Its with

respect to the stability of high--a tokamaks are presented in Sec. 6. Finally, some possibilities for future work

aie indicated in Sec. 7.

I



2. The Model of Ideal MHD

2.1. Experimental Starting Point: Toroidal Plasma Confinement

Our starting point is the task of properly describing the global properties of confinement of plasmas in

toroidal geometry (Fig. 2), as considered for the purpose of CTR (controlled thermonuclear reactions).

First, let us introduce some of the usual terminology and parameters. Plasma confinement in tokamaks

is effected by an externally created toroidal magnetic field B,, which is modified by the poloidal plasma

current I, and a poloidal magnetic field Bp, which is created by the toroidal plasma current 4,. The resulting

configuration is characterized by helical magnetic field lines which are wound on toroidal magnetic surfaces

nested around a single magnetic field line which is purely toroidal, the magnetic axis. For a toroidal tube of cir-

cular cross-section the geometry is fixed by the value of the inverse aspect ratio 6 b/R, which is extensively

exploited as a small parameter in many theoretical investigations.

An important problem presented by this approach to plasma confinement is to find the spatial distribution

of the magnetic fields, currents, energies, pressure, density, etc., and, in particular, to find the critical value of

the parameter/p,

Ae,.i 2 2(pm/( n)inp (1)

in dependence of the safety factor

q Bp --- dl . (2)
2-,r RBp RIp

[ere, (p) is the average plasma pressure and (B2) is the average squared toroidal field so that / present a figure

of merit for a particular plasma confinement machine determining the amount of thermonuclear power output

that is eventually to be expected.

The parameter q has a simple geometric interpretation (Fig. 3). It measures the average pitch of the

magnetic field lines or the inverse rotational transform, which varies from one magnetic surface to the next.

Hence, q == q(V), where V) is [he poloidal flux which is a convenient radial coordinate to label the magnetic

surfaces in toroidal geometry.- In Fig. 3 we have depicted a particular magnetic surface on which q < I

although usually q > I is required on all magnetic surfaces for stability of tokamaks.

An alternative interpretation of q is indicatcd in the approximate equality of Eq. (2), which is valid for

#i < c < 1. (so-called low-/ tokaffaks) and magnetic surfaces wiih circular cross-section, Ifere, the toroidal

current f, :ppeirs in the denominator, so that low-q devices (e.g., reversed field pinches) correspond to large
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toroidal current and high q corresponds to small toroidal current. For tokamaks q ~ 1. The important point

to notice is that the expression on the right of Eq. (2) provides a more convenient parameter than q itself,

when interpreted as a global parameter evaluated at the outermost magnetic surface, i.e., at the plasma-vacuum

interface:

27ra 2B (3
q (3)

Here, a is a measure for the radial dimension of the plasma column, usually taken to be the half-width in th'

equatorial plane. For so-called "high-a" tokamaks, where 6 ~ e, q* may deviate appreciably from the value

of q at the plasma surface.

We may now formulate one of the central questions of CTR: Find the distribution of the pressure p

and of the magnetic field components Bp and B, and of the associated current densities j, and jp, such that

the quantity /3c, defined in Eq. (1) is maximum. Concerning the parameter q*, this optimization leads to

conflicting requirements with respect to Ohmic heating and equilibrium of the plasma, where one would like

to have q* as small as possible (i.e., 4 maximum) and stability of the plasma, where high q* operation (i.e.,

4 minimum) is more desirable. A surprisingly large part of present day plasma theory is devoted to precisely

this single question. Accordingly, the present paper will address a number of interesting theoretical issues, but

always aiming at a contribution to the solution of this question.

2.2. Requirements for a Theoretical Model

In order to solve the mentioned problems one needs a theoretical model that meets the following require-

ments [1]:

*It should respect the main physical conservation laws.

*It should permit a genuine treatment of the global toroidal geometry.

*It should have a decent mathematical structure.

Ideal M11Il is presently the only model that satisfactorily combines these features. This model treats the

plasma as a perfectly conducting fluid interacting with a magnetic field. It is interesting to notice that all modern

physics secms to have been eliminated from this theory: No quantum effects are taken into account. neither

are relativistic corrections considered, all kinetic effects have been removed by averaging over the velocity

distribhtions of the individual particles, even electromagnetic waves have been eliminated by the neglect of the

displacement current, and, fina!ly, the model is considered to be ideal, i.e., without dissipation. Nevertheless,

ideal I l 1) represents the simp!est phy'-ical Oheory that still makes sense in the context of plasma conflinement
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for CTR.

2.3. Equations of Ideal MHD

The equations of ideal MI-ID may be written as follows:

p =-Vp + (V X B) X B, (4)

=9 V (vX B), (5)

op()
= -v Vp - ypV - (6)

op

=-V -(). (7)

Here, p is the density, v is the velocity, p is the pressure, and B is the magnetic field. These four equations

with associated initial data and boundary conditions, together with a specification of the geometry (as in Fig. 2),
constitute the most global approach to the description of confinement problems in CTR.

Concerning the three requirements for an acceptable model mentioned above, we notice that Eqs. (4)-(7)

express the conservation of momentum, magnetic flux, entropy, and mass, respectively. It has been established

by Friedrichs [7] that these equations constitute a system of nonlinear symmetric hyperbolic partial differential

equations, where the nonlinearity is only of a quasilinear nature. Consequently, this set of equations is well-

suited for numerical solution as an initial value problem for toroidal geometries [8-101.

If we wish to study plasma-vacuum systems with an interface (Fig. 1) we need to supplement E'qs. (4H7)

with the equations describing the vacuum magnetic field :

V X h= o, (8)

V - b = 0. (9)

These equations are all that is left from Maxwell's equations when the displacement current is negligible. The

plasma variables p, p, , B are connected with the Vacuumn variable B through two boundary conditions:

n - B= 1 -1 0, (10)

p - B2 0,
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which guarantee that B and b remain tangential to the plasma vacuum interface and that the total pressure is

continuous across this interface. The discontinuity of the tangential component of B, which is allowed by Eqs.

(10) and (11), is thought to originate from a surface current flowing at the plasma surface:

j = n X [BJ. (12)

Finally, the whole configuration is either closed off from the outside world by the presence of a perfectly

conducting wall where n - = 0 or it is open with respect to a set of coils which feed in energy and flux. In the

present paper we will be exclusively concerned about the first possibility.



3. Two Approaches

3.1. Global Interface Problems: Raylcigh-Taylor and Kink Instabilities

Two typical interface problems that are relevant to the stability of plasmas confined by magnetic fields are

shown in Fig. 4: The Rayleigh-Taylor instability of a gravitating plasma slab embedded in a magnetic field

which abruptly changes direction at the plasma-vacuum interface (Fig. 4a) and the kink instability of a straight

plasma cylinder with a longitudinal magnetic field and surrounded by a helical magnetic field in the vacuum

(Fig. 4b). The two situations arc quite similar and represent just a minor modification of the two examples that

were first investigated by Kruskal and Schwarzschild [11].

In both cases the change of direction of the magnetic field at the plasma-vacuum interface is caused by

perpendicular surface currents. These currents also create ajump in the magnitude of B which, according to Eq.

(11), allows for a finite value of6 of the confined plasma: #= 2p/h2= [B2/b'.

To analyze the stability of these configurations the static equilibrium is subjected to a small perturbation of

the form

(x)ei(kr-wt), (13)

where x is the direction of inhonogeneity (r for the cylindrical case) and k is the wavevector in the two

homogeneous directions: (0, ky, k) for the slab and (m/r, 0, k) for the cylinder. Exploiting the equations

of Sec. 2, a straightforward analysis leads to ordinary second order differential equations of the normal com-

ponents of v = 3/9t in the plasma and of the perturbation Q of the vacuum magnetic field. Satisfying the

appropriate boundary conditions then leads to the following dispersion equation for long-wavelength perturba-

tions:

2 ~2 - k2 pga for the slab
pU) == (k - B1)2 + (k - l2 k 2g odis (14)

|m)h/a for the cylinder.

Equation (14) is a typical example of the kind of results one obtains from a global analysis like the one we

have just described. Tihere are three terms which may be associated with the perturbation of the pllasma, of the

vac~wuim, anl of the plasma-vacuum interface, respectively. Here, the first two terms, which are positive, are

the stabilizing conI butions due to the bending of the plasma and vacuum magnetic field lines. The third term,

which is negative, is the tcrn responsible for the Rayleigh-Taylor inu:tability of the slab or the kink instability of

the cylinder.
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Although the driving mechanisms of the two instabilitics arc different (gravity in the first and curvature of

the magnetic file lines in the second case), the magnitude of the unstable term is determined in both cases by

the amount of surface currents flowing at the plasma-vacuum interface. Thus, the parameter # enters into the

calculation as a parameter associated with instability. On the other hand, it is clear from the form of Eq. (14)

that the instability is counteracted by shear of the magnetic field, i.e., by the change of direction of the field

lines across the plasma-vacuum interface. This effect prevents the occurrence of perturbations for which both

stabilizing terms would vanish simultaneously. Consequently, perturbations for which k - B is minimal (k lying

in the shaded area of Fig. 5) still create a finite amount of stabilizing energy.

In Fig. 6 the frequencies of the waves (or the growth rates of the instabilities when W2 < 0) are plotted

versus the component of the wavevector parallel to the magnetic field in the plasma. Also indicated are the

regions corresponding to Fig. 5, where the influence of field-line bending is minimal. From Fig. 6a the

destabilizing influence of , is obvious. In Fig. 6b the growth rate of the kink instability is plotted for # = 0.

Clearly, already in the absence of plasma pressure the plasma is violently unstable for a wide range of values of

kil. Typically, growth rates of the order of 100 sec- 1 are obtained from Eq. (14), so that one cannot tolerate

these kinds of instabilities in a thermonuclear confinement experiment.

Considering the straight cylinder as the leading order approximation of a toroidal geometry, a very simple

stabilization method of the kink instability is found to reside in the quantization condition kl = n/R, where n

is the toroidal wave number. Clearly, when the first mode (n = 1) has a longitudinal wavelength that does not

fit into the torus, one does not have to worry about the kink mode any more. A simple derivation by means of

Eq. (14) shows that this is equivalent to the celebrated Kruskal-Shafranov limit,

q* =q(a)>1, (15)

which is a limit on the toroidal plasma current according to Eq. (3).

3.2. Local Phenomena: Characteristics

An entirely different approach to the solution of the equations of Sec. 2 is obtained when one considers

the problem form a local point of view. Rather than trying to catch the global structure of the solutions at once,

as in Sec. 3.1, one pays more attention to the internal inhornogencities of the plasma and tries to construct

solutions in the large fron local constituents. This is the nethod of characteristics, which is very well described

in Rfes. [71 and [121.

Along these lines the phiase and group diagrams of the N 111) waves arc obtained fron Fqs. (4)--) by
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perturbation methods. The group diagram (Fig. 7a) is obtained by computing the distance which a plane

wave front travels along the wavevector k after having passed the origin at t = 0. Since the MHD equations

comprise both magnetic and acoustic phenomena, two distinctive speeds enter the description, viz, the Alfven

speed b and the sound speed c:

b - Bvp, c -= ,7plp. (16)

The interplay of these phenomena constitutes part of the beauty of ideal MHD. Three waves are obtained:

(1)The fast magnetoacoustic wave, which transforms into an ordinary sound wave if the magnetic field vanishes

(b -+ 0), (2) The Alfven wave, which propagates preferentially along the magnetic field; (3) The slow mag-

netoacoustic wave, which also exhibits a strong anisotropy with respect to the magnetic field.

The actual characteristic surfaces, or rather the spatial parts of them, are obtained by considering the

response to a point disturbance emitted at t = 0 from the origin, i.e., by constructing the envelopes of all plane

waves passing through the origin of Fig. 7a. This gives the group diagram, or ray surface, depicted in Fig. 7b.

Notice that the anisotropy is even more pronounced now, with the Alfven waves moving as two points (±b)

and the slow waves as two cusped figures in opposite directions along the magnetic field.

The three MHD waves are most easily distinguished on the basis of their polarizations, which are shown

in Fig. 8. The Alfven waves are characterized by a displacement $, and a magnetic perturbation Qj which

are both perpendicular to the plane through k and B, whereas the polarizations t, and t' and the magnetic

perturbations Q9 and Qp of the magneto acoustic waves are situated in this plane. Of particular importance is

the fact that the three vector , d and Er form an orthogonal triad so that arbitrary initial conditions can be

decomposed in terms of the three underlying waves.

The method of characteristics consists of solving the nonlinear Mil) equations by integrating along the

charcictcristics. The overall inhomogeneity of the medium (e.g., due to the toroidal geometry) only enters

indirectly through the fact that we propagate the solution from one space-time point to the next. The advantage

of this method is that it is general, not restricted to certain specific geometries. An obvious disadvantage as

compared to the global approach sketched in Sec. 3.1 is that it is dillicult to obtain global solutions this way and

that one is quickly led to a large computational effort.

In the next section we will describe a kind of merging of the two approaches, where both the global and

the local aspect of the theory are taken seriously, albCit to the cost of losing the nonlinearities.



4. Spectral Theory of Ideal Mill)

4.1 Outline

The global analysis of plasma-vacuum systems as exemplified by the two cases treated in Sec. 3.1 has the

obvious shortcoming of doing little justice to the internal structure of the plasma equilibrium, as expressed, e.g.,
by the profiles p(r), p(r), Bo(r), B2(r) of the linear pinch. In toroidal geometry these profiles even depend on

two coordinates (r, 0 or 0', X). On the other hand, the method of characteristics indicated in Sec. 3.2 does not

permit us to gain much analytical insight into the overall solutions for confined plasmas. Here, the spectral

theory of ideal MHD, which has been extensively investigated over the past ten years, suggests itself as the most

logical approach for the solution of these problems.

The following questions present themselves: What is the fate of the three ideal MID waves shown in

Fig. 8 when the locally homogeneous background is replaced by the globally inhomogeneous and curved

environment of confined plasmas? What is their role in determining the stability of toroidal systems? Significant

progress in the solution of these questions has been obtained along three lines: (1) For ID inhomogeneous

plasmas (slab, cylinder) the spectrum has been partly disentangled [13-20]. (2) For 2D inhomogencous plasmas

(axisymmetric torus) analytical progress has been obtained by means of the so-called ballooning representation

[21-24]. (3) Numerical results on a wide variety of 2D problems have been produced by means of perfected

equilibrium and stability codes, notably PEST and ERATO [25-34]. We will discuss some of these items in the

following, while misusing the occasion by adding some new results obtained along the first line (Sec. 4.3) and by

turning to a discussion of the program -IB'Tl when discussing 2D numerical techniques (Sec. 5).

Spectral theory of ideal MHD starts with the assumption that the plasma motion may be described as a

departure from a static equilibrium state, where the plasma is at rest: 1j = 0. While the density, pD, may be

chosen arbitrarily, the two other variables ~p and B) according to Eq. (4) then have to satisfy the equilibrium

equations

Vp)= (V X Bo) X B&,

-. A)= 0 (.17)

This leads to trivial equations in one dimension, whereas for 21) systems a nonlinear partial differential equa-

tion is obtained, the Grad-Sha franov equation.

Pcrturbations of this equilibrium state are described by tho plasma displacement vector (r, t), connected

with the vclocity by the relation v =O/31. Inserting this expression into the [qs. (4)-(7) directly leads to the
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famous linearized equation of motion for ideal MII [35]:

Ao - (iX), (18)

where

- +pi (V X Bo) X Bi + (V X BI) X B), (19)

B, = V X (J X Bo),

pI = - Vpo - ypov

Turning to a study of normal mode solutions e-iw, the basic equation for ideal MHD spectral theory is

obtained:

= -PW2 (20)

where f is a Hermitian operator. Inserting a particular equilibrium solution of Eq. (17), we may obtain the

waves (w2 > 0) and instabilities (w2 < 0) of the system by solving Eq. (20) subject to certain boundary

conditions which may be found in the literature [35].

4.2. 1D I nhomogeneous Plasmas: Gravitating Slab

Let us now reconsider the Rayleigh-Taylor problem of Sec. 3.1, where we eliminate the vacuum region

and concentrate the study on the diffuse plasma. According to Eq. (17), supplemented with i gravitational term,

the variables po(x), po(x), and A&(x) should satisfy the equilibrium condition

(PO + B ±)' + pog = 0, (21)2 (

which leaves great freedom in the choice of equilibrium profiles. In particular, we may choose a field O =

B:(x)ey + B1(x)e- which arbitrarily changes direction when we move in the direction of inhomogeneity, i.e.,

along the x-axis.

Because inhomogencities are restricted to x, we may write

(,; 1) = (- ex pi(ky, y-+ k z wt)]. (22)
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It is now expedient to introduce a projection for the perturbations and the gradient operator which distin-

guishes between the directions (1) nonnal to the magnetic surfaces in the direction of the inhomogencity (unit

vector en), (2) tangential to the magnetic surfaces and perpendicular to BO (unit vector eL), and (3) parallel to

B (unit vector ell) [see Fig. 91. This produces the following decomposition:

e(z) =(X, Y, Z),

V =(D, G, )p (23)

where b d/dx, k k(), kll(x). Using this projection, Eq. (20) becomes

b('yp + B2)b -FB 2p [b(,Ip + B 2) + pg]l [byp + pgJP X X

-1Qyp + B2 )b - pgj -G(Ip + B 2)G _ pB 2P -Gypp y = pW2  Y, (24)

-[-pb - pgj -rYp6 -ypf Z Z

which is the basic equation for the study of the spectrum of a ID gravitational slab. This system of equations

turns out to be equivalent to one ordinary second order differential equation for X [Eq. (28) below], which may

be solved subject to the boundary conditions X = 0 at z = 0 and z = a, say. For g = 0 and d/dz = ik:,

we recover the three waves of Fig. 8.

The first effect of the inhomogeneity is the appearance of two continuous spectra, corresponding to the

existence of singular perturbations that are localized on particular magnetic surfaces. These may be found from

Eq. (24) by taking the limit d/dx -+o o. In this limit the first component of Eq. (24) may be integrated once to

give

(p + B 2)dX/dz P -(-'p + B2 )Y - pFypZ. (25)

Redefine: F BF and G = .BC. Inserting expression (25) into the second component of Eq. (24) then yields

(pw2 - F 2)Y p 0, (26)

having the solution Y .m 5(x - zx), where x = ZA is the singular point where w2 
- F 2/p. The collec-

tion of improper cigenvalues {w2} for the interval 0 < x < a constitutes the continuous Alfven spectrum.

Similarly, inserting the expression (25) into the third component of Eq. (24) gives:

2 - - ' - _ 2 Z Z 0, (27)
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having the solution Z 6 b(z - Zs), where z = zs is the singular point where w2 = W vp/(-tp +
B2)IF 2 /p. The collection of improper eigenvalues {w2} constitutes the continuous slow wave spectrum.

In order to go beyond these singular continuum modes, which are extremely localized perturbations, we

need to solve the differential equations (24) on a global scale. This is most conveniently done by means of the

single second order differential equation for X, which is obtained from Eq. (24) by eliminating Y and Z:

d NdX r 2 k2 P 2 2 (p2 -F 2 ) + g2(p,2-F2)'1
--- +1d pw 2-F 2 + pg + pgD X =0, (28)dx D dX D ~Dj

where

N p2(-yp + B2 )( 2  2 - wS), (29)

D p2 (W2 _ W2)(W 2 
-

2 !k2-. 2 1p,
pwBf k24 B( p + B (30)

Notice that the Alfven and slow mode singularities of Eqs. (26) and (27) now appear as the zeros of the

coefficient N in Eq. (28). In addition, two more special frequencies wo and wj 1 appear, which were originally

thought to be associated with two more continua [13], subsequently proved to be apparent singularities [141,
and finally shown to represent regions of non-monotonicity of the discrete spectrum [151. For a more extensive

derivation of Eqs. (28), see Ref. [361.

One, admittedly somewhat primitive, motive behind this explicit derivation is to impress the reader with

the complexity of the basic MII) equations for even the simplest cases. Consider, e.g., the comparable equation

for 1D quantum mechanical systems:

[ h V2 + V(r) J = EV', (31)

where the gradient operator may still be reduced with respect to the two ignorable coordinates, corresponding

to quantum numbers I and m, say. For given I and M, the Cigenvalue E of the lamiltonian operator is then

a function of n, the number of nodes of v/(r). Since Yq. (31) is of a classical Stunn-Liouville type, this

dependence is monotonic, so that the schematic representation of Fig. 10 is obtained for the spectrum.

In contrast, the presence of the fIctor NID in 1q. (28) points to the fact that the ideal Nl 11) problem

is not of a classical Sturm-l .iouville type. Consequently, for fixed k, and k-, the cigenvalue W2 of the Mill)

force operator 1Y is not a monontoic function of the number of nodes of X(x). Instoad, partial monotonicity

.12
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is obtained for the discrete subspectra separately, as schematically shown in Fig. 11 for the case of weak in-

homogeneity. It can be shown [15, 18] that the three ideal MH4D waves split into five discrete subspectra which

cluster at the tips of the slow and Alfven continua {w1} and {wA} and at w2 = oo for the fast subspectra.

Sturmian regions, where w2 (n) monotonically increases (indicated by the upward arrows in Fig. 11), and anti-

Sturmian regions, where w2 (n) monotonically decreases (downward arrows), alternate, where it depends on the

sign of N/D which of the two options is realized.

The clear separation of subspectra only obtains when the frequency ranges {wS},{w }, {wl}, {w21} do

not overlap, i.e., when the inhomogeneities are not too strong. It is not difficult to design situations where

the whole positive w2-axis is covered with continua so that there are no discrete modes at all. On the other

hand, if the inhomogeneities are weak, not all discrete subspectra need to be present. This depends on whether

certain conditions on the equilibrium variables are satisfied. E.g., expansion in the neighborhood of the Alfven

continuum provides the following expression for the cluster spectrum caused by gravity:

2  2 G2 p' (32)
q2 B 2 p

where q is the local wave number in the z-direction. Hence, if p'g < 0 an anti-Sturmiain Alfven spectrum is

obtained, whereas p'g > 0 provides a Sturmian Alfven spectrum. It is of interest to notice that only in the latter

case the discrete Alfven spectrum may spill over to the negative side of the w2-axis. This is associated with the

interchange instability of a gravitating slab.

To complete this study would require a systematic numerical investigation of Eq. (28) for all kinds of

representative equilibria. Such a study has not yet been undertaken. It is embarrassing to notice that ten years

of active research in spectral theory of ideal MHD has not yet resulted in a final classification of the spectrum of

even the simplest systems. In particular, the first paper initiating a systematic analysis of MHD spectra from a

group-theoretical point of view is yet to be written. [Challenge!]

4.3. 11) Inhomogeneous Plasmas: Diffuse Linear Pinch

For plasma confinement problems the geometry of the diffuse linear pinch is of more intrinsic interest than

that of the gravitating slab, although the analysis proceeds along the same lines. The equation alalogous to Eq.

(28) was first derived by Hain and Lust [37]. Writing rer = X(r) exp i(mO - kz - wt) it takes the form

(VX')' - gX = 0, (33)

where
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f = N/(rD),

g - (pw2 - F2)+ 2(B2 2 2) (34)

2kVG (wp + B2)pW2 - ypF2}

and

N (pw 2 - F2)[(7p + B2)pW2 - fpF 2], (35)

D p2W4 - (m2 /,r2 + k2 )(7p + B2)p 2 + (m2/r 2 + k2)'ypF 2

F = nBo/r + kB,

G = mB|r - kBa. (36)

Notice immediately: Although the structure of the equations (28) and (33) is very similar, there is no simple

recipe to translate gravity into field-line curvature.

A similar picture as Fig. 11 may be obtained for the spectrum of a weakly inhomogeneous linear pinch,

where the frequencies w2 and w2, occupy a larger portion of the w2-axis though because of the singularity

m2/r 2 in the expression for.D.

It is of interest to analyze the cluster spectra in a little more detail for this case because of the renewed

interest in Alfven wave heating [17, 38, 391 and the discovery of global Alfven modes just below the lower edge

of the continuum [40, 41J. To that end, consider the case of weak inhomogeneitics where Fq. (33) may be solved

by means of a WKB solution. Writing

X(r) = p(r) exp[i f q(r)dr], (37)

the expressions p(r) and q(r) are determined by requiring that the solution (37) be correct to leading order in

the inhomiogencity. Substiuition into Eq. (33) yields

p P (-fg)~1 / 4 , q P(-g/f)l/ 2 , (38)

where we have to demand that q2L2 >> 1 in order for the WK I approximation to be valid. Here, L is the scale

length for the inhomogencities.

Tho relation (38) gives a local dispersion equation relating w2 aid the local radial wave number q:
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q2= -(rD|N)g, (39)

which is a quintic in w2 . [No, this has nothing to do with the fact that the discrete spectrum consists of five

subspectra]. This equation may be solved in the neighborhood of the Alfven and slow continua, when these are

sufficiently far apart. This gives:

I
pw2  iF2 -- A, (40)

q

4k 2B2(B 2 - ) rG2 (B + 2kB0B2'1
r 2B 2  B2 2 r 2G

and

PLO2RF 2  S (41)
yp+B 2

S=p )4  k 2B
Sp+B2 +B2 ~B +B)r2B22( B+B2)

Consequently, for weakly inhomogeneous plasmas discrete Alfven modes may be found either above the con-

tinuum when A < 0 or below the continuum when A > 0. Likewise, anti-Sturmian slow modes are found

above the slow continuum when S < 0 and Sturmian slow modes are found below the slow continuum when

S>0.

Very similar results are obtained from a Frobenius expansion around extrema of the functions wA(r) and

WS(r), as indicated in Fig. 11. Here, there is no restriction on the strength of the inhomogeneities, except

that {wA} and {wS} should not overlap. We find the following condition for the Alfven continuum to have a

clusterpoint from below:

1, 1 < PWA <A, (42)

where A is the same expression as defined in Eq. (40b). Likewise, the condition for the slow continuum to have

a clusterpoint from below is found to be

W '= 0, 0 < pw1"< S, (43)

where S is dcfined in Eq. (41) b). he conditions For the existence of clusterpoints from above are found from the

equamions (42) aind (43) by jUst reversing both inequality signs.
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Since the expressions for A and S involve many free parameters and profile functions it is always possible

to find equilibria which satisfy any of the four conditions at some point in the plasma. For such equilibria the

general structure of a fully developed spectrum as shown in Fig. 11 is to be expected. In particular, it turns out

to be quite easy to satisfy condition (42) for tokamaks, so that Alfven wave heating by resonant excitation of

global Alfvcn modes below the continuum is a viable possibility.

rro my knowledge the conditions (40)-(43), which were announced in Ref. [181 appear here for the first

time in the literature.]

4.4. Interface Problems

Returning to the study of plasma-vacuum interface systems it should be clear that the internal structure of

the plasma may have a significant influence on the behavior of the global eigenfunctions. On the other hand,

the very presence of a discontinuity in the plasma density at the plasma edge also produces a very large effect on

the internal modes, even on the continuum modes. This is clear from the expression for the Alfven continuum

frequencies wA = F 2 /p, which blows up when p -40. Consequently, a continuum as'shown in Fig. 12 is

obtained. We have seen that such a continuum with a minimum allows for the excitation of global Alfven

modes below the continuum when the condition (42) is satisfied.

Another interesting result of such a radial dependence of wo(r) is the fact that the discrete fast wave

spectrum is swallowed by the Alfven continuum. Consequently, discrete fast modes do not exist anymore.

Instead, one finds modes with eigenfunctions as schematically indicated in Fig. 12b. The interior part of the

mode behaves much like an ordinary fast wave, but an Alfven singularity always interferes before it can be

joined to the exterior solution, expressed by the vacuum field perturbation Q. At the singularity the mode

necessarily picks up a non-square integrable contribution, both with respect to the potential energy and with

respect to the proper norm I = 2 f p2dV to be used in Mil) spectral studies. The improper part of the

cigenfunction may consist both of large contributions, that exhibit a logarithmic behavior of the normal com-

ponent and a 1/x dependence of the tangential component of , and of "small" contributions, that exhibit a

jump of the normal component and a 6--function behavior of the tangential component.

Different kinds of improper fast magneto acoustic modes are obtained, depending on the relative amplitude

of the "smrall" and large components. An interesting discrete set of special improper fast modes is obtained

when the small contribution does not jump. Such modes are to be considered as the diffuse analogs of the

fast surtace modes of' a sharp-boundary plasma-vacuum system where p does not go to ziero continuously,

but jumps. For the similar case of Al Iven surfmce waves this situation has been analyzed by Tataronis and



Grossmann [42] and by Hasegawa and Chen [431 who have shown, by an analysis adapted from the analogous

one for the electrostatic oscillations of an inhomogencous cold plasma [44, 45], that these quasi-modes exhibit

damping due to phase mixing.

With respect to radio frequent heating by means of excitation in the Alfven frequency range, we thus

come to the conclusion that both discrete global Alfven waves below the continuum and damped quasi-modes

of the fast magneto acoustic spectrum may be excited. A problem to realize here is the very sensitive profile

dependence of these two kinds of modes, where the manner in which p -+ 0 at the plasma edge enters in a

critical fashion, With respect to the slow continuum modes the situation is even worse since w - p/p so

that the radial dependence of wj(r) at the plasma edge can do almost anything. In particular, one can easily

envisage situations where all stable low-frequency discrete modes are swallowed by the slow continuum.

We have derived in Sec. 4.3 conditions for the existence of clusterpoints of the spectrum of the diffuse

linear pinch. From the expressions (40) and (41) it is clear that clustering of both Alfven modes (Sturmian and

anti-Sturmian) and of the Sturmian slow modes is caused by field line curvature (B # 0). So far, we have not

mentioned a particularly important kind of clusterpoint, also associated with field line curvature, viz. the one

that occurs at marginal stability when we have a point F = k -B = 0 in the plasma so that the Alfven and slow

continuum have a common minimum at that point: Fig. 13. The condition for such a point to be a clusterpoint

is the violation of Suydam's criterion [461 when unstable discrete modes accumulate at w2 = 0, i.e., a sufficient

condition for instability.

Incidentally, it should be noticed that the mere existence of a point F = 0 in a plasma-vacuum system

where p -+ 0 continuously at the plasma edge, guarantees that the whole positive w2 -axis is covered with

continua so that stable purely discrete modes no longer exist. Also notice that in this case the continua may fold

over onto themselves several times, so that a particularly complicated situation arises.

Let us now return to our discussion of the stability of confined plasmas for CTR purposes. The generaliza-

tion of Suydam's criterion for a torus is the well-known Mercier criterion [47], which refers to modes that are

localized with respect to the field lines at a particular magnetic surface. In the theory of ballooning modes [21-

24] a more general kind of localization is considered where also the poloidally localized regions of unfavorable

field line curvature can be made to dominate. In the context of the study of the ideal MHD spectrum the

discussion of these conditions tends to become quite involved [48]. However, for w2 < 0 the spectrum is purely

discrete, at least for finite mode numbers. Consequently, if we restrict the study to the question of (in)stability

only, we may now move onto the discussion of 2) systems, even though many questions about the spectrum of

I) systems still remain to be solved.
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5. 2D Toroidal Confinement Problems

5.1 Outline

In toroidal confinement geometry (see Fig. 2) the solution of the equilibrium itself [Eqs. (17)] becomes a

problem. Note that the equations arc nonlinear. A very effective method has proven to be the introduction of

the poloidal flux function 4. Since V B = 0, 0 enters as the stream function for the poloidal field:

IB - V where V - (/OZ, -- 9/OR). (44)R -Lo'

Here, R and Z are the coordinates in the poloidal plane: R is the distance from the major axis of the torus and

Z is the distance above the equatorial plane. Likewise, since V . j = 0, we may introduce a stream function I

for the poloidal current:

jP V I, where I RB =1(0). (45)

One also easily shows that p = p(o). Consequently, 0 labels the magnetic surfaces, which arc tangent to the

vectorsj and B and orthogonal to the vector Vp.

The equilibrium problem may be considered as solved if we know O(R, Z), since all physical variables are

then known in terms of the geometric coordinates R and Z of the poloidal cross-section of the torus. Inserting

the expressions (44) and (45) into the force-balance equationj X B = Vp leads to the famous Grad-Shafranov

equation:

IR? - =----- II' (= Rjp), (46)

which should be solved subject to the boundary condition that c = onst. at the plasma edge. The physically

relevant solutions of Eq. (46) are those that represent a set of nested closed flux contours around a point, the

position of the magnetic axis, wherec9/OR = Oi/oZ = 0.

For theoretical analysis it is also convenient to introduce a poloidal angle X(R, Z), orthogonal to 4(R?, Z),

so that we obtain an orthogonal coordinate system 4, X, p based on the magnetic surfaces. Here, p is the

toroidal angle, which is an ignorable coordinate for the equilibrium. [It should be mentioned that X is never

used in numerical calculations since it misbehaves at the origin when the magnetic surfaces are elliptical.

Therefore, other angles are exploited, but we will not go into these details, important as they may be for

nunerical acicuracy.J
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The theoretical task posed by the CTR program is to optimize the equilibrium configuration with respect

to MHD stability and also to provide a description of the global geometry, including the interaction with the

external coils that are needed to create the optimum configuration. Since this problem is too complex to be

solved at once, a two-stage procedure is generally followed.

First, the internal problem is considered by itself. One prescribes a certain shape of the cross-section of

the plasma and proceeds to solve Eq. (46) and the stability equations. This involves many free parameters and

functions: fl, q*, e, shape of the cross-section; and the profiles p(o) and I(0) [or, equivalently, q(4') from Eq.

(2)], so that a very efficient solution of Eq. (46) is required to scan parameter space. The internal problem is

complete in itself if the plasma is bounded by a perfectly conducting wall of the desired shape. However, if we

wish to consider plasma-vacuum interface systems where a wall or a set of coils is situated at a distance from the

plasma, the problem becomes ill-posed since small variations in the desired shape of the plasma cross-section

will produce large variations of the coil or wall parameters.

The second stage consists of a self-consistent determination of the plasma equilibrium, starting with a

prescribed position of the wall or of the coils with prescribed currents. This is the free-boundary problem,

which is mathematically well-posed, but significantly harder to solve. Except for the solution of Eq. (46),

one now also needs a solution of the vacuum field equations, which is usually obtained by means of Green's

function methods, and one needs to match these solutions [through Eqs. (10) and (11)] at an interface whose

location is unknown.

From a purely physical point of view the latter procedure might appear to be the correct one, identifying

well-posed mathematical problems with physically relevant ones. However, it should be noticed that the actual

technological problem is intrinsically ill-posed: Eventually, one is not interested in the purely physical question

of a description of the equilibrium and stability of a certain plasma created by certain coils. One is interested in

finding out how to produce a plasma with desirable properties (low q*, high f) by action at a distance, i.e., by

external manipulation of the coils and currents. [Accordingly, one should expect the problem of reproducibility

and reliability to become a major one in future fusion reactor studies.]

Both fixed-boundary and free-boundary methods have been used extensively in the study of tokamak

equilibrium problems [26, 27, 49-54], where Eq. (46) is usually solved by means of some finite difference

scheme. Recently, an entirely different approach has presented itself. Starting with the obsi'rvation that all

stability theories are formulated in terms of flux coordinates V, x, p, one tries to solve the nonlinear equations

for the inverse coordinates R(0, X), Z(V, X) directly. [Remember: X should be read here as any poloidal

anglel. This eliminates the necessity of having to invert the coordinates in between the equilibrium and stability

parts of the numerical calculation. In this method of inverse coordinates or method of moments [55-58] the
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solution of the equilibrium problem is reduced to that of solving a set of nonlinear ordinary differential equa-

tions for the moments ofR and Z. In Sec. 5.2 we will present a third approach to the solution of the equilibrium

equations which is based on conformal mapping. In this method the flux function is determined as a ftinction

of polar coordinates s, t in a computational plane obtained from the physical plane by conformal mapping. By

construction, these coordinates are globally adapted to the geometry of the magnetic surfaces, so that there is no

need for coordinate inversion (with one exception, to be mentioned later).

After the equilibrium has been determined with sufficient accuracy, it makes sense to consider the stability

problem. The stability of toroidal equilibrium configurations is usually carried out by means of some form of

the Rayleigh-Ritz variational principle. Eigenvalues w2 of the basic eigenvalue problem (20) are obtained as

stationary values of a functional 0 2[41, the ratio of the potential energy W and the norm I:

6,= 0, &-2 = Wf[I/Ife1. (47)

Here, W[tj is the well-known quadratic form [35] involving the ideal MHD force operator defined in Eq. (19):

W = -5 ( . dP = WP[] + Ws[CJ + Wv[, (48)

where the three expressions to the right refer to the separate contributions of the plasma, of the plasma-vacuum

interface, and of the vacuum, respectively. The plasma variable ( and the vacuum variable Q are connected

through the boundary condition

n. V X (e X =n (49)

at the plasma-vacuum interface, whereas n - Q = 0 should be posed at the conducting wall surrounding the

con figuration. The proper norm corresponding to a complete solution of the eigenvalue problem (20) reads:

I == p - edVP. (50)

loweverr if one is interested in the stability boundaries only, any other convenient norm may be chosen for I.

Tihe global stability problem given by Eqs. (47)-(50) corresponds to a set of linear partial differential

equations in the two dimensions ip and X when single Forier components el'w with respect to the ignorable

coordinate are considered. This is a problem involving many ternms and many parameters. For ballooning

modes, localized with respect to a single magnetic surface, m major simplification results since the eqwations

then become ordinary differential equations involving the poloidal angle X only.
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5.2. Conformal Mapping as a Tool for Solving 2D MHD Problems

The global 2D geometry of a toroidal plasma equilibrium is characterized by two important features:

(1) the shape of the poloidal cross-section of the plasma-vacuum interface, which we may either prescribe ar-

bitrarily (fixed-boundary problem) or. which has to be determined self-consistently (free-boundary problem);

(2) the outward shift of the magnetic axis due to finite f.

On the other hand, a fair amount of theoretical insight in ideal MHD stability properties has been gained.

from ID straight cylinder theory (cf. Sec. 4.3), i.e., a geometry where the poloidal cross-section of the plasma is

a circle with the magnetic axis in the center. The question arises: Is it possible to establish a simple connection

between the two pictures?

The Ricmann mapping theorem states that a conformal mapping exists which brings about the desired

effect: See Fig. 14, which depicts the mapping of an arbitrary curve C (the poloidal cross-section of the plasma)

in the z-plane onto a circle C' in the w-plane while mapping the position z = 6 of the magnetic axis onto the

origin of the w-plane. A simple example of such a mapping is given by the Moebius transformation:

z(w) = (W + 6)/(1 + 6w), (51)

which maps a circular region onto itself while transforming a point z = 6 into w = 0. This simple mapping

already provides a transformation which is quite usefuil in the study of high-a tokamaks with a circular cross-

section [59]. Clearly, we need a numerical generalization of such kinds of mappings for arbitrary regions.

The required tool is provided by the recently developed numerical conformal mapping techniques exploit-

ing the fast Hilbert transformation [601. This very effective method has been successfully applied to the study of

the equilibrium and stability of high-# tokamaks [61, 62], which will be discussed in Sec. 6. Since all techniques

are extensively described in the mentioned references we will only indicate here the essence of the ideas.

Consider an analytic function Q(w) on the unit disk (Fig. 15a):

Q(w) = <)(s, t) + io(s, t), (52)

which attains the values o(t) + io(t) at the boundary. The conjugate periodic functions p(t) and V)(t) then

saiisfy the Hilbert transformation

P = - cotg -(t -- 1')V(t')dt'. (53)

Indicating the Fourier components of p() and V;(1) as am and , respectively, a discrete representation of this
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equation is obtained by taking twice the fast Fourier transformation (FFT):

{ T {ad } ''g(r) {'Ym} {FT i (t))}. (54)

We have termed this algorithm the fast Hilbert transformation (FHT).

Thc conformal mapping z(w) of a region in the z-plane bounded by a curve C, given by r = f(0), to the

unit disk w < I in the w-plane is obtained by considering the following choice for the analytic function:

O(w) -= In [z(w)/w], (55)

which attains the values In f[(t)] + i[a(t) - t) at the boundary. Here, f(d) is known (the curve C), but

O(i) represents the unknown relationship between the angles at the boundary curves in the z- and w-plane,

respectively. It follows that f[O(t) and O(t) - t are conjugate periodic functions with respect to each other,

satisfying the Hilbert transformation (53). This nonlinear integral equation for the so-called boundary cor-

respondence function O(t) has been derived by Theodorsen, as long ago as 1931, to study the problem of

potential flow around a wing of arbitrary cross-section (Fig. 16a). Its solution becomes nearly trivial by the

iterative application of the fast Hilbert transformation given by Eq. (54).

In this manner, an arbitrary shape of the plasma cross-section may be mapped onto a circle. This numeri-

cal mapping leaves the position of the origin invariant. A subsequent analytic Moebius transformation of the

form (51) then provides the requires final situation where the image of the magnetic axis is situated at the center

of the circle.

For the study of discontinuous plasma-vacuum systems we need to be able to treat the vacuum region

surrounding the plasma in a similar fashion. This requires the construction of a mapping z(w) of a doubly

connected region, bounded by two given curves Co [given by r = fk(O) and C [given by r = fA(d)] in

the z-planc, onto an annulus p : or < I in the w-plane (Fig. 15b). This involves the determination of

the two boundary correspondence functions tju(r) and t (r) and of the modulus p, which are obtained from

the solution of a pair of nonlinear integral equation. These equations were derived by Garrick, in 1936, to

study the problem of potential flow around biplanes (Fig. 16b). The solution of Garrick's integral equations

becomes equally simple as that of Theodorsen's equation by the use of the corresponding pair of fast Hilbert

transformations, where the number of operations just doubles as compared to that of Eq. (54).

In conclusion: We have cflected the simplification of the gcometry of a plasma-vacuum system to that of

concentric circles (Fig. I6c). The plasma region is mapped onto a disk by means of the internal mapping z(w),
which is 66u id in terms of the solution ) = 1i"(t) of] hcodlorsen 'S integral equation. The vacuum Legion
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is mapped onto an annulus by means of the external mapping z(w), which is found in terms of the solution

0- t (r) of Garrick's integral equation. In order to connect the physical variables across the plasma-

vacuum interface we will have to connect the internal grid with the external one by computing t = t(r) or vice

versa by computing r = r(t).

Of course, the construction of the conformal mappings does not solve the physical problem of equilibrium

and stability, unless the pertinent equations happen to be the 2D Laplace equation. This is the case for high-#

tokamaks with a skin-current when the appropriate ordering is applied (Sec. 6.1). For diffuse high-fl tokamaks

the equations are more general elliptic partial differential equations so that the mappings do not solve the

problem but just facilitate its solution. We will see how in Sec. 6.2.

In closing this section it is appropriate to point out a number of papers of related interest [63-66] concern-

ing the numerical construction of conformal mappings and applications to fluid dynamics. In these papers the

problem of severe distortion of boundaries is considered, a problem that becomes urgent in time-dependent

studies of fluid interfaces in the nonlinear domain. Here, we have restricted the study to linear perturbations of

equilibria that are only moderately distorted, so that these further complications could be avoided.
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6. High-# Tokamnaks

6.1. Free-boundary High-p0 Tokamaks with a Skin Current

In Fig. 17a a particular free-boundary equilibrium of a tokamak with skin currents is shown. Equilibrium

results here when the outward shift of the plasma column, caused by the finite value of#3/e, is balanced by the

squeeze of the poloidal flux against the conducting wall. For simplicity the cross-section of the conducting wall

has been taken circular and the equilibrium shape r = fi)(O) of the plasma cross-sections has been determined

self-consistently by solving the free-boundary equilibrium equations in the high-#O tokamak ordering. The

latter is formally given by

8 ~ e < 1, q* ~1, aefl, -_ (O/ac)q ~ 1, (56)

where

~ e-: "high-#,O" would have been a more descriptive term than "high-#"J. The physical meaning of this

ordering is that it forces the above-mentioned equilibrium mechanism to appear in the leading order. The

method of solution of the free-boundary equilibrium problem may be found in Ref. [62a]. Here, we want to

continue our discussion of the previous section, concerning the way in which conformal mapping leads to a

complete solution of the stability problem.

Figs. 17b and c show the two mappings that transform the plasma-vacuum geometry in the physical

z-plane into the geometry of two concentric circles in the superposed w- and w-planes. First, a Moebius

transformation z() is used to map the whole domain, plasma and vacuum region, onto itself. Next, the two

numerical mappings (w) and s(uj) are used to separately map the internal plasma region onto the disc s < p

and the external vacuum region onto the annulis p < 0 < 1. The intermediate Moebius transformation z(C)

is somewhat arbitrary since the skin-current plasma has no magnetic axis. We have chosen this mapping for

numerical convenience such that the image of the plasma becomes centered with respect to the image of the

wall in the auxiliary g-plane.

Turning now to the stability analysis, it may be shown [62c] dhat the high-# tokamak ordering (56) turns

both the interior problem For the plasma perturbation and the exterior problem for the magnetic eld

porturbation Q L into a potential flow problem:
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=L V'LX, ALX = 0,

QL = v 0, A&L = 0. (57)

Consequently, the construction of the two conformal mappings z((w)) and z( (w)) is equivalent to solving

these problems. The stream functions X and ' then need to be connected across the plasma-vacuum interface,

which involves the conversion of the internal angle t into the external angle r.

Through all these simplifications the variational principle (47) may be reduced to the following one-

dimensional form for the growth rates of kink modes:

*( )DIr, r')C(r')drd-r''(8

Here, the kernels N and D are explicit algebraic expressions involving the connection t(r) between the internal

angle t and the external angle r, the modus p of the annulus in the w-plane, the scale factor H = Idz/dwlo

of the complete external mapping, and the physical variables aefp, nq*, and a. Because the whole problem

depends on only these three parameters a complete scan of parameter space can be performed. The resulting

stability diagram is shown in Fig. 18.

The whole diagram shown in Fig. 18 may be considered as the high-a generalization of the simple results

shown in Fig. 6b, which lead to the Kruskal-Shafranov criterion. Along the nq* axis two marginal points are

found, viz. nq* = a2 and nq* = 1, i.e., just the usual low-a marginal points in the presence of a conducting

wall. [Notice that in Fig. 6b the left marginal point is situated at nq* = 0 since there is no wall assumed in that

calculation]. If we increase # the two branches of the marginal curve move toward each other until they close

at a certain value of P/an 2. Above this value complete stability is obtained. Consequently, at sufficiently high

6, when the plasma is squeezed against the wall, the Kruskal-Shafranov limit may be surpassed and complete

stability is obtained for # > Anin. The particular value ofO,,in, depends on the magnitude of a, the width

of the plasma relative to the radius of the tube. In Fig. 18 the shaded area represents the unstable region for

a .8. For that case one obtains M = .59en 2

Numerous investigations [67-74] of the fixed-boundary skin-current model with prescribed plasma cross-

section have been carried out. A comparison with the present free-boundary calculation shows that the self-

consistent shaping of the plasma column by compression against the wall increases the stability significantly,

and qualitatively.
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6.2. Diffuse High-ft Tokamaks

For the skin-currcnt model of a high-# tokamak conformal mappings solve the problem completely.

What of more realistic toroidal systems, where the pressure and current profiles are diffuse and, consequently,

the equations are no longer the 2D Laplace equations? In this case conformal mappings no longer solve the

equations, but they do provide coordinates that are globally adapted to the geometry of the magnetic surfaces.

This idea has been implemented in a diffuse toroidal equilibrium and stability code HBT [751.

Although most of the subsequent discussion generalizes to arbitrary diffuse toroidal equilibria, for the pur-

pose of the present review it is most illustrative to restrict the discussion again to the high-/i tokamak ordering

(56). In that approximation, the Grad-Shafranov equation (46) may be simplified as follows [61]:

AT= A [r('I') + BxIIQ4')1 (= ). (59)

Here, we have introduced (1) dimensionless coordinates x and y centered at the midpoint of the plasma

column, (2) a new dimensionless flux ftnction ' = I/Id of unit range: 1 = 0 at the magnetic axis

(x = 6), T = I at the plasma edge, (3) unit profiles 1'(P) and II(l), related to the profiles I2' and p' occurring

in Eq. (46): P(O) = I(0) = 1, P(I) = I1(1) = 0. Under these conditions A and B become eigenvalues to be

determined along with '(x, y).

If we now prescribe the plasma cross-section C and the position of the magnetic axis z = 6 (so that

,8 is to be determined from the solution of Eq. (59) and not the other way around), a conformal mapping

z = z(w) as shown in Fig. 14 is determined. This mapping turns Eq. (59) into an equation for %I(s, t) where the

transformation of the IIS is given by Ao = h- 2 A-LOO, h = dz/dwl and the RHS only changes through

the introduction of the known function x = x(s, t). Thus, the same structure as Eq. (59) is obtained, but we

now have to solve this equation subject to the boundary conditions T = 0 at 8 = 0 and T = I at a = 1.

Consequently, the flux contours in the w-plane will be near circular, which represents a considerable advantage

for the numerics: it speeds up the convergence of the iterative solution of the Grad-Shafranov equation.

In Fig. 19a we show the s, t grids obtained from the solution of Theodorsen's equation and a Moebius

transformation for a number of representative plasma cross-sections. The corresponding equilibrium solutions

are shown in Fig. 19b for a linear choice of the profiles F(%') and II(T). The essential point of this figure

is the demonstration that the s, t coordinates of the w-plane are very well adapted to the description of the

geometry of the magnetic surt'ices. Therefore, these coordinates are used throughout the code IIT to compute

the equilibrium as well as the stability of diffuse high-i tokamaks.

Once a solution 41(s, 1) of Iq. (59) is 6und, a number of different equilibria may be computed from it
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through a peculiar scaling of high-P tokamaks. A dimensionless parameter a may be introduced:

a a2Bo/kedge, (60)

where a is the halfwidth of the plasma column and Bk is the toroidal magnetic field. This parameter is directly

related to q* = q*(a) so that we get the equilibria for free if we scan the parameter q* in a search for the

marginally stable points in the epp - nq* diagram (Figs. 20-22).

Through the use of the parameters a, f, a, and BO all physical quantities can be made dimensionless and of

the order unity. From Eqs. (48) and (50) we then get the following simple expressions for the potential energy

WP of the plasma and the norm I in the high-a tokamak approximation:

W = j f[B ~IFX2 + IBPFY + 2rpX|2  2B;(icp - p'c)lXI2 lJdId x,

I = rf |B~1X|2 +BPYI 2 JdPdX. 61)

Here, J is the Jacobian of the XI, X, V coordinates, , and xt are the poloidal and toroidal curvatures of the

magnetic surfaces:

=P = J-1(JBp)', BK, (62)

F is the parallel gradient operator:

F =-iJ~O/Oxz+ na, (63)

and X and Y are the normal and perpendicular components of e

X =- By,, Y = iB,~ I e, (64)

which are related through a compressibility relation in the poloidal plane:

O(JX)/|qJ = oY/Ox. (65)

This latter condition permits us to introduce a stream function S for the perturbations. This, obviously, does

not satisfy Laplace's equation in 21) (as in the skin-current case), but it does permit us to express the variational

)rinciple for the stability of high-a tokamaks in the form
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612 = 0, 02 = WIS/I[S]. (66)

As compared to Eq. (47) this is a significant simplification.

This is the essence of the analysis which has been incorporated in the code HIBT1, where all functions of

T and X are computed in terms of the coordinates a and t. The formulation also contains the driving forces

which are responsible for ballooning modes. Thus, a separate local analysis as in Rcf. [23] was carried out and

incorporated in HBT [75]. At this point it was necessary to introduce a coordinate inversion in order to be able

to localize the modes with respect to a particular magnetic surface. The use of the nonorthogonal coordinates '

and t turned out to be the most convenient choice for this purpose.

Finally, we present a number of stability diagrams for high-a tokamaks [75] with a fixed-boundary cir-

cular cross-section of the equilibrium in which the wall is moved in from b/a = 2 (Fig. 20), to b/a = 1.25

(Fig. 21), to b/a = 1 (Fig. 2). The curves labeled with different values of a 2 refer to different a-stability

boundaries [15, 76]. Recall that an equilibrium is called a-stable if it does not manifest growth of instabilities

faster than exp(at).

There is a marked difference between stability at low P and at high 0, depending on where the wall is

situated. When the wall is far away (Fig. 20) increasing # leads to decreased stability for all values of nq*. When

the wall is moved in (Fig. 21) different unstable regions start to separate. In particular if a a-stability criterion is

used it is easier to distinguish different stability regions. E.g., in Fig. 21 a gap between the external and internal

kink mode regions appears which is not present if a strict marginal stability criterion (a 2 = 0) is exploited. This

creates room for a path in parameter space connecting the stable regions at low # with those at high p.
When the wall is close (Fig. 21, 22) several stabilization effects at high # become visible. First, we notice

stabilization of the external m = I kink mode, which we already encountered when discussing the stability

of the free-boundary skin-current model (Fig. 18). Next, we encounter a large unstable region of the internal

kink mode having both a lower and an upper stability boundary. 'lic lower stability boundary has been known

for some time [77, 781, but the upper boundary is of more recent interest [79, 80]: The latter boundary is very

similar to the second stability region of localized high-n ballooning modes [81], which has not been indicated in

Fig. 21.

With the wall at the plasma (Fig. 22) we found [751 a very striking coincidence of the stability thresholds

for internal kink modes and lrigh-n ballooning modes (indicated by the arrow) lor a variety of different pres-

sure and current profiles. 'This suggests that the instability mechanism is quite similar for the two modes. It also

lends support for the use of the high-a tokamak ordering leading to the variational principle (66).
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7. Perspectives

In the last section we have finally returned to the central questions formulated in Sec. 2.1 concerning the

optimization of plasma configurations with respect to the value ofc,.t for equilibrium and stability. We have

purposely taken a long excursion to arrive at that point because this gave us the opportunity to discover some

omissions in the development of ideal MHD. One of them was the lack of clarity in the classification of spectral

results for simple ID systems, like the plane gravitating slab and the diffuse linear pinch. If progress would be

made there, this would undoubtedly have important implications for the understanding of the more complex

2D systems. One of the problems with a strongly mission-oriented field of research is precisely that these basic

questions are never fully solved, due to lack of motivation.

Another omission concerns the development of a nonlinear theory of simple plasma-vacuum interface

systems. Again, a number of more sophisticated approaches exist, incorporated in large numerical codes solving

the initial-value problem for diffuse 2D and 3D systems, but nothing is known about the nonlinear fate of the

gross ideal MHD instabilities in genuine plasma-vacuum interface systems. This may well be explained by the

bias of researchers in CTR for plasmas that are diffuse and relatively quiescent, so that the usual split in a static

equilibrium state and a small linear perturbation is an adequate picture. Nevertheless, it should be clear that a

number of interesting possibilities is eliminated in this manner. E.g., the free-boundary high-# tokamak model

discussed in Sec. 6.1 should allow an extension in the nonlinear domain by means of the contour dynamical

methods discussed in Ref. [82].

29



Acknowledgments

The author is indebted to Daniel A. D'Ippolito, Jeffrey Freidberg, Ricardo Galvao, Jan Rem, and Paulo

Sakanaka for many years of fruitful interactions.

This work was supported by the U.S. Department of Energy under Contract IDE-AC02-78EF-51013

and by the "Stichting voor Fundamenteel Onderzock der Materie" (FOM), the "Nederlandse Organisatie voor

Zuiver-Wetenschappelijk Onderzoek" (ZWO), and Euratom.

30



References

[1] J.P. Goedbloed, Lecture Notes on Ideal Magnetohydrodynamics, [Lectures given at Universidade Estadual

de Campinas, Brasil, 1978], Rijnhuizen Report 83-145 (1983).

[2] V.D. Shafranov, in Rev. of Plasma Physics 2, ed. by M.A. Leontovich (Consultants Bureau, New York,

1966), 103.

[31 B.B. Kadomtsev, in Rev. of Plasma Physics 2, ed. by M. A. Leontovich (Consultants Bureau, New York,

1966), 153.

[41 J.A. Wesson, Nuclear Fusion 18 (1978) 87.

[5] G. Bateman, MHD Instabilities (MIT Press, Cambridge, 1978).

[61 J.P. Freidberg, Rev. Mod. Phys. 54 (1982) 801.

[7]' K.O. Friedrichs and H. Kranzer, Notes on Magnetohydrodynamics VIII. Non Linear Wave Motion (New

York University, 1958), NYO-6486.

[8] J.U. Brackbill, in Methods in Computational Physics, ed. J. Killeen (Academic Press, New York, 1976),

Vol. 16, 1.

[91 F. Bauer, 0. Betancourt, and P. Garabedian, A Computational Method in Plasma Physics (Springer-

Verlag, New York, 1978).

[10] A. Schluter and U. Schwenn, Comput. Phys Comm. 24 (1981) 263.

[11l M. Kruskal and M. Schwarzschild, Proc. Roy. Soc. London A223 (1954) 348.

[121 A.I. Akhiezer, I.A. Akhiezer, R.V. Polovin, A.G. Sitenko, and K.N. Stepanov, Plasma Electrodynamics,

Vol. I Linear Theory (Pergamon Press, Oxford, 1975).

[13] H. Grad, Proc. Nat. Acad. Sci. 70 (1973) 3277.

[14] K. Appert, D. Berger, and J. Vaclavik, Phys. Fluids 17 (1974) 1471.

[151 J.P. Goedblocd and P.H. Sakanaka, Phys. Fluids 17 (1974) 908.

[161 R.L. Dewar, R.C. Grimm, J.L. Johnson, E.A. Frieman, J.M. Greene, and P.H. Rutherford, Phys. Fluids

17 (1974)930.

[17] J. 'rataronis, J. Plasma Physics 13 (1975)87.

[181 J.P. Goedbloed, Phys. Fluids 15 (1975)1090.

[19] Y.P. Pao, NucI. FUSiOn 18 (1975) 63.1.

[20] M.S. Chance, J.M. Greene, R.C. Grimm, and J.L. Johnson, Nucl. Fusion 17 (1977)65.

[21] 11. Coppi, Phys. Rev. Lett. 39 (1977) 939.

[22] D. Dobrott, D.11. Nelson, Jv.M Greene, A.H. Glasser, M.S. Chance, and .A. Frieian, Phys. Rev. Lett. 39

31



(1977)943.

[23] J.W. Connor, R.J. Hastie, and J.B. Taylor, Phys. Rev. Lett. 40 (1978) 396; Proc. Roy. Soc. London A365

(1979)1.

[24] F. Pegoraro and T.J. Schep, Phys. Fluids 24 (1981) 478.

[25] R.L. Dewar, J.M. Greene, R.C. Grimm, and J.L. Johnson, J. Comput. Phys. 18 (1975) 132.

[261 R.C. Grimm, J.M. Greene, and J.L. Johnson, in Methods in Computational Physics, ed. J. Killeen

(Academic Press, New York, 1976), Vol. 16, 253.

[271 J.L. Johnson, H.E. Dalhed, J.M. Greene, R.C. Grimm, Y.Y. Hsieh, S.C. Jardin, J. Manickam, M.
Okabayashi, R.G. Storer, A.M.M. Todd, D.E. Voss, and K.E. Weimer, J. Comp. Phys. 32 (1979) 212.

[281 A.M.M.'rodd, J. Manickam, M. Okabayashi, M.S. Chance, R.C. Grimm, J.M. Greene, and J.L. Johnson,
Nucl. Fusion 19 (1979) 743.

[291 L.A. Charlton, R.A. Dory, Y.-K.M. Peng, D.J. Strickler, S.J. Lynch, and D.K. Lee, Phys. Rev, Lett. 43
(1979)1395.

[30] L.C. Bernard, 1). Dobrott, F.J. Helton, R.W. Moore, Nucl. Fusion 20 (1980) 1199.

[31] D. Berger, L.C. Bernard, R. Gruber, and F. Troyon, J. Appl. Math. Phys. (ZAMP) 31 (1980)113.

[32] W. Kerner, P. Gautier, K. Lackner, W. Schneider, R. Gruber, and F. Troyon, Nucl. Fusion 21 (1981)
1383.

[331 R. Gruber, F. Troyon, D. Berger, L.C. Bernard, S. Rousset, R. Schreiber, W. Kerner, W. Schneider, and
K.V. Roberts, Comput. Phys. Commun. 21(1981) 323.

[341 R.C. Grimm, R.L. Dewar, and J. Manickam, J. Comp. Phys. 49 (1983) 94.

[351 1.1B. Bernstein, E.A. Frieman, M.D. Kruskal, and R.M. Kulsrud, Proc. Roy. Soc. London A224 (1958) 1.
[361 J.P. Goedbloed, Physica 53 (1971) 412, 501, 535; Physica lOOC (1980) 273.

[37] K. Haiti and R. Lust, Z. Naturforsch 13a (1958) 936.

[38] J.A. Tataronis and W. Grossmann, New York University, Courant Institute of Mathematical Sciences,
Report CO0-3077-102, MF-84 (.1977).

[391 A. Hasegawa and C. Uberoi, The Alfven Wave (Technical fiformation Center, U.S. Dept. of Energy,
1982).

[40] K. Appert, R. Gruber, F. -Troyon, and J. Vaclavik, P1lasma Phys. 24 (1982)1147.

[41] S. Mahajan, D.W. Ross, and G.-L. Chen, University of Tcxas, Report FRCR249 (1982).

[42] J. Tatarohis and W. Grossmann, %. Phys. 261 (1973) 203.

[431 A. 1lasegawa and L. Chen, Phys. Rev. Lett. 32 (1974) 454.

1441 [.M. 3arston, Ann. Ph ys. (N.Y.) 29 (1964) 282.

32



[45] Z. Sedlacek, J. Plasma Phys. 5 (1971)239.

[461 B.R. Suydam, Proc. of the Second U.N. Intern. Conf. on the Peaceful Uses of Atomic Energy, Geneva,

1958 (Columbia Univ. Press, New York, 1959), Vol. 31,157.

[471 C. Mercier, Nucl. Fusion 1 (1960) 47.

[48] T.M. Antonsen, A. Ferreira, and J.J. Ramos, Plasma Phys. 4 (1982) 197.

[491 Y. Suzuki, Nucl. Fusion 14 (1974) 345.

[501 K. Lackner, Comput. Phys. Comm. 12 (1976) 33.

[511 R. Teman, Commun. Part. Diff. Eq. 2 (1977) 563.

[52] J. DeLucia, S.C. Jardin, and A.M.M. Todd, J. Comput. Phys. 37 (1980) 183.

[53] J. Blum, J. Le Foll, and B. Thooris, Comput. Phys. Comm. 24 (1981)235.

[54] T.S. Wang and F.J. Helton, Comput. Phys. Comm. 24 (1981)255.

[55] P. N. Vabishchevich and L.M. Degtyarev, Dokl. Akad. Nauk 247 (1979) 1342 [Sov. Phys.-Dokl. 24 (1979)

612].

[56] L.L. Lao, S.P. Hirschman, and R.M. Wieland, Phys. Fluids 24 (1981) 1431.

[57] L.E. Zakharov and V.D. Shafranov, in Reviews of Plasma Physics 11 (Energoisdat, Moscow, 1982) 118.

[Russian, translation not yet available].

[58] A. Bhattacharjcc, J.C. Wiley, and R.L. Dewar, to be published.

[59] J.P. Freidberg and J.P. Goedbloed, in Pulsed High-Beta Plasmas, ed. by D.E. Evans (Pergamon Press,

Oxford, 1976), p. 117.

[60] P. Henrici, SIAM Rev. 21 (1979) 481.

[61] J.P. Goedbloed, Comput. Phys. Comm. 24 (1981) 311.

[62] J.P. Goedbloed, Phys. Fluids 25 (1982)852; 2062; 2073.

[63] B. Fornberg, SIAM J. Sci. Stat. Comput. 1 (1980) 386.

[641 R. Mcnikoff and C. Zemach, J. Comput. Phys. 36 (1980) 366.

[65] I.J. Mciron and S.A. Orszag, J. Comput. Phys. 40 (1981)345.

[66] R. Menikoff and C. Zemach, submitted to J. Comput. Phys.

[67] G. Bateman, Phys. Fluids 14 (1971.) 1506.

[68] J.P. Freidberg and F.A. Haas, Phys. Fluids 16 (1973) 1909; 17 (1974)) 440.

[69] B.M. Marder, Phys. l1uids 17 (1974)) 447; 639.

[701 J.P. Freidberg and W. Grossmann, Phys. Fluids 18 (1975) 1494.

[71] B. R cbhan and A. Salat, NucI. Fusioi 16 (1976)805; 17(1977)251; 18 (.1978)1639; 20(1980)839.

[721 M. K ito and T. I loimna, J.Phys. Soc. Jpn. 41 (1976) 1749; Phys. Fluids 21. (1978) 272.

33



[73] D.A. D'Ippolito, J.P. Freidberg, J.P. Goedbloed, and J. Rem, Phys. Fluids 21 (1978) 1600.

[741 M. Kito, Phys. Fluids 24 (1981) 1142.

[75] R.M.O. Galvao, J.P. Goedbloed, J. Rem, P.H. Sakanaka, T.J. Schep, and M. Venema, Proc. 9th Intern.

Conf. on Plasma Physics and Controlled Nuclear Fusion Research, Baltimore (1982) paper P-1-1.

[761 P.H. Sakanaka and J.P. Goedbloed, Phys. Fluids 17 (1974) 919.

[77] M.N. Bussac, R. Pellat, D. Edery, and J.L. Soule, Phys. Rev. Lett. 35 (1975) 1638.

[78] L.E. Zakharov, Fiz. Plasmy 4 (1977) 898 [Sov. J. Plasma Phys. 4 (1978) 503].

[791 S. Tokuda, T. Tsunematsu, M. Azumi, 1'. Takizuka, and T. Takeda, Nucl. Fusion 22(1982)661.

[80] G. B. Crew and J.J. Ramos, Phys. Rev. A26 (1982) 1149.

[811 B. Coppi, A. Ferreira, and J.J. Ramos, Phys. Rev. Lett. 44 (1980)990.

[82] N.J. Zabusky, These Proceedings.

34



WALL

INTERFACE
/VACUUM

PLASMA

Fig. 1: Plasma-vacuum interface system.

35



E= b/R

b

b

Fig. 2: Toroidal confinement geometry.



BA

272 -

0 2 r

Fig. 3: Field--line topology.

37



0
7//B17

(
/

B A
iiE3

Fig. 4: Geometries for Rayleigh-Taylor and kink instabilities: (a) Gravitating

slab. (b)Lincar pinch.

38

0



A

B

Fig. 5: Direction of k-vector for the most unstable perturbations of the

configurations of Fig. 4.

39



2

0

0
S/ 2

2

K.S. LIMIT

Fig. 6: Stability diagrams for the Rayleigh-Taylor (a) and kink instability (b).

40



0D

b c

b 2

F

Fig. 7: Phase (a) and group (b) diagrams for the three MID waves: fast

magneto acoustic (F), Alfvcn (A), and slow magneto acoustic (S). The Alfven

speed b is taken smaller than the sound speed c.

41

i C

b2+ c2

b
2



-S

Q

/
/

/
/

-A Q

Fig. 8: Displacements e and magnetic perturbations Q for the three MFID

waves.

42



X

a

y 9 (

Fig. 9: Projection for inhomogencous plasmas.

43

z

)



1 2 3 45-
x x X xX (

DISCRETE

CLUSTER

CLUSTER
POINT

Fig. 10: StrIcturc of the spcctrum of a 1D quantum mechanical system.

CONTI NUUM

44

E

4



wo

INHOMOGENEITIES
2
W4

2

FAST

ALFVEN

A

L2

04

x I

a

Fig. 11: Structure of the spectrum of a 11) magnetohydrodynamic system.
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plasma onto a circle with the image of the magnetic axis in the center.
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Figure Captions

1 Plasma-vacuum interface system.

2 Toroidal confinement geometry.

3 Field-line topology.

4 Geometries for Rayleigh-Taylor and kink instabilities: (a) Gravitating slab. (b)Linear pinch.

5 Direction of k-vector for the most unstable perturbations of the configurations of Fig. 4.

6 Stability diagrams for the Rayleigh-Taylor (a) and kink instability (b).

7 Phase (a) and group (b) diagrams for the three MHD waves: fast magneto acoustic (F), Alfven (A), and

slow magneto acoustic (S). The Alfven speed b is taken smaller than the sound speed c.

8 Displacements e and magnetic perturbations Q for the three MHD waves.

9 Projection for inhomogeneous plasmas.

10 Structure of the spectrum of a 1D quantum mechanical system.

11 Structure of the spectrum of a 1D magnetohydrodynamic system. Accumulation of point eigenvalues

both from above and below.

12 Typical continuous spectrum of Alfven waves (a) producing a clusterpoint of discrete global Alfven

modes and transforming the fast magneto acoustic waves into damped quasi-modes (b).

13 Clusterpoint of slow magneto acoustic and Alfven modes when Suydam's criterion is violated.

14 Conformal mapping of the poloidal cross-section of a toroidal plasma onto a circle with the image of the

magnetic axis in the center.

15 Domains for the Fast Hilbert Transformation of analytic functions in simply-connected (a) and doubly-

connected (b) regions.

16 (a) Theodorsen's mapping of flow around a wing, (b) Garrick's mapping of flow around a biplane, and (c)

superposition of the two to describe the stability of tokamaks.

17 Complete sequence of conformal mappings for the solution of the stability of free-boundary high-#

tokamaks with a skin-current.

18 Stability diagram of free-boundary high-a tokamaks with a skin current.

19 Grids of the conformal mapping (a) and equilibrium solutions (b) for diffuse high-# tokamaks obtained

from program HmT.

20 a-stability diagram for diffuse high-# tokamak with circular cross-section, b/a = 2.

2.1 a-stability diagram for diffuse high-# tokamak with circular cross-section, b/a =1.25.

22 a-stability diagram for diffuse high-f3 tokamak with circular cross-section, b/a = 1.
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