
MACROSCOPIC ELECTROSTATIC STABILITY PROPERTIES OF

NONRELATIVISTIC NONNEUTRAL ELECTRON FLOW IN A

CYLINDRICAL DIODE WITH APPLIED MAGNETIC FIELD

Ronald C. Davidson
Kang Tsang

PFC/JA-83-29 July, 1983



MACROSCOPIC ELECTROSTATIC STABILITY PROPERTIES OF NONRELATIVISTIC

NONNEUTRAL ELECTRON FLOW IN A CYLINDRICAL DIODE

WITH APPLIED MAGNETIC FIELD

Ronald C. Davidson

Plasma Fusion Center

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

and

Kang Tsang

Science Applications, Inc.

Boulder, Colorado 80302

ABSTRACT

Electrostatic stability properties of nonrelativistic nonneutral electron flow in a cylindrical diode with

applied magnetic field BbE, are investigated within the framework of the macroscopic cold-fluid-Poisson equa-

tions. The electrostatic eigenvalue equation is derived for perturbations about the general class of slow rota-

tional equilibria with angular velocity profile w;-(r) = Vob(r)/r = (we/2){1-[1-(4/wir 2) ff[ dr'r'wb(r')]1 / 2

Here, w, = eBb/mc, wpb(r) = 4rn0(r)e2/m, nO(r) is the equilibrium electron density profile, the cathode is

located at r = a and the anode at r = b. Space-charge-limited flow is assumed with E?(r = a) = 0 and

00(r = a) = 0. The exact eigenvalue equation is simplified for low-frequency flute perturbations with k, = 0

and 1w - tew(r)12 < w2 - W2(r), assuming W2(r) < w2 and a moderate-aspect-ratio diode (Ro > b - a).

In this regime, it is shown that non/8r < 0 over the interval a < r < b is a sufficient condition for stability,

and specific examples of stable oscillations (rectangular density profile) and weak resonant diocotron instability

(gentle density bump) are analyzed in detail. Finally, the exact eigenvalue equation is solved numerically for a

wide range of density profiles no(r) and values of 2 (r)/w2 leading to weak and strong instability driven by

velocity shear with&OF(r)/Or 3 0.
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I. INTRODUCTION AND SUMMARY

The use of high-voltage diodes to generate intense charged particle beams for inertial confinement fusion

applications 1-4 has resulted in a concomitant need for a better theoretical understanding of the equilibrium

and stability properties of nonneutral electron flow in various diode configurations. While there is a growing

literature 5-1 3 on the equilibrium and stability properties of nonneutral plasmas based on the Vlasov-Maxwell

equations, it is often difficult in a kinetic treatment to obtain detailed estimates of instability growth rates,

primarily because of the complications introduced by strong spatial inhomogeneities and intense self fields.

Therefore, in the present analysis, we investigate the stability properties of nonneutral electron flow in a

cylindrical diode making use of a macroscopic cold-fluid model14- 20 for the electrons. The stability analysis is

electrostatic and assumes nonrelativistic laminar electron flow. However, the present formalism can be extended

in a relatively straightforward manner to include electromagnetic and relativistic effects.2 '

In a recent calculation, 5 we made use of global conservation constraints satisfied by the fully nonlinear

Vlasov-Maxwell equations to derive a sufficient condition for stability of the class of self-consistent planar

diode equilibria f4(H, P). In the present analysis, we make use of a macroscopic, cold-fluid model (Secs. II and

III) to investigate electrostatic stability properties of nonrelativistic sheared electron flow in a cylindrical diode

with strong applied axial magnetic field Bo0 (Fig. 1). After reviewing the cold-fluid equilibrium properties, the

linearized fluid-Poisson equations (25)-(27) are used in Sec. III to investigate stability behavior for electrostatic

perturbations about a nonneutral cylindrical equilibrium characterized by (general) electron density profile

nO(r) and self-consistent azimuthal velocity profile V6b(r) defined by [Eq. (15)]

V (r) = w-(r)r = 1 - [ - fdr'r' (r')] .

Here, the cathode is located at r = a, and the anode at r = b (Fig. 1). Moreover, wc = eBo/mc is the

(nonrelativistic) electron cyclotron frequency, and W b(r) = 41rnb(r)e2/m is the electron plasma frequency-

squared. For perturbations with complex oscillation frequency w = w,. + iy, axial wavenumber k, and

azimuthal harmonic number I [Eq. (28)], the linearized fluid-Poisson equations (29)-(33) can be combined to

give [Eq. (34)]

fI- W,9 1Wb]& 0)-6e-k'[ I ~rar 2 Or r2 I 6 (W- IW;

G9 -- P b (2w;- - w.

r (W - lwF) V?/
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Here, 60(k, r) is the perturbed electrostatic potential, W~b(r) = 41rn(r)e2/m, and v (r) is defined by [Eq.
(38)]

r= [w - - _ - w,2(r) - 2wewE(r)],

where wE(r) = -cEO(r)/Bor is given by [Eq. (37)]

wE(r = derww'jrb').

The eigenvalue equation (34) provides an exact cold-fluid description of electrostatic stability properties,

assuming nonrelativistic electron flow. For a moderate-aspect-ratio diode with d < a (Fig. 1), it follows that

wE(r) < we [Eq. (39)]. and the eigenvalue equation (34) further simplifies to give the approximate result [Eq.

(43)]

-r ((- wE- b)] ii-( eE2

-Ww-2 2 2 g

(W - JWE) L (W - WE) 2 ) Or

In Secs. IV and VI, we analyze Eq. (43) for the special case of low-frequency flute perturbations with [Eqs. (44)

and (46)]

k=0 and 1w- wEfr 2

assuming that the electron density is below the condition for Brillouin flow, i.e., W b(r) < w . In this case, the

eigenvalue equation (43) can be approximated by [Eq. (47)]

12 1 + W2 1 + 2 (r)

(W WE) - w((r)

- e ~ ~ a (r)
r [w - WE(r) [WE - Wb(r)]2

In Sec. IV.A, we make direct use of the eigcnvalue equation (47) to show that

2



a62
-w12b(r) <0

over the interval a < r < b is a sufficient condition to assure electrostatic stability [Eq. (55)]. That is,

equilibrium density profiles that decrease monotonically from the cathode to the anode are electrostatically

stable. For the special case of weak resonant diocotron instability with growth rate y = Imw < 1w,, a formal

expression for the growth rate -y is derived in Sec. IV.B [Eq. (60)],

Di(w,.) dr 6  I2w36[w, - IWE(r) 6
OD,a, [w2 - WE(r)] 2 w,

X [fbdr|6Oej2 W W! '0-W2(r)]-

where w,. = Rew is determined from the dispersion relation (59). In Sec. VI, analytic solutions to the electros-

tatic eigenvalue equation (47) are determined both for stable surface modes on an annular electron beam (Sec.

VI.A), and for weak resonant diocotron instability driven by a small density bump with Jg/rT,..,, > 0

(Sec. VI.B).

Because of the very general nature of the stability theorem obtained directly from the eigenvalue equation

(47), we have also developed an indirect proof that Oni/6r < 0 is a sufficient condition for stability (Sec.

V). The analysis in Sec. V is based on a cold-fluid guiding-center model in which electron inertial effects

are neglected (m -+ 0 and Bo -+ oo) and the motion of an electron fluid element is determined from V =

(-c/Bo)VO X k, [Eq. (64)]. Making use of the continuity equation for nb(r, 9, t) [Eq. (66)] and Poisson's

equation for O(r, 0, t) [Eq. (67)], it is found that [Eq. (76)]

AUG =f d2r[G(rt) - G(n)] = const.,

and [Eq. (84)]

AU, = d2rr 2(nb - nb) = const.,

are exact global conservation constraints, where f d 2r = d9 drr. Note that Eq. (84) corresponds to

conservation of density-weighted average radial guiding center location. Defining the effective free energy

AF = A U, + A UG [JEq. (85)], it is shown in Sec. V that [Eq. (91)]

S<0
Or
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over the interval a < r < b is a sufficient condition for electrostatic stability to small-amplitude perturbations.

We reiterate that the indirect proof of this very powerful stability theorem in Sec. V has been based on a cold-

fluid guiding-center model with m -+ 0 and BO -+ co.

Finally, to conclude this paper, in Sec. VII we solve numerically the exact electrostatic eigenvalue equation

(34) for a wide range of electron density profiles n)(r) leading to weak and strong instability driven by velocity

shear.
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11. LAMINAR COLD-FLUID EQUILIBRIUM FOR A CYLINDRICAL DIODE

A. Theoretical Model and Assumptions

We consider here the equilibrium properties (0/Ot = 0) for a cold, nonneutral pure electron plasma

confined in the cylindrical diode configuration illustrated in Fig. 1. The cathode is located at r = a and the

anode at r = b, where d = b - a is the anode-cathode spacing. In addition, the electron fluid is immersed in a

uniform applied magnetic field BOZ. The equilibrium analysis is based on a macroscopic cold-fluid description

with the following simplifying assumptions:

(a) The electron fluid is uniform in the z-direction, with Onb(x)/8z = 0 and OiJ(x)/&z = 0, and there is

no equilibrium electric field parallel to Boi, i.e., E0(x) - k = 0.

(b) The equilibrium radial density profile and the azimuthal flow velocity profile are assumed to be

azimuthally symmetric, i.e.,

no(x) = nb(r),

F'(x) = VI(r)ee, (1)

where r is the radial distance from the axis of symmetry, and 4 and k are unit vectors in the 0- and z-

directions, respectively. The equilibrium continuity equation V - [no(x) Jl(x)] = 0 is automatically satisfied for

general profiles nO(r) and VO4 (r).

(c) The azimuthal current JO(r) = -eng(r)Vab(r) will generally induce an axial self-magnetic field B1(r).

Throughout the present analysis, it is assumed that the azimuthal current is sufficiently weak that the axial self-

magnetic field is negligibly small in comparison with the applied magnetic field, i.e.,

IB (r)I < BO. (2)

(d) The electron fluid is assumed to be sufficiently cold that pressure gradients can be neglected in the

equilibrium force balance equation, i.e.,

L 0 0. (3)

It is convenient to introduce the notation

b(j) = ut(r)r, (4)
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in the subsequent analysis. Within the context of Assumptions (a)-(c), the equilibrium field components are

Eo(x) = E,(r),

Bo(x) = Bo0 , (5)

where the electric field is determined from the steady-state Poisson equation

1',9
-- [r E'(r)] = -4reno(r), (8)

r b(

and -e is the electron charge. Integrating Eq. (6) gives the equilibrium radial electric field

E'(r) = - r t dr'r'n(r'), (7)

where space-charge-limited flow with

E?(r = a) = 0 (8)

is assumed. We introduce the electrostatic potential Oo(r), where E? = -8/8r, and impose the boundary

conditions

Oo(r = a) = 0,

Oo(r = b) = V. (9)

The anode voltage V consistent with Eqs. (7) and (8) is given by

V = 40(b) = 4we b dr''n (r'). (10)

(e) Finally, for analytic simplicity, it is assumed in the present analysis that the fluid motion is nonrelativis-

tic. In equilibrium, radial force balance on a fluid element can therefore be expressed as

-mVo(r) = e[E(r) + IVOb(r)Bo]. (11)
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B. Equilibrium Flow Properties

Substituting Eqs. (4) and (7) into Eq. (11) gives (for a < r < b)

w'(r) - w4(r)w, + f dr'r'w(r') = 0, (12)

where

eB2' 41ren6(r)w = - and W =(r) = M (13)

are the (nonrelativistic) cyclotron frequency and plasma frequency-squared. Solving Eq. (12) for the angular

velocity profile wb(r) gives

Wb(r) = Wt(r) = Oc 1 - 4frdr'r'WpMr') . (14)

Note from Eq. (14) that there are two allowed equilibrium rotation frequencies, with Wb(r) corresponding to a

fast rotational equilibrium, and wb(r) corresponding to a slow rotational equilibrium. Note also from Eq. (14)

that wb (r = a) = 0 at the cathode, whereas wb(r = a) = we. In the subsequent equilibrium and stability

analysis, it is assumed that

V00jr) = w-(r)r = 1 - 1 - - d'w2 (,')[/2' , (15)

corresponding to a slow rotational equilibrium. In the special case where

4 dr'r'w b(r') < 1, (16)
r2W2

Eq. (15) can be approximated by

1 '' 2 =r

V4,(r) = - dr'w,)1 1 (r') = - , (17)
wer . Bo J

corresponding to an Eo(x) X Boi. equilibrium rotation of a fluid element. In general, however, centrifugal

effects should also be retained in Eq. (11), which gives the expression for V0b(r) in Eq. (14).

From Eq. (15), w-(r) can be determined for a broad class of equilibrium density profiles nO(r). By way of

illustration, consider the rectangular density profile [Fig. 2(a)] specified by

fnb = const., a < r < r,
0, rb < r < b,
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Substituting Eq. (18) into Eq. (15) gives [Fig. 2(b)]

-g(r) = - [- 1;p - (19)

for a _< r < rb. Here -D2 = 41rfie 2/m = const. Note that w-(r) assumes its maximum value at r = rb. For

a = 0, it follows from Eq. (19) that wb = const. andai/Or = 0. For a 3 0, however, there is generally a

shear in the angular velocity profile with &G&(r)/Or 3 0.

Finally, an important frequency known as the vortex frequency, 4., enters the subsequent stability

analysis. Here, wb, is defined by

4(r) =- w:(r) - wT(r) = ±I2wti(r) - w,]. (20)

From Eq. (14), we find that

(pt _- )2 = 2 -2 dr'r's (r'). (21)

Moreover, w b(r) can be expressed directly in terms of (wb - Wb) 2 by

w a(r) = - [r24 -- 2J. (22)
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III. ELECTROSTATIC EIGENVALUE EQUATION

FOR NONRELATIVISTIC FLOW IN A CYLINDRICAL DIODE

In this section, we derive the eigenvalue equation for small-amplitude electrostatic perturbations about the

general class in laminar cold-fluid equilibria described in Sec. II. Assuming 6B(x, t) t- 0 and

E(x, t) = -VO(x, t), (23)

each quantity of physical interest is expressed as its equilibrium value plus a perturbation. That is,

n*(x, t) = nb(r) + 6nb(X, t),

V(x, t) = Vois(r);k + 6V(x, t),

E(x, t) = E0(r)', - V60(x, t), (24)

B(x, t) =Bo,

where r, e, and i are unit vectors in the r- ,-, and z-directions, respectively. For small-amplitude perturba-

tions, the evolution of 6n(x, t), 6 Vb(x, t) and 60(x, t) is determined from the macroscopic cold-fluid-Poisson

equations

0 = 6 nb(X, t) + V - [no(r)6 Vb(x, t) + 6nb(x, t)VOb(r)h), (25)

6 Vb(x, t) + Veb(r) e -V6 Vb(x, t) + 6 Vb(x, t) V[Vb(r) e]

-e 6 V(x, 0) X BoZ6
- -V6#(x, t) + , (26)

V260(x, t) = 41re6nb(x, t). (27)

To determine the stability properties for perturbations about equilibrium, a normal-mode approach is adopted.

It is assumed that the time variation of perturbed quantities is of the form exp(-iwt), where the complex

oscillation frequency w is determined consistently from Eqs. (25H27). If Imw > 0, then the perturbations

grow and the equilibrium configuration is unstable. In analyzing Eqs. (25)-(27), the perturbations are assumed

to be spatially periodic in the z-direction. The 0- and z-dependences of all perturbed quantities are Fourier

decomposed according to
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60(r, 9, z, t) = 6t'(r, k) exp {i(tO + kz - wt)}. (28)
e---oo k,-z-oo

Substituting Eq. (28) into Eqs. (25)-(27), it can be shown that the Fourier amplitudes bne(r, k,), WVfb(r, k),
etc., satisfy

1 0 ien 6V a
-i(w - twF)6n4 + -- (rng6VI) + ' + ik;nOV!I = 0, (29)

r 10-i(w - tw-)6V - (-we + 2w )6V ; = b7 (30)

-[6V - 6VO; + + r = r (31)

-i(w -w )V = Cik5 6, (32)'b m

r 0 60 - 65' - k = 41e6ni, (33)

where -e is the electron charge, w, = eBo/mc is the cyclotron frequency, and a slow rotational equilibrium

with wb(r) = w (r) = VOb(r)/r is assumed in Eqs. (29)-(33). The equilibrium angular velocity w ;-(r) in Eqs.

(29)-(33) is related to the equilibrium density profile no(r) by Eq. (15). The perturbations in density and mean

fluid velocities in Eqs. (29)-(32) can be eliminated in favor of 6qV(r, kp). Poisson's equation for the perturbed

electrostatic potential can then be expressed in the form

1 0 - a 60t) -p --

9- [w~(2w- - .), (34)r (W - tWb) £'bJ

where wpb(r) = 4Tn'(r 2/m, and vz2(r) is defined by

v (r) = (w - wi-) 2 - (2wb- - We) (r2w;~) - w]. (35)rI70~ Or 4
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Equation (34) is valid for arbitrary wpb(r) and w-(r) consistent with Eq. (15). Operationally the procedure is to

solve Eq. (34) for 601(r, k.) and w as an eigenvalue problem. The solution to Eq. (34) is accessible analytically

for certain simple density profiles.

Making use of the definition of wb(r) in Eq. (15), the quantity v (r) defined in Eq. (35) can be expressed

in the equivalent form

b= (w - W)2 _- 7 f dr'w(r')]. (36)

It should be emphasized that the w (r) contributions in Eq. (36) arise from equilibrium space-charge effects

associated with E?(r) # 0. It should also be noted that for a thin annulus of electrons (large-aspect-ratio

diode) the final term in Eq. (36) is typically small in comparison with w2(r). Defining

WE7)= Br ~Iad7'rlwJb(9), (37)WEc~jrr 2

the quantity vi(r) in Eq. (36) can also be expressed exactly as

vb(r) = (w -pr)
2 - [w - W b(r) - 2wtwE(r)]. (38)

Thus far, the electrostatic eigenvalue equation (34) is completely general. We now simplify Eq. (34) for the

case of a cylindrical diode with moderately large aspect ratio (Ro > d in Fig. 1). In particular, it is assumed that

WE(7) = -i 2L dr'r'wP2&J) ~< c( 3 9)

over the radial extent of the electron plasma. Note that Eq. (39) does not require that the electron density be

low with W2b(r) < W2. Rather, evaluating Eq. (39) at r = b, the inequality in Eq. (39) is satisfied whenever

< 1, (40)

where C = 4rfibe2/m, fib is the characteristic (average) electron density, and A (< Ro) is the characteristic

radial width of the electron density profile. Making use of Eq. (39), it follows from Eqs. (15) and (38) that

w;(r) and v2(r) can be approximated by

w(r) = wE(), (41)

and
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Vj(r) = [w - IwE(r)2 - [wc - w (r)). (42)

Moreover, within the context of Eqs. (39), (41) and (42), the electrostatic eigenvalue equation (34) can be

approximated by

r 1- (w "" ~WE)2 (2- w iOr~~

(w - wE)2 - (W2 2W)12 1 (43)2[

r (w- wE)Or (w - IwE)2 - (W2 (

where w (r) = 4ing(r)e2/m, and wE(r) is defined in Eq. (37).

12



IV. STABILITY THEOREM FOR LOW-FREQUENCY FLUTE PERTURBATIONS

A. Sufficient Condition for Stability

The electrostatic eigenvalue equation (43) can be solved numerically for the eigenfunction 6b9 and the

eigenfrequency w for a broad range of electron density profiles nb(r), and specific numerical examples are

presented in Sec. VII. In this section, we make use of Eq. (43) to determine a sufficient condition for nb(r) to be

stable for low-frequency flute perturbations with

k6= 0. (44)

In particular, it is assumed that the electron density is below the condition for Brillouin flow

(~r) < wC . (45)

[Note that wpb(r) < w2 is not required for proof of the stability theorem later in this section.] The eigenvalue

equation (43) generally supports both high-frequency and low-frequency solutions. For present purposes, we

examine Eq. (43) for low-frequency perturbations satisfying

w - eWE(W) 2 r). (46)

Making use of Eqs. (44) and (46), the eigenvalue equation (43) can be approximated by

1 [ -W() a J _ 
2  W -(r) 1

r I r I+ -C4 - 46

r~ [w - I(r)] JW2 C 2 b~) (47)~(7

= [w- eE(7)] [wc - w 2(r)]2 26(). (47)

In Eq. (47), note that

W' J~r)
(r) = 14 (48)

is the effective perpendicular dielectric function, and

w = W, + i'y (49)
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is the complex eigenfrequency, with y = Imw > 0 corresponding to instability. Moreover, the boundary
conditions used in solving Eq. (47) are

64/(r = a) = 0 = 6qV(r = b), (50)

which assures that the tangential electric field 6Ee = -ie64 is equal to zero at the perfect conducting cathode
(r = a) and anode (r = b).

To determine a sufficient condition for stability, we multiply Eq. (47) by rboe' and integrate from r = a
to r = b. This gives

0 =D(w) drr 6 , + 2 + -2)

1|60812 WeW2

7 [w -wEr) w - w (r)2 ,Or ) (

Expressing

I (wr - WE) - 'Y (52)
W, - IWE + jy = (W, - IWP)2 + 72, 5

we equate the real and imaginary parts of Eq. (51) separately to zero. The condition D, = ReD(w) = 0 gives

b ~ e2  0 
_0 = ReD(w) = drr 6 + _64 + 2- (+ -w2(r)I

116 0 e12 WCW ' - IW r W 2C 2
r [I , - IwE(r)]2 2 [2 - w (r)2 &Wpb(r) (53)

whereasDi = ImD(w) = 0 gives

0 = ImD(w) = I-y dr W 2 w ajr). (54)e~~yjdTI6 -I WE(7)J 2 + -y [w2 - w2  02()

A sufficient condition for electrostatic stability follows from Eq. (54). Let us assume that the density profile

is monotonic decreasing with

pb (r) < 0 (55)
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over the interval a < r < b, and that the system is unstable with y = Imw > 0. From Eq. (55), it follows that

the integral in Eq. (54) is non-zero. Therefore, our assumption of instability (- > 0) is incorrect for monotonic

decreasing density profiles, and it necessarily follows that the system is stable whenever Eq. (55) is satisfied over

the interval a < r < b. That is, Eq. (55) corresponds to a sufficient condition for stability. Expressed another

way, for instability to exist it is necessary that &,b/&r change sign in the interval a < r < b, or equivalently

that

102
-[r wE(r)]

change sign in the interval a < r < b, corresponding to a shear in the angular velocity profile.

We emphasize the powerful nature of the stability theorem in Eq. (55). For low-frequency flute perturba-

tions satisfying Eqs. (44)-(46), all monotonic decreasing density profiles with &.4/Or < 0 are electrostatically

stable. This stability condition has been derived without specifying the functional form of nb(r) or solving

explicitly for the eigenfunction 60'(r). Equation (55) represents an important generalization of the stability

theorem first derived by Briggs et al.19 for the case w (r) < w2, i.e., e(r) = 1.

B. Growth Rate for Weak Resonant Instability

From Eq. (51), it is straightforward to derive a formal expression for the growth rate y in circumstances

where the instability growth rate y = Imw is weak with

|7|<|1w,]. (56)

In particular, for smally, we express

D(w, + i7) = D,(w,) + i[D(w,) + M -] (57)

and make use of

S _ P
lim . = -I 1r., - 'wE(r)], (58)

1O+ Wr - fWE + 6i -i- WE

where P denotes Cauchy principal value. Substituting Eqs. (57) and (58) into Eq. (51) and setting real and

imaginary parts equal to zero gives
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0 = drr{[ 60e + 12 w (r)

W15'1 )2 J9 2 r )b'} (59)
r [w, - lwd(r)] [w2 - w2(r)1r , (59

and

= D(w,.) fbd j,,ej2W3[w, - twEr(r)J 0  2(r
9D,/a, A [w2 - W4(r)]2 ,

X [bdrje2 W6 EW2 L9 2 W() 2 r-1(0

Equation (59) determines the real frequency w, (assuming that boe is known), whereas the growth rate y is
given by Eq. (60).

In circumstances wherefOD,/&, < 0, it follows from Eq. (60) that resonant instability exists whenever

> 0, (61)

where the resonant radius r. satisfies

w, - 1wE(r.) = 0. (62)

Density profiles nb(r) with a gentle bump (Fig. 3) are prime candidates for such a weak resonant instability. A
specific example is discussed in Sec. VI.
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V. SUFFICIENT CONDITION FOR STABILITY IN THE

GUIDING-CENTER APPROXIMATION

The stability analysis in Sec. IV.A represents a direct calculation of the sufficient condition [Eq. (55)] for

the equilibrium density profile no(r) to be stable for low-frequency flute perturbations. The calculation is direct

in the sense that it makes explicit use of the eigenvalue equation (47). In this section, we give an indirect proof

of this stability condition, based on global conservation constraints satisfied by the fully nonlinear macroscopic

fluid equations in the guiding-center approximation.

In particular, in the present analysis, we adopt a cold-fluid guiding-center model in which electron inertial

effects are neglected (m -+ 0) and the motion of a strongly magnetized electron fluid element is determined

from

E(x, t) + Vb(x, t) X Boi = 0. (63)

In the electrostatic approximation, E = -V4 and Eq. (63) gives

Vb(X, t) = - VO(x, t) X a (64)

for the perpendicular motion. In cylindrical geometry, Eq. (64) reduces to

VF(r,0, t) = - c (r,0, t),

Vb(r, 9, t) = C 0 0(r, 0, t), (65)Bor Or

where,&/O = 0 has been assumed. The continuity equation, which relates the density nb(r, 0, t) and flow

velocity V(r, 0, t) is given by

49 m+ -(n6 V)=0,

which reduces to

L9 9,N + V0 - 14 = 0, (66)

since V - V = 0 for the electron flow in Eq. (64). Of course, Eqs. (64)-(66) must be supplemented by Poisson's

equation
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V 20(r, 9, t) = 4wen*(r, 9, t),

which self-consistently relates the electrostatic potential O(r, 9, t) to the electron density nb(r, 9, t).

Equations (64), (66) and (67) constitute a fully nonlinear description of the system evolution in the cold-

fluid guiding-center approximation with m -+ 0 and BO -+ oo. Expressing

nb(r, 9, t) = nb(r) + On(r, 9, t),

4(r, 9, t)= Oo(r) + 60(r, 9, t), (68)

the boundary conditions enforced in solving Eqs. (64),(66) and (67) are

Oo(r = a) = 0 and 0(r = b) = V,

4900 = 0, (69)

and

60=0, at r=a and r=b.

The equilibrium conditions in Eq. (69) correspond to space-charge limited flow with E?(r = a) =
= 0. Moreover, Eq. (70) assures that the tangential electric field and radial flow velocity are

equal to zero at the cathode and at the anode, with

10

Finally, because of periodicity in the 9-direction,

at r=a andat r=b.

f2w do = 0, (72)

where 0 represents any field or fluid variable or nonlinear combination thereof.

The macroscopic guiding center model based on Eqs. (64), (66) and (67) possesses certain global (spatially

averaged) conservation constraints. Consider the quantity A Uc defined by
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(67)

(70)



AUG = f d2 z[G(nb) - G(nb)), (73)

where G(n*) is a smooth, differentiable function, and

2w bJ d2z = de f drr

in cylindrical geometry. From Eq. (66) and V - Vb = 0, it follows that

8 _OGc ft OG
G(n)=- = --- V - Vnab

= -Vb* VG(nt) = -V - [G(nb)V). (74)

Therefore

AUG = dzG(n)

- 2wdO 'drr (rVrbG)+ (V1G) 0. (75)

The 8/69 contribution in Eq. (75) integrates to zero by virtue of periodicity in the 9-direction [Eq. (72)]. The

8/Or contribution in Eq. (75) integrates to zero because the radial flow velocity is equal to zero at the cathode

(r = a) and at the anode (r = b) [Eq. (68)]. From Eq. (75), we conclude that

AUG = f d2 z[G(nb) - G(nb)] = const. (76)

A special case of Eq. (76) is the conservation of total charge

AUq = -ef d2z(nb - ni) = const. = 0, (77)

where the constant in Eq. (77) has been taken equal to zero. This is consistent for all time t provided zero net

charge is introduced into the system by the initial density perturbation, i.e., provided f d2zxnb(r, 9, t = 0) =

0.

A further global conservation constraint is related to the density-weighted average radial location of guid-

ing centers. Defining

A U, = f d2zr2(nb - nb), (78)
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and making use ofOnb/Ot = -V - (nb V) gives

d = - d$ drr -r2o (rnVb) + (n1eb)

f21w b 693b

= - d dr (ran b) - 2r2nV b], (79)

where the O/6 contribution in Eq. (79) vanishes by virtue of periodicity in the 9-direction [Eq. (72)]. Moreover,

making use of V-b = 0 at r = a and r = b [Eq. (68)], the (O/6r)(rnVb) term in Eq. (79) integrates to zero,

which gives

d 2c 2w (80)
tA, - dd drrn 46. (80)

In Eq. (80), use has been made of Vb = -(c/rB)W1#/ [Eq. (65)] to eliminate the radial flow velocity Vb

from the final term in Eq. (79). From V20 = 4wenb, Eq. (80) can be expressed as

d c 2w d fb l ' 60 1 16201
-A U =-- I&dO = drrl--r- -I

di ~ ~ ~ 2 bw~~ O L 0  r r~~O

o Odr r (81)

where the a2/M2 contribution in Eq. (81) integrates to zero because of periodicity in the 9-direction. Equation

(81) can also be expressed exactly as

2=-w d 9dr r- - . . (82)

The 9-derivative term in Eq. (82) vanishes because of periodicity in the 9-direction [Eq. (72)]. The term

(O/r)[r(O#/9r)(60/f)] in Eq. (82) integrates to zero by virtue of E6 = -(/r)(6/W9) = 0 at the cathode

(r = a) and at the anode (r = b) [Eq. (71)]. This gives

dAU,= 0, (83)

or equivalently,

A = f d2Zr2(nf - nb) = const. (84)
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A sufficient condition for stability follows directly from Eqs. (76) and (84). Defining an effective free

energy function AF by

AF = A Ur+AUG, (85)

it follows that

AF / d2z[r2(n* - ni) + G(nb) - G(n )] = const. (86)

is an exact (nonlinear) global constraint. Expressing 6nb = n - nb, and Taylor expanding

G(nb) = G(n() )+(n G(n)(6n)2 + -, (87)

it follows that Eq. (86) can be expressed as

A = d2z[r2 + G'(n)](6n) + G"(n0 )(6 f) = const., (88)

correct to quadratic order in the density perturbation 6n = n(r, 9, t) - ng(r). The function G(ni) has been
arbitrary up to this point. We now choose G(ni) to satisfy

G'(n ) = -r2 (89)

so that G"(ni) = -(On'i/r)-1. Equation (88) then becomes

AF= fd2z (bnb)2 = const. (90)

It follows trivially from Eq. (90) that for monotonic decreasing density profiles with

iong
- -<0, for a<r<b, (91)

the density perturbation bnb(r, 9, t) cannot grow without bound, and the system is linearly stable. That is to say,

Eq. (91) is a sufficient conditionfor stability in the context of the cold-fluid guiding-center model based on Eqs.
(64),(66) and (67).

The analysis in this section illustrates the tremendous advantage of using global conservation constraints

to determine a sufficient condition for stability. Nowhere has it been necessary to make direct use of a detailed

normal-mode analysis or eigenvalue equation.
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VI. ANALYTIC SOLUTIONS TO ELECTROSTATIC EIGENVALUE EQUATION

A. Stable Surface Waves

In this section, we make use of the approximate eigenvalue (47) to investigate stability properties for low-

frequency flute perturbations with |w - CwEI2 «wi - w ,(r) and w ,(r) < w [Eqs. (45) and (46)]. As a

specific example that is analytically tractable, consider the rectangular density profile (Fig. 2) specified by

S=const., a < r < qe,

no(r)= (92)

0, rb < r < b.

From Eqs. (37) and (92), wE(r) = -cE0(r)/r8 can be expressed as (for a < r < rb)

WE(r) = (93)

where C = 4rNe2/m = const. Because wpb(r) =a = const. for a < r < rb (Region I), the eigenvalue

equation (47) reduces to

- 4 = 0, a < r < rb, (94)

within the electron annulus. Moreover, because w ,(r) = 0 for rb < r _ b (Region II), the eigenvalue

equation (47) can be expressed as

186989 12 _
r O #~j' - ;26r = 0, rb < r < b, (95)

in the vacuum region between the anode and surface of the electron annulus. The solutions to Eqs. (94) and

(95) that satisfy 6#1(r = a)= 0 = 6#11(r = b) and are continuous at r = rb are given by

6#V(r) = A[()'_ ( , a < r < r , (96)

and

64jj(r) = A - - X , rb < r < b. (97)
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The remaining boundary condition on (8/Or)S0' at r = rb is obtained by integrating the eigenvalue equation

(47) across the surface of the plasma at r = rb. Multiplying Eq. (47) by r and integrating from rb(l - e) to

rb(l + e), with e -+ 0+, gives

W (pb i

r W2- r ]
184/(r = rb)w, a2 (98)
fw - eWE(rb)] (w2 - (

where 2= 4xirte 2/m, and

WE(rb) = 2( (99)

Equation (98) relates the discontinuity in perturbed radial electric field to the perturbed surface charge density

at r = rb. It is useful to define

.22

(D2
OD 24A;C(100)

and

Q [(L)' + ( a X + (101

where ge is an effective geometric factor. Substituting Eqs. (96) and (97) into Eq. (98) then gives

I= 2ADeI. (102)
ge [W- tWE(rb)]

or equivalently,

W - IWE(rb) = (2geg.L))D. (103)

Note that Eq. (98) has played the role of an effective dispersion relation that determines the eigenfrequency w.

From Eq. (103), for the rectangular density profile in Eq. (92) and Fig. 2, the system supports only stable oscilla-

bons (Imw = 0). On the other hand, a completely analogous analysis of the eigenvalue equation (47) can be
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carried out for the hollow density profile illustrated in Fig. 4, where the inner surface of the electron annulus

is separated from the cathode. In this case, there are charge perturbations on the inner surface (r = rT) as

well as the outer surface (r = r+) of the annulus, and the interaction leads to the familiar diocotron instability

modified to include plasma dielectric effects with i_ - 1 > 0.

To conclude this section, we simplify the expression for the geometric factor gi in Eq. (101) for a

moderate-aspect-ratio diode with

a > d = (b - a), (104)

and for (low) harmonic numbers I satisfying

d< 1. (105)a

To leading order, Eq. (101) gives the approximate expression for g

1 =[ a )] 41+_ (,.b a (106)

where 1(rb - a)/a < 1 is assumed, and d = b - a is the anode-cathode spacing. We denote (Fig. 5) the

thickness of the annulus by A. and the width of the vacuum region by A., where

Aa= rb - a,

A, = d - (rb - a) = b - rb. (107)

ForfA./a < I and iA/a < 1, Eq. (106) can be approximated by

91= (108)
= I+ er(A,a/Ab)' 18

For a thin annulus, it follows from Eq. (93) that wE(r) can be approximated by

WE(r) = MD (109)

and wE(rb) by

WE(rb) = 2 a OD, (110)

where CD = C b/2w. For b =- a, we substitute the approximate expression (108) for gi into Eq. (103). This

gives
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W-WErb) =- 21 + 2- 11D, (111)a

where wE(rb) is defined in Eq. (110). Since Id/a < I has been assumed in Eq. (111), it follows that the low-

frequency assumption, 1w - wE 2  in Eq. (46), is readily satisfied for moderate values 2

B. Resonant Diocotron Instability

We now consider circumstances where the main density region (a r < rT) is seeded with a low-density

component of circulating electrons (Fig. 6). In the region a < r < rb, wE(r) = -cE'?(r)/B is still given

approximately by Eq. (109) because E0(r) is determined primarily by the main density component (i) in Fig.

6. That is, wE(r) can be approximated by

WE(r) = 26D( -a), a < r < rb, (112)

in the region of the low-density bump in Fig. 6. Moreover, the analytic results in Sec. VI.A represent excellent

approximations for the eigenfunctions in Regions I and II [Eqs. (96) and (97)], and for the real oscillation

frequency w, = Rew [Eq. (111)] in circumstances where the bump density is much less than fb. That is,

w, = Rew is given approximately by

W - WE(1b) = 2t- V A 2 J)D (113)

for a large-aspect-ratio diode with td/a < 1.

In Sec. IV.B, we derived a formal expression [Eq. (60)] for the growth rate 'y = Imw assuming (weak)

resonant instability driven by a gentle bump in the density profile ni(r). From Eqs. (61) and (62), the condition

for instability is

> 0, 
(114)

Or-

where r, solves the resonance condition

Wr - WE(r.)= 0. (115)

Substituting Eqs. (112) and (113) into Eq. (115), and solving for r, gives
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r = r - (116)

which determines the resonant radius r, that satisfies Eq. (115). For example, if I_. = 1.5 and A,/A = 2/3,

then r. - rb = -0.5A. follows from Eq. (116).

The expression for growth rate -1 is given in Eq. (60). Assuming that r. satisfies a < r. < rb [Eq. (116) and

Fig. 6], then Di(w,) = ImD(w) is given by [Eq. (60)]

D(w,) = 60' wpb(r) , (117)

where use has been made of&E/OrIt,. = 2fd/a [Eq. (12)]. In Eq. (117), 64V(r) is approximated by Eq.

(96), i.e., by the eigcnfunction in Region I in the absence of density bump. Similarly, 8D,/&, is given by [Eq.

(60)]

D 2 
(118)

where 601(r) is approximated by (96), I_ is defined in Eq. (100), and ')D = Gp/2w,. Note from Eq. (60),

Eq. (118) and Fig. 6 that the main contribution to8D,/d,. comes from the density discontinuity at the surface

(r = rb) of the electron annulus. Combining Eqs. (117) and (118), the growth rate -y = -D/(D,1/,) is

'Y W1 r - IWE(rb)12 1601,1 a O (

where w, - IwE(rb) is given in Eq. (113). From Eqs. (96) and (97),

164|2 )e 2 e e -2 2

16 , a oa r b a ,(120)

for a large-aspect-ratio diode with 1(r, - a), 1(rb - a) < a. Defining rb - a = A. (Fig. 6), and making use of

r, - a = rb - a - (r - r.) = A.(1 + eAv/A.)1 [Eq. (116)], the ratio in Eq. (120) can be approximated

by

2 (1 (121)

Returning to Eq. (119), we normalize the growth rate y to twE7b) = 2U6DAa/a, where A, = rb - a and

wE(rb) is given in Eq. (110). Making use of Eqs. (111) and (121), the normalized growth rate -1/ewE(b) in Eq.

(119) can be expressed as
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S (r , A -- 2 (122)

where g2 = 2IID = 47rF&e/m is the plasma frequency-squared of the main density component (46) in
Fig. 6.

Measured in units of wE(rb), the growth rate -y in Eq. (122) can be substantial. The resonant diocotron
instability discussed in this section may well be one of the most important instabilities characteristic of electron
flow in diodes. Although monotonic decreasing profiles with Ong/Or _< 0 are stable [Figs. 3(a) or 5], the intro-
duction of a low-density circulating electron component [Figs. 3(b), 3(c) or 6] can lead to resonant instability.
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VII. NUMERICAL SOLUTION TO ELECTROSTATIC EIGENVALUE EQUATION

In this section, we make use of the exact electrostatic eigenvalue equation (34) to investigate numerically

the stability properties of a variety of equilibrium profiles n?(r).

A. Eigenvalue Equation

For nonrelativistic, cold-fluid flow, the exact electrostatic eigenvalue equation in cylindrical geometry is

given by Eq. (34). It is convenient to introduce the dimensionless radial coordinate

R= r, (123)

where r = a is the location of the cathode (Fig. 1). Moreover, all frequencies are normalized to w, = eBo/mc

with

(D , E~ r = W E N7 __ 1 t -w b e)

-2 bf (r) 4rng(r)e2
2 ~) (124)

w((r)) = - 1[1 - 4E)$)1/2}
we C

Making use of Eqs. (123) and (124), the eigenvalue equation (34) can be expressed in the equivalent form

-R ( - ag) 2 -(1 -2E)

- -b 69V (125)
R2 PG _ a-P3 _ (i - aP2 - 2WE)

_ [J(E)/2
R (- T)OR (,Z - tg-)2 - (I -,ag- 2 E U_

where k = 0 is assumed, and the dimensionless frequencies D, t a(r), and OE(r) are defined in Eq. (124). The

equilibrium boundary condition assumed in Eq. (125) is E?(r = a) = 0 at the cathode, which corresponds

to 2E(r = a) = 0. Note also that the eigenvalue equation (125) is exact within the context of the present
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electrostatic model based on the nonrelativistic cold-fluid-Poisson equations. That is, unlike the approximate

eigenvalue equations analyzed in Secs. IV-VI, there is no a priori assumption in Eq. (125) that wE(r) < w, [as

in Eq. (39)], that the perturbation frequency is low [as in Eq. (46)], or that the diode aspect ratio is large [as in

Eq. (104)].

In Secs. VII.B and VJI.C, Eq. (125) is solved numerically for the real oscillation frequency w, = Rew, the

growth rate y = Imw, and the eigenfunction 60(r) subject to the boundary conditions

60t 0, at r = a and at r = b. (126)

Depending on the choice of equilibrium density profile ng(r), the solutions to Eq. (125) correspond to weakly

unstable oscillations (Sec. VII.B) or to strong instability (Sec. VII.C).

B. Weakly Unstable Oscillations

As a first example of an equilibrium density profile that gives weakly unstable oscillations, consider the

rectangular density profile specified by (Fig. 2)

fb= const., a < r < rb,

ni(r) = j (127)

0, rb < r < b.

Equation (125) has been solved numerically for the complex eigenfrequency w = w,. + i 1 and eigenfunction

boe(r) assuming rb/a = 2 and b/a = 3. Typical results are illustrated in Fig. 7, where w,. = Rew and

= 1mw are tabulated versus azimuthal mode number t = 1, 2, 3, 4, 5, for the low-frequency branch that

solves Eq. (125). The values chosen for the dimensionless self-field parameter a 47r9 1mc2/BO = Wb/ 2

correspond to a = 0.5 [Fig. 7(a)] and a = 0.2 [Fig. 7(b)]. Note from Figs. 7(a) and 7(b) that the system is

weakly unstable (-y < |wr|) for the choice of rectangular density profile in Eq. (127). Moreover, the collisionless

growth is weakest for low values of electron density (small values of s).

As a second example, we consider the bell-shaped density profile specified by (Fig. 8)
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S-(rb - a)2 2,a < r < rb,r (re -a)2J2

A (r)- (128)

Note from Eq. (128) that n?(r) decreases monotonically from A at r = a to zero at r = r,. The complex

eigenfrequency w = w, + i-y and eigenfunction 6qV(r) has been determined numerically from Eq. (125) for

the choice of density profile in Eq. (128). Typical results are illustrated in Fig. 9 where w, and y are tabulated

versus a = 4wAmc2/B0 = w a(r = a)/w2 for mode number I = 2, and s in the range 0.48 < 8 < 1. For

a ! 0.45, it is found that the system is stable (y = Imw < 0). For a = 0.48, the onset of instability occurs

for I = 2 (Fig. 9). On the other hand, as a is increased to a = I it is found that the instability bandwidth

increases to include I = 2,3, 4, and that maximum growth for a = I occurs for I = 2, where ImW = 0.0977

and Rew/w = 0.248.

It is useful to define a resonant radius r, by the resonance condition

(14 - OfE~a =0 (129)

where w, = Rew solves Eq. (125). It is readily shown for the two numerical examples analyzed in this section

that r. is located in the region where the electron density is non-zero (Figs. 10 and 11), i.e.,

a < r, < rb. (130)

Unlike the simplified approximate eigenvalue equations analyzed in Secs. IV and VI, it is important to recog-

nize that the complete eigenvalue equation (125) provides collisionless dissipation even when a,/orr,..r, =

0. This is evident from Fig. 7, where the modes are weakly growing for the choice of rectangular density

profile in Eq. (127) (where L2/or|,. = 0 is trivially satisfied). The reason for this (negative) dissipation is

readily traced to driving terms proportional to &-/Or 34 0 on the right-hand side of Eq. (125). It is precisely

such terms that are neglected in the approximate eigenvalue equation (47) either by virtue of the assumptions

WE(r) < we [Eq. (39)] or 1w - twE(r)12 < w - w (r) [Eq. (46)] used in obtaining Eq. (47).

To conclude this section, numerical plots of nb(r), w;(r), w, - tew(r), Re6b'(r) and Irn.50e(r) versus r

are presented in Figs. 10 and 11 for the two cases analyzed in Figs. 7 and 9, respectively. The parameters in Fig.
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10 correspond to a = 0.5 and I = 4 (rectangular density profile) and in Fig. 11 to a = 1.0 and t = 2 (bell-

shaped density profile).

C. Strong Diocotron Instability in a Hollow Electron Beam

As an example in which Eq. (125) predicts strong diocotron instability, we now consider the hollow

electron density profile specified by (Fig. 4)

0, a <r <r;-,

no(r) f4 = const., r; < r < r, (131)

0, r < r < b,

where the electron density (fib) is constant in the beam interior. Heretofore, the diocotron instability cor-

responding to the choice of density profile in Eq. (131) has been analyzed only for the low-density case

( = / = 4 /B0 < 1) using a highly simplified (and approximate) form of the eigenvalue

equation (125). In the present analysis, the complete eigenvalue equation (125) is solved numerically assuming

rj/a = 7/5, rf/a = 2, and b/a = 3. Typical results are illustrated in Fig. 12, where w, = Rew and

- = Imu are tabulated versus azimuthal mode number t for a = 0.5 [Fig. 12(a)] and 8 = 0.2 [Fig. 12(b)] for

the low-frequency branch that solves Eq. (125). Note from Fig. 12 that the instability growth rate -y = Imw

is strongest at high density. Moreover, the growth rate in Fig. 12 (hollow density profile) are substantially

larger than the growth rates in Fig. 7 (rectangular density profile in contact with the cathode). It should also be

pointed out that the growth rate is reduced if the outer or inner conductors are brought closer to the surface of

the electron plasma (i.e., smaller r-/a or larger ri /b). Finally, numerical plots of no(r), w;(r), w, - twg(r),

Re64/(r) and Im6r9(r) versus r are shown in Fig. 13 for the case corresponding to I = 2 and a = 0.5 in Fig.

12.

To conclude Sec. VII, we have also solved the exact eigenvalue equation (125) numerically for the high-

frequency branch. For all of the profiles and parameter ranges considered earlier in Sec. VII. it is found that the

high-frequency branch is stable (-y = Imw < 0).
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VII. CONCLUSIONS

In the present analysis, we have made use of a macroscopic, cold-fluidmodel (Secs. II and III) to investigate

electrostatic stability properties of nonrelativistic sheared electron flow in a cylindrical diode with strong applied

axial magnetic field Bo. After reviewing the cold-fluid equilibrium properties, the linearized fluid-Poisson

equations (25)-(27) are used in Sec. III to investigate stability behavior for electrostatic perturbations about a

nonneutral cylindrical equilibrium characterized by (general) electron density profile ni(r) and self-consistent

azimuthal velocity profile defined by VOb(r) = wb-(r)r [Eq. (15)]. For perturbations with complex oscillation

frequency w = w, + iy, axial wavenumber k,, and azimuthal harmonic number 1, the linearized fluid-Poisson

equations (29)-(33) were combined to give the eigenvalue equation [Eq. (34)

.{r[11 b]64} -2 1- ]64'-k[1 (w'

b6]' 60e) 12
r (w- - wi)O YJ ~ J

The eigenvalue equation (34) provides an exact cold-fluid description of electrostatic stability properties, as-

suming nonrelativistic electron flow. For a moderate-aspect-ratio diode with d < a, the eigenvalue equation

(34) was further simplified to give the approximate result in Eq. (43). In Secs. IV and VI, we analyzed Eq. (43)

for the special case of low-frequency flute perturbations with

S0 and 1w - IwE(r) 2

assuming that the electron density is below the condition for Brillouin flow, i.e., wp(r) < W2. In this case, the

eigenvalue equation (43) can be approximated by Eq. (47). In Sec. IV.A, we made direct use of the eigenvalue

equation (47) to show that

-og2 r)< 0

over the interval a < r <'b is a sufficient condition to assure electrostatic stability. That is, equilibrium density

profiles that decrease monotonically from the cathode to the anode are electrostatically stable. For the special

case of weak resonant diocotron instability with growth rate -y = Imw < |w,, a formal expression for the

growth rate - was derived in Sec. IV.B [Eq. (60)]. In Sec. VI, analytic solutions to the electrostatic eigenvalue

equation (47) were determined both for stable surface modes on an annular electron beam (Sec. VI.A), and for

weak resonant diocotron instability driven by a small density bump with (10,/orl,-,, > 0 (Sec. VI.B).
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Because of the very general nature of the stability theorem obtained directly from the eigenvalue equation

(47), we also developed an indirect proof that dni/dr < 0 is a sufficient condition for stability (Sec. V).

The analysis in Sec. V was based on a cold-fluid guiding-center model in which electron inertial effects are

neglected (m -+ 0 and B0 -+ co) and the motion of an electron fluid element is determined from V =

(-c/B)V4 X i. Making use of the continuity equation for n(r, 9, t) and Poisson's equation for 0(r, 9, t), it

was shown that A UG = d27[G(nb) - G(ni)] = const. [Eq. (76)] and AU, = f d27r2(nt - nb) = const.

[Eq. (84)] are exact global conservation constraints. Note that Eq. (84) corresponds to conservation of density-

weighted average radial guiding center location. Defining the effective free energy AF = A U, + A UG, it was

shown in Sec. V thatLni/Or < 0 over the interval a < r < b is a sufficient condition for electrostatic stability

[Eq. (91)]. We reiterate that the indirect proof of this very powerful stability theorem in Sec. V has been based

on a cold-fluid guiding-center model with m -+ 0 and B0 -4 oo.

Finally, to conclude this paper, in Sec. VII we solved numerically the exact electrostatic eigenvalue equa-

tion (34) for a wide range of electron density profiles ng(r) leading to weak and strong instability driven by

velocity shear.
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FIGURE CAPTIONS

1. Cylindrical diode configuration with cathode at r = a and anode at r = b, and applied axial magnetic

field Bo(x) = Bo,. Equilibrium electron flow is in the 9-direction.

2. (a) Rectangular density profile ni(r) assumed in Eq. (18). (b) Corresponding angular velocity profile

wb(r) in Eq. (19).

3. Class of equilibrium density profiles nb(r) that are (a) stable [Eq. (55)], (b) unstable [Eq. (61)], and (c)

unstable [Eq. (61)], for low-frequency flute perturbations satisfying Eqs. (44)-(46).

4. Hollow electron density profile that exhibits strong diocotron instability (R.C. Davidson, Theory of

Nonneutral Plasmas, Benjamin, Reading, Mass., 1974).

5. Rectangular density profile ni(r) assumed in stability analysis in Sec. VI.A. A large-aspect-ratio diode

with a > A,, A, is assumed.

6. Density profile ni(r) with density bump that leads to the resonant diocotron instability discussed in Sec.

VI.B.

7. Tables of Rew/wc and Imw/aw versus t [Eq. (125)] for b/a = 3, rb/a = 2, and (a) a = 0.5, and (b)

a = 0.2, for the rectangular density profile in Eq. (127).

8. Plot of ni(r) versus r for the bell-shaped density profile in Eq. (128).

9. Table of Rew/w, and Imw/w, versus a = 41fmc2/Bg [Eq. (125)] for b/a = 3, rb/a = 2 and I = 2

for the bell-shaped density profile in Eq. (128).

10. (a) Plots of ni(r)/A and w-(r)/wc versus r/a for the rectangular density profile in Eq. (127) with

rb/a = 2, a = 0.5 and b/a = 3 [case presented in Fig. 7(a)]; (b) Plot of [w, - Iwb(r)]/w, versus r/a

obtained from Eq. (125) fore = 4 and a = 0.5; (c) Plots of Re6#t and Im6.6 versus r/a obtained from

Eq.(125) for I = 4 and a = 0.5.

11. (a) Plots of nb(r)/4 and wb(r)/wc versus r/a for the bell-shaped density profile in Eq. (128) with

rb/a = 2, a = 1.0, and b/a = 3 (case presented in Fig. 9); (b) Plot of [w, - 1a,(r)]/wr versus r/a

obtained from Eq. (125) for 1 = 2 and a = 1.0; (c) Plots of Re64/ and Im84/ versus r/a obtained from

Eq. (125) for t = 2 anda = 1.0.

12. Tables of Rew/we and Imw/wc versus I [Eq. (125)) for b/a = 3, rf/a = 2, rF/a = 7/5, and (a)

a = 0.5, and (b) s = 0.2, for the hollow density profile in Eq. (131).
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13. (a) Plots of ni(r)/k and wF(r)/w, versus r/a for the hollow density profile in Eq. (131) with rn/a

7/5, rt/a = 2, b/a = 3 and a = 0.5 [case presented in Fig. 12(a)]; (b) Plot of [w, - T(r)j/u

versus r/a obtained from Eq. (125) for I = 2 and a = 0.5; (c) Plots of Re6q4 and Im4/ versus r/a

obtained from Eq. (125) for I = 2 and a = 0.5.
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RO d

/b

B (x)=B .A r

00(r =a) =0

o00(r=b) =V

Fig. 1: Cylindrical diode configuration with cathode at r = a and anode at

r = b, and applied axial magnetic field Bo(x) = Boi6. Equilibrium electron

flow is in the O-direction.
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Fig. 2: (a) Rectangular density profile ni(r) assumed in Eq. (18). (b)

Corresponding angular velocity profile wj-(r) in Eq. (19).
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Fig. 3: Class of equilibrium density profiles nb(r) that are (a) stable [Eq.

(55)], (b) unstable [Eq. (61)], and (c)unstable [Eq. (61)], for low-frequency

flute perturbations satisfying Eqs. (44)-(46).
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Fig. 4: Hollow electron density profile that exhibits strong diocotron in-

stability (R.C. Davidson, Theory ofNonneuial Plasmas, Benjamin, Reading,

Mass., 1974).
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Fig. 5: Rectangular density profile no(r) assumed in stability analysis in Sec.

VI.A. A large-aspect-ratio diode with a > A, A, is assumed.
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Fig. 6: Density profile nb(r) with density bump that leads to the resonant

diocotron instability discussed in Sec. VI.B.
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(a): a - wob/w 0.5

I Rew/we, Imw/w,
1 0.066 0.59 X 10-
2 0.209 1.32 x 10-
3 0.417 2.35 x 10-2
4 0.658 2.44 X 10-2
5 0.867 0.26 x 10-2

(b): a = w, 6/w' = 0.2
I Rew/1i Imw/w,
1 0.028 1.65 X 10-4
2 0.077 2.79 x 10-4

3 0.143 2.49 x 10-4

4 0.219 1.76 x 10-4

5 0.298 1.22 x 10-4

Fig. 7: Tables of Rew/w, and Imw/w, versus 4 [Eq. (125) for b/a = 3,

rb/a = 2, and (a) a = 0.5, and (b) a = 0.2, for the rectangular density

profile in Eq. (127).

43

I



4

I
N
N
NNN
N

n~(r) ~
N
N
N

Cathode

0

A

-Anode

ba

Fig. 8: Plot of n (r) versus r for the bell-shaped density profile in Eq. (128).
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S= 2; b/a =3; rda=
8 Rew/w, Imw/wc

0.48 0.074 0.005 x 10-1
0.5 0.077 0.012 x 10-1
0.6 0.089 0.067 X 10-1
0.7 0.101 0.178 X 10-1
0.8 0.117 0.397 X 10-1
0.9 0.156 0.779 x 10-1
1.0 0.248 0.977 x 10-1

Fig. 9: Table of Raw/w, and Imw/w, versus a = 4wikmc2/B2 [Eq. (125))

for b/a = 3, rb/a = 2, and I = 2 for the bell-shaped density profile in Eq.

(128).
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Fig. 10(a): Plots of ni(r)/Ab and w-(r)/wc versus r/a for the rectangular

density profile in Eq. (127) with rb/a = 2, a = 0.5 and b/a = 3 [case

presented in Fig. 7(a)].
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Fig. 10(b): Plot of [w, - Iwb-(r)]/w, versus r/a obtained from Eq. (125) for

I = 4 and a = 0.5 for the rectangular density profile in Eq. (127).
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Fig. 10(c): Plots of Re6qV and ImnOe versus r/a obtained from Eq. (125) for

I = 4 and a = 0.5 for the rectangular density profile in Eq. (127).
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Fig. 11(a): Plots of ni(r)/k and wi-(r)/w versus r/a for the bell-shaped

density profile in Eq. (128) with rb/a = 2, a = 1.0, and b/a = 3. (case

presented in Fig. 9).
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Fig. 11(b): Plot of [w, - Iwb(r)]/w, versus r/a obtained from Eq. (125) for

I = 2 and a = 1.0 for the bell-shaped density profile in Eq. (128).
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Fig. 11(c): Plots ofRe6#o and Im5qV versus r/a obtained from Eq. (125) for

I = 2 and a = 1.0 for the bell-shaped density profile in Eq. (128).
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(a): a = 41rkmc/BO = 0.5
I Rew/w, Imw/w,
1 0.069 0.25 x 10-1
2 0.144 0.59 x 10-
3 0.221 0.84 X 10-1
4 0.301 0.86 x 10
5 0.400 0.45 X 10-1

(b): a = 4rwftmc2/B 2 = 0.2
Rw/w_ Imw/w,

1 0.025 0.095 x 10-1
2 0.051 0.206 X 10-T
3 0.079 0.282 X 10-1
4 0.107 0.266 x 10-
5 0.151 0.013 X 10-

Fig. 12: Tables of Rew/w, and Imw/we versus f [Eq. (125)] for b/a = 3,

rf /a = 2, r;/a = 7/5, and (a) 8 = 0.5, and (b) s = 0.2, for the hollow

density profile in Eq. (131).
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Fig. 13(a): Plots of ni(r)/fh and wF(r)/w versus r/a for the hollow density

profile in Eq. (131) with rF/a = 7/5, rf-/a = 2, b/a = 3 and a = 0.5

[case presented in Fig. 12(a)J.
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Fig. 13(b): Plot of [w, - ewi-(r)]/w, versus r/a obtained from Eq. (125) for

I = 2 and a = 0.5 for the hollow density profile in Eq. (131).
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Fig. 13(c): Plots ofRc6qV and Imb4l versus r/a obtained from Eq. (125) for

I = 2 and a = 0.5 for the hollow density profile in Eq. (131).
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