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Abstract

An unstable, highly intermittent state of turbulence is observed to evolve from a quiescent

homogeneous plasma that is linearly stable. This intermittent state, which consists of isolated

phase space density holes, produces a pronounced non-Gaussian distribution of fluctuation

amplitudes. The skewness becomes increasingly more negative with time. The plasma is

nonlinearly unstable because the holes grow in amplitude by accelerating to regions of

higher average phase space density. The instability can be interpreted as a collection of

colliding, growing holes and, in its early stages, is consistent with theoretical predictions

for the clump instability. A series of runs with a single isolated hole indicates that an

isolated hole grows for any finite electron-ion drift velocity. The isolated hole growth rate is

consistent with theoretical predicitions. The implications of the instability to laboratory and

space plasma are discussed.
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I. Introduction

We report here on a series of computer simulations that were designed to investigate

localized non-wave-like phase space density fluctuations in plasma. Such fluctuations -

called "clumps" ' - have been shown to be an important component of the turbulence

observed in recent computer simulations. For example, it was observed in the one species

simulations of Ref. 2 that the decay of plasma fluctuations from a variety of initial conditions

tends to produce clump fluctuations. Such clumps can be either depletions (holes; bf < 0)

or enhancements (bf ; 0) in the phase space density. Here, 6f = f - fo, where / is the

phase space density and fo = (f) where (..) denotes a spatial average. A depletion or

hole in the phase space density tends to self-bind and, when in isolation, forms the trapped

particle phase space eddy of a Bernstein-Greene-Kruskal (BGK) equilibrium. Enhanced

phase space material self-repels and fills the interstitial phase space regions between the

holes. In the related work of Ref. 3, it was shown that the mean square fluctuation amplitude

due to clumps can increase with time in a two-species plasma, i.e., clumps can be unstable.

The condition for clump instability can be much less restrictive than that required for linear

instability of waves. In particular, the simulations of Ref. 3 show that the clump instability

in a one dimensional, ion-electron plasma with electron drift can occur for electron drift

velocities significantly below that required for the linear ion-acoustic instability. We pursue

these two investigations further here by probing the dynamics of isolated holes and the

relationship of holes to the clump instability.

The simulation experiments can be divided into three classes depending on the initial

conditions used. In one class of runs (random starts), we simulated an initially quiescent

plasma. The initial electrostatic energy was near the thermal level and was due only

to a random distribution of discrete particles. No macroscopic or collective fluctuations

were present initially. Spatially homogeneous ion and drifting electron Maxwellian velocity

distribution functions were set up initially. In the second class of runs (enhanced starts), the
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initial ion fluctuation level was enhanced above the thermal level. This was acomplished by

redistributing ions in phase space so that the phase space was filled with a "checkerboard"

pattern of closely packed ion phase space holes (of the same depth) and, in order to

conserve charge, an equal number of charge enhancements between the holes. In the

third class (isolated hole runs), a single isolated phase space density hole was introduced

initially into the ion distribution function which was otherwise a spatially homogeneous

Maxwellian (the initial electron distribution function was also Maxwellian). Discrete particle

fluctuations were suppressed initially by judicious rearrangement of the discrete particles (a

so-called "quiet start"). Detailed phase space diagnostics were used to determine: (1) the

emergence of isolated phase space holes from homogeneous background turbulence; (2)

the probability distribution of fluctuation amplitudes P(6f); (3) the growth rate of isolated

holes and its dependence on electron drift velocity; and (4) the effect of discrete particle

collisions (thermal fluctuations) on hole growth.

The principal results - discussed at length in Sec. IVa and Sec. IVb - can be

summarized as follows

A. For random start runs, an instability occurs for electron drift velocities VD >

1.5Vth.i, i.e., significantly below the, linear stability boundary of VD = 3.92vth,i for the

simulation parameters used (Vth,i is the ion thermal velocity). This onset of instability

from thermal fluctuations for small but finite drift velocity is consistent with theoretical

predictions4'. In the early stage of the instability, the distribution of fluctuation

amplitudes is nearly Gaussian and the growth of the instability is consistent with

theoretical predicitions for the clump instability5 .

B. As the instability further evolves in the random start runs, isolated phase space

density holes emerge and - except for infrequent encounters with other holes - tend

3



to persist and coexist with the smaller velocity scale background turbulence described

in (A). The relative isolation or concentration of the holes in a small fraction of the

available phase space - a feature we refer to as hole intermittency - appears to be

a natural consequence of the turbulence. Once produced, the holes tend to grow

in depth [see (E) below] by accelerating to regions of higher average phase space

density. This intermittency and growth of the holes causes the distribution of fluctuation

ampitiudes to become non-Gaussian with the skewness becoming more negative with

time. This is inconsistent with the Gaussian or near Gaussian distribution assumed by

many analytical theories of plasma turbulence.

C.. The results of the "enhanced start" runs were similar to those of the random

start runs. Instability occurred for electron-ion drift velocities vD > 1 .5vth,i as in (A)

and hole intermittency developed as in (B).

D. Discrete particle collisions (thermal fluctuations) tend to destroy the small scale

velocity structure of holes and contribute to the finite marginal point observed in the

random start runs [see (A)]. We have estimated this collisional decay rate by measuring

the effect of discrete particle collisions on the growth rate of an isolated hole. We

adopt a simplified model4 for the hole growth rate in the presence of discrete particle

collisions: -Y = - + -Y where -Yd = -D/AU 2 and 11 is the isolated hole growth rate

when -Y = 0. Here D is the velocity space diffusion coefficient due to discrete particle

fluctuations and Av is the velocity width of the hole. Simulation results support this

model and indicate that the marginal point observed in (A), and Ref 3, is due more to

hole-hole collisions than to discrete particle collisions.

E. In the single isolated hole experiments, hole growth or instability was stt died in
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detail. Hole growth occurs in regions of velocity space where the electron and ion

average velocity gradients are nonzero and opposing. We- find that the isolated hole

instability is due to a simultaneous increase ih both the hole velocity width and depth

as the hole accelerates to a region of higher average. phase space density. In contrast

to a linearly unstable ion-acoustic wave, we observed isolated hole acceleration and

growth in a drifting ion-electron plasma for finite values of the electron drift velocity

well below the threshold value (1.5Vth.i) observed in (A). Apparently, an isolated hole

will grow for arbitrarily small nonzero drifts.

The observed isolated hole growth rate is consistent with recent theoretical predict-

ions4. In the theory, acceleration of an ion hole, for example, results from momentum

exchange with resonant electrons that are reflected by the hole. If the velocity

gradient of the average electron distribution function is positive (Bo.(t)/0t > 0). at

the velocity of the hole, the hole absorbs net momentum and decelerates to regions

of higher fos. The hole depth thereby increases since fi inside the hole must remain

constant. The hole depth and velocity width increase simultaneously, since these

quantities are related to each other through the hole self-binding (trapping) condition.

F. . The simulation results (A) - (E) are consistent with a model that describes the

unstable turbulence of the random and enhanced start runs as a collection of colliding,

growing phase space density holes 2- 5 . If we denote the fractional phase space

area occupied by holes as p (the hole "packing fraction"), then the turbulence is

composed of a p < } distribution of intermittent, isolated holes emerging from a p

background of smaller velocity scale hole fluctuations. The instability observed is due

to the production of new holes that result from the turbulent mixing of the average

phase space density and to the acceleration of the emerging holes. Hole intermittency

can develop and persist because an emerging hole can grow larger in amplitude than
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its neighbors. This growth makes the hole increasingly less susceptible to decay by

collisions with other holes.

The finite threshold drift required for instability in the enhanced runs (C) can

be explained by the fact the collisions between holes lead to their decay. In the

enhanced start runs, the onset of the instability occurs when the holes are densely

packed (the hole packing fraction is one half) and, therefore, collisions between

holes are frequent. Thus, instability can only occur when the growth rate of the holes

exceeds their destruction rate due to hole-hole collisions. When the.packing fraction

is one half, the balance between these two competing rates occurs at a threshold drift

of VD = 1.5t, .2. 5. Note that in the case of an isolated hole (E), hole-hole collisions

are absent and any finite drift velocity will lead to instability.

Collisions between holes can also explain the result that the enhanced and random

start runs become unstable at the same threshold drift. In this regard, it is useful to

think of the thermal fluctuations as a collection of holes. Discrete particle collisions

can then be described as collisions between these "thermal holes"4 . Recall that the

onset of instability for the random start runs (A) occurred when the distribution of

fluctuation amplitude, P(6f), was nearly Gaussian. For holes with depths equal to

the average thermal hole depth, the- packing fraction is equal to one half so that

the balance between growth and decay for these holes occurs at the threshold of

VD = 1. 5 Vth, . Note that the holes with depths greater than the average thermal depth

have p < 1 and therefore would grow at a lower threshold drift. However, such holes

are exponentially smaller in number4 so that instability occurs close to the p = 2

threshold of VD = 1.5Vth,i.

These results depict a turbulent plasma that is fundamentally different than the traditional

concept of waves and their linear instabilities. The results imply that instability can occur

in plasma arbitrarily close to thermal equilibrium - one only needs a sufficiently small hole
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packing fraction. As we will discuss in Sec. VI, this conclusion is of practical interest to both

space and laboratory plasma since hole-clump instability can occur in plasma heretofore

considered stable to linear ion acoustic waves. For example, though ion-acoustic waves

are believed stable in current driven plasma where electron and ion temperatures are

comparable and the current is small, holes and clumps can be unstable in such plasma.

In addition, the hole-clump instability is consistent with the observations of double layers

(holes) along auroral field lines6 and may be relevant to anomalous reconnection processes

in magnetic field reversed configurations such as .the earth's magnetotail.

II. Theoretical Review

As discusssed in the Introduction, clump fluctuations can be either depletions (holes)

or enhancements in the phase space density. Since a hole self-binds while a phase space

enhancement self-repels, the holes play a central role in the nonlinear evolution of the

plasma. This is particularly true when the hole packing fraction is small. Then, the plasma

can be viewed as a collection of infrequently interacting, approximate BGK equilibria.

However, when the packing fraction is nearly one half, frequent collisions between holes

significantly destroy individual hole equilibria and identity. The turbulence is then more

appropriately described as small granulations (both positive and negative) in the phase

space density. We refer to these small velocity scale fluctuations as clumps.

The origin of a clump fluctuation can be traced to the mixing of the phase space density

by turbulent electric fields in a Vlasov plasma'. Because the Vlasov equation preserves

phase space density along particle orbits, regions of different density cannot interpenetrate

(the flow is incompressible). Any mixing of the phase space density will, therefore, be

imperfect and lead to a graininess of the distribution function. Such a phase space density

granulation or clump is a group of particles, all moving at approximately the same speed.

This macroparticle will tend to be destroyed by the velocity dispersion of its constituent
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particles and by "collisions" with other fluctuations in the plasma. As a result. neighboring

particles in a clump will undergo stochastic instability. The neighboring orbits will deviate

from each other exponentially in time - the characteristic time for separation being referred

to as the Liapanov time or clump lifetime. In this simplified stochastic instability model of

clumps, the mean square fluctuation level decays on the Liapanov time scale. However,

as observed in the simulation described in Ref. 2, neighboring particle orbits undergo

stochastic instability, but the mean square fluctuation level decays at a slower rate than

the Liapanov rate. The reason for this discrepancy lies in the self-binding feature of the

holes. Although holes tend to collide and fragment (on the Liapanov time scale), the hole

fragments tend to recombine into new hole fluctuations. The recombination tendency of

the holes is not an individual orbit modification and, therefore, is not described by the usual

stochastic instability model. At present, there is no analytical theory of clump decay which.

includes hole self-binding. However, a phenomenological model has been developed that

is consistent with the computer simulations described in Refs. 2 and 3.

An important feature of clump fluctuations is their ability to regenerate themselves and

grow in amplitude (become unstable)1'". Though velocity dispersion and diffusion tend to

destroy a clump once it is produced, the turbulent electric fields simultaneously create new

clumps by mixing the phase space density. Moreover, existing clumps tend to accelerate to

regions of larger phase space density and thereby grow in amplitude. Plasma will be unstable

to clumps when these production rates exceed the clump destruction rate. This "clump

instability" occurs for a finite electron drift velocity in a drifting ion-electron plasma and has

been observed in the computer simulations of Ref. 3 and in the numerical solution of clump

model equations8 . The clump model assumes that p %- I and therefore describes clump2

turbulence by the two-particle fluctuation correlation function (bf(zi, vi1, t)bf(X2 , V2, t)). The

model equations are of the form

+ T12 )(6f(1)6f(2)) = S12  (1)

where the source term S12 describes clump acceleration and the mixing of the average
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phase space density. The T.2 term describes clump decay. The finite electron drift velocity

required for clump instability is therefore due to the competition between the T2 and S12

terms in Eq. (1). In the simplest case where the particles are ballistically streaming and

diffusing in velocity space, neighboring particle orbits undergo stochastic instability. Then,

clump fluctuations decay at the rate T12  v r~(Z.. ) where r(x_, v_, given by Eq. (48),

is the characteristic time for two orbits (separated initially by z. =X1 - z, V_ = VI - V2) to

remain correlated. However, the simulations of Ref. 2 suggest that the self-binding of the

hole fluctuations reduces the decay rate to T12 = (bra)-' where b - 3. With this simplified

model of hole self-binding, the calculations of Ref. 5 show that the clump growth rate

derived from Eq. (1) agrees well with the growth rate observed in the simulations of Ref. 3

where p remained approximately one half during the measurements.

Another important feature of clump fluctuations is not (and probably cannot be)

described by a model equation such as Eq. (1). As discussed in Ref. 2, decaying turbulence

[corresponding to S12 = 0 in Eq. (1)] evolves into a highly intermittent state consisting of

isolated phase space holes. The mean square fluctuation level (6f2) decays as the phase

space area occupied by the holes decreases with time, i.e., the hole packing fraction p

decreases with time. This characteristic of decaying turbulence is outside the scope of

Eq. (1) which assumes that fluctuations are closely packed in phase space, i.e., p is close

to one-half. A related difficulty with Eq. (1) is that the two-point fluctuation correlation

function cannot distinguish between positive fluctuations (6f > 0 which self-repel) and

negative fluctuations (6f 5 0 which self-bind). In the highly intermittent state where p < 1,

regions where 6f 0 will have a very much smaller |bf I than regions where 6f < 0. As

reported in Ref. 2, such a state of hole intermittency with p < 1 has a pronounced non-

Gaussian distribution of fluctuation amplitudes P(6f). There, P(6f) is significantly skewed

towards if < 0. Moreover, the skewness increases with time as the turbulence decays and

p decreases.

Equation (1) similarly fails in describing the unstable, intermittent turbulence discussed
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in Sec. IV. There, we report that a highly intermittent state of hole turbulence evolves

from an unstable plasma characterized initially by p -f turbulence and a I'(bf) that is

Gaussian. The hole intermittency occurs for both nonlinearly (clump) unstable and linearly

unstable plasma. In both cases, isolated holes emerge from the p - . background and

P( f) becomes strongly non-Gaussian. The plasma is therefore driven from a p a j state

to one where p < 1. However, the phase space mixing and diffusion terms in Eq. (1) tend

to drive the plasma toward p - 4 rather than toward p < 4.

Although Eq. (1) applies only to the p 4 case, it nevertheless contains some of

the features of the isolated hole instability. As discussed in Refs. 4 and 5, the clump

instability can be viewed as the many-interacting hole analog of the isolated hole instability

(see also Sec. V below). The difference between the two regimes lies in the effects of

large and small hole packing fraction p. In the isolated hole instability, p approaches zero.

Then, neglecting discrete particle collisions, an infinitesimal free energy source will lead

to hole acceleratiorn and growth. For example, an ion hole whose velocity u is such that

afo,(u)/u > 0 will absorb net momentum from reflecting electrons and thus, decelerate

unimpeded to regions of higher phase space density. However, when p approaches 4,
as in the clumnp instability, collisions between holes lead to fluctuation decay and, hence,

to a finite free energy threshold for instability (i.e., collisions between holes impede hole

acceleration). In thi's latter regime, hole-hole collisions also mix the phase space density and

thereby produce new holes throughout the phase space. These features are represented in

Eq. (1). The T12 term describes collisions between fluctuations while the source term S12 -

composed of two terms - describes hole acceleration (growth) as well as the production of

new holes by the mixing of the average phase space density. Therefore, neglecting discrete

particle collisions, the clump instability described by Eq. (1) "reduces" to the isolated hole

instability, since, as p -+ 0, the fluctuation decay term T12 -+ 0 and the source term S12 of

the growing species contains only the contribution from hole acceleration. In this sense,

the isolated hole instability and the clump instability are complementary regimes of the same
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nonlinear instability.

Ill. Simulation Code and Diagnostics

For our simulations we used a highly optimized, one-dimensional electrostatic code with

N, = 102'I0 particles per species and a spatially periodic system of length L = 10XxD (XD is

the Debye length). Therefore, the number of particles per Debye length was noXD = 3259.5

(no = N,/L is the spatial particle density). The electrons and ion trajectories were obtained

by using a finite time step of 0.2w-' (w,. is the electron plasma frequency) and solving

Poisson's equation on a grid divided into N, = 512 zones. A spatial average over the length

of the system is defined as

(F)= Fd. (2)

- Because small velocity scale fluctuations such as clumps are very easily destroyed by

discrete particle collisions, we would have preferred to use as large a value of noXD as

possible. Given the constraints of limited computer resources, we chose the relatively large

value of noXD _- 3300. As we report in Sec. IVc, this value of nOXD did not cause significant

disruption of the small scale velocity structure of the fluctuations. It is interesting to contrast

this case with waves that have velocity structure on the order of Vih and are, therefore,

less disrupted by discrete particle fluctuations. This suggests that high collisionality may

be one reason that clump fluctuations have not been previously observed in the numerous

computer simulations of the last twenty years. Because of our limited computer time and

our use of large noXD, we were forced to use a low value of ion to electron mass ratio

mi/m,. We chose mi/m, = 4 so that the shortest electron and ion response times would

not be too disparate (wp, = 2w., for mi/m, = 4).

Our particular choices of parameters ensured that rapid quasi-linear plateauing of the

particle distribution functions did not occur and thereby precipitously shut off the source of

available free energy necessary for instability. The choice of low mass ratio and large noXD
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resulted in a plateau rate due to discrete particle collisions that was much less than typical

instability growth times. Use of a larger mass ratio would lead to a more narrow resonant

velocity region in the elctron distribution function and therefore, to a more rapid plateauing

rate. In addition, our choice of periodic system length , ensured (for our chosen mass

ratio) that electrons reflected by an ion hole would not transverse the periodic system length

before the hole could grow appreciably. If this were not the case, the electron distribution

function would plateau in the resonant velocity region of the hole, thereby dissipating the

free energy driving the hole growth.

As is. convenient in particle-mesh simulations, we modified the interparticle force at

short distances to better approximate a collisionless system. This was done by choosing

finite-size particle shapes and interpolation schemes designed to satisfy various criteria,

e.g., conservation of momentum or energy, isotropy of force, accuracy at short distances,

or to reduce the influence of unphysical, large wavenumberso. These choices may be

combined into a single "shape factor," S, which appears in the Fourier transform of

Poisson's equation as k2qO(k) = 47rS(k) f dv 81(k). We have repeated a single isolated hole

experiment with numerous shape factors that test each of these criteria and have found

no significant physical differences in the growth rate of the hole or its evolution in phase

space. We are confident that our physical results are independent of simulation technique.

For initial conditions, we used an unshifted Maxwellian velocity distribution function

for the ions {fo,(v) = (2rvth, -/ 2 exp[-, 2 /(2 4h)} while for the electrons we used a

shifted Maxwellian with drift velocity vD relative to the ions {fe 0 (v) = (2V ,)-1/ 2 exp[-(v -

vD) 2/(2Vt,,)1}. At v = 0 in the ion distribution function, the average number of particles in

a phase space cell of size Az. = 1XD by Av. = 0.lv,4,, was (N) = 130.35. The electrons

had typical drift velocities in the range 0 < vD 5 4 .2Veh,i. For "random starts", the particles

were distributed randomly, but homogeneously, in space. The initial electrostatic energy

was, therefore, close to the thermal (shielded discrete particle) level. Figure 2a shows

the initial ion phase space typical of the random start. In the "quiet starts" discussed in

12



Sec. lVb, an ion hole was introduced initially, but all other initial fluctuations, i.e., thermal

fluctuations, were suppressed. This typically produced electrostatic energy levels some

1O- of the thermal level. Thermalization from.the quiet start generally took some 20-w1;.

The intitial ion phase space typical of the quiet start is shown in Fig. 8a.

We have found here and in previous work2 .3 that the conventional diagnostics used in

simulations of plasma turbulence do not expose some important features of the turbulence.

For example, phase space pictures have a strong intuitive appeal (and we include some

of them here), but they do not reveal the detailed local structure and evolution of the

fluctuations. The mean square electric field - another widely used diagnostic - is also

insensitive to local phase space structure since the electric field E(z, t) is a velocity integral

over the distribution functions. A related problem is that plasma normal modes can easily

be excited (e.g., by initial conditions) and can dominate the mean square electric field.

For example, long-lived electron plasma oscillations at phase speeds Vph > vth,, can

mask localized phase space fluctuations at phase speeds u, 5 vt,.,. The conventional

electric field spectrum [E 2(k) where k is the wavenumber] will not resolve these two distinct

fluctuations since a resolution of phase velocity is required. We have therefore developed

detailed phase space diagnostics that are sensitive to the local phase space properties of

the fluctuations.

Specific diagnostics were devised td probe the phase space structure of an individual

hole. We focused primarily on ion holes although runs with electron holes yielded analogous

results. Initially, 1000 test or "marker" particles were distributedl uniformly inside the phase

space boundaries of the ion hole. The test particles did not contribute to Poisson's equation

and did not affect the fields or forces in the system. The marker particles do not describe

the full phase space width (Ax, Av) of a hole but, to the extent that they remain grouped

together, give information on time history of the hole. For example, if the hole accelerates,

but remains as a trapped particle structure, the marker particles will remain trapped in the

hole and will provide information on the hole motion. In particular, knowledge of the marker
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particle positions allow an instantaneous measurement of the depth of an acclerating hole.

We display the marker particles in some of the phase space pictures below. The motion of

the marker particles is particularly evident in Figs. 5.

We performed a number of additional detailed phase space diagnostics every los'.

We divided the phase space into cells of size Az. by Av. and counted the number N of

particles per cell. We then calculated the mean number of particles per cell (N) and the

fluctuation about the mean, 6N N - (N). The particle distribution function, averaged

over a cell is 7 = N/(bx6v) and the fluctuation is 67 6N/(6z6v). Here, we denote the

average over a cell by the overline.

The measurements of the number fluctuation bN were used to calculate the probability

distribution function P(S7) of finding a fluctuation 67 = 6N/(6z6v) in a phase space cell

of size 6x by bv. The importance of P(67) lies in the fact that it contains information

about both the sign and magnitude of the fluctuations. Any tendency of the turbulence

to preferentially produce negative fluctuations in isolated regions of phase space will be

readily apparent from the form of P(A7). We also note that P(37) contains information about

all the correlation functions, i.e., the familiar two-point correlation function evaluated at

zero phase space separation is given by f dXj f 2P(67). Although the two-point correlation

function is indifferent to the sign of 6f, the skewness a of P(T7)

f d6f6f2 p(7) (3)
[f d367 jP(M])]3/'

can be used to probe negative fluctuations. We obtained P(37) by making a histogram of

the 6N measurements. Typical phase space window sizes varied between XD A 1T < 3)-D

and (.05thi 5 Iv. < O. 3vth, .

Information on all the fluctuations in the plasma, i.e., waves, clumps and discrete particle

fluctuations, will be contained in 6N and P(Rf). Unless we contrive the initial conditions

(e.g., suppress all initial fluctuations with a "quiet start") discrete particle fluctuations will

always be present. We can estimate their effects as follows. First, for discrete particles that
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are randomly distributed in a cell, (bNl) = (N). However, for fluctuations moving at phase

speeds near the zeros of the plasma dielectric function, (N 2 ) will be enhanced through

the emission and absorption of weakly damped waves. We have calculated this enhanced

contribution to (6N 2 ) and have found it to be, consistently, much smaller than the values

of (6N 2 ) observed during instability. Next, the effect of particle discreteness on P(Rf) can

be estimated by considering P(T)&, where, in each cell, f is Gaussian with a mean value

fo:

P(U)h= [27rfO/(N)j-112xP [N)(7)] (4)

Therefore, the width of the discrete particle contribution to JP(Ff) will be small for large

(N), i.e., cells with large Ax, and Av,. This also implies that the smaller cells - where

the contributions to P(37) will be due almost entirely to discrete particle fluctuations -

will have a (nearly) Gaussian P(Tf). The P(T7) measurements discussed in this paper are

significantly broadened above the discrete particle level. We stress again the importance

of this low discrete particle collisionaility in the simulations. Use of too few particles leads

to the destruction of the clumps' small scale velocity structure.

IV. Simulation Results

a. Random Starts and the Development of Hole Intermittency

We made a series of runs with random starts (see Sec. 1ll) and various electron

drift velocities below the linear stability boundary of 3.gvth,i. We stress that no hole

was introduced initially in the particular runs discussed in this Section IVa. Results for

a representative run with VD = 3.5vth,, are shown in Figs. 1 - 4. Figure 1 shows the

electron and ion distribution functions at w,,t = 0 and at 'w,t = 260. The initial ion

phase space is shown in Fig. 2A. As reported in Ref. 3, such a plasma is nonlinearly

unstable. Fluctuations develop and considerable distortion of the ion distribution function
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and flattening of the electron distribution function take place (see Fig. 1). This plateauing of

the electron distribution function appears to be the saturation mechanism of the instability.

As discussed in Ref. 3. similar features have been observed for drift velocities in the range

.5 v'.i ! ?'d < 4.15th.i. This range contains drifts above and considerably below the linear

stability boundary of VD = .L9Pth.i for this problem.

The emergence of intermittent, macroscopic phase space holes from the near thermal

noise of Fig. 2A can be seen from the time sequence of phase space pictures of Figs. 2B

through 2X. Figure 28 is the ion phase space at w,, t = 230 while each subsequent figure

is low;' later than the preceding one (Figure 2X is at w,,t = 450). The y-axis is normalized

ion velocity v/vih., with divisions of 0.5. The velocity v = 0 is at the exact midpoint of the

y-axis of the pictures. The z-axis is normalized position X/XD with divisions of 2.0.

Although holes are evident in any one of the pictures in Fig. 2, the more interesting

observation is that cf individual hole motion and persistence throughout the run. Therefore,

a large number of pictures are presented in Fig. 2 in order to emphasize the time evolution

of holes at the expense of illustrating more detailed structure at a fixed time. However,

in spite of a smaller picture size, an indivdual hole can be identified and its motion can

be followed in time from picture to picture. This can be done as follows. Once a hole

is identified in a particular picture, its position in the next picture can be anticipated by

knowing the hole vilocity and the time interval 10w- 1 between pictures. For example, the

ion hole, which we denote H1, at phase space coordinates (z, v) = (4\D, 0.25vth,i) in Fig.

2B can be traced through succeeding pictures to the coordinates (x, v) = (31XD, -0. 3 vth,i)

in Fig. 21. Two other holes in Fig. 2B - H2 at (3 XD, vth,i), and H3 at (2-D, 1.5Vth,,) -

can be traced forward to (22XD, 0.5vth,1 ) and (31XD, 0.75Vh, ) in Fig. 21. In this process,

all three holes have emerged out of the homogeneous background shown in Fig. 2A. As

holes H1, H2 and H3 evolve, additional new holes emerge at (2XD, 1.2vth,1 ) in Fig. 2K, at

(5XD, 1.5Vth .) in Fig. 2P, and at (5XD, Vth,i) in Fig. 2R. These fluctuations are not wave-like,

but are localized phase space density holes with scale lengths on the order of several
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Debye lengths and velocity widths less than the thermal velocity.

Except for infrequent encounters (collisions) with other holeeW the emerging holes tend

to grow by decelerating to regions of larger phase space density. Consider holes H2 and

H3 in Fig. 28. As H3 decelerates to (8X,),0.6Vth.i) in Fig. 2C, it collides with H2 (see

Figs. 2C - 2F). The two holes subsequently decouple (see Figs. 2G and 2H) and each

resumes its deceleration. The deceleration of H2 can be seen by noting its locations at

(22XI,0.5Vth.i) in Fig. 21, (25X 0, 0.3vtI.j) in Fig. 2K, (26\D, 0) in Fig. 2M, (2 3XD, -0.5Vth,i)

in Fig. 20, (13XD, -0.75vth,,) in Fig. 2R, (29XD, -1.2vth,,) in Fig. 2U, and (23XD, -1.4vth,j)

in Fig. 2V. The hole velocity passes through zero in Fig. 2L. For hole velocities greater

than zero, the hole velocity width Av appears to increase with time, while for velocities less

than zero, the width decreases. Alternate growth and decay of the hole occurs although

the hole acceleration remains negative throughout the hole's. motion. Similar behavior can

be seen in the motion of hole H1 at (4XD, 0.25vtl,,) in Fig. 28: its velocity passes through

v = 0 at w,t = 240 in Fig. 2C and through v = -0.5t,,j at w,.t = 320 in Fig. 2K. Hole Hi

subsequently decays and disappears into the background turbulence.

We obtained quantitative measurements of the ion hole deceleration by measuring P(37)

and its time dependent skewness a(t, v) for various phase velocities v/vth, i = 0,0.25, 0.5 and

1.0 in the ion distribution. These are shown in Fig. 3 for a window of size AZw = XD

by Av, = O.1.th,i. Though P(37) is nearly Gaussian early in the run, significant negative

skewness, i.e., a(t, v) < -1, develops as the instability evolves (jai values of order of or less

than 0.3 are statistical noise). The successive fall and rise of a(t, v) in time for progressively

smaller velocities v is evident from Fig. 3. The skewness a(t, v) is most negative when a hole

is at velocity v and time t. Therefore, a single decelerating hole will cause a(t, v) to assume

local minimum values for sucessively smaller velocities at increasing times. The local

minimum values of a(t, v) at (t, v) = (180w-', 0.5Vthi), (200w-, 0.25vth,,) and (240w-1, 0)

(see Fig. 2C) correspond to the presence of hole Hi at these (t, v) values. Although .(t, 0)

increases after hole H1 passes, it decreases again as hole H2 approaches v = 0. For
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example, hole H1 pass through v = 0 at wp,t = 240 (see Fig. 2C) while hole H2 pass

through v 0 at w,1 ,t = 330 (see Fig. 2L). We also detected the presence of a single hole

directly in I'(F7) Figure 4a shows 1'(R) at v= 0 before hole H1 has decelerated to v = 0

and Fig. 4b shows I'(U) when hole Hi is at ' 0. The presence of the hole H1 changes

I/(T) from Gaussian to non-Gaussian.

Similar runs made with varying electron drifts down to a value of va = I. 5 vth., also show

intermittent turbulence. This tendency of the turbulence to preferentially produce relatively

isolated holes during the simulations is evident from the a(t, v) curves of Fig. 3. When

averaged over phase velocities v, the average skewness is negative throughout the run.

The emergence of isolated holes from the background turbulence and their subsequent

persistence and growth appear to be general features of the turbulence.

These features of hole intermittency and growth are characteristic of turbulence that

evolves from a lineadly unstable plasma as well. Figures 5 and 6 show electron and ion

phase space holes which evolved in a random start run with a drift of vD = 4.2Vt,i, i.e.,

above the linear stability boundary of VD = 3.9vth,i. For the same elapsed time, the holes

are much larger in depth and accelerate faster than those in the linearly stable case in

Fig. 2 where VD = 3.5Vt,i. This suggests that the hole growth rate increases with vD (see

Fig. 14). Figure 5 shows a time sequence of ion phase space pictures for this case where

hole self-binding and acceleration are spectacularly demonstrated. Though no ion hole was

initially introduced, ion marker particles were placed initially as shown in Fig. 5A. As the

instability evolved, an ion hole emerged and trapped some of the ion marker particles. As is

evident in Figs. 5B - 5J, the ion hole decelerated - carrying some of the ion marker particles

along with it. The hole deceleration is considerably faster than that of the ion holes in Fig.

2 where VD is smaller. The eddy-like phase space structure of the trapped marker particles

is apparent as they oscillate in the ion hole potential. The trail of marker particles in the

"wake" of the decelerating hole is also evident. These particles are disurpted and lost from

the hole due to the background turbulence (both thermal and collective fluctuations). In
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spite of these disruptions, the hole clearly grows and decelerates rapidly. The growth and

subsequent decay of the hole velocity width as it moves from v > 0 to v <. ( is also clear.

The trapping or self-binding feature of the holes is evident in the tendency of holes to

attract each other. Such tendencies to merge or coalesce can lead to "tidal" collisions as

in Figs. 28 - 2H, or to the formation of a new hole. Figure 6 shows the formation of a new

electron hole by the coalescing -of two existing (parent) electron holes. The parent holes

emerged spontaneously from the same linearly unstable, random start run that led to the

ion hole depicted in Fig. 5. The coalescing of holes has also been observed in Ref. 11 and

elsewhere. Apparently, hole coalescing tends to produce holes with progressively larger

spatial scales'". A close examination of Figs. 2R - 2X also indicates that the plasma tends

to. produce holes with larger spatial scales. Figure 6 shows that the coalescing electron

holes accelerate to a region of higher electron phase space density. The holes proceed

deep into the electron distribution function because the ion tail (with negative slope) has

been pulled out to these velocities by the turbulence (as in Fig. 1).

b. Isolated Hole Starts and Hole Growth

In order to further study the phase space hole growth observed in Sec. IVa, we made

a series of quiet start runs with an isolated ion hole initially present. The runs discussed in

this Section lVb all fiave an initial ion hole whose depth is /f/o = -0.6 and whose size is

AX = 6 D by Av = 0.2Vth, j. Holes with smaller j, Ax or Av yielded similar results but were

more difficult to study. For example, shallow holes were more difficult to see in the phase

space pictures. In addition, holes smaller in Av and I have correspondingly lower growth

rates. Consequently, such holes have a greater susceptibility to decay by discrete particle

collisions and (for the same system length and mass ratio) may not grow before free energy

is dissipated by quasilinear plateauing. The initial hole was prepared by "digging out" a

rectangular shaped hole in the ion phase space and placing the particles thereby removed

at random in a velocity strip of phase space that was centered at the hole velocity and had
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the same width Av as the hole. This strip of enhanced phase space density quickly streams

apart in x and self-repels apart in p so as to disperse throughout a large portion of the

phase space. Figure 8a shows the initial phase space density for a run with 1,J) = 3.01th.i

and is typical of the initial conditions used in the isolated hole runs discussed in this Section

IVb.

We made the initial I, Ax, Av values of the ion hole reasonably close to an equilibrium

BGK hole (see Sec. Va), but a precise equilibrium configuration was very difficult to prepare.

In particular, we did not take into account Debye shielding of the hole and adjustment of

the ion particles removed from the hole. Figure 7 shows a typical initial time sequence

(with 20w-I between Figures) where the initial rectangular hole equilibrates into a BGK

mode characterized by Av % 0.6vth, and AX :w 5 XD. Equilibration occurs at approximately

5Ow', i.e., a few trapping times. This time is considerably shorter than the time for the

discrete particle fluctuations to rise to the thermal level. The initial distortions of the phase

space hole are due to ion Landau damping and trapped particle oscillations in the hole as

equilibration occurs (see Sec. Va).

A case of linearly stable drift (vD = 3 .Ovth,i) is shown in Figs. 8 - 10. The initial

conditions for this run are shown in Fig. 8A. The ion hole placed initially at (IOXD, 1.5VMt, )

in Fig. 8A, has evolved to (22XD, 0.75uth,,) at w,t = 120 (see Fig. 8B). The deceleration

process continues as the hole passes through v = 0 at w,,t = 180 (see Fig. 8G). The hole

deceleration is also evident from the center marker velocity shown in Fig. 9. From Figs.

9 and 10, we note that the hole depth increases with time for positive hole velocities but

decreases for negative hole velocities. Referring to Fig. 1, it is appai ent that the hole depth

grows in regions where f f' < 0 but decays where f',f'i > 0. The cessation of hole

acceleration after w,,t = 280 (see Fig. 9) can be traced to the plateauing of the electron

distribution function as in Fig. 1. Similar to Fig. 5, Fig. 8 shows the wake of phase space

density disrupted from the accelerating hole. The initial portion of this disrupted hole mass

gets mixed into the background phase space density and disappears by w,t = 210. Similar
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to the random start run depicted in Fig. 2, new ion holes emerge out of the background

turbulence. One such hole ia evident at (13Xv, 1.25v,L.i) in Fig. 8F, while two others are

observed at (2X), I.25n,-. j) and (15A), l.5ftt. ) in Fig. 8H. These latter holes tend to collide

and coalesce into longer holes (see Figs. 8H - 8L). Despite the absence of any initially

prepared electron holes, large amplitude electron holes also develop (see Fig. 11).

Figure 12 shows the deceleration of the initially prepared ion hole for a drift of vD =

1.251,t.,. Note that this drift is below the drift for marginal stability observed in Ref. 3

(VD = 1.5vth,;). The loss of hole marker particles evident in Fig. 12B is due to hole decay

caused by discrete particle collisions. Figure 13 shows the center marker velocity in time.

The initial rise in marker velocity is due to hole ion Landau damping (see Sec. Va) while the

subsequent oscillation is due to trapped particle oscillations in the hole potential (see Sec.

Va). The steady average deceleration of the center marker as the hole moves to regions of

higher ion phase space density is evident.

A plot of the measured isolated hole growth rate yn against vD is shown in Fig. 14.

Discrete particle collisions and clump fluctuations were thought to be negligible early in the

run when the measurements were made. Moreover, since the growth rate depends on the

hole depth, we made the measurements on holes of the same depth. The solid curve in

Fig. 14 is a theoretical hole growth rate -Ih discussed in Sec. Va. Note that Fig. 14 implies

that an isolated hole grows for any finite drift velocity. However, for the clump instability

of Fig. 4 in Ref. 3(see also Fig. 19), a marginal point at finite drift is evident. We argue

in Sec. Vb that this difference is due to collisions between holes, i.e., the clump instability

can only occur if the decay rate resulting from hole-hole collisions can be overcome.

We also made a run with an initial isolated hole where VD = 4 .2 Vth,i, i.e., above the

linear stability boundary. As in the linearly stable cases, the isolated ion hole decelerated

and grew in amplitude. However, this linearly unstable case is more complicated since

linearly unstable waves evolve which interact with the hole. We are studying the hole-wave

interaction further and will present the results elsewhere.
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c. Effect of Discrete Particle Collisions

Electric fields due to particle discreteness can disrupt hole structure and cause hole

decay. We have made a series of runs to asses the effect of discrete particle collisions

in the simulations described here and in Ref. 3. We made runs with different particle

number N,, and therefore, different particle collisionality. In each case, an isolated ion

hole of size I/fo = -0.6, Ax = 5A , and Av = .25iot.i was introduced at v = 0.75Vek.

into what were otherwise quiet start initial conditions. Ion marker particles were introduced

into the hole so that the destruction of the hole by discrete particle collisions could be

observed. Comparisons between the various runs were then made after hole equilibration

had occurred and the background electrostatic energy had risen to the thermal level. In

each of the runs, the electron drift was VD = 1.25vth.,, i.e., 14 was below the point of

marginal stability for the clump instability observed in Ref. 3. Therefore, throughout each

run, the only fluctuations present were the initially present ion hole and the discrete particle

fluctuation level.

Under these conditions, we model the net ion hole growth rate as

I = 1H + I (5)

where -yd is the hole decay rate due to discrete particle collisions. We write -Yd as4

lYd(floXD) Di -'Oe.t~tV2h i (8)AV2)= nOXDII 2

where Av is the hole velocity width and Di is the ion velocity space diffusion coefficient

(the numerical factor # is determined below). Equations (5) and (6) are highly idealized and

are used here only for the purpose of estimating the magnitude of hole decay by particle

collisions. This idealized model assumes that the result of particle collisions is to reduce

the hole amplitude by a simple velocity diffusion process. Though the collision process is

more complicated than this, we believe that the simplified model embodied in Eqs. (5) and

(6) is a meaningful representation of the collisional decay. The simplicity of the model is
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useful since 7,, will be the same for each run (we keep the drift, ion hole size, and initial

phase space location of the hole fixed). We need only measure, - for the different uoXI

values to obtain -yd.

Figures 15A - 15C show the final (w,,,t = 560) ion phase space density for the cases

nOXj) '=107 (A), 815 (B), 1630 (C), while Fig 12B shows the case nOX) = 3260. The boundary

between hole growth or persistence and hole decay by discrete particle collisions occurs

approximately for noXj) - 1000 (between cases described in Figs. 15B and 15C). Using the

hole growth rate from Fig. 14 for VD = 1.25Vth,,, we have

7~1I + ^td(3260) 1 .0 X 10-3 W P. (7)

and

-VI1 + Yd(1000) 0. (8)

But Eq. (6) implies that -Yd(1000) = 3-y( 3000) so that

Yd -5.0 X 10-4,, (9)

for noXD - 3260 with fluctuations of size Av X 0.5ve&,i.

Two other methods yield alternate determinations for 11d. First, we can measure Di

directly by measuring the mean square velocity scatter (6V 2 ) of the hole marker particles

in time. As is clear from Fig. 16, the scatter is considerable for the smaller noXD. The

spread 6v satisfies (602 ) = 2Dit asymptotically, while Eq. (6) implies that Di decreases with

increasing noXD. Figure 17 shows the measured values of (bV2) in time for noXD = 3260.

The slope gives Di = 4.9 x 10-4WP. h,I so that, with Av = 0.5Vth,i, we can use Eq. (6) to

obtain

Yd M -1.97 X 10~ 4w,. (10)

In addition, we can evaluate the ion discrete particle diffusion coefficient theoretically

by the standard shielded test particle model and obtain

V h, ir ,-1 Vth. i -V2)+ Vth,i -(Vo VD) 2

- nOXDC 2 2 - an [(2Vh1/2 p 2vh, i 1 (27r 4,,)i/2 P h, J
(11)
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The parameters C, and C.. are derived from integrals of the dielectric function ((k, kv) and

can be written as

C, =2+ Re Z( )+ Rc~ Z( ) (12)

and

C2 = ____ VD -V V

C P= ) V2 ) / '2 V t 4 - l Z ( o - ) ( 1 3 )

where v = 0.625vt,%. is the hole velocity and Z is the plasma dispersion function. Evaluating

Di for our case, we find

Di = 0.33 (14)

so that 0 = 0.33 in Eq. (6). Therefore, for noXD = 3260, we obtain D = 5.28 x 10-4 wpV,,,

and find a result in approximate agreement with Eq. (10):

d -2.12 X 10~ 4w,,. (15)

Since clump-hole fluctuations of size Av =a 0.2vh,j were observed in Ref. 3 where

N, = 102400 particles per species, we can use Eqs. (6) and (14) to estimate -Yd in Ref. 3

as

y -1.23 X 10~3w,, (16)

In Sec. Vb, we will use this estimate for yd to asses the role of discrete particle fluctuations

on the point of marginal stability observed in Ref. 3.

V. Discussion

a. Hole Model

The observations discussed in Sec. JVb and in Ref. 2, provide compelling evidence that

a turbulent plasma tends, under a variety of initial conditions, to develop into a collection
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of phase space density holes in a background of enhanced phase space density fluid.

This occurs because turbulent electric fields will mix the phase space fluid and necessarily

produce local depressions (holes; eif < 0) and enhancements (6f > 0) in the phase space

density. When the shielding distance X, given by Eq. (18) is real, a hole tends to self-bind

and, when in isolation, forms a trapped particle phase space eddy in BGK equilibrium.

The enhanced phase space fluid self-repels and fills the interstitial regions between the

holes. The tendency of plasma to form holes can be understood from the fact that a

BGK hole is a state of maximum entropy, subject to constraints of constant mass, energy,

and momentum' 0 . Therefore, a BGK hole equilibrium is a most probable state for the

(self-)organization of plasma fluctuation energy, momentum, and mass. Apparently, even

in a turbulent plasma, where collisions between holes hinder the development of isolated

hole equilibria, BGK holes still tend to form. This is clear from the emergence of isolated

holes during the nonlinear instability-driven turbulence described in Sec. IV and the decay

turbulence observed in Ref. 2.

Roughly speaking, a hole can be characterized by its depth I, its spatial width Az

and its velocity trapping width 2Avt. A single hole in isolation can be in equilibrium if its

depth and therefore, its potential are sufficient to bind it. For an ion hole, this equilibrium

condition is

med&",; = eio (17)

where 40 is the minimum of the hole potential. We can estimate I by using Eq. (17) and

Poisson's equation. The shielding length X is given by

\-2 = _ E PV d ( (18)
all species

(PV means principal value). When Az > X, Poisson's equation is

X-20 4irnimief 2Avt, (19)

Combining Eqs. (19) and (17), we find that

(20)
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A more detailed calculation"' gives a similar value for holes with A/X > 1. In particular,

for arbitrary Ax/X, we find that'"

- An *[Az\
.9 (21)

where

g(z) (I + 2/z)[1 - exp(-z)] - 2. (22)

Once produced, a BGK-like hole can become unstable'", i.e., get deeper, not fall apart.

(This instability is not to be confused with the case where a Bernstein-Greene-Kruskal mode

can decay by coupling to waves as in, for example, Ref. 12). Consider an ion hole

located at velocity u. Since the hole appears to be negatively charged, i.e., it is a region of

plasma with a depletion of ions, electrons will be reflected by the ion hole's electric field.

If there are more electrons moving faster than the hole than slower, i.e., f's(u) 0, then

reflecting resonant electrons will impart momentum to the hole. Consequently, the ion hole

moves (decelerates) to a region of velocity space with larger foi(u), and therefore, the hole

gets deeper, i.e., fo - f = -I gets larger since f must remain constant.. This situation is

represented in Fig. 17.

One can compute the acceleration i of the ion hole from momentum conservation. The

rate of change of the momentum of the ion hole is

Mu (23)

where

M - 2nimijAXAvj, (24)

is the ion hole mass. As the hole grows, passing ions in a velocity layer IV - ul < AV gain

momentum at the (approximate) rate

vnzmff'j (u)Avt,;AX. (25)

A linear theory calculation would show that the resonant ions gain momentum at the rate

(25) with -y replaced by Avt.,/Az. For example, equating this result to the rate of change
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of wave momentum would give the ion Landau damping rate. However, this linear result is

only valid for times I such that (An.,/Ax)t < I, so we may regard Eq. (25) as the extension

of the linear calculation into the nonlinear regime for times longer than a trapping time.

The reflected electrons lose momentum at the rate

1I 2 21(6

which, except for a numerical factor of order unity, ,is the standard linear theory value of

the Fokker-Planck drag. The ion hole acceleration U can be obtained if we equate Eq. (23)

to the sum of Eqs. (25) and (26). Substituting this value of i into

=/, = = - (27)

and using Eqs. (20) and (24), we can calculate the theoretical hole growth rate -ti. Using

Vth XDWp, we obtain
14 , Vh, ,,f',(u) , fO(u)28)

h=2 AX (XD/X)2+4[vhiI, fI(u)]'

A more rigorous calculation for equal electron and ion temperatures T, = T gives the

growth rate
2v. jth ee(U)V2h jf'(uAct. i th. Ot tehi 0,(UIf= 0.9 h X/,\)2 + 2.24 [th, if'o(u)]2  (29)

The detailed calculation also predicts that the growing hole has a length Ax - 7X. When

this value of Ax is used in Eq. (28), the approximate 1h agrees reasonably well with Eq.

(29).

A steady sate equilibrium hole (BGK mode) has in addition to the trapped particle

momentum Mis, a momentum due to a resonant layer (IvI = Av) equal to injmif'j(u)AviAX.

This result can be readily obtained by integrating Eq. (25) over time. This effect is apparent

in the simulation during the formation of the BGK equilibria from the initial rectangular

hole which is imposed at w,.t = 0 (see Fig. 7 and the initial rise in hole velocity in Fig.

13). This initial hole is created without the resonant layer required for the BGK equilibria.

The subsequent formation of this layer requires a momentum input, which can come only
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from changing the hole velocity by an amount Au. Equating - Al to the resonant layer

momentum and using Eqs. (20) and (24) gives the change Ai in u during the equilibration

process

All 'th Oi po)

Using this result in 6f = -Aufl, gives the relative reduction in hole depth during

equilibration

T ~I\)(Vhifi)2 (31)

This decay is similar to Landau damping. We observed initial hole decay consistent with

Eq. (31) in the simulations. In fact, the decay causes somewhat of a numerical problem

since the hole instability growth really begins from an initial state which is the "final" state

of the equilibration process. This "final" state can be of very small amplitude because of

the decay (31) and consequently can be more affected by discrete particle damping and

other noise in the simulations.

If f' (u) 4 0 for the non-hole species, e.g., electrons for an ion hole, then an electric field

and a potential drop will occur across the hole. It is this field which accelerates the hole and

leads to its growth. This potential structure is sometimes referred to as a double layer. The

potential and electric field structure assoicated with an unstable ion hole are depicted in

Fig. 18. We can calculate the magnitude of the potential drop bq = O(z = +oo)-O(z = -00)

as follows. At zI =~oo, 82o/8X2 = 0, so Poisson's equation may be written as

>~
2

0(z) = 4ne dv6f (32)

where 8f is the perturbation in the distribution function due to reflected particles. Consider

an ion hole. Electrons in a stream of velocity width Alit, are reflected from the hole. As a

consequence, at z = -oo,

-2f'o,(u) for -Avt, < V - u < 0,

6f(v) = (33)

0 otherwise,
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and at x = +oo

-02vf (u) for Aite, -- U > 0,

2f(v) = (3.)

0 otherwise.

Using these expressions for tff(v) in Eq. (32), along with (17), we find

('0,(0 (35)

We have measured the potential drop across the hole in the simulations and found it to be

generally consistent with Eq. (35).

b. Clump Model

The clump model is concerned with the opposite extreme to that of isolated holes in the

hole model, i.e., it is concerned with the case where a large fraction of the available phase

space is occupied by holes. In this case, the hole packing fraction p is near I and collisions

between holes become prevalent. The hole-hole collisions mix the phase space density

and thereby produce new holes (clumps) throughout the phase space. In this way, a fully

developed turbulent state emerges. Such a system is amenable to a statistical description

(Ref. 7). However, rather than reviewing the statistical theory of clump turbulence, we find

it enlightening here to consider clump turbulence in terms of the hole model. As we shall

see, the hole model forms the essential- physical building blocks of the clump model. We

will view clump turbulence as a random collection of interacting BGK-like holes. In this

way, the clump instability can be seen to be the many fluctuations analog of the isolated

hole instability.

We can model the effect of hole-hole collisions on the growth rate of an isolated ion

hole by

= 1 + 'Yhh (36)

where -Yhh = -2pr(Av/Ax)j is the net hole-hole collision rate. Equation (36) is analogous to

Eq. (5) which describes the effect of hole decay by discrete particle collisions. The factor
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r < I models the tendency of holes to attract each other and recombine. The appearance

of the packing fraction p in Eq. (36) takes into account the fact that the collision rate

between holes is proportionally reduced as the hole packing fraction is reduced. In the

case of the clump model, p = i and, as a consequence, holes resulting from the mixing

of the phase space density have velocity widths Av and spatial scales Az = k-' related

to the ion diffusion coeficient Di by the mixing length, i.e., Av = (Di/3k)/) = k-/n.

For p = 4, Eq. (36) corresponds to the following equation for the two-point fluctuation

correlation function evaluated at (x- = 0, v. = 0)

+ ~)(6f) = -2(?). (37)

The right-hand side of Eq. (37) describes ion hole growth while the r/; term models the

decay of the self-binding holes by hole-hole collisions. Using Eq. (28), we can write the

right hand side of Eq. (37) as -2(ibf)f'i where t! is the ion hole acceleration due to

the reflection of resonant electrons.. In a turbulent plasma, i is a fluctuating quantity and

(tbfi)f-' is the ion Fokker-Planck drag Fie due to the electrons. Equation (37) can be

written as

+ )= - 2FiOafo . (38)

Equation (38) is incomplete in its description of clump dynamics, since it does not take

into account the source of new clumps (holes) that result from the random mixing of the

average phase space density. In order to obtain this effect, we note that since the phase

space density is conserved,

5 J dV ((6f2) + f2) = 0. (39)

If we now assume that the average density fo(v) satisfies a Fokker-Planck equation

afo a a a
= D fo - Ffo, (40)

then Eq. (39) becomes

a dv(6 f2) = dv 2D -_ 2FfO fo (41)
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The second term on the right hand side of Eq. (41) corresponds to the coherent acceleration

term on the right hand side of Eq. (38). The D-term in Eq. (11) describes the production

of clumps by the random mixing of the average phase space density. This mixing process

requires an additional term to be added to Eq. (38), i.e., Eq. (38) becomes

+ 2DrCi'I - Efoi (42)

where DiL is the ion diffusion coefficient due to the electric fields of the electrons. The

dynamical equation for electron clumps follows by exchanging labels e. and i in Eq. (42).

The statistical theory of clump fluctuations derives a renormalized equation for the two-

point fluctuation correlation function C"(z , v_) = (6f*(I)6 0*(2)) for species a. Neglecting

self-binding effects, G,2 satisfies7

+ a- Da G* = S* (43)

where the source term is

s= 2D*O(f'.) 2 - 2F* Pfof'.. (44)

These two equations (43) and (44) are the clump theory equations corresponding to the

qualitative result (42). The diffusion coefficient D_(z-).in Eq. (43) describes the relative

diffusion between two phase space points and therefore, vanishes as z_ -+ 0. In the clump

theory, the D_ term in Eq. (43) is the analog of the hole-hole collision rate i'h.

Together, the free streaming and velocity diffusion operators on the left hand side of

Eq. (43) lead to stochastic instability of neighboring particle orbits. This destruction of

fluctuations (correlations) is modeled approximately in Eq. (42) by the rr7' term. In order

to see this in detail, we take moments of the left hand side of Eq. (43) and find that

a 2) = 2(D...(z)) = 2ko2D(z_) (45)

where

k 2 = D (46)
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determines the mean square spatial scale of the turbulence. The solution of Eq. (45) for

initial values x_(0) = _ -, v- (0) = i. gives an exponentiat separation for neighboring particle

orbits, i.e.,

(x24(t))=j - 2z.t'..r0 + .,,rr)ct/' (17)

where To = (4k 2 D)-'/ 3 = (12)-1/3r is a characteristic time sometimes referred to as the

Liapanov time. The clump lifetime r.(x.., v.) is defined as the time for two orbits, initially

separated by (z.., v) to separate spatially by the typical clump size ko':

Tr(z_, v.-)= o In [k2(2 - 2 + 2vr')}* (48)

As we have noted, although an individual fluctuation is destroyed (by orbit stochastic

instability) at a rate ra,(z_, v_)- _ r-1, the recombination feature of the holes leads to a net

fljctuation decay rate that is less than r; (c.f. Ref. 2). At present, the clump theory has

n analytical derivation for this effect. The use of the r factor to model hole recombination

in Eq. (42) is phenomenological, but appears to be supported by the simulations of Ref. 2

w-iere it was found for decay turbulence that r a 0.3.

The clump growth rate can be calculated from the model equations (43) and (46). A

detailed calculation is carried out in Ref. 5. It is found that the instability grows on the ro

time scale and has a finite drift velocity threshold. The finite marginal point is due to the

competition between collisions among self-binding holes (r/ro) and the clump source term

(S12) due to phase space mixing and hole acceleration.

c. Comparision Between Simulation and Theory

The hole model compares favorably with the simulation results. For example, we note

that the phase space structure of the holes observed in Sec. IV is consistent with the hole

model. We consider the ion hole at v = 0 in Fig. 8F. It has a scale length Ax z 2.6 \D and

Av = 0.75vth. whereas its depth (see Fig. 10 at ,,t = 180) is Ifod(0) r -0.9. Using Eqs.

(21) and (22), we see that the hole in Fig. 8F is consistent with the hole model. However,
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the hole in Fig. 8F has a scale length (2.Ujv) that is somewhat smaller than that predicted

for the most probable state in the hole model"' (7). This discrepency is most likely due

to the decay effects of other fluctuations in the plasma. The hole wake in Fig. 8 is evidence

for this decay. In the case of the quiet start runs in Fig. 8, the fluctuations causing the

hole decay when w,, t < 200 are small velocity scale clump fluctuations (see Ref. 3), since

shielded discrete particle fluctuations are only fully developed when wt > 200. Note that

the holes in the random start run in Fig. 2 are even smaller in Ax than those in Fig. 8.

Both hole-hole and discrete particle collisions are hindering hole formation-and growth in

Fig. 2.

The qualitative features of hole growth observed in Sec. IV are also consistent with

the hole model. For example, Eqs. (21) and (29) predict that (a) hole growth will occur

when f~jeI, < 0, while hole decay will occur when fe fi > 0 (see Figs. 1 and 8 - 10);

(b) the hole growth rate increases with drift VD (see Fig. 14) and amplitude (see Figs. 2

and 5); (c) the acceleration of an ion hole ceases when f's, = 0 (the electron distribution

function plateaus for wpt > 280 in Fig. 9); and (d) both Av and f increase (decrease) as

the hole grows (decays) (see Figs. 8 and 10). A further confirmation of the model lies in

the threshold drift for instability in the random start runs, and the lack of such a threshold

in the isolated hole starts. In the latter case, only fjIf < 0 is required for instability,

whereas in the former case, hole-hole collisions hinder hole growth so that a threshold drift

is required for instability. Hole-hole collisions are prevalent in the random start runs since,

as discussed in Sec. IVa, P(37) was Gaussian (p ) in the early stage of the instability.

Of course, discrete particle collisions will lead to a threshold for instability in both the p X 2

and p < - cases (see Sec. IVc).

More detailed comparisions between the simulation results and the model can be made.

Using the parameters characteristic of the growing holes observed in Sec. IVb, we cari

compare -yh derived from Eq. (29) with the observed growth rates -yH. This has been done

in Fig. 14 where the solid curve is the solution to Eq. (29) with 2Avt,, = Av = 0.7 5 Vth, i (the
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full velocity width of the ion hole). Except for the larger drifts, the agreement is quite good.

For drifts vp ;> 3.51'th.i the assumptions underlying Eq. (29) break down. In particular,

yr and w. ', are no longer small. The extension of Eq. (29) into this region will be

discussed in a future publication.

The decay rate for the clump instability observed in Ref. 3 is due to both discrete

particle collisions and hole-hole collisions. From Sec. IVc, we recall that the decay rate due

to discrete particle fluctuations is estimated to be on the order of 10Iw,, for the simulations

in Ref. 3. According to Fig. 4 of Ref. 3, the measured net decay rate for the fluctuations

observed in Ref. 3 is on the order of 4.0 x 10- 3 w,,. Therefore, we estimate a decay rate

due to hole-hole collisions to be aun - -3.0 x 10"3w,,. This value of -y is consistent

with the theoretical model since, using Eq. (36) and r; P 8ow-' from Ref. 3, we find that
- rf r = z' - rD/Av 2  

-1 - 1(80w-')-l. Therefore, a calculation of the clump

growth rate neglecting discrete particle collisions will be in approximate agreement with the

measurements of Ref. 3 since -yqj 3-ye (see Ref. 5). These approximate calculations

imply that the marginal point observed in Ref. 3 and the random start runs of Sec. IVa was

due mainly to hole-hole collisions rather than to discrete particle collisions.

As we have already seen in Sec. IVb, the measurements leading to Fig. 14 do not

exhibit a similar marginal point at finite drift velocity. This occurs because -IHH = 0 for an

isolated hole and -y was negligible during- the early stages of the runs (w,t < 200). In Fig.

19, we have made a comparison between the isolated hole and clump growth rates. The

dots in Fig. 19, are twice the measured growth rates of Fig. 14 for isolated holes. The

factor of two was chosen so that the conditions of the isolated hole measurements would

correspond to those of the clump measurements of Ref. 3. For example, the results in Ref.

3 were obtained at a time during the runs when ( 2)1/fo 10 and P(Yf) was Gaussian

(i.e., = ) 2), whereas for the isolated holes, //fo - -0.5 when the growth rates were

measured. Therefore, in order to make comparisons at the same constant amplitude, we

should multiply the isolated hole data of Fig. 14 by (0.1/0.5) = 0.2. Secondly, a(6N2)/(N)/at
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is plotted for the instability runs of Ref. 3. Since a(bN/2)i)t g) ;i)f/t, we also -need to

multiply the growth rates of Fig. .14, by four. Another correction occurs because the clump

instability is driven by D and I' terms on the right hand side of Eq. (4), whereas the

isolated hole instability is driven by ' only. Since the D and A' terms are comparable at

marginal stability, we multiply the isolated hole growth rate by a factor of two. As a final

correction, we note that, for a mass ratio of four, the clump instability grows on a time scale

somewhat intermediate between r, and Ti = 2r,. These four corrections imply that, in order

to compare the isolated hole growth rate measurements of Sec. IVb with the clump growth

rate measurements of Ref. 3, we need to multiply the isolated hole growth rates by a factor

on the order of two. As is evident from Fig. 19, the two growth rates are consistent with

the hole-clump model discussed in this Section and in Sec. Va, i.e., the clump instability is

the many interacting hole analog of the isolated hole instability.

V. Relevance to Laboratory and Space Plasma

Although the nonlinear plasma phenomena reported here is one dimensional and driven

by velocity gradients, we believe that similar effects will occur in magnetized plasmas with a

spatial density gradient. However, even the one dimensional simulation discussed here has

immediate relevance. For example, it is generally believed that current driven electrostatic

field fluctuations that propagate parallel to the magnetic field lines are not important for

confinement of a current driven plasma. The reason usually given is that ion acoustic waves

are linearly stable for present plasma parameters (T. a T;, 1 VD 4vt,j). However, as we

have discussed above, hole-clump instability can occur for T, - T7 and for drift velocities

significantly below those required for linear instability. Indeed, the simulations with isolated

holes discussed in Sec. IVb indicate that, neglecting discrete particle collisions, the isolated

hole instability can occur for any finite drift velocity. Therefore, in a plasma with low

collisionality - as would be expected of a fusion device - the isolated hole instability is likely
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to occur. Its presence would have two notable features. First, since clumps are particle-like

fluctuations with phase speeds w/k < vt, we expect a more continuous frequency spectrum

with broader phase velocity width than that characteristic of ion acoustic turbulence. This

will occur because wave fluctuations, unlike clumps, are plasma normal modes with a

definite relation between frequency and wave number, i.e., waves have a discrete frequency

spectrum. A second signature of the instability would be the appearance of an anomalous

parallel electric resistivity for T,/77 parameters and drift velocities in the linearly stable

region. Given the complexity of laboratory plasma, it may be difficult to identify and confirm

the existence of these features.

The stability of ion acoustic waves when drift velocities are small has also been an

issue in the understanding of auroral phenomena6 . The S3-3 satellite data has shown that

double layers exist on auroral magnetic field lines at altitudes of some 7000 km. The double

layers are on the order of 3 2XD long and are separated from each other along the field lines

by distances of some 103XD. An explanation for the existence of these double layers has

been of interest. One prominent theory involves the production of double layers from ion

holes observed during the simulation of linear ion acoustic instability6 . However, given the

experimental error, the measured values of T,/T and VD in the auroral region may be more

consistent with stability than instability of ion acoustic waves. The hole-clump instability

appears to be a more likely candidate. For example, the observations are consistent with

the evolved state of the.clump instability or an emerging state of the isolated hole instability.

In the former case, clumps will go unstable for T, - T and drift velocities larger than

one fifth of that required for linear ion acoustic instability and, as discussed in Sec. IVa,

isolated holes will intermittently appear and grow out of the background clump turbulence.

In the latter case, isolated holes can appear and grow out of thermal fluctuations for any

finite current. In either case, the holes will be intermittent with small packing fractions.

(Note that the holes observed from S3-3 have a small packing fraction on the order of

32/1000 = 3.2 x 10-2). Moreover, as we have discussed in Sec. IVa, unstable ion holes are
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double layers - the acceleration of an ion hole is due to the potential drop across the hole

which results from the difference.in electrons reflected by the hc le (see Figs. 17 and 18).

Hole and clump instability may also be relevant to reconnection processes in the

earth's magnetotail. In the past, linear ion acoustic turbulence has been one of the

mechanisms invoked to explain the anomalously large magnetic reconnection rates believed

to be responsible for magnetospheric substorms . While conditions in the plasma current

sheet are apparently incomptabable with linear ion acoustic instability, the conditions

are consistent with hole or clump instability. Actually, hole or clump instability may be

relevant as an anomalous dissipation mechanism in a wide range of magentic field-reversed

configurations.
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Figures

The ion and drifting electron spatially averaged distribution functions at times

wt = 0 (dashed line) and 260 (solid line) for the case of a linearly stable random

start run with drift v,. = 3.5tt,.

Fig. 2. A time sequence of the ion phase space for the random start run of Fig. 1. Fig.

2A is the initial state while the sequence starts at w,,t = 230 (Fig. 2B) with an

interval of low- between subsequent pictures. In this, and subsequent Figures,

the z-axis is the normalized position X/XD shown between 0 and 32, while the

y-axis is normalized velocity V/vth, j. The spontaneous emergence, acceleration

(growth), and subsequent decay of isolated (intermittent) phase space holes is

apparent.

Fig. G. The normalized skewness s(t, v) of the probability distribution function of fluctuation

ampitiudes P(Uj) for the random start run of Figs. 1 and 2. The significant negative

skewness is consistent with the hole intermittency in Fig. 2.

Fig. 4. The probability distribution function of fluctuation amplitudes P(37) at v = 0 in the

ion distribution function for the random start run of Figs. 1 - 3. P(37) evolves from

a nearly Gaussian distribution at w,,t = 180 (a) to one with significant negative

skewness at w,,t = 240 (b) as an ion hole decelerates through v = 0.

Fig. 5. A time sequence of the ion phase space for a linearly unstable, random start run

where vD = 4.2 M,. The emergence and deceleration of an ion phase space hole

is apparent as passive marker particles become trapped in and are carried by the

hole.

Fig. 6, The electron phase space for the simulation of Fig. 5. showing a hole coalescing

event.

Fig. 7. A time sequence of the ion phase space for a linearly stable run showing the
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equilibration of an initially prepared ion hole at w,,.t = 20. (A), w,,t = 40 (B),

wI 60 (C), W,,I = 80 (D), and w,, t = l(M (E).

Fig. 8. A time sequence of the ion phase space for a linearly stable case with an initially

prepared isolated ion hole (A) and v) = 3.0tf. . The sequence starts at (B), when

w,,t = 120, with l0w' between figures. (The figure for w,,t = 150 is excluded.

Thus, 8G shows the ion phase at w,t = 180.) The acceleration and growth of the

ion hole is evident.

Fig. 9. The velocity v(t) of a passive marker particle placed at the center of the isolated

hole in Fig. 8. The marker particle stays trapped in the hole and can be identified

with the hole velocity u(t).

Fig. 10. The normalized ion hole depth -f(t)/fo[u(t)] for the isolated hole run of Figs. 8

and 9.

Fig. 11. The electron phase space at w,,t = 240 for the isolated hole run of Figs. 8 - 10.

Fig. 12. The ion phase space for a linearly stable, isolated hole run with nD = 1.25vth, at

w,,t = 40 (a) and w,,t = 540 (b).

Fig. 13. The velocity v(t) of a passive marker particle placed at the center of the initial

isolated hole run of Fig. 12.

Fig. 14. The measured isolated hole growth rate -yj. as a function of electron drift vD. The

solid line is the theoretical growth rate Yh obtained from Eq. (29).

Fig. 15. The breakup of an initially prepared ion hole filled with passive marker particles

is shown in the final ion phase space (w,,t = 540) for three runs (VD = 1.25i'gh,i)

with different discrete particle collisionality: (A) nOXD = 407, (B) noXD = 815, and

(C) noXD = 1630. The case for noXD = 3259 is shown in Fig. 12B.

Fig. 16. The mean square velocity dispersion (6V2(t)) for ion marker particles described in

Fig. 15. The slope measures the discrete particle diffusion coeficient that causes

the hole decay evident in Fig. 15.
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Fig. 17. A schematic picture of the deceleration and growth of an ion hole due to the

reflection of electrons by the hole in a region where ion and electron velocity

gradients are opposing.

Fig. 18. The potential 4O(.) and electric field -4O()/iiz shown schematically for an unstable

hole.

Fig. 19. The isolated hole data of Fig. 14 (dots) compared with the random start growth

rates of Fig. 4 of Ref. 3. The data of Fig. 14 have been corrected in order to

correspond to the same fluctuation amplitudes of Ref. 3.
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