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Abstract

We explore the possibility of neutral beam pumping in a tandem
mirror thermal barrier region. In order to reduce the necessary
neutral beam pumping power, we investigate substituting low for high
energy neutral beams. Using a two-step square well model and the
variational eipression for the trapping current, in a simplified one
dimension calculation, we illustrate the competition between the
trapping process and the drag effect for the deeply trapped particles.

This competition can lead to a stable equilibrium with reduced pumping

power.




1. Introduction

It has been shown that the performance of a tandem mirror can be
importantly enhanced by the use of a "thermal barrier.”{1] 1In this
situation a potential depression is interposed between the central cell
and plug to thermally isolate the respective electron species. Maintenance
of the potential depression depends critically on the abiltfy to purge
the barrier of thermal ions that tend to trap there, and which would
otherwise cause a decrease of the depth of the potential depression. The
purging of trapped ions has been termed barrier pumping. |

One scheme that has been proposed involves the use of energetic
neutral beams, injected at such an angle that upon charge exchange (with
an ion trapped in the thermal barrigr) the resulting fon will be in the
loss cone of the thermal barrier mirror cell. The neutral beam produced
ions must have sufficient energy to overcome the total thermal barrier
potential and some frac:ibn of the pump beam current must be injected at
the total thermal potential, the so—call@d high energy pump beams. In
this work we show that the pump beams can be effective with an energy
that is significantly reduced from the barrier potential. This result
will impact positively on the power balance due to the reduced energy
expended per particle pumped as well as the enhanced charge—exchange
cross section of the lower energy neutral beams.

In this study we consider a tandem mirror reactor based on the TARA
type end plug[zl with central cell parameters similar to MARS. The
central cell is thus bounded by axisymmetric mirror plugs which contain
the thermal barrier and ion plugging potential. Beyond the plugs a short
open transition maps the flux tube into ECRH heated low field quadrupole

anchors.
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A controlled radial diffusion may be applied in the central cell so
that ions (D, T, and alphas) and possibly electrons primarily leave
radially. Pumping of the thermal barrier may then be obtained by expelling
ions and alphas into the central cell. Good neutral beam access into the

thermal barrier region of the plugs encourages the use of neutral beam

pumping. This option is desirable because the physics is co&heptually
simple and no difficult extrapolation of :eéhnology is required.

A preliminary estimate3] ghows that the necessary pumping pover is
about 150 MW which will have a negative impact on the recirculating power and
therefore the value of the reactor Q (Q is defined to be the ratio of the
fusion power to the injected power). Analyzing the necessary pumping
power indicates that the high energy beam pumping takes two thirds of the
total power consumption although it pumps only 5 percent of the total
trapping current. This implies that high energy beam pumping is
much less efficient than low energy pumping. Thu; if we can substitute
low for the high energy pumping beams due to the higher efficiency of low
energy beam pumping we can decrease the total input power.

In order to analyze this trade~off, we must answer the following
three questions: (1) Is there an equilibrium when we substitute low for
the high energy.beam pumping and if so how much power is required to
maintain this equilibrium? (2) Do we have a reasonable model to analyze
this equilibrium? (3) 1Is this equilibrium stable, i.e., does the
accumulation of the deeply trapped particles eventually destroy the equilibrium?

Logically, we have to answer the second question first. Although
Fokker—-Planck codes would in principle solve the problem the available
codes do not readily lend themselves to this calculation. Furthermore

these codes do not illuminate the physics and are large and very consumptive




of computer time, Recently, Futch and Loganla] have shown that an
equilibrium exists when only the local low energy beam pumping is used;
and that this equilibrium may become unstable when the pumping factor gy
i3 about 2 ~ 3 (corresponding to barrier mirror ratio of 4.5, and ratio
of barrier potential to temperature of greater tham l). Here, gp is the
ratio of total density to passing particle density at the bottom of
barrier. This Memorandum encourages us to analyze this problem using the
variational method which has succeeded in the case of a well-pumped
thernal barrier(5:6], Before we apply this variational method, we wili

set up a two-step square well model for the local pumping case.

2. Model
In Fig. 1, two step square well model is used for describing the
thermal barrier region of TARA reactor. The neutral beam is injected
near the mirror peak at a plateau where the magnetic field (Bj) and
electric potential (¢]) are higher than those at the bottom of the
barrier (B, ¢p). In terms of velocity space, there is a boundary
layer which is between the passing particle region and the unpumped
region (Fig. 2a). In this boundary layer the pumping rate v ¥ O.
Assuming equilibrium with a constant pumping rate vy, we may write the trapping
current Jp as

Jt - \’L Del, (1)

where ng, 1s the trapped particle density in the low energy beam pumping
region. Using the variational principlets’ﬁl, we may write another

expression for the trapping current

Je = V2 argy VL 0p (2)




Here np 1s the passing particle density, gy is the familiar pumping factor,
ag, is the corresponding variational parameter
3/2
ag = (3

e
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where Vp is the collisional frequency, Vp * --;- s V¢ 1s the thermal
; v3
ZTP
velocity, vy = o [, Tp is the temperature of the passing particles.
‘ n :
4ued
m is the mass of the particle. I'= Inp , InA is the Coulomb
m
Ty
logarithm. In our case Inp *~ 34.9 - In .
| Tp(dp+Tp)

is in unit of cn'3; T

In the expression for lny, n and ¢ are in unit of keV.

P P
e 1is the charge of the particle. Ry is the barrier mirror ratio (the
ratio of the peak magnetic field By, to the bottom magnetic field By in Fig. 1).

H is the ratio of the passing particle density to the central cell particle

density,
[Ty 9y
H = erfc S exp | =
T T
P P (4)

Rp =~ 1 Rp ¢ Ry $b
- —— erfe —— a— exp
Ry Ry =1 Tp Ry = 1 Tp

In the large mirror ratio (Rp >> 1) and large potential (¢b/Tp > 1) case,

u [ C "1 (5)
Ry gy + Tp)

There is an important difference between the local pumping and uniform

pumping cases: for local pumping the expression for gy obtains the




general form

Qe n¢H
by OeL

Here, nyg is the trapped particle density in the unpumped region. When we
uniformly pump thermal Barrier, n.g = 0 and n¢y, = ng. Then equation
(1), (2) and (6) give the previously obtained uniform pumping result,

(g, - 1)2 _ '
2 | 7

a =
28y

In the local pumping case, however, nyg ¥ 0 and we obtain

(8 "_1)2 1
ag = » 2 (8
g
b 1+ BeH
OelL
Comparing equation (8) with (7), we have
1
a, =a “ 2 (9)
“eH
1+
el

From equation (3), we know that the aj is inversely proportional to
pumping rate viy. Therefore, for a given set of parameters (np; Tp. Ry,

$p» 8p) the local pumping needs a pumping rate

2
DeR

v = Vv 1+ (10)

L
Here v is the necessary uniform pumping rate for the same set of parameters.
The physics in equation (10) is clear. Local pumping always requires

a higher pumping rate than uniform pumping. For the same gy, if nyy ¥ O,




of course, the pumping rate in the boundary layer (Fig. 2a) must be stronger

than before (nyg = O case).

Evaluation of the pumping rate requires an estimate for the ratio

(nﬂ{/ntl,) .

¢!




3. The Ratio npg/ngL

We require an estimate of the ratio nyy/ny; to evaluate the trade-
off between increased pumping of a restricted region of velocity space
and uniform pumping.

The exacs calculation should invoke a two-dimensional Fokker-Planck
code. We will use a one dimension model to have an estimate of the
maximum power requirement. Consistent with the two sphere modells], we
may simply estimate the density at one of the two tips of the separatr;xes

in velocity space. The balance equation is as follows:
-
=V eI -y f=0. (11)

-—b
Here I is the Coulomb collision current in velocity space, £ is the

distribution function. Under the assumption of
f=ht, (12)
we have
-hadd
VeDfy *Vhev fr h=0 (13)

KN
Here, fm is a center-shifted maxwellian distribution fnnctiouls], and D is

the diffusion tenser. In the one dimension model, the equation may be

written as
1 d 2 dh
—_ — (v £, D, —) - f h=0 (14)
vz dv m dv VL m

2re61n4 n, 1 &
Dy = > (15)
m 2 VT 3 J;

Dy is the parallel component of the diffusion tensor[7]. We evaluate D,




using a low velocity approximation, since we do not expect very large
relative velocity in the low energy beam pumping scheme. nj is the total
dengity at the bo;tom of the barrier. Thus the approximate equation in
the pumped region is
fDd2h+1 (d 2, )(dh
izt g GRS wano ao
It should be noted that this is an equation in the co-moving frame. When
v = v] (see Fig. 2b) in the co-moving frame, it’correspcnds to the'vy =
(v¢p = v1) in the stationary frame at the bottom of the barrier. In
the co-moving frame, v = v] is the boundary between unpumped and pumped regionm.

In the unpumped region, the solution is simply
h = h(v]) = constant, 17

since there 18 no flow and Vh must be zero.
In the pumped region vy # 0, the exact solution is complicated and

~and a Taylor expansion may be used to obtain a rough estimate

dh 1 a4 )
hiv) = h(vl) + — (v - vl) + — m— (v - vl) * ceee
dv 21 dv2 .
v =y v =y (18)
dh
The continuity condition for - makes
dv
dh
— =0 (19)
&y ey

Hence in the pumped region we can estimate

1 d2n
h(v) = h(v;) + — —

v - vp)? (20)
2 dv

v =vy




Using equation (16), we have

1 v 2
h(v) = h(v;) + -2- ;—- h(v;) (v = vy) (21)
!

Thefgfore, the ratio of the density

f vidv £ =
v
neq 1
-
v
el f Vo2 ¢
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Using £5(v) = Cye » we have
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and n, is the central cell density. TI(e— , == ) is the incomplete Gamma
2 Tp
function, which may be expressed analytically as i
3 1 | «
I (mx) =[x [1 - ¢(f§)] + [x e (27)
2 2 :

| 2 R

(S x) is the error funmctiom: &( f;) - c— [ e~t24e. Combining equation
n 0 ‘

(23) with equations (6), (1) and (2), we have the solution for gy

vy, 2
& = — X . (28)
Cc
3/2
4 Ve 1
C=
3 H Ry

Here, x 1s defined as the ratio of trapped particle density in the low
energy beam pumping region, ngy, to the passing particle density, and it

is the solution of the following equation

1
-“-L— x2 = — -[szL-Clx-(l-l-x)] +

c 2
2 -
+ [szL -Cix - (1 + x)] + 4 (1 + x) Covy, (29)

Once we have the solution for x we can calculate g} using equation (28),

and the total density in the barrier, i.e.

np =& Dp
=g, no H . (30)




Therefore we may calculate the variation of the total density when the
OtH
potential ¢ 1is perturbed. In the same time, the density ratio (=) can

ReL
be evaluated using equation (23).

4. The Stability Analysis

In Section 2 we found an equilibrium for the local puﬁ;lng case when the
pumping rate is higher than the uniform pumping'case by a factor of the
density ratio square (equation (10)). 1In Section 3 we made an estimate of the
density ratio (npy/ner). We now consider the stability of this equilibrium,
i.e. whether a deviation from equilibrium tends to grow or decay. We
first examine a schematic plot of the electron and ion density as a
function of potential, ¢y, showm in'Fig. 3. Equilibrium occurs at the
quasi-neutral potential(¢;) when ny = n, and stability depends on the
relative slope 3n/9¢ for ions and electrons. A fluctuation of poten—
tial, A¢p, causes a deviation of ion density from the equilibrium, Ang.
Neutrality however requires a corresponding deviation of electron density,

" Ang, which requires a further deviation in potential, (Ady)].

Thus when
An‘ Ani
< (31)
(Adp)1 A4
"7 electrical neutrality requires

Consequently, the fluctuation in potential will increase and this

equilibrium is observed to be unstable. In the other limit, when
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a similar analysis leads to the conclusion
[caomna] < aesl (34)

-
3

Consequently, a fluctuationAin potential will damp and this equilibrium
is stable (Fig. 4).

We can in fact use Eq. (30) to calculate the curve npy as a function
of ¢p for a fixed central cell density, ng. For Maxwell-Boltzman
électrons the electron density npe changes with ¢y exponentially. We
note that the parameter ¢}, comes into determining dny/d¢y through
equations (24) and (25). ¢ may itself be changing with ¢y, since
the electrical potential at the B = B} point is not fixed. However, for
a given magnetic field profile, the ratio of ¢1/¢} may be assumed
to be a constant. Therefore we choose fixed ¢1/¢p in the stability
criteria. Fig. 5 illustrates the case where ¢1/¢p ~ 0.444, the
local pumping rate vy = 42 sec”] '
Line 1 represents the npj(¢p) curve and line 2 npe(dp).

Their intercept gives the equilibrium result; ¢b/Tp ~ 3.8

dne dni
and since |=== |> |===] , this is a stable equilibrium. Line 3 in Fig. 5
déy déy

shows njg(¢p) for the corresponding uniform pumping case. We can see

that the uniform pumping is more stable than the local pumping case.

When we draw these curves, the hot electron component (typically for a
reactor T,y = 820 kev, n,, = 4 X 10.13 cn_3) and the sloshing ion component
(ngg = 1 x 1013 cm'3) have been included. These energetic components may

affect the equilibrium parameter but not the stability, since they are

» the central cell density n, = 3.50 x 1014 cm

3




too energetic to respond to a small potential fluctuation. Fig. 6 shows
a case whére the local pumping is very close to uniform pumping,
i.e. ¢1/¢p = 0.9. As we expect, line 1 approaches line 3 and their
stability features are almost the same. Fig. 7 shows a case where the
locﬁl pumping is more concentrated in small region, i.e. ¢1/¢p = 0.333.
This is a marginal case, and line 2 is tangent to line 1. ;lthough there
is an equilibrium, any deviation toward left would lead to further
deviation. If»wa reduce the pumped region further, there will not be an
equilibrium. In this marginal case, if we increase the pumping rate to
45 sec™l, the equilibrium becomes stable again (Fig. 8). However, if we
reduce the pumped region too much, i.e. ¢1/¢p = 0.25, then the
equilibrium is unstable even if the pumping rate vy is as high as
80 sec™! (Fig. 9). ’

Through this analysis, we can see this sensitivity to the ratio
(41/¢p). In fact it is easy to see this effect in the velocity
space (Fig. 2b); this ratio will determine the size of the pumped region. -
If the size of this region is too small to reduce the height of function
h(vy), it 1is difficult to stop the accumulation of the trapped particle
in the unpumped region. Then the equilibrium is impossible or unstable.

Although the foregoing analysis is based on a simple one dimension
model for the ratio of (ngg/m¢r), the result is useful since it is based
on a conservative analysis. The one dimension model chosen to estimate
(neg/nel,) integrates along the direction of minimum ngy, and this will

tend to overestimate this ratio.




5. The Power Requirement for Pumping
We now estimate the required pump power. From Fig. 5 we observe
that the necessary energy for the low energy beam is about 40 kev (¢b is

chosen to be 90 kav[3]). The necessary power is therefore

'y

P‘V¢1Jt

.V¢1ancHx. : (35) 1

In Eq. (35) x is determined by equation (28). From Fig. 5 we find
ap ' ' |
-~ = 0,15, Hence *
Q¢

np 0y 0.15

gb--—---..-—- . (36)

nH ﬂ

Cgy 0.15¢C
and x = s = ——————— (37)
VL, v B

Therefore, we find

3/2
_ 4 1
3 Ry
with V the volume of the barrier (about 2.51 M3 [3]), " The necessary
power is thus about 17 MW, Considering the efficiency for the low energy
beam pumping, we multiply the power by a factor of 4. Even though this
power is greater than the low energy pumping power in the uniform pumping
case (57 MW)[3], it is much less than the total pumping power in the
uniform pumping case (150 MW) (including power to a high energy pump
beam). These results agree qualitatively with Fokker-Planck code

calculations performed by R.S. Devoto[8],




6. Summary

We have shown that local pumping using a low energy beam is more
economical than uniform pumping utilizing high energy neutral beams.

A simple model has been used to illuminate the physics. In a frame moving
with one group of the passing particles, the deeply trapped particles
experience a drag effect exerted by the shallowly trapped particles and
this group of passing particles. In cgrtain cases, this drag effect

may be enough to purge these deeply trapped particles. Then substituting
low for the high energy beam pumping is possible. |

A number of effects which have not been included in this work and
which may prove to be important are listed below:

(1). The spacial variaiton of ;he magnetic field may be important.
Presently a self-consistent calculation using a bounce average Fokker-Planck
code is not available. For uniform pumping cases the bounce average
effect has been seen to produce a change of up to a factor of 2 in the pump
teﬁuirements.

(11). The D and T mass effect. Our variational method is
only applied to single specles casés (e.g. D and D reactor). When D and
T are the collisional particles this variational formula can not be used
directly. I1f we may use the effective mass m = 2.5 my (mp is the mass of
proton) we will introduce an error into our result.

(i11). The electron effect. Previously, the electron effect was
neglected because the pitch angle scattering was thought to be the dominant
trapping mechanism. Our variational calculation shows, however, that the
drag term plays an important role in the trapping ptocess[51[6l;
therefore, one may wonder whether the electron drag should be included

in the trapping mechanics.
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Captions

Two Step Square Well Model for the local pumping

The Boundary Layer for the Local Pumping Case in Velocity Space

neq
One Dimension Model for the Evaluation of Ratio (=)
Bl

The Curve of Total Density versus the Potential at the Bottom
of Barrier (Unstable Equilibrium)

The Curve of Total Density versus the Potential at the Bottom
of Barrier (Stable Equilibrium) _

(np/ng) ~ (¢p/Tp) curves

‘line 1 1s for the ion density for the local pumping case

line 2 is for the electron
line 3 is for the ion density for the uniform pumping case
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