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Abstract

We explore the possibility of neutral beam pumping in a tandem

mirror thermal barrier region. In order to reduce the necessary

neutral beam pumping power, we investigate substituting low for high

energy neutral beams. Using a two-step square well model and the

variational expression for the trapping current, in a simplified one

dimension calculation, we illustrate the competition between the

trapping process and the drag effect for the deeply trapped particles.

This competition can lead to a stable equilibrium with reduced pumping

power.
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1. Introduction

It has been shown that the performance of a tandem mirror can be

importantly enhanced by the use of a "thermal barrier."[11 In this

situation a potential depression is interposed between the central cell

and plug to thermally isolate the respective electron species. Maintenance

of the potential depression depends critically on the abiltky to purge

the barrier of thermal ions that tend to trap there, and which would

otherwise cause a decrease of the depth of the potential depression. The

purging of trapped ions has been termed barrier pumping.

One scheme that has been proposed involves the use of energetic

neutral beams, injected at such an angle that upon charge exchange (with

an ion trapped in the thermal barrier) the resulting ion will be in the

loss cone of the thermal barrier mirror cell. The neutral beam produced

ions must have sufficient energy to overcome the total thermal barrier

potential and some fraction of the pump beam current must be injected at

the total thermal potential, the so-called high energy pump beams. In

this work we show that the pump beams can be effective with an energy

that is significantly reduced from the barrier potential. This result

will impact positively on the power balance due to the reduced energy

expended per particle pumped as well as the enhanced charge-exchange

cross section of the lower energy neutral beams.

In this study we consider a tandem mirror reactor based on the TARA

type end plug[2J with central cell parameters similar to MARS. The

central cell is thus bounded by axisymmetric mirror plugs which contain

the thermal barrier and ion plugging potential. Beyond the plugs a short

open transition maps the flux tube into ECRH heated low field quadrupole

anchors.
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A controlled radial diffusion may be applied in the central cell so

that ions (D, T, and alphas) and possibly electrons primarily leave

radially. Pumping of the thermal barrier may then be obtained by expelling

ions and alphas into the central cell. Good neutral beam access into the

thermal barrier region of the plugs encourages the use of neutral beam

pumping. This option is desirable because the physics is coliceptually

simple and no difficult extrapolation of technology is required.

A preliminary estimate 1 shows that the necessary pumping power is

about 150 MW which will have a negative impact on the recirculating power and

therefore the value of the reactor Q (Q is defined to be the ratio of the

fusion power to the injected power). Analyzing the necessary pumping

power indicates that the high energy beam pumping takes two thirds of the

total power consumption although it pumps only 5 percent of the total

trapping current. This implies that high energy beam pumping is

much less efficient than low energy pumping. Thus if we can substitute

low for the high energy pumping beams due to the higher efficiency of low

energy beam pumping we can decrease the total input power.

In order to analyze this trade-off, we must answer the following

three questions: (1) Is there an equilibrium when we substitute low for

the high energy beam pumping and if so how much power is required to

maintain this equilibrium? (2) Do we have a reasonable model to analyze

this equilibrium? (3) Is this equilibrium stable, i.e., does the

accumulation of the deeply trapped particles eventually destroy the equilibrium?

Logically, we have to answer the second question first. Although

Fokker-Planck codes would in principle solve the problem the available

codes do not readily lend themselves to this calculation. Furthermore

these codes do not illuminate the physics and are large and very consumptive
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of computer time. Recently, Futch and Logan(41 have shown that an

equilibrium exists when only the local low energy beam pumping is used;

and that this equilibrium may become unstable when the pumping factor gb

is about 2 - 3 (corresponding to barrier mirror ratio of 4.5, and ratio

of barrier potential to temperature of greater than 1). Here, gb is the

ratio of total density to passing particle density at the b4ttom of

barrier. This Memorandum encourages us to analyze this problem using the

variational method which has succeeded in the case of a well-pumped

thermal barrier[5,61 . Before we apply this variational method, we will

set up a two-step square well model for the local pumping case.

2. Model

In Fig. 1, two step square well model is used for describing the

thermal barrier region of TARA reactor. The neutral beam is injected

near the mirror peak at a plateau where the magnetic field (B1 ) and

electric potential (t1) are higher than those at the bottom of the

barrier (Bb, b)- In terms of velocity space, there is a boundary

layer which is between the passing particle region and the unpumped

region (Fig. 2a). In this boundary layer the pumping rate vL A 0-

Assuming equilibrium with a constant pumping rate vL, we may write the trapping

current Jt as

Jt - vL utL

where ntL is the trapped particle density in the low energy beam pumping

region. Using the variational principle[5 ,61 , we may write another

expression for the trapping current

Jta V2 vL nP (2)
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Here np is the passing particle density, gb is the familiar pumping factor,

aL is the corresponding variational parameter

3/2
2 vp 1 1

L - - - -- (3)
3 vL R2 ,b)

where v. is the collisional frequency, Vp -

velocity, V t , T, is the temperature

4se4

r n.
, vt is the thermal

Vt

of the passing particles.

m is the mass of the particle. r - - inA , InA is the Coulomb
=2

3Up
logarithm. In our case 1nA a 34.9 - In

TV(; +Tp)

In the expression for In, nP is in unit of cm-3; T and *b are in unit of keV.

e is the charge of the particle. Rb is the barrier mirror ratio (the

ratio of the peak magnetic field Bmb to the bottom magnetic field Bb in Fig. 1).

H is the ratio of the passing particle density to the central cell particle

density,

H - erfc (4- exp

Rb -
- -

Rb

Rb #b
erfc - -

Rb-i TP/

Rb *b

exp - -

Rb _ I J

In the large mirror ratio (Rb >> 1) and large potential

1 T
H - -

Rb v(*b + Tp)

(fb/Tp >> 1) case,

(5)

There is an important difference between the local pumping and uniform

pumping cases: for local pumping the expression for gb obtains the



general form

ntL ntH
gb + - 1 + (6)

p ntL

Here, ntH is the trapped particle density in the unpumped region. When we

uniformly pump thermal Barrier, ntR - 0 and ntL - nt. Then equation

(1), (2) and (6) give the previously obtained uniform pumping result,

(gb - 1)2
CL M (7)

2gb

In the local pumping case, however, nt # 0 and we obtain

(gb _.1)2 1
12L 2& = (8)

ntL

Comparing equation (8) with (7), we have

CLL W CL n 2(9

1+ -

UtL)

From equation (3), we know that the aL is inversely proportional to

pumping rate vL. Therefore, for a given set of parameters (np, TP, Rbs

*b, gb) the local pumping needs a pumping rate

) 2

vL - v 1 + - (10)

ntL

Here v is the necessary uniform pumping rate for the same set of parameters.

The physics in equation (10) is clear. Local pumping always requires

a higher pumping rate than uniform pumping. For the same gb, if ntH # 0,

-6-



-7-

of course, the pumping rate in the boundary layer (Fig. 2a) must be stronger

than before (ntH - 0 case).

Evaluation of the pumping rate requires an estimate for the ratio

(ntH/UtL).
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3. The Ratio ntH/ntL

We require an estimate of the ratio ntH/ntL to evaluate the trade-

off between increased pumping of a restricted region of velocity space

and uniform pumping.

The exact calculation should invoke a two-dimensional Fokker-Planck

code. We will use a one dimension model to have an estimatE of the

maximum power requirement. Consistent with the two sphere model[6 1 , we

may simply estimate the density at one of the two tips of the separatrixes

in velocity space. The balance equation is as follows:

-V 0 I -VLf - 0. (11)

Here I is the Coulomb collision current in velocity space, f is the

distribution function. Under the assumption of

f - h fm (12)

we have

V D fm .Vh - vL fm h - 0 (13)

[51 NU
Here, fm is a center-shifted maxwellian distribution function , and D is

the diffusion tenser. In the one dimension model, the equation may be

written as

1 d 2  dh
-- -- (v2 fm D, I-- ) - vL fm h '- 0 (14)

v2  dv dv

2re4laA nb 1 4
D - 2-- - -- (15)

M2 2 vT 3 4i

D, is the parallel component of the diffusion tensorl71 . We evaluate DI
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using a low velocity approximation, since we do not expect very large

relative velocity in the low energy beam pumping scheme. nb is the total

density at the bottom of the barrier. Thus the approximate equation in

the pumped region is

d2h 1 d dh
fm D -- + - (- (v 2 fm D )(-) - v fa h-0 (16)

dv2  v2  dv dv

It should be noted that this is an equation in the co-moving frame. When

v - vi (see Fig. 2b) in the co-moving frame, it corresponds to the v. -

(v~b - v1 ) in the stationary frame at the bottom of the barrier. In

the co-moving frame, v - vj is the boundary between unpumped and pumped region.

In the unpumped region, the solution is simply

h - h(vi) - constant, (17)

since there is no flow and Vh must be zero.

In the pumped region vL # 0, the exact solution is complicated and

and a Taylor expansion may be used to obtain a rough estimate

db v I d~h

h(v) - h(vi) + - V ) + - - (v -vlf +
dw 21 dv2

v = vi vi (18)

dh
The continuity condition for - makes

dv
dhj

-o 0(19)
dv v . v

Hence in the pumped region we can estimate

1 d2h
h(v) - h(vi) + - -- (v - v 1 ) (20)

2 d 2

v - V1
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Using equation (16), we have

1
h(v) - h(vI) + -

2

VL

DI
h(vl) (v - VI)2

Therefore, the ratio of the density

f v2dv f
v

UtH

t7 v dv f

fo

fv2dv h(v )fm

v1
W

h(v1 ) 1 +
2

(v - v)I fmD I

Using fm(v) Coe.,2/

nt

ntL

where

Cl

VL
1 + - C2

gb

/2

3
C2 = --- Fi

20

r
3 *1

2 TV

3
) -r (-,

2

1

H-

(21)

I v2dv
0o

(22)

, we have

(23)

(24)

(25)
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Here -M $
2

ruV

T

(26)

3 $1
and ne is the central cell density. r( - , - ) is the incomplete Gamma

2 Tp

function, which may be expressed analytically as

3 1 ()I
r (-,x) = -- + fx e-x

2 2 L
(27)

2 f
4(./-) is the error function: *(J) -- - e-t2dt. Combining equation

(12s 0
(23) with equations (6), (1) and (2), we have the solution for gb

9b .- 2
C

4
C - -

. 3 a

(28)

3/2
li

I--
wabJ

Here, x is defined as the ratio of trapped particle density in the low

energy beam pumping region, ntL, to the passing particle density, and it

is the solution of the following equation

X2 2vL - CIx - (1 + x +
C 2 I

+11 C2vL - C+x - (1 + x + 4 (1 + x) C2

Once we have the solution for x we can calculate 9b using equation (28),

and the total density in the barrier, i.e.

nb ' 9b np

- b nc H (

vL (29)

30)
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Therefore we may calculate the variation of the total density when the
ntH

potential *b is perturbed. In the same time, the density ratio (-) can

be evaluated using equation (23). ntL

4. The Stability Analysis

In Section 2 we found an equilibrium for the local pumping case when the

pumping rate is higher than the uniform pumping case by a factor of the

density ratio square (equation (10)). In Section 3 we made an estimate of the

density ratio (ntj/ntL). We now consider the stability of this equilibrium,

i.e. whether a deviation from equilibrium tends to grow or decay. We

first examine a schematic plot of the electron and ion density as a

function of potential, *b, shown in Fig. 3. Equilibrium occurs at the

quasi-neutral potential(*() when ni - n. and stability depends on the

relative slope 3n/34 for ions and electrons. A fluctuation of poten-

tial, Ob, causes a deviation of ion density from the equilibrium, &ni.

Neutrality however requires a corresponding deviation of electron density,

Ann, which requires a further deviation in potential, (AMb)1-

Thus when

----- ---- (31)
(&b)l *b

electrical neutrality requires

0#1 > Ib * (32)

Consequently, the fluctuation in potential will increase and this

equilibrium is observed to be unstable. In the other limit, when

WMAMMUMMOMMAMM&
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dne dn
-- I> - (33)
dhb dfbI

a similar analysis leads to the conclusion

1(0011 < I Ob 1 (34)

Consequently, a fluctuation in potential will damp and this equilibrium

is stable (Fig. 4).

We can in fact use Eq. (30) to calculate the curve nbi as a f unction

of *b for a fixed central cell density, nc. For Maxwell-Boltzman

electrons the electron density nbe changes with Oh exponentially. We

note that the parameter fl, comes into determining dni/dhb through

equations (24) and (25). 01 may itself be changing with Ob, since

the electrical potential at the B - BI point is not fixed. However, for

a given magnetic field profile, the ratio of f1/Ob may be .assumed

to be a constant. Therefore we choose fixed $1/Ob in the stability

criteria. Fig. 5 illustrates the case where 01/fb - 0.444, the

local pumping rate vL - 42 sec-I, the central cell density nc - 3.50 x 1014 cm-3

Line 1 represents the nbi(Ob) curve and line 2 nbe($b)e

Their intercept gives the equilibrium result; fb/Tp - 3.8

dne dni
and since -- > this is a stable equilibrium. Line 3 in Fig. 5

dfb dfb

shows ni(Ob) for the corresponding uniform pumping case. We can see

that the uniform pumping is more stable than the local pumping case.

When we draw these curves, the hot electron component (typically for a

reactor Teh - 820 key, neh - 4 x 103 cm-3 ) and the sloshing ion component

(nis - I x 1013 cm-3 ) have been included. These energetic components may

affect the equilibrium parameter but not the stability, since they are
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too energetic to respond to a small potential fluctuation. Fig. 6 shows

a case where the local pumping is very close to uniform pumping,

i.e. *1/$b - 0.9. As we expect, line 1 approaches line 3 and their

stability features are almost the same. Fig. 7 shows a case where the

local pumping is more concentrated in small region, i.e. *1/fb - 0.333.

This is a marginal case, and line 2 is tangent to line 1. Although there

is an equilibrium, any deviation toward left would lead to further

deviation. If we reduce the pumped region further, there will not be an

equilibrium. In this marginal case, if we increase the pumping rate to

45 see-1, the equilibrium becomes stable again (Fig. 8). However, if we

reduce the pumped region too much, i.e. #1/#b - 0.25, then the

equilibrium is unstable even if the pumping rate vL is as high as

80 sec- (Fig. 9).

Through this analysis, we can see this sensitivity to the ratio

(1/*b). In fact it is easy to see this effect in the velocity

space (Fig. 2b); this ratio will determine the size of the pumped region.

If the size of this region is too small to reduce the height of function

h(vj), it is difficult to stop the accumulation of the trapped particle

in the unpumped region. Then the equilibrium is impossible or unstable.

Although the foregoing analysis is based on a simple one dimension

model for the ratio of (nt/n/tL), the result is useful since it is based

on a conservative analysis. The one dimension model chosen to estimate

(nt/utL) integrates along the direction of minimum ntL and this will

tend to overestimate this ratio.
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5. The Power Requirement for Pumping

We now estimate the required pump power. From Fig. 5 we observe

that the necessary energy for the low energy beam is about 40 key $b is

chosen to be 90 kev[3 I). The necessary power is therefore

P - V *1 Jt

a V VL nc HX, (35)

In Eq. (35) x is determined by equation (28). From Fig. 5 we find

ab
- M 0.15. Hence

ne

nb nb 0.15
gb - "" m iM in01"M (36)

np ncH H

0.15 C
and x /i-- (37)

vX V L H

Therefore, we find
3/2

4 1
P VV ne V L V 0.15 (38)

3 lfRb/

with V the volume of the barrier (about 2.51 M3 [3])* The necessary

power is thus about 17 MW. Considering the efficiency for the low energy

beam pumping, we multiply the power by a factor of 4. Even though this

power is greater than the low energy pumping power in the uniform pumping

case (57 14f){3J, it is much less than the total pumping power in the

uniform pumping case (150 MW) (including power to a high energy pump

beau). These results agree qualitatively with Fokker-Planck code

calculations performed by R.S. Devoto[8 1 ,
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6. Summary

We have shown that local pumping using a low energy beam is more

economical than uniform pumping utilizing high energy neutral beams.

A simple model has been used to illuminate the physics. In a frame moving

with one group of the passing particles, the deeply trapped particles

experience a drag effect exerted by the shallowly trapped particles and

this group of passing particles. In certain cases, this drag effect

may be enough to purge these deeply trapped particles. Then substituting

low for the high energy beam pumping is possible.

A number of effects which have not been included in this work and

which may prove to be important are listed below:

(i). The spacial variaiton of the magnetic field may be important.

Presently a self-consistent calculation using a bounce average Fokker-Planck

code is not available. For uniform pumping cases the bounce average

effect has been seen to produce a change of up to a factor of 2 in the pump

requirements.

(ii). The D and T mass effect. Our variational method is

only applied to single species cases (e.g. D and D reactor). When D and

T are the collisional particles this variational formula can not be used

directly. If we may use the effective mass m - 2.5 up (mp is the mass of

proton) we will introduce an error into our result.

(iii). The electron effect. Previously, the electron effect was

neglected because the pitch angle scattering was thought to be the dominant

trapping mechanism. Our variational calculation shows, however, that the

drag term plays an important role in the trapping process[ 51 161 ;

therefore, one may wonder whether the electron drag should be included

in the trapping mechanics.





-17-

Acknowledgements

This work is supported by the Department of Energy contract number

DE-AC02-78ET-51013.

10110



-18-

References

[1iD.E. Baldwin, B.G. Logan, Phys. Rev. Letters, 43 (1979) 1318.

[21j. Kesner, B.D. McVey, R.S. Post, D.K. Smith, Nuel. Fusion 22 (1982) 509.

[3 1J. Strohmayer PFC/RR-84-6.

[4A. Futch and G.B. Logan, Memorandum July 6, 1982.

[5 ]X.Z. Li and G.A. Emmert, Nucl. Fusion 24 (1984) 359. X.Z. Li,
Doctoral Thesis "A Variational Calculation of the Trapping
Current in a Thermal Barrier," Univ. of Wisconsin, 1983.

[6 ]X.Z. Li and G.A. Emmert (Submitted to Chinese Journal "Nuclear Fusion and
Plasma Physics").

[7 ]Sivukhin, D.V., "Coulomb Collision in a Fully Ionized Plasma" in Review
of Plasma Physics, edited by Acad., Leontovich M.A., Vol. 4, p. 93 (1966).

[8 ]R.s. Devoto, Nucl. Technology/Fusion 3 (1983) 304.



-19-

Captions

Fig. 1 Two Step Square Well Model for the local pumping

Fig. 2a The Boundary Layer for the Local Pumping Case in Velocity Space

ntH
Fig. 2b One Dimension Model for the Evaluation of Ratio --)

Fig. 3 The Curve of Total Density versus the Potential at the Bottom
of Barrier (Unstable Equilibrium)

Fig. 4 The Curve of Total Density versus the Potential at the Bottom
of Barrier (Stable Equilibrium)

Fig. 5-9 (nb/nc) - (*b/Tp) curves

line 1 is for the ion density for the local pumping case
line 2 is for the electron
line 3 is for the ion density for the uniform pumping case
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