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ABSTRACT

Calculations show that modes resembling the free electron laser (FEL) in-

stability are excited when electrons move in quasi-circular orbits under the

combined action of a uniform axial magnetic field and an azimuthally periodic

wiggler magnetic field. In the model, a thin annular ring of rotating elec-

trons is confined in a hollow cylindrical waveguide, or between concentric

cylinders comprising a coaxial waveguide, and the dispersion equations for the

transverse magnetic (TMtm) modes are derived and analyzed. Coherent radiation

occurs near frequencies w corresponding to the crossing points of the electro-

magnetic modes w=bc (z,m) and the beam modes w=(z+N)Qi, where wc and Q. are the

waveguide cutoff frequency and the electron cyclotron frequency, respectively,

and N is the number of wiggler periods. The computed instability growth rates

are found to be somewhat larger than those calculated for the conventional,

linear FEL.

*Permanent address: Institute of Electronics, Academia Sinica, Beijing,

Peoples's Republic of China.
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I. INTRODUCTION

Numerous theoretical' and experimental 2 studies have been carried out of

free-electron lasers (FEL's) in linear geometry with spatially periodic trans-

verse', 2 or longitudinal 3- magnetic wiggler fields. Such configurations have

gain limitations imposed by the finite length of the interaction region. Re-

cently, a novel circular version of the free-electron laser has been explored

both theoretically'-9 and experimentally' 0"' in which a rotating, relativis-

tic electron stream is subjected to an azimuthally periodic wiggler field.

The potential advantages of circular FEL's as compared with the conventional

linear form are several. First, the beam circulates continuously through the

wiggler field resulting in a long effective interaction region. Secondly, be-

cause of the recirculation of the growing electromagnetic wave, the device

provides its own internal feedback and is in essence an oscillator rather than

an amplifier, as is the case in linear FEL's. And thirdly, because the elec-

tron motion is primarily circular the system'" is very compact.

There are several ways of producing a rotating relativistic electron

stream. One is to subject the electrons to orthogonal electric and magnetic

fields as is typical in magnetron-like devices. Here, the electrons undergo a

'(r)= E* (r)xBi/I 2 drift in a radial electric field rE (r) and a uniform

axial magnetic field B 1. Addition of an azimuthally periodic magnetic field

B (e,r) then results in a circular FEL. This scheme has been explored previ-
w

oursly, 7,8,'0 and though the experimental results'0 are encouraging, it may

have a potential drawback in that the electron velocity v(r) varies strongly

with radial distance r. This velocity shear leads to certain complications,"

and may also cause a reduction in gain and efficiency of the device.

Employing an entirely different scheme, experiments have been recently

described" which generate an essentially monoenergetic rotating electron ring,

thereby circumventing the problem of velocity shear mentioned above. There,
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an annular, nonrotating beam propagating axially is injected into a narrow mag-

netic cusp which transforms'"3 '4 the axial beam energy into rotational energy.

The integrity of the annular ring of rotating electrons is maintained down-

stream from the cusp by a uniform axial guide magnetic field.

Superimposed on the axial guiding magnetic field is an azimuthally peri-

odic magnetic wiggler field kw, which, near the center of the gap, is primari-

ly'" radial and is thus transverse to the electron flow velocity, as is the

case in conventional linear free-electron lasers. The wiggler field is gener-

ated by an assembly of samarium cobalt bar magnets placed behind two concen-

tric metal cylinders. Thus, the electrons see only smooth metallic boundaries

which act as the coaxial waveguide for the radiation. The proximity of the

metallic walls to the electron ring also helps to stabilizels," the negative

mass instability, the excitation of which is often a worrisome problem."

The purpose of this paper is to examine the microwave generation process

caused by relativistically rotating electrons moving in quasi-circular orbits

under the combined action of a uniform axial magnetic field and an azimuthal-

ly periodic wiggler magnetic field, as discussed above. Section II contains

a description of the configuration, and an analysis of the beam dynamics.

Section III contains the derivation of the dispersion relations for the trans-

verse magnetic (TM ) modes excited by the electron ring confined in cylin-

drical or coaxial waveguide systems. In Section IV we present examples of com-

puter generated solutions of the dispersion equations, and finally Section V

contains a discussion of the results.

We will show that growing electromagnetic fields occur near frequencies

corresponding to the crossing points of the TM9m waveguide modes, w=o ( ',m),

and the beam modes w=(k+N)P11 , where wc is the waveguide cutoff frequency, QU

is the electron cyclotron frequency, and N is the number of wiggler periods

around the circumference.
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II. ELECTRON MOTION IN THE GUIDE AND WIGGLER FIELDS

In our model, an annular electron ring of infinite axial extent and very

small thickness rotates within a cylindrical waveguide of radius a, or within

the gap formed by two concentric grounded metal cylinders of radii a and b, as

is illustrated in Fig. 1. The two cylinders form a coaxial waveguide. The

electron ring is confined by a uniform axial magnetic field B,,z directed along

the waveguide axis. The electrons are assumed to have zero streaming velocity,

and in the absence of any other perturbations, they undergo pure rotation about

the z axis with an azimuthal velocity

v(0) =r (1)

Here r is the radius of the electron ring and Q,=eB,,/y m c is the electron

cyclotron frequency in the guide field; y =(1 _ -Y=1+eV/m c2 is the relativ-
(o),1+ Vm0c2 i h r lt v

istic energy factor, =v 0 /c and eV is the beam kinetic energy.

Superimposed on the axial magnetic field B11i, is an azimuthally periodic

wiggler field B (Fig. 1) which perturbs the electron stream. Subject to the

requirement that v-Bw=VxBw=O, the field in the vacuum gap between the concen-

tric cylinders a, b is calculated to be, 10

4- B N-1 +1 (22-1
Bw = cos(Ne) N + N+1]J(N )/2N

(2)

B ON-1 bN+1 (N21)/2N
- sin(Ne) --r ~ N

where r and 6 are unit vectors in the radial and azimuthal directions, respec-

tively. N=rr(a+b)/z 0 is the number of spatial periods and k is the linear

periodicity defined midway in the gap. Bow is the amplitude of the radial com-

ponent of field at a distance r=R (aN-1bN+1)1/(2N) where the azimuthal field compo-

nent vanishes (which is roughly midway between the electrodes). We see that

I
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near the center of the gap the wiggler field is primarily radial and is thus

transverse to the electron flow velocity, as is the case in conventional free

electron lasers. The undulatory force -e4B is along the ±z axis. We shallc w

find in section III that this undulatory motion gives rise to a z-directed RF

current which excites growing transverse magnetic (TM ) waveguides modes.

To simplify computations we shall assume henceforth that the electron

ring radius r coincides exactly (or nearly so) with the radius RO (aN-1bN+1 1/2N

discussed above. Under these conditions the 6 component of Bw can be neglected,

and Bw of Eq. (2) becomes

Bw = B OWcos(Ne) (3)

We shall now assume a sufficiently weak pump field such that,

f =- 10w/NM11<<1. (4)

Here Qw=eB /m cy is the cyclotron frequency associated with the wiggler field

and o1=eB 11/mcy is the cyclotron frequency associated with the axial, guide

field. Subject to this inequality the motion of the electrons in the absence

of RF fields is given by

v(0) = 0
yr =

V(O) = r(o) = r , (5)

V() = C e fsin(NHt)z 80,

and,

0

6(0 = t (6)

z = r f[1-cos(N 1t)]

where,

v ) /c ; y =
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We note that inequality (4) does not restrict the wiggler strength excessively.

Since in most practical consideration N>>1, Bw and B, can have approximately

equal magnitudes. In deriving the equations of motion, the self-fields of

the electron ring are neglected under the present assumption of a tenuous beam.

In the presence of electromagnetic fields, the equation of motion of an

electron is given by

=- - E + vxB - V ( V7 (7)dt m y c c 2

where B=v +v ,= ,= (0)+6(o)+B(1), etc. are sums of zero-order quan-

tities described by superscripts "o" and small, time-dependent, RF quantities

denoted by superscripts "1". Linearizing Eq. (7) then leads to

2 6 y() - 2 y2 r(1) - y 2 2 fQ sin(Na)i(1)r0 C y0 60 11 0 0 00 11

= e FE() + B(1) - f sin(NO)B(i)
_my L OOJ o z 00 0

r 6 + 1)+NQ f cos(Ne) =- o + f sin(Ne)B -2f sin(Ne)E ;0 I ImoY 7 r Ooz

( + y 2 2 Nf cos(NO)r(i) + c Nf(2 60 2 - 1)cos(Ne)z ~0 00 116 i-1io(a61

= - F7() E(1 - SB2 sin(NO)E , (8)

where we have used

1 F1_____
y y 0 c2

These results will be used in deriving the dispersion equations in Section III

below.

III. DISPERSION RELATIONS

In the case of a tenuous electron ring being considered here, the coaxial

waveguide modes can be approximated in form by the unperturbed, vacuum, trans-
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verse electric (TE) and transverse magnetic (TM) modes. The z-directed oscil-

latory motion given by Eqs. (5) and (6) caused by the wiggler field does not

couple to the TE family of modes, and they are therefore of no further inter-

est (the negative mass instability and the synchronous mode instability,18

which do couple to TE modes are assumed to be stabilized by the proximity of

the cylinder walls). The dispersion equation for the remaining TM family of

modes is computed under cutoff conditions corresponding to the case for which

the axial wavenumber k11=O. Since the electrons have no axial streaming veloc-

ity, k 1=0 corresponds to the case where the growth rate of the FEL instability

is expected to be largest. The RF fields are then given by

+CO i(ze-wt)

Ez 1 CZX 9(kcr)e

Br = Ck P_ k c r XYk cr)e (9)
t=-- c

+00 i(e-t)
B = O £Ct k c X (kcr)e

with E =F =B =0. In the above equation C, is a constant proportional to

tho perturbing TM.field,

X 9 (kcr) = J X (kcr)N (k ca)-J (k ca)N ,(kc r) (10)

and J, and N , are Bessel functions of the first and second kind, respectively;

kc (z,m) is the cutoff wave number determined by setting X ,(kcb)=0. The cutoff

frequency wc of the (t,m)th wave-guide mode is related to the wave number

k c(z,m) through w c(,m)=ckc (,m); , and m are the azimuthal and radial mode num-

bers, respectively.

All components of the TM fields in the coaxial waveguide can now be found

from the wave equation for the axial electric field, namely

(W2 - c2k2)E = 
4 Twz(
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The RF current density of the infinitely thin ring at r=ro is18

j(z 6(r-r )vz ~ () 0ir-r0)r vz () + a 6(r-r0)vZ (12)

where

0 is unperturbed surface charge density, a is perturbed density,

a = -a + ( , (13)

and 6 is the Dirac delta function.

To obtain the dispersion equations, we expand all first order, time vary-

ing quantities (such as r('), () v (), E) etc.) in the form
z z

i(ke-wt)
F= F e (14)

and eliminate RF terms between Eqs. (8), (11) and (12). After some tedious

algebra one obtains the following dispersion equation for the (complex) radia-

tion frequency:

r rw 2-
[2- c2 k - k c Go U X (k r ) = f wT. (15)

Here (16)
p = (4,feco/my r

is the electron plasma frequency,

A P2 21 ( [+ 0 Y1 (17)

D= [ N'2 (kca) [J2 (kcr)+ 1 J (kcr) +j'2 (kca) [N'2(kcr)+ (1- -4.23N2 (kcr)

-2N' (kca)J (kca) [J' (kcr)N(kcr)+ (- J (kc r)N(kcr)
91~~ _ 1Cr 9 r=b



- 9 -

T - Ei2+NXz(kcrO)X'(kcro) f w b1+2 2 y2fo k r -b

T CoNz2kc -

+ n2T+NX(kcr)X, (kcro) k b2

C

- E2k+NX (kCr ) yofblb4Y bib 3 + 0 y f-

- Ti+NX (kCr 0) fb2b4 + W b2 b31k+Nt C0) [00 a 2, _-

- i+NX2 (k r ) 2y 2fo - bb 3  - (1- - 2 &2
1zNkCo 0 Oo 0O o c kr VGao 60

C o 2 _

-I X ( 2 2 1o
2z+NX (kCr ) 0YO 0 b2 b3

wr
X +NX'2(k r )f 0

+ 2+NX(kcr )X(k r) 2 yfk r b + 2y k r -b3

b= 1 + 2 y2N, 11

b2 = (9+N) - 2 y2N 9+N

92w

b3= 1 - eo k c
Co0

b4 2 r C - aob= k c 6

Q 2

E1i, = 1 + (ey 2-N 2+N- 2,
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c = + 2 2 Y 2 _ 1
1 2 O0ow 00 o 0 Z-N Z+N-

2 + a 2 22 1 1

2Z - ' + 1 ~2 Y 2 1 -
- 2 Poow ,2 -N z'+N -

Despite the complexity of dispersion Eq. (15), its physical structure is

readily understood. The left-hand side describes the interacting waves; the

right-hand side is the coupling term which vanishes when the amplitude of the

wiggler field Bw goes to zero. To examine the structure of the waves we set

the right side equal to zero. Then the first term on the left-hand side in

the square brackets represents the (2,m)th electromagnetic perturbation under

cutoff conditions (k,=0). When wp is small, it reduces to

= ckc(,m)

or (18)
= WC (P,,M)

The second term in square brackets given by Ak+N represents one of two beam

modes. The first mode

*+N =0

or (19)
= (Z+N) Q,,

is a "synchronous mode"'" upshifted in frequency by the wiggler periodicity N.

The second mode is a "cyclotron" mode"" 8

Sn+N ~

or (20)
= (z+N±1) Q,

likewise upshifted by N.

The interaction of the electromagnetic wave (18) with the cyclotron mode
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(20) proves to be stable, and is of no further interest here. However, the

interaction between the electromagnetic mode (18) and synchronous mode (19) is

unstable and represents the sought-after instability. The maximum growth rate

occurs close to the crossing points of

W = c(Zm) (21)

and

w= (z+N)a1  . (22)

The radiation frequencies w are then determined when these two equations are

satisfied simultaneously.

We may now define k =k/r as the azimuthal propagation constant of the RF

perturbation, and kw=N/r as the wiggler wave constant (r is the radius). Since

%U=v 0)r, (Eq. (1)), Eq. (22) can be cast into the form

W = (k0  + kw)v~O) (23)

which is the familiar expression for the propagation of the ponderomotive wave

in a free electron laser. Combining Eq. (24) with Eq. (21) yields the follow-

ing alternate expression for the radiation frequency:

=1 - (2tan/wc 'z,)

k v(o) (24)
w e

1 -- (v /vpe)

where vpo=wc (,m)r/z(>c) is the azimuthal phase velocity of the RF perturbation.

Equation (24) is to be compared with w=(k v )/(1- v /c) for the conventional

free electron laser in its normal linear geometry with v as the axial elec-

tron velocity.

It is clear from Eqs. (21) and (22) that for a given wiggler periodicity

N, high frequency radiation arises from coupling to high waveguide mode num-

bers. We note that when the gap width (a-b) is sufficiently small so that
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(a-b)/a<<1, wc is to fair approximation given by,19

Wc (z,m) - rmc/(a-b) (25)

provided that m is not too small. This shows that the cutoff frequencies of

the TM coaxial waveguide modes are governed primarily by the radial wavenum-

bers m. On the other hand, the frequencies of the beam wave (Eq.

(22)) are governed by the azimuthal wave numbers k. However, we shall see in

Section IV that the situation is different for a hollow cylindrical waveguide.

IV. NUMERICAL EXAMPLES

For relativistic electrons, (Koyo)2>>1, dispersion Eq. (15) simplifies

somewhat with the result that

r2 - -2
00 1]X (kcrc

N2 - c2k1 - 0 - -11X (kcr)
1W 91 c 0

r2
2 2 r= 0 f2b 1(z+N)X(kr) (26)

The examples that follow were obtained by solving this equation on a computer

for complex frequencies w.

Case (a): m=1

Here we consider relatively low frequencies in which coupling occurs with

the TM mode of a coaxial waveguide with a=6cm and b=5cm. The radius of the

electron ring ro=R =5.42cm is at a position where the wiggler magnetic field

is purely radial (Eq. (2)). The nonrelativistic plasma frequency wp p Y =

1.50x1O 9sec-1; B1=1.52kG; Bw=1.2lkG and N=8; y =4 .91.

Figure 2a shows the crossing points between the TM mode and the

beam wave w=(z+N)Q.. Two crossings occur, one for the azimuthal wavenumber

t=16 and the other for the wavenumber z=21. For these values of t the insta-
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bility growth rates are expected to be maximum. This is borne out by calcula-

tions of the imaginary part of the frequency, W , shown plotted in Fig. 2b.

Note, that although solid lines have been drawn, physically meaningful growth

rates occur only at integer values of k. The growth rate is maximum when par-

ameters are adjusted in such a way that the two crossing points coalesce at ZZ18.

Figures 3a and 3b illustrate the dependence of the instability growth

rate w x on the strength of the wiggler magnetic field, and on the electron

plasma frequency w , respectively. We find that io-B2/3, and WiW2/3 which isp iw' p

just as one would expect' for the case of a cold but tenuous beam in the

"single particle, high gain, strong pump" regime of FEL operation.

Case (b): m=5-12

Here we consider relatively high frequencies in which coupling occurs with

TM modes having large wave numbers k and m. This situation is more akin to

recent experiments." The outer and inner waveguide radii are a=6.58cm, b=

5.25cm; r =R =5.77cm; the nonrelativistic plasma frequency w as y p =
0 0 po p

1.50xlQ9sec~1; B,=1.25kG; Bw=0.75kG and N=6; y =4 .35 .

Figure 4a gives a plot of the maximum growth rate w as a function of the

real part of the frequency wr for six successive modes ranging from m=5 to

m=10. The apparently strange behavior seen in the figure, in which w exhib-

its an initial rapid decrease with m followed by a subsequent increase, is

readily explained. The electron ring is infinitely thin and has a fixed radius

r=r =R for all m. However, as m changes the RF electric field, amplitude at

r=r goes through maxima and minima depending on the value of m. This strongly

affects the coupling of the RF fields to the beam and thus affects the growth

rate. Figure 4b shows how E z(r=r ) varies with wr. We see that the growth

rate of Fig. 4a mimicks the electric field behavior of Fig. 4b.

In a realistic situation the annular electron ring has finite thickness
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and thus the electrons "sample" a range of RF fields at various radii r. The

best that can be achieved is to place a thin ring at an electric field anti-

mode. We therefore calculated the maximum growth rates for various ring radii

r=r (near r=R ) ranging from 5.67cm to 6.27cm. In doing this we kept BH and

Bw fixed but allowed y to vary in accordance with the constraint imposed by

Eq.(1). The results of these calculations are illustrated in Fig. 5 where

each point corresponds to a different value of r . We see in constrast with

Fig. 4a, that now the maximum growth rates of successive radial modes m are

nearly equal in magnitude.

Case (c): m=1, b=0 (no inner electrode).

We have seen in Sections IV(a) and (b) that for a coaxial waveguide with

(a-b)/a<<1 the cutoff frequencies wc (z,m) for the TM modes we are almost inde-

pendent of the azimuthal wave number X (Eq. (26)). Thus, in order to achieve

high frequency radiation and satisfy the mandatory coupling of Eqs. (21) and

(22), it is necessary to go to high radial mode numbers m (see Fig. 5). Mat-

ters are quite different when the inner electrode is removed. Now, the cut-

off frequency wc increases quickly with increasing z, and high frequencies are

readily achieved even for small m (m=1, for example).

In the case of a hollow cylindrical waveguide, X (k cr) of Eq. (10) be-

comes

XY(kcr) = Jj(kcr) (27)

and the cutoff wavenumber and frequency are determined by Jp(kca)=O. For m=1

and large azimuthal wave numbers20 one obtains to good approximation,

Wc (,1) = ckc(t,)

=(c/a)F(Z)

=(c/a)(k + 1.8557521 + 1.03315-1/3+ ... ) . (28)

We can now substitute Eq. (28) in Eq. (21) and obtain z corresponding to the
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crossing points with Eq. (22). To find 2 for the maximum growth rate of the

instability, the two curves represented by Eqs. (21) and (22) must meet tan-

gentially, with the result that

(N+2) dF(Z) = F(t) (29)

where the dimensionless function F(z) is defined in Eq. (28). Thus, we see

that the value of the azimuthal wave number 2 (for k>>1), corresponding to the

maximum growth rate, depends only on the number of wiggler periods N. For

example, when N=6, Z107.

Once t is found from Eq. (29), the remaining parameters of the system are

then fully determined. With Z=107, and a=6.58cm, Eqs. (21) and (28) yield o=wc

5.2800x10r-ad. sec-1, and from Eq. (22) it follows that Q1=4.6814x1O 9rad. sec-1.

Since the electron ring radius r =R =5.77cm, one finds from Eq. (1) that v o)/c=
0 0 0

0.90039, y=2 .2984 and B1 =0.6lOkG. A conventional, linear FEL with the same

parameters and also operating at the tangential intersection of the relevant

waves would radiate at a frequency w=1.48x1O 11rad. sec-1.

Of course, the growth rate of the instability must be obtained by solving

the complete dispersion equation. The equation for an electron ring in a hol-

low waveguide of radius a is the same as that given by Eq. (26), except that

now X is given by (27) and DI is given by

D a2F (ka) + - 2 (kca) (30)91?2kIc k2a2  J~k~

Using the above parameters together with w =u y1/2=1.5x109sec-1 and Bw=0.75kG

yields wi=9.83x1O8rad. sec- 1.

Calculations similar to the above were carried out for several different

values of wiggler periodicity N, with a=6.58cm, ro=5.77cm, and Bw=0.75kG. The

results are presented in Table I. We see that extremely high radiation fre-

quencies w can be achieved at relatively low beam energies simply by a moder-
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ate increase in the wiggler periodicity N. The reason is that for large azi-

muthal wave numbers Z, solution of Eq. (29) gives

z z 0.529N 3  (31)

from which we see that a two-fold increase in N (for example) result in an %8

fold increase in the radiation frequency. We note that this behavior is quite

different from a conventional free electron laser operating in linear geometry

where the radiation frequency scales linearly with the wiggler periodicity.

The growth rates w shown in Table I are seen to vary rapidly with N.

The reason is similar to the rapid changes in wi illustrated in Fig. 4. Namely,

the electron ring radius r is held at a fixed value which is .not necessarily
0

optimum for good coupling with Ez, the RF electric field. As discussed earlier

in connection with Fig. 5, optimization of w can be achieved by slight varia-

tions of r0. We have taken 7 discrete values of r in the range from

5.67cm to 6.27cm. Table II gives the largest values of w calculated in that

range. We see that now w is relatively insensitive to the value of N, where-

as the beam energy is strongly dependent on N (and r ).

V. DISCUSSION

In this paper we have derived conditions under which growing electromag-

netic waves can be excited by a rotating, relativistic electron ring subjected

to an azimuthally periodic wiggler magnetic field. The thin, tenuous electron

ring undergoes pure rotation (the axial velocity is zero) and is comprised of

an assembly of monoenergetic electrons with zero energy spread. The rotation-

al motion v 0)=Q21 r is perturbed by a radially directed, azimuthally periodic

wiggler magnetic field, as a result of which growing electromagnetic modes are

excited. The excitation frequencies and temporal growth rates are derived for

the TM family of modes that can be supported in a hollow cylindrical wave-

guide of radius a, or an coaxial waveguide with radii a and b. The appropriate
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dispersion equations are derived for complex frequencies w under the assumption

that the axial wave vector kg of the electromagnetic fields is zero (cutoff

condition). It is found that radiation growth occurs near frequencies corres-

ponding to the crossing points of the cutoff waveguide modes w=wc (m) (W is

the cutoff frequency) and the beam modes w=(k+N)Q,1 (o, is the electron cyclo-

tron frequency) upshifted by the wiggler periodicity N. This coupling is

similar in nature to that which occurs in conventional, linear free electron

lasers. The computed instability growth rates are found to be somewhat larger

than those for the liner FEL's under the same conditions (same y, B w' p, etc).

Coupling to high T,1 modes of a hollow cylindrical waveguide reveals that very

short wavelengths in the millimeter wavelength range can be achieved with rel-

atively low beam energies of several hundred kilovolts, and weak magnetic fields

of approximately half a kilogauss. To achieve similar frequencies, the gyrotron2"

would require magnetic fields about two orders in magnitude higher.
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TABLE I. Computed parameters for an electron ring of fixed radius r =5.77cm
0

rotating in a hollow cylindrical waveguide of radius a=6.58cm; po 1.5xlO 9rad.

sec-1; Bw=0.75kG.

N k V(MV) B11(kG) wrx10'-1 (rad.sec~1) cix10-7(rad.sec-1)

4 29 0.884 0.752 1.59 162

6 107 0.660 0.610 5.28 98.3

8 261 0.607 0.576 12.4 4.34

10 516 0.585 0.562 24.2 2.55

12 898 0.574 0.554 41.7 50.8

TABLE II. Optimized growth rate parameters for electron rings of various radii

rotating in a cylindrical waveguide of radius a=6.58cm; w =1.5xlO9rad.sec-1;

B =0.75kG.w

N Y r (cm) V(MV) B11(kG) wrx1O~11(rad.sec~1) wixlo 9 (rad.sec~1)

4 29 5.71 0.807 0.710 1.59 1.70

6 107 6.07 1.08 0.827 5.28 1.87

8 261 6.30 1.62 1.10 12.4 1.49

10 516 6.31 1.53 1.05 24.2 1.26

12 898 5.72 0.545 0.539 41.5 39.0
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FIGURE CAPTIONS

Fig. 1. Schematic drawing of a rotating electron ring in a radially directed,

azimuthally periodic wiggler magnetic field.

Fig. 2. (a) Coupling of the T1k coaxial waveguide modes with the beam modes.

as a function of the azimuthal wave number k; (b) growth rate of the

FEL instability as a function of k. a=6cm, b=5cm; r0=5.42cm; ao=

1.50xlO9rad.sec-1; N=8; y =4 .9 1; B11=1.52kG; BW=1.21kG.

Fig. 3. Variation of the instability growth rate as a function of (a) wiggler

field amplitude, (b) electron plasma frequency. a=6cm, b=5cm; r =

5.42cm; n=8; y =4.91; B11=1.52kG.

Fig. 4. (a) Growth rates of the TM to TM coaxial waveguide modes and

(b) amplitude of the RF electric field at, fixed radius r =R =5.77cm,

as a function of the radiation frequency. a=6.58cm; b=5.25cm; o=

1.50xlO 9rad.sec-1;N=6; yo=4.35; B11=1.25kG; Bw=0. 75kG.

Fig. 5. Growth rates of the TM to TM coaxial waveguide modes for 7 dif-

ferent electron ring radii r ranging from 5.67cm to 6.27cm. Each

point is for a different value of r 0. The open circles are for the

case r0=R0=5.77cm and correspond to the points shown in Fig. 4. a=

6.58cm; b=5.25cm; wo =1.5x1O 9rad.sec- 1; N=6; B11=1.25kG; BW=0.75kG.
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