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ABSTRACT

A macroscopic cold-fluid model is used to investigate the quasilinear

stabilization of the diocotron instability for sheared, nonrelativistic electron

flow in a planar diode with cathode and anode located at x=O and x=d, respec-

tively. The nonneutral plasma is immersed in a strong applied magnetic field

B 9Z, and the electrons are treated as a massless (m+O) guiding-center fluid

with flow velocity Vb (c/B0 )V z, where /Dz=O is assumed, and the fields are

electrostatic with =-VP. All quantities are assumed to be periodic in the y-

direction with periodicity length L. The.nonlinear continuity-Poisson equations

are used to obtain coupled quasilinear kinetic equations describing the self-

consistent evolution of the average density <nb>(x,t) and spectral energy density

k (x,t) associated with the y-electric field perturbations. Here, the average

flow velocity in the y-direction is VE(x,t)=(c/B0 )(D/x)<P>(x,t), where average

quantities are defined by <$>(x,t)=L (dy/L)i(x,y,t). Several general features
0

of the quasilinear evolution of the system are discussed, including a deriva-

tion of exact conservation constraints. Typically, if the initial profile

<nb>(x,t=O) corresponds to instability with yk(O)>O, the perturbations amplify,

and the density profile <nb>(x,t) readjusts in such a was as to reduce the

growth rate Yk(t) and stabilize the instability. As a specific example, we

consider the quasilinear evolution of the diocotron instability for <nb >(xO)

corresponding to a gentle density bump superimposed on a rectangular density

profile in contact with the cathode.
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I. INTRODUCTION AND SUMMARY

There is a growing literature on the equilibrium and linear

stability properties of sheared, nonneutral electron flow in

cylindrical and planar2-6 models of high-voltage diodes with

application to the generation of intense charged particle beams

for inertial confinement fusion.7 These analyses1-6 have repre-

sented major extensions of earlier theoretical work8-12 to include

the important influence of cylindrical, relativistic,2-6 electro-

2-6 6
magnetic, and kinetic effects on stability behavior at moder-

ately high electron density. Nonetheless, while there is an

increased understanding of the linear stability properties of non-

neutral electron flow in various parameter regimes, there has been

very little progress in describing the nonlinear evolution and

stabilization of the instabilities. For sufficiently strong

instability, it is reasonable to expect that the amplifying field

perturbations may significantly modify the electron density and

flow velocity profiles, and perhaps have a deliterious effect on

the operating characteristics of the diode. In addition, in

circumstances involving the generation of intense ion beams,

sufficiently large-amplitude field perturbations may cause unac-

ceptably large ion deflections and poor beam collimation. There-

fore, as an attempt to delineate some of the fundamental physics

issues associated with the nonlinear development of instabilities

driven by velocity shear, we develop here a detailed quasilinear

description of the classical diocotron instability.8- 1 2
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In the present analysis, we make use of a macroscopic cold-

fluid model to investigate the nonlinear stabilization of the

diocotron instability for sheared, nonrelativistic electron

flow in a planar diode (Fig. 1). As summarized in Sec. II, the

nonneutral electron plasma is immersed in a strong applied mag-

netic field B , and the electrons are treated as a massless

(m+0), guiding-center fluid with flow velocity [Eq. (2)]

Yb B'

where it is assumed that 3/Dz=O and the fields are electrostatic

with (x,y,t)=- V$(x,y,t). The cold-fluid model is based on the

continuity-Poisson equations [Eqs. (7) and (8)]

nb + - (nbV + (nV) = 0,

2 2

2 + 2 = 4 ffenb'
3x 3y

which describe the self-consistent nonlinear evolution of the

electron density nb(x,y,t) and electrostatic potential $(x,y,t).

Quantities are expressed as an average value (averaged over y)

plus a perturbation, e.g., nb(xy,t) =<nb>(x,t) + 6nb(xyt),

where <nb> fL dy n (x,y,t), <6n >=0, and L is the periodicityb~ LT b b
length in the y-direction (Fig. 1 and Sec. II). It is found, for

example, that the average density profile <nb >(xt) evolves non-

linearly according to [Eq. (14)]

<nb> = <6n y '

and the average E x B e flow velocity in the y-direction is givenru 0%z
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by [Eqs. (27) and (59)]
x

Ex <>x,t) 4rec dx'<nb>(x',t).

t 0  0 0

Therefore, as the perturbations 6nb and 6S amplify, there is a

corresponding readjustment of the density profile <nb> and flow

velocity VE in response to the instability.

In Secs. III and IV, the formalism developed in Sec. II is

used to obtain a lowest-order nonlinear (i.e., quasilinear) de-

scription of the evolution of the average density profile <nb>(xt)

and the spectral energy density $k(x,t)=(k k 2Tr) x

exp[2ft dt'y (t')] in the y-electric field perturbations, 6E (x,y,t)=
0 k y

-(D/Dy)6$(x,y,t). The quasilinear analysis assumes that the

initial density profile <nb >(xO) corresponds to linear insta-

bility with Yk( 0 )> 0 . Moreover, bilinear nonlinearities (propor-

tional to 6nb 64 ) are neglected in describing the evolution

6n '(xy't). [Compare Eqs. (19) and 26).]

To briefly summarize, we obtain coupled kinetic equations

for the average density profile <n b>(x,t) and spectral energy

density ek(x,t) [Eqs. (55) and (57)]

D<nb> = DD(DnD '

t k = 2ykek

where the diffusion coefficient D(x,t) is defined by [Eq. (56)]



5

8'?c 2 f k Ok
D(x,t) = B0

2 2 dk - k 2 2 '
B 0 2 Wk - kVE )2+ yk2

and the complex oscillation frequency wk + iYk is determined

from the eigenvalue equation [Eq. (58)]

2  , 2^ k$k 4e 2

2 6 kk 6 k - k + ik mw ax b >
x k VE +Yk c

Note that wk+ iyk varies adiabatically in time in response to

the slow evolution of <nb> and VE'

General features of the quasilinear evolution of the system

are described in Sec. IV.B, including exact conservation con-

straints satisfied by Eqs. (55) - (58). Typically, if the initial

profile <nb >(xt=O) corresponds to instability with yk (0) > 0, the

perturbations will amplify [Eq. (57)1, and the density profile

<nb>(x,t) will readjust [Eq. (55)] in such a way as to reduce the

growth rate yk (t) and stabilize the instability [Eqs. (57) and

(58)].

As a specific example, we consider in Sec. IV.C the quasi-

linear evolution of the diocotron instability for <nb>(xO)

corresponding to a gentle density bump superimposed on a rec-

tangular density profile in contact with the cathode (Fig. 4).

Such a configuration gives a weak resonant version of the dioco-

tron instability with lykI<fwkI and growth rate given by [Eq.

81)]
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k -IkVE(b) 2 2 k=xs b 

k kV (b) 2 A ax b
E "k x=b nb

x=xs

Here, the resonant location x is determined from [Eq. (50)].

k -kVE(x) = 0,

and the surface of the electron layer is located at x=b (Fig. 4).

In the resonant region of x-space, the diffusion coefficient can

be expressed as [Eq. (62)]

Dr 8T2 f k6 - kVE -Dr - I 2  fdek~(wkk
0

It is shown in Sec. IV.C that the system stabilizes time asympto-

tically by plateau formation with [Eq. (92)]

<n >(xt--oo) = 0*i b
x=xs

and yk(t+) = 0.

Finally, for the configuration with gentle density bump

considered in Sec. IV.C, we also make use of the quasilinear

equations to obtain an order-of-magnitude estimate of the satura-

tion level of the perturbed fields. This gives [Eq. (100)]

A2 An
<6E 2(b, 0) > -" 1 E (b)> 2

y 6b 2  bE X

where Anb and Ab are the characteristic height and width,

respectively, of the density bump (Fig. 4).
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Note that the above saturation level can be substantial,

even for small values of Anb /nb. If, for example, an ion were

accelerated from rest in characteristic steady field strengths

<E (b)> and AE = <6E (b,co)>/2 , then the fractional velocity
x y y

deflection of the ion would be

AV . A (n 1/2
y I a bb

V b 6nib

Of course, this estimate of AV ./V is valid for times shorter

than the characteristic time scale (wd ) for oscillation of

6E Nonetheless, this deflection can be substantial, e.g.,
y

AV .i/V .%r5% for A b/b =1/2 and An b/6n b =1/lOO
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II. THEORETICAL MODEL

In this section, we discuss various general aspects of the

theoretical model and assumptions (Sec. II.A), the nonlinear

evolution of average quantities (Sec. II.B), the nonlinear evolu-

tion of perturbed quantities (Sec. II.C), and boundary conditions

at the cathode and anode (Sec. II.D).

A. Theoretical Model and Assumptions

We consider here the nonrelativistic flow of a cold, non-

neutral pure electron plasma confined in the planar diode con-

figuration illustrated in Fig. 1. The cathode is located at

x=0 and the anode at x=d. The electron fluid is immersed in

a uniform applied magnetic field B z. The analysis is based

on a macroscopic cold-fluid description with the following

simplifying assumptions.

(a) All fluid and field quantities are assumed to be inde-

pendent of z(D/Dz=0) and spatially Periodic in the y-diredtion

with periodicity length L. For example, the electron density

nb( ,t) satisfies nb(x,y+L,t) = nb(xjyjt).

(b) The fields are assumed to be electrostatic with

electric field

(t) = -V$ (x,y, t) ,()

and magnetic field B0 ez

(c) In the present analysis the electrons are treated as

a cold, massless (m+ 0), guiding-center fluid with flow velocity

V = Ci x e,/BO r i ' 8,9

V (0t) = - V x& (2)
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Equivalently, Eq. (2) can be expressed as

Vb(x,y,t) = - $(xyt)Vbx~x 0 3y

(3)

vby~x~yt) = $(x,y,t).

A cold electron fluid model with +V xB 6z/c= 0 [Eq. (2)] is

valid provided the electron density is sufficiently low and per-

turbations have sufficiently low frequency that8,9,
1 2

2 « W2
pb c

(4)

at<< c'

Here wc = eB0/mc is the electron cyclotron frequency, Wpb 4nb 2

is the electron plasma frequency-squared, and -e and m are the

electron charge and rest mass, respectively. Note from Eq. (2)

that the electron flow in the present model is incompressible

with V-V =0.

(d) Finally, it is also assumed that the equilibrium elec-

tron flowis space-charge limited. That is, under steady-state

(a/at=0) conditions, the electrostatic potential q0 (x) satisfies

E (x=0) =-$0 0'x =

(5)
k0 (X=0)=0, 0(x=d) =Vs'

where the anode voltage Vs is related to the electron density

profile n (x) byl-5

V= 4Tref dx"f dx' n (x'). (6)

0 0

Equation (6) follows from solving D a2 0/ax2 = 4ren (x) in the anode-

cathode gap and enforcing the boundary conditions in Eq. (5).
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Within the context of Assumptions (a) - (c), the electron

density nb(x,y,t) and electrostatic potential $(x.,y,t) are

determined self-consistently from Poisson's equation and the

equation of continuity, i.e.,

24 2- $ = 4 fenb '
3x 23y 2

and

3n b 
38t + (nb bx) + y (nbVby) = 0 . (8)

Making use of Eq. (3) to eliminate Vbx and Vby in favor of 4,

the continuity equation (8) can be expressed in the equivalent

form

- nb -_nb 240] =0 (9)

Equations (7) and (9) constitute coupled equations describing

the nonlinear evolution of the electrostatic potential (x,y,t)

and the electron density nb(x'Y't).

B. Nonlinear Evolution of Average Quantities

In the analysis that follows, it is convenient to express

all field and fluid quantities as an average value (averaged

over y) plus a perturbation. That is, a general quantity

$(x,y,t) is expressed as

$(x,y,t) = <P>(x,t) + 6l(x,y,t), (10)

where the average value <4>(x,t) is defined by
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L

<$>(x't) 1jdy $ (x,,t) .(

0

Here, L is the periodicity length in the y-direction, and it

follows from Eqs. (10) and (11) that <6$> = 0.

Averaging Poisson's equation (7) over y, we find that

2

S<P> = 47re <nb> , (12)
ax

which relates the average potential <$>(x,t) to the average

density <nb>(x,t). Moreover, averaging the continuity equation

(9) over y and making use of periodicity in the y-direction gives

a <n > = <n > (13)a5t b a x ba y

for the evolution of <nb>. Expressing nb(x,y,t) =<nb>(x,t) +

6nb(xy,t) and f(x,y,t) = <$>(x,t) + 6$(x,y,t) on the right-

hand side of Eq. (13), and making use of (a/3y)<$> = 0 and

<6nb> = 0, it readily follows that Eq. (13) can be expressed in

the equivalent form

<n B <6n , (14)at b> ax ba@y

which describes the (slow) nonlinear evolution of the average

density profile <nb>(x,t) in response to the perturbations

6nb and 6$.

C. Nonlinear Evolution of Perturbed Quantities

In Eqs. (7) and (9), we express the potential $(x,y,t) and

electron density nb(x,yt) as average values plus perturbations,

i.e.,
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$(x,y,t) = <$>(x,t) + 6$(x,y,t)
(15)

nb (xy,t) = <nb>(x,t)+ 6nb(x,y,t),

where <$> and <nb> evolve according to Eqs. (12) and (14).

Subtracting Eq.. (12) from Eq. (7) gives Poisson's equation for

the perturbed potential 6$(x,y,t),

+ 6$ = 47re 6nb. (16)
3x 2 y 2b

On the other hand, substituting Eq. (15) into the continuity

equation (9) and making use of (a/ay)<$> = 0, we find

(<nb> + 6nb) - [(<nb> + 6nb) _L 6bb B 0 ax I bbayd
(17)

+(<nb> + 6n) a (<> = 0.B 0 ay L b b Di* I"

Defining the average k x B 0 k flow velocity in the y-direction by

c<E X > c a
VE(xt) = - 0 B <4>(x,t) (18)

and eliminating a<nb>/at from Eq. (17) by means of Eq. (14), it

follows that Eq. (17) can be expressed in the equivalent form

+ VE D nb B 0 ay ax <nb>

c 6n ((x 64) 9-1 n(9

B0[(a Y 64)\(a b I )(y b

a n - 6 $

- a< 6nb y

In Eq. (19), we have transposed all terms explicitly bilinear

in 6$6nb to the right-hand side.
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Equations (12) and (16) for <$>(x,t) and S$(x,y,t), and

Eqs. (14) and (19) for <nb>(x,t) and 6nb(x,y,t) constitute a

closed description of the nonlinear evolution of the system,

which is fully equivalent to the Poisson-continuity equations

(7) and (9). In circumstances where the initial density pro-

file <nb>(x,0) corresponds to linear instability, the

perturbations 6$ and 6nb amplify, and the average density pro-

bbfile <nb>(x,t) readjusts in response to the unstable field per-

turbations according to Eq. (14).

A lowest-order quasilinear analysis (Sec. III 3of Eqs. (12),

(14), (16) and (19) proceeds by neglecting all bilinear nonlin-

earities on the right-hand side of Eq. (19) for 6nb. The

resulting equation for 6nb is then solved in conjunction with

Eq. (16) for 6$, and the resulting expressions are substituted

into Eq. (14) to determine the quasilinear response of the average

density profile <nb>(x,t) to the unstable field perturbations.

D. Boundary Conditions

For completeness, we conclude this section with a brief

discussion of the boundary conditions assumed in the present

analysis. In particular, it is assumed that there is zero net

flux of electrons at the cathode (x= 0) and at the anode (x=d),

i.e., nbVxb= 0 at x=0 and x=d. Equivalently, from Eq. (3),

this condition can be expressed as

E = - = 0, at x= 0 and x=d, (20)
y 3Y
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or (a/Dy)6$= 0 at x= 0 and x=d, since ( /Dy)<p>= 0. It then

follows directly from Eqs. (20) and (14) [or Eq. (13)] that

tfdx<nb.=O. (21)

0

That is, however complicated the nonlinear evolution of the

average density profile <nb>(x,t), the total number of electrons

in the cathode-anode region is conserved. Of course, this is

expected because of the zero-net-flux boundary conditions at the

cathode and anode [Eq. (201.

Finally, assuming that space-charge limited flow is main-

tained with <Ex> = - (a/3x)<p> = 0 at x=0, it follows from

Poisson's equation (12) for <$> that <p> and <nb> are related by

x xi

<$>(x, t) = 47re dx"f dx' <nb>(x',t) , (22)

0 0

where <P> =0 at x =0. Evaluating Ea. (22) at x= d, we find that

the anode voltage V s(t) consistent with space-charge-limited flow

is given by

d x"
V5 (t) = 4Te dx" dx' <nb>(x' ,t). (23)

0 0
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III. QUASILINEAR THEORY OF DIOCOTRON INSTABILITY

A. Quasilinear Kinetic Equations

With regard to Poisson's equation (16) for 6$ and the

continuity equation (19) for 6nb, it is convenient to Fourier

decompose perturbed quantities with respect to their y-

dependence. That is, we express

6$(x,y,t) = J 6k(x,t)exp(iky)

k (24)
6nb(x,y,t) = 3 6n bk(x,t)exp(iky),

where k= 2Tn/L, L is the periodicity length in the y-direction,

n is an integer, and the summation is from n=-- to n=+.

Equation (16) then gives

6$k - k26k= 4 enbk ' (25)
ax

which relates 6$ k(x,t) and 6nbk(x,t). At the quasilinear level

of description (see discussion at the end of Sec. II.C), the

right-hand side of Eq. (19) is approximated by zero, correspond-

ing to the neglect of bilinear nonlinearities in the evolution

of 6n Fourier decomposing Eq. (19) then gives

+ ikv 6nbk c <n (26)Eat ikVE Vc= B k (n b>/ 0

where [from Eqs. (18) and (22)] VE(x,t) is given by

VE t) = <> 4rec x dx' <n (27)VEXt B 0 axB 0 1j>x~)
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In Eqs. (26) and (27), the (slow) evolution of <nb>(x,t) is

calculated self-consistently in terms of 6$ and 6nb from Eq.

(14), which can be expressed in Fourier variables as

B <n- a 6nbk(-ik)5 $k. (28)
0 k

Equations (25) - (28) constitute coupled nonlinear equations

for the evolution of 6Pk' 6nbk and <nb> at the quasilinear level

of description.

To analyze Eqs. (25) and (26), we consider amplifying

(yk> 0) perturbations with time dependence of the form

t

"Ok xlt) ="6k (x) expl dt '[-i k (tl') + Yk (t ') ]

0 t (29)

6nbk (xt) = 6nbk (x) exp fdt'[-iwk(t')+ Yk(t')]

0

In Eq. (29), the growth rate yk (t) and oscillation frequency

k(t) are allowed to vary slowly in time in response to the slow

evolution of <nb> (x,t) in Eq. (28). Substituting Eq. (29) into

Eq. (26) and solving for 6nbk gives

-(kc/BO) 6pk a
6nbk ~ k-kVE +iYk Dx <nb> . (30)

Moreover, substituting Eq. (30) into Eq. (25), Poisson's equa-

tion for $k becomes

a2 2 -( 4Trekc/B 0 )k a
ax 2  k k k -kV + iYk ax b , (31)

where Yk > 0 is assumed. Note that Eqs. (30) and (31) are

identical in form to the equations for 6nbk and 6$k obtained
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in standard linear theory,8,9,12 assuming perturbations about quasi-

steady equilibrium profiles <nb> and VE. The only difference in

the present quasilinear analysis is that <n b>(x,t) is allowed to

vary slowly in time [Eq. (28)], which leads to a corresponding

slow (adiabatic) variation in the growth rate Yk(t) and oscilla-

tion frequency wk (t) as calculated from the eigenvalue equation

(31). 13

Substituting Eq. (30) into Eq. (28), the average density

profile <nb>(x,t) evolves according to

2 ik 2 12

<nb B 1k D kE <nb ) (32)

In obtaining Eq. (32), use has been made of the conjugate

symmetry

6$-k(x,t) = 6$ (x,t), (33)

which follows from Eq. (24) since 60(x,y,t) is a real-valued

function. Consistent with Eq. (33), it follows from Eq. (29)

that the oscillation frequency wk and growth rate yk satisfy

the symmetries

W-k _WkI

(34)

Y-k Yk'

and the amplitude 6$k(x) satisfies 6 $-k 6k. Making use of

1 k(Wk- kVE) - iYk
wk -kVE +iYk (W kV )2 +Y2

k E k
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and the symmetries in Eq. (34) to eliminate the odd functions

of k on the right-hand side of Eq. (32), we find that the quasi-

linear kinetic equation for <nb> can be expressed as

7 <nb> = D(x,t) <nb>J, (35)

where the diffusion coefficient D(x,t) is defined by

/c\ 2  k2  k 2YkD(x,t) = 2 2 (36)
k (wk kVE) k

and yk> 0 is assumed. Moreover, from Eq. (29), the quantity

6$k 12 evolves according to

2 06k| = 2Yk|6$kf 2 (37)

To summarize, the quasilinear evolution of <nb> and I6 k 2

is described by the coupled kinetic equations (35) and (37),

where the diffusion coefficient D is defined in Eq. (36).

Moreover, the growth rate yk(t) and oscillation frequency

Wk (t) are determined adiabatically from the linear eigenvalue

equation (31) with <nb> changing slowly in time according to the

kinetic euqation (35). Typically, if the initial profile

<nb>(x,t= 0) corresponds to instability with yk >0) 0, the per-

turbations will amplify [Eq. (37)], and the density profile

<nb>(x,t) will readjust [Eq. (35)] in such a way as to reduce the

growth rate yk(t) and stabilize the instability [Eqs. (31) and

(37)].

For future reference, we consider Eqs. (36) and (37) in the

limit of a continuous k-spectrum with
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ik 2 6P k 2 . fdk k . (38)k 8 7T

Here, k=k2 6k 2/87 is the spectral energy density associated

with the 6E electric field perturbations. In the continuum

limit, Eqs. (36) and (37) become

D(xt) = 8 Tc2  dk Ykk 2(39)
B B2 f W V 2 2
0 k-kVE + k

and

k=k2k k ,- (40)

where Yk is the linear growth rate determined from Eq. (31).

B. Quasilinear Growth Rate

The growth rate yk and oscillation frequency wk are

determined from the eigenvalue equation (31). In terms of the

amplitude 6Pk(x) [Eq. (29)], Eq. (31) can be expressed as

a2  - 2 ^ kk 47e 2 a
2 k - k "$k =~W - kV + -y m( lix <n b ' (41)ax k E k c

where wc = eB0 /mc is the electron cyclotron frequency. For

specified <nb> and corresponding self-consistent flow velocity

VE [Eq. (27)], Eq. (41) can be solved for the eigenfunction 6 k

and complex eigenfrequency wk+iyk. This has been done in the

literature for a variety of unstable profiles.
8 ,9,1 2

Equation (41) can also be used to derive an effective

dispersion relation for wk + lk in circumstances where the
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functional form of 4k (x) is known. Multiplying Eq. (41) by

6$-k= "M integrating from x =0 to x= d, and making use of

$k(x=) = = k (x = d) [Eq. (20)] give

0 =C(kk + iYk) dx 6k 2 +k 2 1 6k 2

0

kJ6^$k 2  2 (42)
-k k2 47Te 2 a- <n > (2

Wk - kVE + ik mwc x b

For specified 6$k (x) , Eq. (42) plays the role of a dispersion

relation that determines wk + iyk. Setting real and imaginary

parts of Eq. (42) separately equal to zero gives

0 ReC= Cr dx a6k 2+k 2 6k 2
0

k&wk-kVE) ! 2 72 (43)

2 2 mw 3x <nb
(wk-kVE) + c

and

C. k 4we2 ~d k2
0 ImE C = 4 k m2 dx 2 x<nb>. (44)

c 0 (k - kVE) + Yk

Equation (44) can be used to prove the well-known sufficient

condition for stability. That is, if 9,12

<nb> < 0 (45)

over the interval 0 <x < d, then Eq. (41) does not support

unstable solutions with yk >0. That is, yk< 0 and the per-

turbations are damped or purely oscillatory for monotonic
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decreasing density profiles of the form illustrated in Fig. 2(a).

Equivalently, a necessary condition for instability (yk> 0) is

that (W/3x)<nb> or ( 2 x2 )VE [Eqs. (12) and (18)] change sign

on the interval 0 <x <d. Therefore, density profiles that are

instantaneously of the form illustrated in Figs. 2(b) - 2(d)

are expected to yield the diocotron instability driven by a

shear in the velocity profile VE. Hollow density profiles

[Figs. 2(b) and 2(c)] tend to give strong instability, whereas

profiles with a gentle density bump [Fig. 2(d)] give a weak

resonant instability characterized by relatively small growth

rate Yk 9,12

For the case of weak resonant diocotron instability [Fig.

2(d)] characterized by ykJ<Iwkl, the effective dispersion rela-

tion (42) can be further simplified. For small yk, we approximate

0= C(k,wk + iyk) = Cr(k wk) +i[,i k + . . . , (46)

and

lim 1 p r(w-k47

Yk + kk + k E k k = k-kV kkVE)'

where P denotes Cauchy principal value. Substituting Eqs. (42)

and (47) into Eq. (46) gives

O r(k,wk ddx D 6$ k 22

0 2 (48)
kP6<pk2 47re 2 a <n >

Wk - kVE mwc nx b

and
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-- q d 2~' 5(-V
k3 d k k 6 (wk E D b

(49)

2 ~ --
d 6k J

x dx 2k <n b
Sk(W - kVE)

Denoting by x= x (k) the resonant layer where

Wk -kVE(x s = 0 , (50)

it follows from Eq. (49) that the growth rate Yk can be expressed

as9,1 2

k < nb2

x= xs

(51)

6$k 2, -
x[ dx I2 <nb]

(Wk - kVE)

For r k < 0, and therefore [ ... ] 11> 0 in Eq. (51), it

follows from the above expression that Yk> 0 (corresponding to

instability) whenever the resonant layer xs falls in the region

of positive density slope, i.e.,

a <n => > 0 , (52)

as illustrated in Fig. 2(d). In circumstances where the non-

linear response of the system described by Eqs. (35) and (37)

is such that the density profile flattens in the vicinity of

x =xs with (/ax)<nb x =x +0, it follows from Eq. (51) that
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Yk+ 0 corresponding to marginal stability and saturation of the

wave spectrum [Eq. (40]. The quasilinear stabilization of the

resonant diocotron instability driven by a gentle density bump

is discussed in Sec. IV.C.

For future reference and use in Sec. IV.C, we summarize

here the limiting forms of the diffusion coefficient D [Eq. (39)]

for the case of weak resonant diocotron instability. In particu-

lar, taking yk+ 0+ in Eq. (39) in the resonant region of x-space

where w -kV =0, it follows that D can be aDproximated byk E

2 2
Dr(x,t) = 82 dkdk6(W -kvE). (53)rB0 f k(kkE)

B0

On the other hand, in the non-resonant region of x-space where

(Wk -kVE 2>> Y2 ,it follows from Eq. (39) that D can be approxi-

mated by

D (x,t) = 87c2 dk (kk . 54)
nr B02 (Wk - kVE)2

The approximate forms of Dr and Dnr in Eqs. (53) and (54) are

calculated to the same accuracy as Eqs. (48) and (51) for

Wk and yk'
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IV. STABILIZATION PROCESS

In this section, we make use of the formalism developed

in Sec. III to describe several features of the quasilinear

stabilization process, both in the general case (Sec. IV.B)

and in circumstances corresponding to weak resonant diocotron

instability (Sec. IV.C).

A. Summary of Quasilinear Equations

For convenient reference, we summarize here in one location

the full set of equations used in the quasilinear description of

the diocotron instability derived in Sec. III. In particular,

the kinetic equation describing the evolution of the average

density profile <nb>(x,t) is given by [Eq. (35)]

D <nb> = D (D - <nb (55)

where the diffusion coefficient D(x,t) is defined by [Eq. (39)]

D(x,t) = 8rc dk Yk 6 k (56)
B 0  (Wk - kVE) + Yk

for yk > 0, and the spectral energy density ek evolves according

to [Eq. (40)]

k = 2ykek (57)

In Eqs. (55) - (57), the spectral energy density is defined by

k 2k 2 k12/8T= (k2 6k 2x)/8)exp 2f t dtyk(t') , where the
0

eigenfunction 6$k (x) and the complex oscillation frequency

Wk + iYk are determined from the eigenvalue equation [Eq. (41)]
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2 _2 MO k 4Tre 2
Fk - k 6$k Wk - kVE + 'k mWc -x b> (58)

Moreover, the average flow velocity VE (x,t) =(c/B 0 ) (/x)<O>

in Eqs. (56) and (58) is defined by [Eq. (27)]

VE ~ 4Trec dx' <nb>(x',t) , (59)
VE B 0 jX b '

0

where <nb> evolves according to Eq. (55). Note from Eq. (58)

that wk + lk varies adiabatically in time in response to the

slow evolution of <nb> and VE. Making use of Eq. (20), the

eigenvalue equation (58) is to be solved subject to the boundary

conditions

6$k= 0, at x= 0 and x= d . (60)

Correspondingly, the spectral energy density satisfies ek = 0

at the cathode (x =0) and at the anode (x= d), and it follows

from Eq. (56) that

D=0, at x=0 and x=d . (61)

In the limiting case of weak resonant diocotron instability

driven by a gentle density bump [Fig. 2(d)], or in circumstances

where a more general initial profile for <nb> [Fig. 2(b), say]

evolves according to Eqs. (55) - (59) to a regime characterized

by weak resonant instability, it follows from the analysis in

Sec. III.B that <nb> and 6k evolve according to Eqs. (55) and

(57), where the diffusion coefficient D is approximated by

[Eqs. (53) and (54)]



26

2 2

D 2= 8rc 2dk -k6(Wk kVE), for wk kVE 0,
B J

D= (62)

D 87rc dk k k for (w - kV )2 2
nr B2 (W - kV ) 2 kkE k

0 k E

Explicit expressions for the eigenfunction 6 k' the growth rate

Yk ,and the oscillation frequency wk appearing in Eq. (62) must

generally be determined from the eigenvalue equation (58).

However, for specified "k, it also follows from the analysis

in Sec. III.B that wk and Yk can be estimated from Eqs. (48)

and (51), respectively, for weak resonant instability.

B. General Features of the Stabilization Process

Consider the smooth initial density profile <nb>(x,t =0)

corresponding to instability illustrated by the solid curve

in Fig. 3(a). Assume Yk(t =0) >0 and non-zero initial excita-

2
tion of 6$kl . In Fig. 3(a), the density maximum at t =0 is

located at x= xm. Moreover, from Eq. (59) and Fig. 3(a), the

corresponding initial flow velocity profile VE (x,t= 0) has the

form illustrated by the solid curve in Fig. 3(b), with inflec-

tion point [V (xt = 0) =01 located at x =xm.

Several important features of the general quasilinear

development of the system follow directly from Eqs. (55) - (61).

(a) Number Conservation: First, number conservation

readily follows upon integrating Eq. (55) from x=0 to x=d and

enforcing Eq. (61), i.e.,
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d
aJ dx <n >(xt) = 0 . (63)

at f b

[See also Eq. (21)].

(b) Conservation of Average x-Location: Second, the density-

weighted, average x-location of the electrons is also conserved,

i.e.,

dx x<n >(xt) = 0. (64)

The proof of Eq. (64) proceeds as follows. Multiplying Eq. (55)

by x, integrating from x= 0 to x =d, and enforcing Eq. (61)

gives

dx x<nb>= -f dx D x<nb> . (65)

0 0

Multiplying the eigenvalue equation (31) by (c/4TreB0)k 6 _k,

integrating from x = 0 to x = d, and integrating over k, we

obtain

d c2 2 2
- dx dk - kV + i -n

0 FBOJ f kkVE lYk ~x b>
0

(66)

4 ( BO)fd dxfdk k( 6Pk 2 +k 2 | 2

0

The right-hand side of Eq. (66) vanishes identically since the

integrand is an odd function of k. Equation (66) readily gives
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2 2

ddx dkkE_ k a <nb> dx D <nb> = 0, (67)
1c 0 -kE+'Y x b f D

which completes the proof of Eq. (64). Equation (64) is

significant in that the density-weighted average x-location of

the electrons is conserved, however complicated the quasilinear

evolution of the system. That is, combining Eqs. (63) and (64),

we obtain

d
f dx x <nb>

x d -= const. (68)

J dx <nb>

10

(c) Profile Evolution: We consider Eqs. (55) and (56) for

Yk > 0, and integrate Eq. (55) from x = 0 to an arbitrary point

x(0 <x< d). Enforcing the boundary condition D =0 at x =0

[Eq. (61)], we obtain

jadx <nb>(xt) = D -<nb> , (69)

0

or equivalently, from Eq. (59),

VE (x,t) = D a Ex
ax

Comparing with Fig. 3, it follows from Eqs. (69) and (70) that

x

fdx <nb> 2 0, for x < x (71)

0 t=0

and
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VE < 0, for x I xm' (72)

t=o

where x=xm corresponds to the density maximum in Fig. 3. That

is, at a subsequent time t0 >0, the profiles for <nb> and VE

have evolved to the form illustrated by the dashed curves in

Fig. 3, corresponding to a weakening of the density gradients,

and a partial fill-in of the density depression. Therefore,

during the initial stages of instability, the quasilinear

response of the system is in the direction of stabilization and

reducing the growth rate [Eqs. (57) and (58)].



30

C. Resonant Diocotron Instability

As a specific example, we now consider the quasilinear

evolution of the diocotron instability for the configuration

illustrated in Fig. 4. This corresponds to a gentle density

bump superimposed on the rectangular profile

nb= const. , 0 < x < b,

<nb 
(73)

0 ,b<x<d.

Such a configuration gives the weak resonant version9,12 of the

diocotron instability discussed in Sec. III.B, and the appro-

priate quasilinear equations describing the evolution of the

system are given by Eqs. (55), (57) and (58), with diffusion

coefficient D approximated by Eq. (62).

(a) Real Oscillation Frequency: For the configuration

with gentle density bump illustrated in Fig. 4, the real

frequency wk and eigenfunction 6^$k (x) are calculated to good

accuracy from the eigenvalue equation (58), approximating the

density profile by the rectangular form in Eq. (73). The eigen-

value equation (58) becomes

a2  2 - k$kWd
-2 6$k - k "k w k -kV 6(x -b), (74)
ax k E

^2where Wd Wpb/wc = 4 7nbec/Bo, and the right-hand side of Eq.

(74) corresponds to a surface-charge perturbation at x=b.

Referring to Fig. 4, the solutions to Eq. (74) in Region I

(0 <x< b) and Region II (b <x< d) that are continuous at the

surface (x= b) of the electron layer are:
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k = k sinh kx, 0 < x < b

(75)

II sinhk(d-x)
6^$k =k sinh kb ihk(d b <x <d

where $k is the amplitude (independent of x). Note from Eq.

(75) that 6^$k(x= 0) = 0 = I (x =d) [Eq. (60)] at the cathode

and anode. To determine w k, we integrate the eigenvalue

equation across the surface at x =b from x_ = b(1 -3) to

x+ =b(l+6) and take the limit 6+0+. This gives

k [4]
_L-X - -- k^] - x=b k [d (76)

x k xk W kVE (x=b)

Substituting Eq. (75) into Eq. (76) readily gives

sihbcosh k(d -b) - A ~sinh kb
-ksinh kb -- kcosh kb= .V~x (77)ksinh k(d-b) ~kcnl W k -kExb

Solving Eq. (77) for the real oscillation frequency wk, we find

wkkVE(xb) coth kb + coth k (d-b) (78)

From Eqs. (59) and (73), it follows that VE (x= b) in Eq. (78)

can be expressed as VE x =b) =wdb, where wd= Wpb /Wc = 4 rbec/BO.

In the short-wavelength limit, it follows from Eq. (78)

that w k can be approximated by

Wk kVE(x =b) -b , (79)

for kb, k(d -b) >> 1. Moreover, for long wavelengths with

kb, k(d -b) << 1, Eq. (78) gives
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Wk = kVE (x=b) . (80)

A typical plot of wk versus kb is shown in Fig. 5 for d/b =2.

(b) Quasilinear Growth Rate: Referring to Fig. 4, the

resonant growth rate yk can be estimated from Eq. (51). Making

use of VE =wdx for 0 <x <b [Eq. (59)1, and evaluating the [ ... ]l

factor in Eq. (51) with (3/3x)<nb> approximated by -^b 6 (x -b),

we obtain from Eq. (51)

Fkvb~2 ^ 2
k-kVE (b) $x=Xs b 3

Yk 7[k "2 ^ x <nb> . (81)
JkVE(b)j 41$ | bk x=b

In Eq. (81), kVE(b) =(kb) wd and wk is determined from Eq. (78).

Moreover, it follows from Eq. (75) that

^I 22
16$k x=xs sinh kx

s2 s,(82)
6$k x2b sinh kb

and the resonant location x =xs (k) is determined from

Wk- kVE(xs) = 0 [Eq. (50)]. Note from Eq. (81) that Yk 0

(corresponding to instability) whenever xs falls in the region

of positive density slope in Fig. 4.

Combining Eq. (78) with wk - kVE(x s) =0 gives for x (k)

k (l - 13
( )x s coth kb + coth k (d - b)
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In the limits of short and long wavelengths, Eq. (83) reduces

to the approximate results

x
= (1- , for kb, k (d - b) >> 1, (84)

and

= , for kb, k(d-b) <<l. (85)

Therefore, from Eqs. (83) - (85), the resonant region of x-space

covers the range (see also Fig. 4)

-x - sb, 
(86)d~- xl <xs s2

with the upper limit (xs2) in Eq. (86) corresponding to short

wavelengths, and the lower limit (xsl) corresponding to long

wavelengths. Referring to Eq. (86) and Fig. 4, we find for

b/d =1/2 (for example) that xs covers the range 1/2,<xs/b < 1.

Finally, it readily follows that the nonresonant region of

x-space satisfying [wk - kVE(x) 2>> Y corresponds to

(x-x) > k ,(87)
b k2VE2 b)

where VE (b) = wdb, and Yk and xs are defined in Eqs. (81) and

(83).
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(c) Quasilinear Stabilization: In the resonant region of

x-space satisfying wk -kVE(x) =0, the quasilinear diffusion

equation (55) for <nb> can be expressed as

<n > D <nb> , (88)

where the resonant diffusion coefficient Dr is given by [Eq.

(62)]

Dr _ 6 2B fdk 2k6 (wk kVE)

(89)

167r2 c2  k(x,t)

B6 2 D wk

.. Ak VE k =k s(x)

In Eq. (89), k (x) solves the resonance condition k - ks(x) =0,
s~sE S

where VE W dx and wk is defined in Eq. (78). Substituting

Eq. (78) into wk = ksVE(x) gives the transcendental equation

for k s :

k b[cothk b+coshk (d-b)] = b-x. (90)

The spectral energy density 6 k in Eq. (89) of course evolves

according to (D/Dt)'k= 2yk6 k [Eq. (57)], where the linear growth

rate Yk (t) is given in terms of <nb> by Eq. (81).

An H-theorem describing the stabilization process in the

resonant region of x-space (xsll, x , 5xs2) follows readily from

Eqs. (88) and (89). Multiplying Eq. (88) by <nb> and integrating

over x gives
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fdx <nb2> = fdx Dr <n 2

(91)

= 16r 2 2  dx dk6 (w - kVE k (xIt) <nb 2 <0.
B0 f f

0

Analogous to the quasilinear stabilization of the one-dimensional

bump-in-tail instability in velocity space, 1 3 the time-asymptotic

(tco) solution inferred from Eq. (91) necessarily satisfies

<nb>(x,t-O) = 0 (92)

I x=x s

in the resonant region (xs 1 x xs 2). We conclude from Eqs. (81)

and (92) that

Yk(t+ ) = 0, (93)

corresponding to plateau formation and quasilinear stabilization

of the instability. From Eq. (93) and (a/at)4k = 2yk k, we con-

clude that the spectral energy density saturates at a steady

asymptotic level ek(x'O).

(d) Estimate of Saturation Level: To obtain a detailed

estimate of the saturation level of the instability, it is

generally necessary to solve the coupled quasilinear kinetic

equations for <nb> and 6k for specified initial profile <nb>(x,O).

To obtain a simple order-of-magnitude estimate, however, it is

adequate to make use of the conservation relation satisfied by
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fdx x<n b> in the resonant region. Multiplying (/3t)<nb >

(9/3x) (Dr <nb>/Dx) by x and integrating over x for the

resonant particles gives

-Lj dx x <nb) r dx-dkBk6k E <n

(94)
=- 7T2 c2 fdk ek(xst) b a <n >

0 IkVE(b)j X b '

where xs (k) solves wk - kVE s) =0 [Eq. (83)], and -use has been

made of VE(x) dx and the definition of Dr in Eq. (62).

Making use of Eq. (81) to eliminate (a/3x)<nb >x=x , we can

express Eq. (94) as

(>) 47c 2nbb 2ykk (b,t)

r B0 [Wk - kVE (b) ]2

(95)
2

47Tc n b I ek (b,t)

B0 fdk - kVE(b) ]2

where use has been made of (D/3t) k =2yk k and k (xs,t) =
2 ^12k kks

kk(b,t) 6p s kx=b, and the time variation of

has been neglected in Eq. (95). Integrating Eq. (95) with

respect to time gives the conservation relation

A (fdx x <nb - 4Trc 2 b A(fdk 6 k(bt) ) (96)
b r B 0 2 [k - kVE (b) 12

where AF denotes F(t) -F(t= 0). As a point of consistency, if

we make use of Eq. (62) for Dnr and the approximate form of <n b
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given in Eq. (73) in evaluating fdx Dnr b/3x)<nb>for the non-

resonant particles, then it is straightforward to show

fdx x <nb + dxx<n b n 0, (97)
)r + fmr

which is consistent with the conservation law (64) proved in

Sec. IV.B in the general case.

Equation (96) can be used to estimate the t- o saturation

level of the perturbed fields. For present purposes, we make

-2 1/2
use of Eq. (78) to estimate [wk - kVE (b)] 2l/d in the

integrand in Eq. (96), and denote the change in perturbed field

energy density by A 6F (t) = fdkk (b, t) - fdk (b, 0) . Equation

(96) then gives the order-of-magnitude estimate

A(Jdxx <nb >) r-n A2F. (98)
br .B0 2 Wd2 '

As a simple model to estimate the left-hand side of Eq. (98),

we assume that <nb> initially has the linear profile nb +

(Anb /Ab) [x - (b - Ab/ 2 ) ] over the interval b - Ab <x <b at t =0,

and the flat profile nb as t- . That is, the initial density

gradient in the bump region is assumed to be (D/Dx)<nb >=Anb /Ab

where Ab is the width of the density bump. Equation (98) then

gives
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An A2 W2 B 2

A~o ~1 -nb bd 0
ABF6 *$~ - 2 87F nb c 2 8T

An A2 V (b) B2

1 b2 b E (99)
nb b c

1 Anb A 2 E (b)>2

6 A 2 8 r
nb b

-2
Here, wd pb/c = 4 Trnbec/BO' VE(b) =wdb, and KE (b)> - 4 Ten bb

for the configuration considered here.

Equation (99) gives a useful order-of-magnitude estimate

for the saturation level of the perturbed field for an initially

unstable configuration characterized by a small density bump

(Anb) with spatial width Ab* Assuming that the saturated field

level (t+o) is much larger than the initial field level, then

A6 F (o) ~ fdk~k (b,o) . Moreover fdk~(b,x) = fdk k2I k (b,o) I 2/8x
22<6E 2(b,co)>/87r. Therefore, Eq. (99) reduces to

y

2 1 A2  An b 2<6E (b,)) -E x (b) > (100)
b2 nbx

It is clear from Eq. (100) that the perturbed fields can

saturate at a substantial level, even for a moderately small

density bump as measured by Anb/n b.
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V. CONCLUSIONS

In the present analysis, a macroscopic cold-fluid model

was used to investigate the quasilinear stabilization of the

diocotron instability for sheared, nonrelativistic electron

flow in a planar diode (Fig. 1). The nonneutral electron plasma

was treated as a massless (m+O) guiding-center fluid with flow

velocity Yb= -(c/BO)Vpxtz (Sec. II), and the continuity-Poisson

equations were used to obtain coupled quasilinear kinetic equations

describing the self-consistent evolut.ion of the average density

<nb>(x,t) and spectral energy density 6k(x,t) associated with

the y-electric field perturbations (Sec. III). Several general

features of the quasilinear evolution of the system were dis-

cussed in Sec. IV including a derivation of exact conservation

constraints. Typically, if the initial profile <nb >(xt=O)

corresponds to instability with Yk(0) > 0, the perturbations

amplify [Eq. (57)], and the density profile <nb>(x,t) readjusts

[Eq. (55)] in such a way as to reduce the growth rate yk(t) and

stabilize the instability [Eqs. (57) and (58)].

Finally, as a specific example, in Sec. IV.C we considered

the quasilinear evolution of the diocotron instability for

<n b>(x,0) corresponding to a gentle density bump superimposed on

a rectangular density profile in contact with the cathode (Fig. 4).

Such a configuration gives a weak version of the diocotron insta-

bility. It was shown that the system stabilizes time-asymptotically

by plateau formation [Eqs. (92) and (93)] in the resonant region
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of x-space where wk - kVE (x) = 0. Making use of the quasilinear

equations to obtain an order-of-magnitude estimate [Eq. (100)]

of the saturation level of the perturbed fields, it was shown

that <6E (b,o)>/8Tr ; (l/6)(Ab/b) 2An )<E(b)> 2/8Tr, where Any b (Abbx b

and Ab are the characteristic height and width, respectively, of

the density bump (Fig . 4) .

Strictly speaking, for application to high-voltage diodes

in inertial confinement fusion, the present analysis should be

extended to include relativistic and electromagnetic effects as

well as electron inertial effects. However, the present non-

relativistic treatment of the diocotron instability can be

applied to low-voltage microwave generation devices such as

magnetrons, traveling wave tubes and ubitrons, at least in the

low-density regime with w 2 2< 2 *
Db c
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FIGURE CAPTIONS

Fig. 1 Planar diode configuration with 0=Bo$z, and cathode

and anode located at x= 0 and x=d, respectively.

Fig. 2 Plot of <n b> versus x for several density profiles with

different stability properties. Solutions to eigen-

value equation (41) correspond to: (a) stable oscilla-

tions; (b) and (c) strong diocotron instability; and

(d) weak resonant diocotron instability.

Fig. 3 Quasilinear response of (a) average density profile

<nb> (x,t), and (b) average flow velocity VE (x,t), in

response to the amplifying field perturbations [Eqs.

(55) - (59) and Eqs. (69)- (72)].

Fig. 4 Initial density profile <nb>(x,O) corresponding to weak

resonant diocotron instability. The resonant region

of x-space satisfying wk -kVE(xs) =0 [Eq. (83)] covers

the range b2 /d ~ xsl s s2 ~ b [Eq. (86)].

Fig. 5 Plot of normalized frequency wk/kVE(b) versus kb obtained

from Eq. (78) for d/b=2.
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