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Abstract

Pinch-point instability analysis is used to study the effects of finite temperature

on the time-asymptotic pulse shapes of electrostatic and electromagnetic two-stream

instabilities. Their absolute or convective instability nature is established over the

entire regime from instability threshold at finite temperatures to the cold-plasma

hydrodynamic limit. The analysis is based upon Vlasov theory dispersion relations for

streams and plasmas with Maxwellian thermal distributions.
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I. Introduction

Linear instability analysis of two-stream interactions is usually carried out by

solving the appropriate dispersion relations for complex frequency, w, as a function

of real wavevector, -k. However, this gives very little information about the space-time

evolution of such instabilities, e.g. their absolute versus convective nature and their

propagation characteristics. These and other such properties must be obtained from a

Green's function analysis of the instabilities.1 ,2 3 The time-asymptotic Green's function,

determined by the pinch-point singularities of the inverse of the dispersion relation, gives

the self-similar pulse shapes of the space-time evolution of instabilities. In this paper

we present the effects of finite temperature on the space-time evolution of two-stream

instabilities based on the kinetic (Vlasov) theory description of the dynamics. This allows

us to explore their absolute versus convective nature and propagation characteristics

from threshold (Penrose) conditions into the strongly unstable hydrodynamic regime.

The cold-plasma, hydrodynamic evolution of electrostatic two-stream instabilities is

relatively well-known.4 ' The evolution of the electromagnetic two-stream instability

has not been studied even in the cold-plasma limit. Using the pinch-point analysis

we study the time-asymptotic space-time evolution of electrostatic (Pierce-Bunemnan,

beam- plasma) and electromnagnetic (Weibel) instabilities generated by two-stream

interactions and determine their self-similar pulse shapes as a function of temperature

of the plasma and streaming components. The dispersion relations used for the various

interactions are based upon the linearized, non-relativistic Vlasov-Maxwell equations

for an infinite, homogeneous plasma without any externally applied fields. In the

simplest situation, choosing k in the direction of maximum growth, the problem can

be formulated in one spatial dimension and time; we restrict ourselves to describing

such evolutions of two-stream instabilities.

In section II we briefly review the pinch-point analysis used to generate the

time-asymptotic pulse shapes of instabilities. In section III we study the evolution

of the Pierce-Buneman instability and describe its transition into the ion-acoustic

instability. In section IV we determine the propagation velocity of the instability at

threshold; as a by-product, we also establish a new method for finding the parameters

which give Penrose instability threshold. In section V we study the evolution of the
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beam-plasma instability and examine its Penrose instability threshold boundary for

different values of the ratio of beam to plasma densities. In section VI we examine the

evolution of the electromagnetic, Weibel instability and derive an analytical expression

for its pulse-edge velocities. Section VII summarizes the results.

II. Pinch-Point Analysis and Time-Asymptotic Pulse Shapes

To understand the space-time evolution of an instability it is necessary to study

the Green's function for the medium. In one dimension, the Green's function is defined

as:

f dw dk exp(ikz - iwt)
G(z, t) = -(1)

I 27r fF 27r D(k, w)

where D(k, w) is the dispersion relation of the system and the Fourier contour (F) and

the Laplace contour (L) have been properly chosen to satisfy causality and convergence

of the integrals. The time-asymptotic evaluation of (1) is given by the complex pinch

points (ko, wo) which are solutions of 6

D(k, w) = 0 and = 0 . (2)
9k

One then finds

G(zt - ) exp(ikoz - iwot)
t )(3)

If the imaginary part of any one pinch point is positive, i.e. wWi > 0, the instability

is absolute, and the time-asymptotic Green's function will be dominated by the pinch

point having the largest positive wWi. On the other hand, if all pinch-point frequencies

are in the lower half of the complex w-plane, i.e. w0 i < 0, the instability is convective.

Of more interest, however, is the space-time shape of the time-asymptotic Green's

function - what we shall call the asymptotic pulse shape of the instability. The

asymptotic pulse shape is obtained from the Green's function of an observer moving

with a velocity V relative to the coordinate system in which D(k, )) was derived. An

observer moving with a velocity so that he remains inside the unstable pulse response

will see an absolute instability. When the observer's velocity is such that he is traveling

with the edge of the unstable pulse, the growth rate he sees will be zero. Thus, the



observer's absolute instability growth rate as a function of the observer's velocity gives

the time-asymptotic pulse shape of the instability. This can be determined explicitly

as follows.

The Green's function in the moving observer's frame is

/ dw' dk' exp(ik'z' - iw't)
' ) 27r 4F 27r DV(k', w')

where for observer velocities much less than the speed of light 7 , Dv(k', w', V) =

D(k', w' k'V) is the dispersion relation in the moving frame. The time-asymptotic

evaluation of (4) is given by the pinch-point solution of

i9.DV
Dv (k', w', V) = 0 and = 0 (5)

which we designate by [k'O(V),;'o(V)]. We then find that relative to the laboratory

frame,

exp[-iwo)(V)t]
G(z' = 0, t -+ oo) ~ t1/2 (6)

Let the unstable pulse shape be given by the logarithmic magnitude of the time-

asymptotic Green's function as deterinined by the pinch-point frequency w' having

the largest positive imaginary part, max1w'i(V)]. Then,

In JG(t -+ oo)f ~ max[w',(V)]t (7)

and a plot of max[Wo] as a function of V determines the (self-similar) unstable pulse

shape. If the axes of such a plot are multiplied by t we obtain the time-asymptotic

evolution of the unstable pulse, i.e. In IG(t -+ oo)f vs. Vt = z.

IU. Pierce-Buneman Instability

This electrostatic instability of a current carrying plasma is driven by the free

energy of electrons streaming through stationary ions.84 We model the unperturbed,

neutral plasma in one dimension by a drifting Maxwellian electron distribution and a

Maxwellian ion distribution:
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fo(v) = ne ____ _,_+ nie-)/Vthi (8)
vthe \ /Vthi

where v 2e = 2Tc/me, 7) 2 = 2Tj/m , ne = Zini, Tc(Ti), me(mi), and ne(ni) are,

respectively, the temperature, mass, and particle density of the electrons (ions), and

vo is the drift velocity of the electrons relative to the ions. The well-known dispersion

relation governing the linear dynamics of the system is:

D(k, =1- W" Z' - Z =0 (9)D~k~) 1 k2V/,ekvthe k2V2 1  \kdj
kthea kt ~ k i; kvthi

where w 2 = (en/?neco), W = (Ziesne/mico), and Z'(x) is the derivative of the

plasma dispersion function with respect to its argument.

In the cold-plasma limit (vthe = vtah = 0) the space-time evolution is that of an

absolute instability; the leading edge of the pulse moving at the electron drift velocity

vo and the trailing edge fixed at the spatial origin of the initial perturbation' (see

Fig. 1). This type of space-time evolution can be described as absolute in a half-space,

since it expands to fill only the half space, to one side of the origin, in the direction

of the drifting species. The Pierce-fBuneman instability changes to a convective one

and actually moves away from the origin as soon as a thermal spread is added to the

ions (see Fig. 1). To understand this behavior it is useful to visualize the pulse as a

superposition of wavepackets having group velocities, vo, ranging continuously from

Vg = 0 to V9 = vo. For ions having a finite thermal spread, the wavepackets with low

group velocities are Landau damped on the ion distribution. The maximum spatial

growth rate of the convective instability is given by the slope of the line that is tangent

to the pulse and passes through the origin 1 3 (see Fig. 1). Keeping Vthe = 0, as Vthi is

increased, increasingly faster wavepackets are damped away and the growth rate for

the instability decreases until it becomes negligible (reduced in amplitude by several

orders of magnitude) for Vhi -_ 0.3vo. As predicted by Penrose,9 the system will never

become entirely stabilized as long as we assume that the electrons have a delta function

distribution at vo.

If the ions are kept cold and the electron temperature is increased, the instability

remains absolute and its growth is reduced in a completely different manner. The
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wavepackets in the pulse that have group velocities near vo, being made up of negative

energy waves (in a frame moving with the electron drift), are Landau damped on

the broadening electron distribution, thereby slowing down the leading edge of the

pulse (see Fig. 2). This slowing down of the pulse continues with increasing vth,

until the leading edge velocity of the pulse meets the increasing ion-sound velocity

Ca = (ZiTe/m,)1/ 2 at vthe :: 1.5v0 . A further increase in vthe changes the instability into

a new mode - the ion-acoustic instability - where the growing wavepackets are positive

energy waves (of the electron-ion system) near c, driven unstable by anti-Landau

damping on the electron distribution function below vo. The leading edge of the pulse

then begins to speed up and remains slightly faster than the ion-sound velocity (see

Fig. 3). Note that the ion-acoustic mode is a much weaker instability; the amplitude

of its pulse (which is the logarithm of its response function) being more than an

order of magnitude smaller than that of the cold Pierce-Buneman instability. In this

ion-acoustic regime (vtlze > 1.5vo), an increase in the ion temperature not only changes

the instability into a convective one, by ion-Landau-damping the low velocity portion

of the pulse, but it also speeds up the leading edge slightly due to the ion thermal

corrections to the ion-sound velocity (ca [(ZiTe + 3Ti)/mi]1/2 , see Fig. 4). For the

particular case depicted in Fig. 4 where vtJh = 5.0v0 , the system becomes (Penrose)

stable at vth; = 0.055vo. Thus, for finite vtie and vthi the ion-acoustic instability is

convective at threshold.

IV. Propagation Velocity at Instability Threshold

The Penrose criteria for instability9 , which are normally used to determine the

instability threshold boundary, are: that the weighted velocity distribution function

<pei(v) = e-(-vO) 2 /vh + NieT: e~ Vthi (10)

have a relative minimum at v = vin; and that the Penrose function

I;(v) Z'(vV0) + Niee;Z'( -- (11)
Vthe Vthi)

be positive for v = vni,, where Nie = /w and T V 1s/Vfaj. The two conditions

are the necessary and sufficient conditions,' respectively, for the existence of an

instability. Although Ie;(v) is in general a complex quantity, Iei(vinin) is real since the
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imaginary part of Ici(v) is just the derivative of the weighted distribution function

with resppct to velocity.

The Penrose instability threshold boundary for the Pierce-Buneman instability is

plotted in Figures 5a and 5b. Because of the temperature dependence of the vertical

and horizontal axes, both plots are necessary to effectively visualize the instability

threshold. Figure 5a is useful when the electron temperature is kept constant and

the ion temperature is varied. Figure 5b is useful when the ion temperature is kept

constant. Note that each of the curves in Figure 5 is divided into three regions by

two dots. In the region between the two dots the appearance of a relative minimum

in pe;(v) is not enough to cause instability - the minimum must be deep enough to

cause Jcj(vmi) > 0 before the onset of instability. In the regions exterior to the two

dots Je(Viir) is already positive when the relative minimum first appears. Therefore,

the criterion for the onset of instability in these regions is just the appearance of a

saddle point, i.e. p1(Vmin)= '( ) 0.

We now use the pinch-point analysis to determine the propagation velocity of

the Pierce-fluneman instability at threshold. This method also provides an alternative

means of generating the Penrose instability threshold boundary. The pinch-point

solutions of Eqs. (5) satisfy the relation'

dw (')(V)
dV - -ko(V). (12)

The maximum temporal growth rate of the time-asymptotic pulse shape therefore

occurs at an observer velocity V = V such that k'O(Vo) is a real quantity, since

dwoi(Vo)
-k'i(Vo) = - 0. (13)dV

The maximum temporal growth rate of the instability may be found for given values

of the parameters vo, Tij, and Nic, by solving Eqs. (5) for the four unknowns

W'O(V) = W'Or(V) + iwo(Vo), k',(V), and V. Instead of solving for this maximum

temporal growth rate, woi(Vo), we choose to specify it as a positive-valued parameter

and then solve Eqs. (5) for the real parts of the pinch point [k',.(V),w'r(VO)I, V0, and

vo; all as functions of the parameters woi(Vo), Tai, and Nic. If we then take the limit

w' (Vo) -+ 0 (instability threshold), the solution of Eqs. (5) for V is the propagation
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velocity of the instability at threshold - what we shall call the threshold convection

velocity, V. As shown by a detailed derivation given in the appendix, this threshold

convection velocity is given by

V ui, + 2 I( 1in) (14)
dle#(vin)/dv

In the regions outside of the two dots on the Penrose boundary, Iei(vmini) and

dei(Vmin)/dv are real and nonzero. In the region between the dots I,(...i) = 0 at

threshold and V = vmi,,j,, i.e. the threshold convection velocity is just the velocity of

the relative minimum in the weighted distribution function. It should be noted that

for a large range of usual parameters (2.5 < Te/Ti < 20) in the ion-acoustic regime,

V as given by Eq. (14) is within 5% of c,. This is exactly as expected.

The solution of Eqs. (5) for vo as a function of w'(V), Ti, and Nie allows us to

map out contours of constant maximum temporal growth rate in the space spanned

by the relevant parameters. Stringer') first produced such a contour plot for the

Pierce-Buneman instability using a rather tedious method. le repeatedly plotted the

dispersion relation as a function of real wavenumbers for different values of Tej and

vo. For each of the curves he located the maximum temporal growth rate and then

interpolated to produce his contour plot. The pinch-point method described here makes

such a tedious calculation unnecessary. Further, if we take the limit W'o(Vo) - 0, we
get the Penrose instability threshold boundary.

V. Electron Beam-Plasma Instability

This electrostatic instability occurs when a (low-density) electron beam is made

to drift through a (high-density) quasi-neutral plasma. In describing this two-stream

interaction the ion dynamics are ignored (the characteristic frequencies being sufficiently

high to justify this) and the relevant distribution function for the system of electron

beam and plasma electrons is taken as:

e-(v-o) 2 Iv"*hb e-V2/V"*hp
fo(v) = nb + nP .Vthp (15)

V/i thb ,/7vthp

Here V 2T/me, = 2T,/m, T6(T) and nb(np) are, respectively, the

temperature and particle density of the beam (plasma) electrons, and vo is the drift
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velocity of the beam. The ions are assumed to form an infinitely massive, neutralizing

background. The resulting dispersion relation is:

2 ,(-vo\ 2 (_
D(k, w) = 1 - Z ' Z' = k ) -o (16)

ktvhb kta ~kvhp koa

where w2 = (nbe2/nmefo) and W2 (ne 2/mefo).

The beam-plasma instability is similar to the Pierce-Buneman instability in

many mathematical respects, but physically the two are very different. Like the

Pierce-Buneman instability, its asymptotic space-time evolution, or pulse shape, is

half-absolute in the cold-plasma limit; the leading edge moving at the drift velocity of

the beam. 5 When the temperature of the drifting species (the beam) is increased while

keeping the stationary species (the plasma electrons) cold, the pulse remains absolute

while it slows down (see Fig. 6), just as the Pierce-Buneman pulse shape did when the

temperature of the drifting electrons was increased. (This effect has also been shown

analytically using a Lorentzian distribution to model the beam electrons. "1) However,

here the wavepackets in the pulse that have group velocities near vo are negative energy

waves (in the plasma frame) associated with the electron beam; they become Landau

damped as the beani temperature becomes nonzero. Increasing the temperature of the

plasma electrons causes the low velocity portion of the pulse to be Landau-damped,

and the instability becomes convective (see Fig. 7). For sufficient temperatures in both

the beam and the plasma electrons the instability is in the so-called "bump-on-tail"

kinetic regime; here, the convectively unstable wavepackets are positive energy plasma

waves driven unstable by anti-Landau damping on the beam distribution below vo.

The Penrose instability threshold boundary is plotted for several values of the

ratio of the plasma density to the beam density (N -= np/nb) in Figures 8a and

8b. Figure 8a is to be used when the beam temperature is kept constant and the

plasma temperature is varied. Figure 8b is useful when the plasma temperature is kept

constant. The Penrose conditions for instability in this case are: that the weighted

velocity distribution function

<Pbp(V) = e-V /", + NbpTb e--"vhb (17)
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have a relative minimum at v = vmi; and that the Penrose function

Ib(V) '( + NbpTpbZ' (V_-va) (18)
\Vthp]) Vthb/

be positive for v = vm1i,,, where Np = w2 /W2 and TA = V 2P/V2.

It is interesting to note the symmetry between 'pb,(v + vo) and pei(v). Indeed,
it can be shown that the beam-plasma instability threshold boundary in the space

spanned by vo/Vthp and Tb is identical to that of the Pierce-Buneman in the space

spanned by vo/vh,; and Ti, provided that Nie = Nb,. (This symmetry breaks down

when the ion dynamics can no longer be ignored in the beam-plasma interaction.)

As before, each of the curves in Figures 8a and 8b is divided into three regions

by two dots. The region between the dots again requires a deep enough minimum in

the weighted distribution function to cause an instability. The external regions require

only the presence of a minimum.

Using the method presented in section IV and in the appendix, we find the

threshold convection velocity for the beam-plasma instability to be

V = Tvmin + 2 . (19)in
dT r(vmir);/dv

In the regions outside of the two dots on the Penrose boundary both Ib,(vm,1in) and

dIbp(v,,,m/dv are real and nonzero. In the region between the dots h;,(Vrmin) = 0 at

threshold and V = v,,min,, just as in the case of the Pierce-Buneman instability.

VI. Electron-Weibel Instability

This electromagnetic instability may be driven by either counter-streaming beams

of electrons or by a temperature anisotropy, 12 or both. We allow for either of these

mechanisms by defining the three-dimensional velocity space distribution function to

be:

e-4/tJ"Be-Vk/Vtk -O)/ + e(-O'v',
fo(vE, V;1, Vk) = e - 2 (20)

70/ Vtl,,tlgt1 2
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where vtI,, vt!), and Vtk are the thermal velocities in the direction of the perturbed

electromagnetic wave electric field (i ), magnetic field (i), and propagation vector

(7), respectively. If we ignore the ion dynamics, the resulting dispersion relation is:

k~c C eP wpe (Vtl, + 2vo) , 1D(k, w) = 1 - Z ' ) = 0 (21)
W2 W2 W2  tk kvtk

where wPC is the electron plasma frequency, c is the speed of light.

The U X P1 force serves as the feedback mechanism through which any anistropic

thermal spread (Vti,) or any streaming (vo) along the EI direction drives the system

unstable.' 3 Likewise, the U X Ri force causes the wave to be damped by any

thermal spread (or counter-streaming) in the direction of k. Thermal spread and

counter-streaming in the direction of 1i31 have no effect on this instability.

In the cold-plasma limit (vtE = vt! = vtk = 0) where the Weibel instability is

driven by streaming alone (vo / 0), its space-time evolution is that of an absolute

instability (see Fig. 9) which is symmetric about the spatial origin of the initial

perturbation, which is to be expected. The leading edges of the pulse move out at

velocities tvo, which we would not expect as the unstable pulse propagates in the

k-direction which is perpendicular to the counter-streaming beams. The cold-plasma

pulse has infinite slope for zero observer velocity, indicating that the pinch point occurs

for |kof -+ oo. For non-zero Vtk the pinch point for zero observer velocity moves into

the finite complex k-plane and the slope of the pulse at the origin becomes finite.

Further increase in the temperature along the direction of propagation drives the

system towards stability, arid the unstable pulse disappears when v2 > 2v2 + V E.

If the electrons are cold along the direction of propagation of the wave (Vtk = 0),

then it is possible to derive an analytical expression for the pulse-edge velocities, VPe.

In the laboratory frame we solve the following system of equations:

D(ko, wo) = 0

aD dD
D+V - = 0  (22)

wo; - Vko; = 0

for the three unknowns: ko, wo, and V,. The resulting pulse-edge velocities are:
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V2 =o + v2 /2 (

where terms of order (vO + vtj /2)/c 2 have been neglected, consistent with our

nonrelativistic analysis and dispersion relation (21).

VII. Summary and Discussion of Results

We have used pinch-point instability analysis to investigate the effects of finite

temperature on the space-time evolution of three different two-stream instabilities:

the Pierce-Buneman, the electron beam-plasma, and the electron Weibel instabilities.

While all three are shown to be absolute instabilities in the cold-plasma, hydrodynamic

limit, the two electrostatic instabilities become convective when the stationary particle

species acquires a finite temperature. The transition of the Pierce-Buineman instability

into the ion-acoustic regime of parameter space was shown to be associated with

a change in behavior of the time-asymptotic pulse shape with increasing electron

temperature. At the transition, Vth, 1.5vo, the leading edge of the unstable pulse

stopped its slowing down (behavior characteristic of the Pierce-Buneman instability

with increasing electron temperature), and began instead to speed up with increasing

electron temperature, remaining slightly faster than the increasing ion-sound velocity.

At instability threshold the pinch-point analysis was used to determine the

convection velocity of the instability. This also gave new means for finding the Penrose

instability threshold boundary in the relevant parameter space. Analytical expressions

for the threshold convection velocities were found for the electrostatic Pierce-Buneman

(Eq. 14) and electron beam-plasma (Eq. 19) instabilities. Both of these instabilities

are convective at their instability threshold with finite temperature in the stationary

and streaming particle species. Since all experiments take place within a finite volume,

this threshold convection velocity allows one to estimate whether the instability near

threshold will have had enough time to grow to significant amplitudes before reaching

the boundaries.

The electromagnetic, counter-streaming electron Weibel instability .was found to

be absolute at threshold and above. Its maximum pulse-edge velocities correspond to

energies characteristic of the total (drift plus thermal) free energy which drives the

instability.
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Appendix: Derivation of V

We solve equations (5):

Dv. (k',, w(,, Vo, vo; w'og, T, Nie) = 0
Dv (k' o{r, Vo, VO; W'N) Te, Nie) = 0(Al)

for the real parts of the pinch point [k'Or(V), w'O,(VO), observer velocity of maximum

temporal growth VO, and drift velocity vo as functions of the parameters W'O;(Vo), Tal

and Ni,. Equations (Al) can be written in terms of the Penrose function Ih(v), Eq.

(11), as:

I'(V'ph + Vo) = K2 (A2)

,dI;i(v', +%) __

ph v2 (A3)

where v',n n [W'or(%4) + l(V)]/k6,r() and x a k~r(V)Vth,/W/p. These equations are

most easily solved for VO by transforming them into the laboratory frame of reference,

where they become:

Ie;(vph) = K2 (A)

dTei(vph) 2
(Vy1 -%) dv 2n (A5)

where v., = [wor(V) + iw() (Vo)I/k',(V) = v'j, + Vo. Solving for V, we get

V=O V + 2 Ii(vP;1d. (A6)
dI,#phy)/dv

In the limit w')j(Vo) -- 0, the imaginary portions of equations (A4) and (A5) can be

written in terms of the weighted distribution function 'Pc(V), Eq. (10), as:

Pe;(Vph) -= 0 , P''%(v,) = 0. (A7)

Hence, in the regions outside of the two dots on the Penrose boundary (Figure 5),

equations (A7) yield Vph = vm111 1 , and in these regions Eq. (A) becomes Eq. (14):
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V, 1 1 + 2 [ci(vmnin) .1 -/d (A8)
dIe;, ..i,,)Idv

In the region between the two dots on the Penrose boundary it can be shown that

the pinch point [k',(V), w'(Vo)] giving maximum temporal growth rate goes to zero as

threshold is approached in such a way that V'h also goes to zero. In this central region,

taking the limit w'Oj(Vo) -+ 0 in Eq. (A4) yields

Ici(Vc) = 0. (A9)

Comparing this to the second Penrose condition for instability threshold, we find

that V = v,,,i, in the region between the two dots. Equation (14) for the threshold

convection velocity is, therefore, valid for all values of the parameters T,, and Nic.
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Figure Captions

Figure 1 -

Figure 2 -

Figure 3 -

Figure 4 -

Figure 5 -

Figure 6 - Effect of increasing vab vtjab/vo on the beam-plasma pulse shape. The plasma

is kept cold (v vth/vo = 0). A weak beam is assumed (n,/nb = 1836).

Ion dynamics have been ignored.

Effect of increasing v, = vthI/vo on the beam-plasma pulse shape. The beam

is kept cold. np/nb = 1836.

Penrose instability threshold boundary of the electron beam-plasma instability

for different values of the relative beam density (N _ n,/nb): a) as a function

of plasma temperature for fixed beam temperature, and b) as a function of

beam temperature for fixed plasma temperature.

Evolution of the electron Weibel instability pulse shape with increasing

temperature (Vtk) along the direction of wave propagation T. The counter-

streaming electron beams are taken to have drift velocities vo = ±0.1c,

respectively, perpendicular to k. Temperature perpendicular to 'k is assumed

zero.
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Effect of increasing vi = vthi/vo on the Pierce-Buneian time-asymptotic

pulse shape. The electrons are kept cold (Ve Vthc/VO = 0). Hydrogen

plasma is assumed.

Effect of increasing v. vth,/vo on the Pierce-Buneman pulse shape. The

ions are kept cold.

Effect of increasing v. Vthc/vo on the ion-acoustic pulse shape. The ions

are kept cold. The leading edge of the pulse travels slightly faster than the

ion-sound speed, c, = (Te/mI)X 2 .

Evolution of ion-acoustic pulse shape with increasing vi _ vuai/vo for a fixed

value of vthe (vtle = 5.0vo). The ion-sound speed is: c, = [(Te + 3T7)/rni] 1/2.

Penrose instability threshold boundary of the Pierce-Buneman instability: a)
as a function of ion temperature for fixed electron temperature, and b) as a

function of electron temperature for fixed ion temperature. Hydrogen plasma

is assumed. Our results agree with the curve given by Penrose.0

Figure 7 -

Figure 8 -

Figure 9 -
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