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Abstract

A simple magnetic mirror may be MHD stable, provided that (1) a certain

length of magnetic field has a series of ripples in it, (2) for the

isotropic pressure the plasma beta value is higher than 50% and (3) the

conducting wall is very close to the plasma surface. The theory and its

physical picture are discussed. -A Sturm-Liouville form is present with the

numerical results. For the application to Tara reactor, the rippled

magnetic field may be generated by ferromagnetic rings. The implication for

a blanket design is discussed.
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1. Introduction

Recent work by Berk et.al. on the possibility of the use of wall

stabilization mechanisms of m = 1 curvature driven mode has stimulated a

[2] - [6)
series of efforts that apply this idea in a tandem mirror reactor.

It has been found that the conducting wall suppresses the displacement of

[4]plasma in the unfavorable curvature region . This is the essence of the

wall stabilization. The line-bending effect or the response of the

conducting wall in the favorable curvature region (5 is not as important in

this case. In order to obtain this suppression effect for an isotropic

plasma, the plasma beta (the ratio ot the plasma pressure to the magnetic

pressure) must be greater than 50%, and this critical beta value is a

function of the mirror ratio. The higher the mirror ratio, the higher is

the critical beta value. If there are some ripples in a simple mirror, then

a certain plasma beta value may be high enough for the stabilization of the

ripple region, but not high enough for the mirror ratio of the simple

mirror. This leads to a competition between the stabilizing effect of

ripple field and the unstable effect of the simple mirror. Four parameters

are important to determine the result of this competition:. the mirror ratio

of the simple mirror, the amplitude of the ripple field, the number of the

ripples, and the ratio of the ripple length to the total length of the

mirror. In Section 2 we will discuss the physical picture. In Section 3,

we discuss the scaling of the ripple amplitude and the number of the
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ripples. In Section 4, a Sturm-Liouville form is given for the numerical

calculation. In Section 5, the reactor implications are discussed.

§2. Critical A for Wall Stabilization

It has been shown that the image current inside the conducting wall

can interact with the diamagnetic current inside the plasma surface to

stabilize the plasma (to MHD instability) . This picture is simple and

intuitive, but it is less obvious whether there is a lower limit [4 [6] [7]

of beta value in order to have this stabilization and why only the

conducting wall in the unfavorable curvature region is essential for the

[5] [3]stabilization . Starting from Kaiser and Pearlstein's MHD equation , we

will try to illuminate the physics for the critical beta value..' The basic

balloon equation in Ref. [3] is

r7 2 d-( d 1 2 0)] + [- I -]-0 + (W 2 2... 9 P,/) = 0 (1)dz dz 2 d z B2 B2 R

Here, 4 is defined as

( = W V§(z) (2)
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(z) is the displacement of the plasma and B(z) is the beta corrected

magnetic field. Due to the long-thin approximation and the FLR effect, O(z)

is a function of z only. Q and p are defined as

P = 1 P1 1 + P) (3)

Q = Bv2- 2p. (4)

Here, p and p are the parallel and perpendicular pressure of the plasma,

respectively; B is the vacuum field. n 2 is defined as

B
r72 = B v(5)

A represents the conducting wall effect and is defined as

r. 2 + r 2

2 2
r +r

w p

Here, r and rp are the radius of the conducting wall and the plasma,

B".respectively. R is the curvature drive term, which makes plasma unstable.

For an isotropic plasma we can write
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L2.2 2 2
R 2 2 22

The first term in the bracket is the usual vacuum curvature term

R" 2

R 2 2( r2

Here

B'

Bv

and the prime is the derivative with respect to z, the direction along the

field line. and a are defined as

a -

Here # is the local vacuum beta

B 2
v

(7)

(8)

(9)

(10)

(11)

(12)
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w2 and p in the equation (1) are the eigenfrequency and the mass density of

2
the plasma. w > 0 indicates stability. When the wall is very close to the

plasma, A -oo; therefore, the zero order solution for 4 is

72'7 ;
(i.e.e = constant/RBV) (13)

Using the boundary condition that

d = 0 at z Ldz

We obtain the dispersion relation that

(14)

L

0 =_ d [L[
fdz2 dz B2
-L

2

2 B 2 R B 2
V V

L R/ 2

= dz -[ (2) ]2 2p2 R+ 2
-L 17 B B

Here, the isotropic pressure assumption has been used to simplify the first

term. Under the long-thin approximation, using the flux conservation, we

have
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L 2p

0 = z ( - [ ']2 22
-LB R 2 R B 2
-L v

22
R + 2 2

R B
(17)

Since

(W) 2 = ( r2 =2 a2
B 2

V

we have

L =[ 2 [

2

+ R2B 2S()

(18)

In Eq. (19) the first term represents line-bending and the second term

curvature. Since the ratio of the line-bending term to the curvature term

is proportional to >2 = (1 - p), it is negligible when #--+ 1. Therefore, we

may concentrate on the curvature drive term, which using Eq. 13 can be

written as
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L

Q2 =2p - 2. (20)

-L

As is well known, in the low P case (/ - 0)

LRI, L R

2 ffdz V (21)Q2 f dz 2 U2 RY 2 dz R(1
-L (BvRv ) B v (B vR -L

is always negative because of the higher P weight at the low field region.

From Eqs. (20) and (7) we observe that the high R plasma brings two new

features into Q2 : (1) the curvature becomes more negative in a 'small2 R

midplane region due to the cusp-like effect ; (2) 2 weighting will

provide an additional suppression in the low field region when P is greater

than 50%. This latter feature has been shown in Ref. [4] using the long-

thin approximation. In fact, this is a general feature even if long-thin

approximation is not applicable. The physical reason is that the conducting

wall forces Qn = 0 in the vacuum field region (Qn is the normal component of

the perturbed magnetic field), which specifies the z-dependence of the

displacement C(z).

In general, [8)
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Qn= (BV) (-n) - (C-n) n-(n - V) B (22)

With, n is the unit vector in the normal direction of magnetic flux surface.

Qn = 0 gives

ni n - (n.- V) b

n n

= (n- V) a (23)

Here, a is the derivative along the field line; a is the angle between

811
f ield line and the z axis . Theref ore ,

e0 = exp f dl (n - V) a) (24)

In the Appendix A. assuming a simplified model, we show that the ratio of

the displacement e0 at the low field region to the displacement ( at the

high field region is

C ~ cos a
SCO(25)

1 /
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Here, M and M are the magnetic mirror ratio in the vacuum and in the

plasma, respectively. In the long-thin approximation, a -+ 0, cos a -+ 1.

cc = ) -B- (26)
0 A v

This is the same result as obtained in Ref. (4]. From Eq. (25) we can see

that although in the non-long-thin case, the displacement has a stronger z

dependence, the necessary condition for suppression in the low field region

is the same as that in the long-thin case. Namely, the lower limit for

,(Q) <Iis = 50% (when M-+ 1).

Of course, this critical value for beta is a function of mirror ratio.

A higher mirror ratio has more unfavorable curvature and therefore, it is

necessary to increase the # to further suppress the displacement in the low

field region. Certain 3 value may be stable for low mirror ratio and

unstable for higher mirror ratio. This analysis implies increased stability

for a rippled central cell tandem mirror field.
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§3 Ripple Stabilization

A rippled axisymmetric mirror configuration (Fig. 1) is a combination

of a simple mirror with a series of small mirrors. For a high # plasma with

isotropic pressure, it can be stable in the low mirror ratio region (with

length of 2Ls ), unstable in the high mirror ratio region (with length of

2(L-L )) and as a whole, marginally stable. For a fixed length ratio, L /L,
5 s

and fixed mirror ratio (B m/B and B /B ), we may ask how many ripples are

necessary for stability. As we discussed in §2, for the high # case, the

dominant term results from curvature drive, i.e.

L

B 2 p (27)

-L v

In order to compensate for the negative integral in the region of -L -* -L
L5

/ ' 2p B/
and Ls -+ L, we would like to examine the scaling of integral f dz B 2 R

L v

with the number of the ripples. Assuming a sinosoidal field configuration,

B
B z) = 2 (M + 1) - (M - 1) cos } (28)

s
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We have

B (z) = (M - 1) sin s

B /)2
B; (z) = (M -1) cos2 _) ( 2L

(29)

(30)

Here, n is the number of the ripples in the region of (-Ls --+L S); M is the

mirror ratio of the ripples

B

= B
0

(31)

We notice that all the z - dependence are involved in a form of ( ) and
2

a n Therefore, the integral

L
s

fdz n 2 F 2s)
-L
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L

= n2 dxF

-Ls

Hence, the scaling with n2 is very strong and for a fixed length, the more

ripples, the greater this stabilizing effect is. However, in a real reactor

design, the ripple number is limited by the ripple mirror ratio. Therefore,

it is desirable to see the scaling with the ripple mirror ratio, M1 . There

are two different cases for (M - 1) -+ 0 and for finite (MI - 1).

When (M - 1) -0, from eqs. (28), (29) and (30) we have

B ~ B

B' oC (M - 1)

B 0C (M - 1)v 1

From Eq. (19),the stabilizing term is proportional to (r2 /2 -

r C (M - 1)2

(33)

(34)

(35)

(36)
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The term containing r',

B"
= 2
B T

v
(37)

involves a term proportional to (MI - 1) only. This term changes sign along

the path of the integration of (27) causing some cancellation. We thus find

the scaling for the term related to (B) ,i.e.

2p B"

B v
v

) (M1  1)
M?

C (M1 + 1) (MI - 1) (38)

when (M - 1) -+ 0. the scaling of (M  + 1) is a slowly changing factor.

Therefore the contribution to Q2 from the ripple region is

L

Q2 a B a n2(M - 1)2

-L Bv
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Therefore, the greater the ripple mirror ratio, the smaller the necessary

number of the ripples is to keep the same value of Q 21 However, if (M I -

1) increases to a finite number, then the dependence on (M  + 1) in (38)

becomes important. Since it is the only term which is negative in the

integration of (27), the cancellation between this term and the other

positive term which are proportional to r2 will be affected by the (M + 1)

scaling. Hence the greater the ripple mirror ratio is, the less the

positive value of the integral (39) is. In order to keep the same value of

integral Q2 1 , we have to increase the number of the ripples. Therefore, we

can expect that there is a specific ripple mirror ratio Mic, at which the

necessary number of ripples is minimized. In order to calculate this

specific mirror ratio Mic, we developed a new variational form for the basic

ballooning equation (1), and did some numerical calculation.
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§4 Sturm-Liouville Form

Using the identity in calculus

A[B(AD)'I' = [ABAD'' + A(BA')'D (40)

We can transform the first term in eq. (1) and make eq. (1) into a standard

Sturm-Liouville form:

4 Q 2 p 2p R' 2
[(Ar7 + 1) ']' + [(W -- 2 ) + n (A2rl?7')' 0

B B B
(41)

By setting

(42)
17

we may simplify eq. (41) further to

+ -_Y = 0
r2 \ B2 B2R

(43)

The advantage of this form is that the wall-shape factor A is involved in a

simple term without any derivative (i.e. A') form. When we arrange that the
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conducting wall be only in the unfavorable curvature region, this form

facilitates the calculation. Using the boundary conditions

y' = 0 at z L (44)

2We can solve eq. (43) by a shooting method for w = 0. For every given #

value, and the ripple amplitude, the number of ripples is adjusted to

satisfy the boundary condition at z = ±L. Fig. 2 and Fig. 3 show the

B
results of numerical calculation. The mirror ratio, , assumed to be

0

L
8. The length ratio, , is assumed to be 0.8. The ratio of the plasma

radius to wall radius are assumed to 0.8 (Fig. 2) and 0.9 (Fig.3),

respectively. The vacuum magnetic field is a linked sinosoidal form as

equation (28). As we analysed in Section 3, the results show a different

scaling for (M  - 1) -+0 and finite (M - 1) cases. For each given P, there1-

is a critical ripple mirror ratio, at which the necessary ripple number is

minimized.
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§5 Ripple Formation by Ferromagnetic Rings

Although the most obvious method for creating field ripple would

involve properly spaced discrete coils, an alternative appraoch could

utilize ferromagnetic rings, which are arranged inside a uniform solenoidal

coil to attract the magnetic flux and form a ripple field on axis. Fig. 4

shows the arrangement of ferrmagnetic rings inside a uniform solenoidal

coil. The inner radius of ring is determined by the plasma radius and the

radial thickness of the halo. The outside radius of ring is limited by the

radius of solenoid. The adjustable parameters are the axial thickness of

the ring, Li, the radial thickness, L2, and the distance between two rings,

L3. For a fixed value of L2 and L3, we may change the axial thickness of

the ring from 0 to L3 . Apparently, the ripple amplitude will change

correspondingly from 0 to some maximum value, then to 0 again. We may also

expect that the ripple amplitude will increase with the distance between

rings until it approaches a maximum value, but the number of ripples reduces

with this distance. We have performed numerical calculation to optimize L

and L3.

For a tandem mirror reactor application, the central cell may be

stabilized by the ripples. The central cell magnetic field is about 3

Telsa, which saturates the ferromagnetic rings and facilitates the

calculation of the magnetic field. Usually, the magnetic field created by
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the ferromagnetic material in the region outside this material can be

simulated by current sheets on the surfaces of this material. In the

saturated soft iron, this current density is about 1.6 x 10 A/cm2

Applying this number on the inner and outer surfaces of rings, we can

calculate the ripple field with the EFFI code. Fig. 5 shows typical result

of the calculation. The average field is more than 3 Tesla to keep the

ferromagnetic ring saturated. The peak that bounds the central cell is

created by a "choke" coil that forms a simple mirror with a mirror ratio of

about 8. Fig. 6 shows that the ripple amplitude is increasing with the

distance L3. Fig. 7 indicates that the ripple amplitude reaches a maximum

between L = 0 and L = L Based on these calculations, we may select the

ripple number of 9 and ripple. amplitude of 1.15 for 00 = 0.75 (f is the

vacuum beta at the minimum of the magnetic field.) This can be realized by

a set of ferromagnetic rings with L = 0.54 M, L2 = 0.50 M and L3 = 2.0 M

for the central cell of Tara-like reactor (length of central cell is about

20M). The other option is to further reduce the axial thickness of the

ferromagnetic ring. In this case, the amplitude of the ripple field is

reduced to 1.1; therefore, it cannot stabilize the central cell with f =

0.75. However it can still stabilize the central cell with f = 0.80. The

asterisks in Fig. 2. Fig. 3, Fig. 6, and Fig. 7 show the corresponding

working points.
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Since the ferromagnetic rings are facing the plasma core, the cooling

issue and their impact on the tritium breeding ratio must be considered in a

reactor design.

§6 Conclusion

It is clear that a self-stabilized high beta central cell is an

attractive possibility for a fusion reactor. For an isotropic pressure, a

r
reasonable # is about 80% with the wall at = 80%. It is possible to

w

improve the parameters by adding anisotropic plasma pressure, but it is

difficult to create this anisotropy. Therefore, it seems difficult to

stabilize the axi-cell by rippling central tell.
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Figure Captions

Fig. 1 Rippled axisymmetric mirror configuration.

Fig. 2. Necessary ripple amplitude (M 1- 1) for stabilization as a function

of the number of ripples (For

r
p

r-w
= 0.8).

Fig. 3 Necessary ripple amplitude (M - 1) for stabilization as a

function of the number of ripples (For
r

= 0.9).

Fig. 4 The arrangement of ferromagnetic rings inside a uniform solenoid.

Fig. 5. The magnetic field on the axis.

Fig. 6. Ripple amplitude (M  - 1) as a function of the distance between

two rings.

Fig. 7. Ripple amplitude (M 1 - 1) as a function of the axial thickness of

the ring.

Fig. 8 The derivative of angle a in the normal direction.
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Fig. 9 A straight field line model for non-long-thin case.
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Appendix. A Model for Non-long-thin case.

When conducting wall approaches to the plasma surface, the perturbed

magnetic field, Qn, must become zero to keep the variation of vacuum energy

finite, i.e.

(A-1)Qn = (B - V) ( - n) - ( - n) n - (n -V) B = 0

Therefore,

Sa'
n

= n- (n - V) b (A-2)

Here, b is the unit vector along the B field (Fig. 8). Since only the

direction of a unit vector is changing we have

n - (Ii -V) b = (n-V) a (A-3)

a is the angle between the field line and the axis. After integration of

Eq. (A-2), it gives

25



= ( exp fdl (n - V) a (A-4)

Here, C0 is the initial displacement: 1 is the length along the field line.

When the Qn at the vacuum plasma surface becomes zero, we would like to

calculate the (n - V) a for the field line on the plasma surface. In the

non-long-thin case, it is difficult to calculate the equilibrium; therefore,

the analytical solution for a is not available. However, it is still

possible to evaluate this integral by a simplified straight field line model

(Fig. 9). At region I and III, the field lines are parallel to axis and the

long--thin approximation is valid. Hence,

B 2= B 2 - 2 p (A-5)pm vm m

B 2= B 2 - 2p (A-6)
vo o o

Here, the subscript p and v refer to the plasma and vacuum, respectively,

the subscript m and o refer to the peak field and low field points. In the

region II, long-thin approximation breaks; then, we assume that the field

lines in this region are just the straight line to connect the region I and

III. Based on the flux conservation, we can calculate the angles of these

straight field lines in the region II.
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B R 2 = B R 2
pm m po 0

B ( 2 -( R 2) 2 _ 2)vm m m v

(A-7)

(A-8)

Here Rm and R are the radius of the plasma surface in the corresponding

regions. Introducing two mirror ratios:

B
M -MM

vo

B
M =Bw
p B

r R 2 . M (rm2 - Rm2

(A-9)

(A-10)

(A-11)

R 2 = M R 2

r = R 2+ M (rm2- R m2)
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Rm = R

Therefore,

lim
r -+ R

in i

r -R

r -Rin i

=ri 02 + M (Rm2 _ La 2) -R

r --*R R - LRm m M p0

IM (Rm + R )=
2R0  in ok-
o Fp

On the other hand, from' Fig. 9 we have

a ap = arctg

L { Cr0 - a0 )

- arctg L

-(rm - )}

=c 1 + c2

(ro - R 0) cosa - (r - RM) cosa
c =

(r0 - Ra) - (r m - R
L

(A-18)
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(A-15)

and

(A-16)

(A-17)

2
COS a



therefore,

C2= Cr Rm) cosa

(n .V) a lim
Anf-+ 0

(A-19)

a -a

n1

(r  - R 0) - (rm - R )

L
(A-20)1

(C I + C2)

Thus the integration

[ dl (n - V) a =

1m

(r 0 - R 0 ) - (rm - R )

L

L/ Cosa

fdl (c1 1 + c2)

(r0 - R0) - ( a)
c 1L

= 2aCos a
log r - R

log 1 + C2

L
Cosa
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cos a (A-21)
L JP2

Finally, we have

-2

M )(COS (A-22)

Now we can see that the suppression of the displacement is stronger in the

non-long-thin case, since cos 2a < 1 when a + 0. It approaches long-thin

approximation when a -+ 0. However, the necessary p0 to have suppression

effect is still 50% even if the non-long-thin effect is taken into account.

From eq. (A-22), it is necessary to have

<1 (A-23)

in order to obtain the suppression effect. When P increases, Mp increases

to make M < vV_. The smaller the M is, the lower the P is. In fact
p

M _M2 ( ) 1 1/4

r-M 1 P(A-24)
N P - M2o
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for the case Pm = Po. Then condition (A-23) becomes

I - I
> M2

-i4
M0

When M-- , the necessary 00--+1. When M --+1

11 -

This is the same conclusion as long-thin case.
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