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ABSTRACT

The effect of turbulent electron diffusion from stochastic electron orbits

on the stability of low-beta fluctuations is considered through the use of the

Normal Stochastic Approximation. A set of coupled, self-adjoint equations

is derived for the fluctuation potentials 4 and All. Solutions to this set of

equations describe both unstable finite-# drift waves when analyzed for high

m modes and the tearing mode when analyzed for low m modes. For the

tearing mode, it is shown that stability is obtained for sufficiently large values

of the diffusion coefficient. Provided De ~ 1/n, this implies that a density

threshold must be surpassed before the tearing mode is observed. Physically,

turbulent electron diffusion prohibits the formation of a perturbed current

within a finite region about the rational surface. At higher densities, the

inclusion of a finite electrostatic potential, 4, gives an additional stabilizing

term to the dispersion relation, which physically represents ion inertial ef-

fects. This ion inertial effect implies that, in the absence of diffusion, the

tearing mode is stabilized for ion betas, #i, above some critical value.



I. Introduction

Tearing modes are a subject of current interest in plasma physics due to their role

in both space and laboratory plasma behavior. In space plasmas, tearing modes are an

important destabilization mechanism in spontaneous magnetic reconnection phenomena,

such as in the onset of substorms in the Earth's magnetotaili,2 . In laboratory plasmas,

such as in a tokamak, tearing modes play an important role in the onset of major plasma

disruptions. It is generally agreed that major disruptions must be totally suppressed in an

actual fusion reactor in order to prevent excessive damage to the first wall. Currently, the

most widely accepted theoretical model of major disruptions features low poloidal number

(low m) tearing modes, which saturate to produce magnetic islands. It is possible for

such magnetic islands to overlap and thus form large stochastic magnetic regions, which

enhance particle diffusion, and, in the case of major disruptions, lead to catastrophic

plasma confinement loss 3-6. Hence, control of such disruptions requires the elimination

or, at least suppression, of these tearing mode islands.

Recent experimental results on Alcator-C indicate the existence of a density threshold

which must be surpassed before the m = 2 tearing mode is observed 7 . Such an observation

is inconsistent with the previous resistive magnetohydrodynamic (MHD) theories of the

tearing mode. Traditionally, the tearing mode has been analyzed using resistive MHD

theory, which predicts instability for A' > 0, independent of plasma density3 . Here A'

is the jump in the logarithmic radial derivative of the perturbed magnetic potential, Al,

across the rational surface. This is determined by integrating the ideal MHD equation

for the vector potential from the external region inward towards the rational surface.

Typically, experimental profiles indicate A' > 0, and hence the m = 2 tearing mode should

be observed according to resistive MHD. The existence of a density threshold before the

onset of instability, which is in qualitative disagreement with resistive MHD, has motivated

the present work.

In this paper, a fully kinetic approach to the tearing mode is used, which includes the

effects of turbulent electron diffusion and treats the tearing mode as an electromagnetic

fluctuation. The end effect of the turbulent electron diffusion is to stabilize the tearing
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mode at sufficiently large values of the diffusion coefficient'. This would imply the existence

of a density threshold if the local electron diffusion coefficient scales inversely with density,

De ~ 1/n. Physically, electron diffusion prohibits the tearing region from becoming too

small, whereas in resistive MHD the layer thickness becomes as thin as necessary and

only limits the growth rate without affecting stability. Electron diffusion prohibits the

formation of a perturbed parallel current channel narrower than the correlation distance,

Xc = (De/k ve) 1/3 . This flattening of the perturbed current thus cuts into the available

free energy driving the tearing mode (represented by A'), hence reducing the available

energy to A'(xc) (as opposed to A'(0) in resistive MHD). Here, A'(xc) is the difference

between the logarithmic derivative of All evaluated at a distance xc from the rational

surface and that value at a distance of -xc. For typical experimental profiles, A'(x) is a

decreasing function of the distance from the rational surface, x. Hence, stability occurs

when x, > W, W being the distance where A'(W) = 0.

The effects of a finite electrostatic potential, 4, on the tearing mode are investigated

and found to be stabilizing. (The previous paper on this subject by the authors treated

the tearing mode as a primarily magnetic fluctuation8 .) Physically, the relevant stabiliz-

ing terms involving the electrostatic potential represent ion inertia. This mechanism is

completely independent of electron diffusion. In fact, when the diffusion is neglected, the

tearing mode is stabilized when #i(r L,/La) 1/ 2 > A'(0), indicating stability at sufficiently

high plasma beta. Here, r is the temperature ratio, L, is the shear length, L" the density

scale length, and #i is the ratio of ion pressure to magnetic pressure. A result identical to

this was obtained previously by Basu and Coppi9 .

Physically, this stabilizing effect represents that portion of the available magnetic

energy driving the tearing mode which must be used to maintain the ion motion. In the

kinetic theory description, the tearing mode is an unstable oscillation with a real frequency

(W = Wve). Finite ion inertia requires energy to maintain the ion oscillation and, hence,

becomes a stabilizing effect. In contrast, for the purely growing modes of the resistive MHD

description, no ionic energy is required by the perturbation itself, and ion inertia does not

influence stability, but only the magnitude of the growth rate. In the kinetic picture,

the tearing mode is actually interpreted as an electron drift wave under modification of
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the equilibrium current gradient. This current gradient introduces an additional energy

source which drives the low m "Drift-Tearing" modes unstable. By treating this mode

as an electromagnetic fluctuation, it is found that the inclusion of a finite electrostatic

potential indicates that the tearing mode can be stabilized at sufficiently high densities, in

addition to the stability at low densities.

Section II discusses the mathematical model used in this treatment of the tearing mode

and gives the derivation of a coupled, self-adjoint system of equations for the fluctuation

potentials Al and 4. This includes a brief discussion of the Normal Stochastic Approx-

imation (NSA), which enables the effects of turbulent electron diffusion to be treated in

a self-consistent manner10 . Section III.A describes which approximations are necessary

to obtain the resistive MHD results for the tearing mode from the above set of coupled

equations. The remainder of Section III returns to the problem of the kinetic tearing

mode and aims at solving the full set of kinetic equations for 4 and Al. Included is a

formal analytic proof that the tearing mode is stabilized for sufficiently large values of

the diffusion coefficient, De, for a system which is resistive MHD unstable, A'(0) > 0. A

variational calculation of the dispersion relation for the electromagnetic tearing mode is

also presented. Numerical results to the full kinetic description are presented in Section

IV, which show good agreement to the analytical calculations of the previous section.
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II. Mathematical Model

In a tokamak plasma, the effects of plasma turbulence play a major role in determining

the overall properties of plasma transport. Thus, it is clear that any correct theory of

plasma transport must include turbulence. Likewise, in the study of plasma instabilities,

it is apparent that the effects of plasma turbulence on the instability itself may play an

important role. In particular, in this study the major turbulent effect to be considered is

that of electron spatial diffusion.

A mathematical model is developed, based on the Normal Stochastic Approximation

(NSA), which includes self-consistently the effects of turbulent electron diffusion10 . In

particular, the electron response is given by applying the NSA to the drift kinetic equation.

The basic assumption utilized here is that the electrons experience normally distributed

stochastic orbits resulting from the overlap of phase space islands, which thus lead to the

exponentiation of neighboring particle trajectories. These stochastic electron orbits are

the direct result of the presence of drift wave microturbulence. The NSA makes use of the

observation that for electrons exhibiting stochastic orbits, the exact orbit perturbations

exhibit pathologically complex, fine-scale structures, which are produced directly from

relatively simple, long-scale wave perturbations. Since the spatial structure characterizing

the electron orbits is much finer than that characterizing the wave potentials, it is possible

to separate the statistics of the particle orbits from the statistics of the wave potentials by

a coarse-graining procedure. The end result is that the nonlinear effects of turbulence are

represented by the appearance of a turbulent diffusion coefficient. For the ions, however,

the linearized Vlasov response is sufficiently accurate. (The effect of turbulent diffusion is

to smooth out the structure of the response functions over a scale length x,. Since the ion

response functions are characterized by a scale length xi, satisfying xi > xc, the turbulent

diffusion has no appreciable effect on the ion response.) These responses are then combined

along with Ampere's Law and Quasineutrality to yield a coupled, self-adjoint system for

the electric and magnetic fluctuation potentials.
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A. Electron Response

The major goal here is to develop a model which includes the effects of turbulent

electron diffusion in a self-consistent manner. In the NSA formalism, the lifetime of the

long-scale potential fluctuations of the waves, rac, is assumed to be long compared to the

Kolmogorov time, Tk, characterizing the rate of the randomization in the particle orbits.

The amplitude of the wave fluctuations must be sufficiently large such that the phase-

space islands overlap, thus, producing stochastic particle orbits. For example, in the case

of drift waves, the island overlap condition is satisfied for very small fluctuation amplitudes.

Hence, it is the drift waves themselves that produce the stochastic electron behavior and

thus lead to turbulent diffusion. Using the NSA, this phenomenon of stochastic electron

behavior is implemented in the stability analysis for the drift wave via a turbulent diffusion

coefficient. In particular, one can show that the drift wave is unstable for very small values

of the diffusion coefficient and then saturates at some finite value. In fact, it is possible to

calculate the saturation value of the diffusion coefficient at which the drift wave stabilizes".

In the case of the tearing mode, the tearing mode itself will not (in cases of interest)

produce island overlap and lead to stochastic electron behavior. To correctly account for

turbulent electron behavior in this case, one must consider the tearing mode as existing

among a background of turbulence such as that produced by finite-beta drift waves. Due

to the large discrepancy in the poloidal wave numbers, m, of the tearing mode and the drift

waves, their respective stability analyses can be performed largely independently. This dis-

crepancy in the wave numbers also allows a spatial averaging over the scale length of the

drift waves while keeping the tearing mode potentials fixed. (This averaging is unnecessary

if the coarse-grain averaging of the stochastic particle orbits has been preformed.) The

major effect of the drift waves on the tearing mode is that the electrons behave stochasti-

cally due to the presence of drift wave turbulence. This stochastic behavior manifests itself

as a turbulent diffusion coefficient whose value is independent of the presence of the tearing

mode. Hence, in the tearing mode analysis, the electron diffusion coefficient is treated as

an independent external parameter, whose value is to be specified either by experimental

observation or calculated through the use of an appropriate microturbulence theory for
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drift waves.

The equation governing the perturbed electron distribution function, fe, is the drift

kinetic equation which when written for the fluctuations takes on the following form.

-+vh-V--V -xb-V-- -b Jfe
at B C M 9 - V

c vl Vj All) xb-V+ -E-b J fe
B C m av *

So(x) (1)

Throughout the following, a tilde is used to denote fluctuation quantities. Here, 0 and

represent the perturbed electric and magnetic potentials respectively, E represents the per-

turbed electric field, and fe represents the equilibrium electron distribution function. The

effects of the equilibrium electric field are represented by letting Ye contain the equilibrium

plasma current produced by this electric field.

For this problem a sheared, slab geometry is chosen with the equilibrium magnetic

field given by B = B(e, + x/L,ey) with b = B/B. Here, L. = -Rq 2 /rq' is the shear

length, and x = 0 is chosen to be the position of the rational surface. It will be shown

that this model reduces to ideal MHD away from the rational surface. Because of this

reduction to ideal MHD at large x, the following results for the tearing mode can be

generalized quite easily to more complicated geometries simply by calculating the function

A' for those geometries.

In the case of the tearing mode, the equilibrium plasma current is included in the

electron distribution by writing Ye = fo + fi where fo = no/(V/7ve)exp(-v2/V2) and

fi = (2vDVI /v2)fo. Here, fi denotes a drifted Maxwellian (VD is the drift speed) and is

used to model the equilibrium current distribution.

Only a short summary of the basic principles and results of the NSA is presented here.

A more detailed development of the NSA will appear later in a paper discussing the finite-#

drift wave. Physically, the applicability of the NSA makes use of the observation that for

sufficiently long times, t > rk (rk = Kolmogorov time for entropy production), the exact

particle orbit perturbations, 60(t), exhibit stochastic behavior. That is, for t > rk the
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orbits 66(x, t) develop pathological spatial structure leading to sharp spatial gradients. In

particular, orbits with neighboring initial data separate exponentially with time. The NSA

makes use of the property that such stochastic orbits are characterized by an extremely fine

spatial structure, much finer than the spatial structure of the corresponding fluctuation

potentials, 4 and Al. The wave lengths characterizing the fluctuations in the orbits br and

66 are much shorter than those characterizing the potentials 4 and .Al. This allows All and

4 to be approximated as constants over a distance in which there occur many fluctuations in

66 and br. The statistics of the orbits and the waves then become essentially independent,

thus enabling a spatial averaging to be performed on the orbits over a distance in which

the wave potentials do not exhibit random behavior.

The above argument implicitly assumes that rk < rac, where rac = the autocorrela-

tion time for the fluctuation potential. When this is satisfied, the orbit functions exhibit

random behavior on a time scale (represented by rk) much shorter than the time scale

on which the fluctuation potentials randomize (represented by rac). Typical estimates for

the autocorrelation time is one over the real frequency of the mode, r Wc ~We . In this

model 2 , the electron orbits exhibit diffusive behavior on the time scale rk ~ wj'1,where

Wc3 = (k IVe)2 D/3. For the m = 2 tearing mode, Wc/W*, ~ 10, and hence rk < rac. This

procedure of performing a statistical average over the fine microscale of the orbits while

holding the statistics of the waves fixed is known as "coarse graining" 12. (Note, for the

case of drift waves, typically Tac - rk, and the validity of the NSA is more questionable

than in the case of the tearing mode).

For short times, t < tk, this procedure breaks down. On this short time scale, the

electrons behave adiabatically. Hence, to correctly account for this short time behavior,

the adiabatic piece of the perturbed electron distribution is first extracted before applying

the NSA procedure. That is, one writes

fe = f +. (2)
Te

Inserting this into Eq. (1) yields the following equation for the nonlinear electron

response, he.
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[a ~v e - ~l
-+vilb-V- V 4- "i'i) xb-V -- iE- b he

[at B C m avil

-VZAI 1 ) xb-V(fo+fi)

e 49 ~ 49
4-Zgfo+--Ib-b fi

T, at ci'l ) M 4VI

S(x) (3)

where the terms inherently nonlinear in the fluctuation potentials have been neglected in

the expression for S(x). Only the nonlinear terms involving gradients of the perturbed

distribution, he, are significant, since the gradients of he are characterized by much shorter

wavelengths the those of the potentials and All.

The nonlinear electron response, he, is given by applying the NSA to Eq. (3). In

short, the NSA yields the following equation for the evolution of he.

llb - V - D a2 )h S(X) (4)

In the above equation, D is the particle diffusion coefficient defined by (6r(t) 2 ) = 2Dt and

is to be treated as a known constant in the solution of Eq. (4). Here br(t) represents the

radial orbit perturbation due to random E x B radial motion, such as that produced by

turbulent drift waves, and the angular brackets are used to denote statistical averaging.

By comparing the above equation to Eq. (3), it is clear that the effect of applying the

NSA to the drift kinetic equation is to convert the terms in the orbit operator (the left

hand side of Eq. (3)) involving the fluctuation potentials into a spatial diffusion operator.

This is a reflection of the physical assertion that the major contribution of these terms in

the orbit operator is to produce stochastic orbits leading to turbulent spatial diffusion.

The nonlinear electron response, he, is given by solving Eq. (4) through the use of

Fourier transforms. Defining the Fourier transform of g(r,0, 0, t) to be gk(r, m, n, w), then

the nonlinear electron response is given by

hek = I d dx'G(x, x'; V T)Sk(X'), (5)
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where the kernel G(x, x'; vt, r) is given by

G(x,x';vj,r) exp i(w-k'vllx)--(k'JvlI)2 Dr3 - 1(x-x'iDkviiT2)2j. (6)
v/4rDr 3 14Dr 1

Here k1 = kjx, k = ky/L 8 and ky = m/r. Note that G(x, x'; v11, T) decays with a charac-

teristic time given by r, = [(kl ve)2 D/3] -1/3 w, 1 and represents a peaked function of

x - x' with a characteristic width x, = wc/(kIve).

In the case of the tearing mode, the drive term, S(x), is given by the right hand side

of Eq. (3). When the source terms, S(x), appear in the combination (4 - (v1 /c)A 1), then

the coupled system obtained from quasineutrality and Ampere's Law is self-adjoint. The

last source term in the above equation destroys this property. However, for the case of the

tearing mode, this term can be dropped to give a self-adjoint system. This is due to the

observation that the coupled equations obtained from Ampere's Law and Quasineutrality

reduce to ideal MHD at large x (at large distances from the rational surface, x = 0), which

implies El = 0 at large x. At small x (inside the dissipative layer), the dissipative process

of electron diffusion is insensitive to an equilibrium current.

Defining the resonant operators

R,[O] = dvlj dx' drG(x, X';vI, r) (sn) fo(v 1 )tp(x'), (7)
f 00 f-o fo V,

then the perturbed electron density is given by

- = - + i[(w - W*e)Ro - w*,rqjR 1]| - i[(w - w*e)RI - weretjR2 ]--Z 1  , (8)
no Te C

and the perturbed parallel electron current is

J; = Ve {[(w - we)RI - U*rjR21 - (w - we)R 2 - w*etjR 3I -!A 11 }, (9)
J1 Te C

where the appropriate velocity moments of he have been taken. In the above expressions,

the following definitions were used:
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ekyTe -- d in fo Ve f1 /tlx -2J I ' Iw, E L E and r j =-=
cBLn' dx vll afo/dx enve(In fo)'

Utilizing an appropriate ion response and applying Ampere's Law and Quasineutrality

yields a coupled system for the potentials 4 and ill.

B. Ion Response

The ion response is assumed to be "classical"; that is, the response is described by the

linearized Vlasov equation. Although the island overlap condition is satisfied for the ions,

the resulting turbulent diffusion has no appreciable effect on the ion response. The end

result of turbulent diffusion is a smoothing of the structure of the response functions over

a scale length x,. Since the ion response is characterized by a scale length xi satisfying

xi > x,, the ion response virtually reduces to the linearized Vlasov response. For slab

geometry with a density gradient in the x-direction, the linearized Vlasov equation is

solved by using the standard techniques to yield fi. From this, the perturbed density and

current can be calculated by taking the appropriate parallel velocity moments.

- -- I+ [rogz()+ (ro - r1)P- QZ -
no Ti W 'dx( dx)

- ro (1+ Z)-Al (10)

and

eIg = - novi W - Ws; V(+i)T
-l e (v {+z)r( - A (11)

In the above expressions, Z( ) is the plasma dispersion function with g = w/(jkjv) and

rn = [n(b) = I,(b)exp(-b) where I,(b) is the modified Bessel function with b = k2pI

In deriving the above expression for the perturbed ion density, Eq. (10), the electric

potential, O(x'), was expanded about x' = x to second order thus yielding the second

derivative term in Eq. (10). This expansion is only valid when x/xi < 1, x = w/kIvi.
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Hence, in evaluating the above ion Z-functions, one should use the large argument expan-

sions (for g > 1).

C. Coupled Equations for q and All

Knowing the perturbed density and current for both the electrons and ions, a coupled

system of equations for 4 and All can be formed by utilizing quasineutrality and Ampere's

Law.

Quasineutrality states that hi = he. Using Eqs. (8) and (10), then this implies

L1 E + L.,Al = 0. (12)

Utilizing the parallel component of Ampere's Law along with Eqs. (9) and (11) gives

L2All + LO = 0.

In writing the above equations, the following shorthand notation has been used:

+ A + + d
-W*e)RO - -W2erR1

d

L2 = 2  b + a + i(w -- *)R2 -

LX= - (W - W*e)RI d w*er) R 2 + CeX2 vS

along with the following definitions:

v e2
TVA

d = (FO - F1 )(r + *

+ - O

x2  F
X=d \ w ))

22
ct = _ _ (

r2l
+ W*e 2 (1 + Z)Fo,

_W)

12

L d d
dx dx

(13)

I

e), T =Te/Ti,

+ ,~

L" ) )

b = p 2

A = 1
d\



where = w/(lkllIvi), xe = w/(lkil Iv,), and Z = plasma dispersion function. In the above

expressions, R, denote the electron resonance operators and are defined in Eq. (7) and x

is normalized in units of the ion gyroradius, pi.

The above system is a kinetic description globally valid over the entire plasma which

reduces to ideal MHD at large distances from the rational surface (large z), and is self-

adjoint. When analyzed for high m modes this system yields unstable finite-# drift waves,

and when analyzed for low m modes this system yields the tearing mode.

Since the above system is self-adjoint, a variational principle can be formed. The

variational integral, S, is obtained by

S - dx[OL1q + A,, L2A, + 20L, Al], (14)

such that variation of S with respect of and All yields the coupled Eqs. (12) and (13).

The variational parameters characterizing suitable trial functions, OT and AlIT, are thus

determined by requiring bS = 0. Once these variational parameters have been determined,

the trial functions are again inserted into Eq. (14) and the dispersion relation for these

trial functions is determined by setting S = 0 . This variational principle will be utilized

later in a calculation of the dispersion relation for the tearing mode.
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III. Kinetic Tearing Mode

In this section, a variational calculation is presented starting from the coupled equa-

tions for 4 and Al, Eqs. (12) and (13). This calculation will lead to a dispersion relation

which includes the effects of a non-zero electrostatic potential, 4, which was neglected pre-

viously in Ref. [8]. This non-zero 4 will couple the tearing mode to the drift wave branch,

Eq. (12), and will lead to important stabilizing terms, representing ion inertia, in the

dispersion relation. (Recall that the basic magnetic tearing mode of Ref. [8] is described

by L 2 Alj = 0, whereas the basic electrostatic drift mode is described by Lj4 = 0.)

A. Resistive Tearing Mode Limit

In the above fully kinetic analysis, calculation of the nonlinear electron response led

to the resonance operators, R.[tp], as given by Eq. (7). In the limit that k(x') is a slowly

varying function of x', that is, if x,/XT < 1, where -' = Id/dx(IntP)I, then O(x') can be

expanded about x' = x. To leading order in Xc/XT the above resonance operators can be

replaced by multiplicative operators of the form R,,[k] ~ I,,(x)O(x), where

I = d0fo() ) dr exp i(w - kfjlvx)r - (k V1I)2Dr 3. (15)

The above multiplicative resonance functions can be evaluated asymptotically to yield the

following interpolation functions 3

2.8 X 2-l1

1~- 1+1.58 -

.247 
X 2 -1

[2~ - 1 + -

29i 1+.29 --

Wc C [ \Xc/J
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Th... bove asymptotic behavior can be reproduced qualitatively if the exponential in

Eq. (15' involving the factor -1/3(k'lvl) 2Dr3  - is replaced by the linear factor

-. 36wc. Under this approximation, the above resonance functions, I,(x), can be evaluated

exactly in terms of the Z-function. This approximation will be referred to as the Krook

limit.

In(x)krook = dvl 1 Vi) fo(vii) dr exp[i(w - kivlix)Tr - .36wT]

00 dv l --11 n (17)
_ (oV, wo-k' vllx

where wo = w + iO.36wc. These integrals can be evaluated in terms of the Z-functions.

Essentially, under the Krook approximation the turbulent spatial diffusion operator in Eq.

(4), -Da 2/ax2 , is replaced by a krook type diffusion frequency, 0.36w,.

The resistive limit can be obtained by replacing w, with a collision frequency, v. If

this is done, along with setting the particle drift frequencies to zero, w,, = 0, while letting

the dissipative layer become infinitesimally thin in the calculation of the energy drive, A',

then the resistive MHD result for the growth rate' is reproduced.

B. Proof of Stability for Large Turbulent Diffusion

From previous theories of the resistive tearing mode3 , the available magnetic energy

of the outer ideal MHD region, represented by A', drives the tearing mode unstable. (A

detailed study of the magnetic energy drive is given by Adler et al."). In light of this, a

general energy drive for the tearing mode is then defined to be the negative energy from

the integral

S = dx [Al + kA + jie[Al| - Al] (18)

where ill, is the full kinetic operator representing the perturbed parallel current,

47r 2
iJe[A ] = -e irjjw.eR3[A g .

C TVA
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Hence, S < 0 is a nece- condition for instability.

In the resistive M- limit, R 3 = -i/2kve, and the negative energy drive takes

on the ideal MHD forra is indicated by the expression Sreaistive = -A 2 ', where

im 0 . o[A 1A '(xo) - Al1A ,(-Xo)]MHD A2 A' and All(xo±) = All. Here, AI

is defined to be the solution to the following equation,

d2  k2 4r ky II
d12 Y- c k Bo J = 0, (19)

which is the equation for marginal stability in ideal MHD. A' represents the jump in A

across the singular surface (for nearly constant Ali or the "constant tk" approximation).

Hence, in resistive MHD, A' represents the available magnetic energy to drive the tearing

mode. Instability is then obtained when A' > 0. (In the limit of large z, x > x, the

MHD limit, R3 = -i/2kve, is also obtained in the fully kinetic description.)

Notice that in the energy integral given by Eq. (18), the first two terms are stabilizing

and it is only the third term involving the perturbed current operator which can be negative

and thus drive the tearing mode unstable. In the resistive MHD treatment, the perturbed

current operator is singular at the rational surface. In fact, it is this singular behavior

which dominates in the integral S and typically causes A' to be positive (and hence S

to be negative). However, if one retains the full kinetic operator for Jiie[Aii] involving the

resonance operator R 3 [A 1 ], then this operator is no longer singular at x = 0. In fact, one

can easily show that the integral

a 4(
SJ f-dx CJije[All1All 20

is bounded for D > 0. Not only this, but one can also show that ISjI -+ 0 as D -* oo.

Hence, the conclusion is reached that for some critical value of the diffusion coefficient,

D = D,,, the energy drive, S, will be zero and the tearing mode is stabilized.
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C. Variational Calculation

A detailed calculation of the dispersion ation is now presented, including the effects

of the electrostatic coupling terms. This is dc te through the use of a variational principle.

The starting point is again Ampere's Law and Quasineutrality, given by Eqs. (12) and

(13). To leading order in w, /w,, the effects of the resonant operators can be neglected in

the electrostatic operator, L 1, and the coupling operator, L2.

L1 ~ ZW d + A + X 2 ,L,~ f_- !e X2 (21)
1dx dx C

The expansion used to yield the differential operator in the expression for L, implicitly

assumed that Jx/zxj < 1, that is, > 1. Using the above approximations and expanding

the ion Z-functions for large arguments, quasineutrality can then be written as

d 2 22- + 1 22(W
+ A - 1 + -- ~ A - (22)

dX2 2 x? 2 x? klic W2[ - t2+ 2x >± AuC

where xi = w/(k'ptvt). Scaling w,/cw ~ E, w/w ~ 1, x 2 /x ~ E and d 2 /dX 2 _ f2, then,

for large x, x/x > 1, quasineutrality implies to leading order, A ~ 0 -+ W ~ We, and to

first order in E quasineutrality implies E11  0. Thus, in the outer region, the equation for

quasineutrality requires w ~ w,e and reduces to the ideal MHD constraint El ~ 0. Also at

large x, Ix/Xcl > 1, assuming E = 0, Ampere's Law reduces to the ideal MHD equation

of marginal stability, given by Eq. (19). Hence, the coupled Eqs. (12) and (13) reduce to

ideal MHD with the additional constraint that w ~ W*e in the outer region where jxj > x,.

Since the equations governing Al and q are self-adjoint, a simple variational integral,

Eq. (14), is obtained. In this calculation, ±a represents the edges of an intermediate

integration region which is assumed to lie in the region where ideal MHD is approximately

valid (that is, a > z).

Integrating by parts, Eq. (14) becomes

dc2

where
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= dx sZ( ) - A2 _ ( + (1 Z) - )2] (24)

LA = x 2+ b(- b i( -WWe)R 2 + e2 ri)jR ] (25)
~GL\dx]'1 TVA ATV el

a and #A = a00 = ZW -a -

Here, LA represents the contribution of the magnetic terms (involving the electron response

only) with the corresponding boundary terms #A. The contributions of the electrostatic,

coupling and the ion terms are represented by 4 with the boundary terms fl. The

magnetic tearing mode considered above in Part B is accounted for in the LA and f3 A

terms. That is,

LA -#1=A dxAIIL 2 A1  (26)

where it has been shown above that L 2A 1 = 0 yields the basic collisionless magnetic tearing

mode. Hence, Lo and #0 represent the contributions to the dispersion relation which are

due to coupling to the electrostatic branch as well as the ion contributions to the perturbed

current.

At the boundary, ±a, All and 4 are required to match onto the ideal MHD solution. In

particular, at the boundary, E11 = 0. Using this condition, the magnitude of the boundary

terms 30 and OA can be compared. Noting i34 - (w/k ca)A AI' 1 , then it is easy to show

that the contribution of 30 to the dispersion relation is smaller than that of #A by w 2/W.

Hence, the boundary term 30 can be neglected.

The above variational integral will be performed using two steps. First, the electro-

static integral will be calculated using a suitable trial function for j while assuming Al to

be a constant in the - (w/kllc) Al term (which is justified by the fact that All is nearly

constant while 4 must be linear in x near the rational surface). One can then solve for 4

variationally. After this, the magnetic terms LA - #3 are calculated using a linear trial

function for Ai while allowing the limit of integration, a, to be the variational parameter.
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The electrostatic integral, 4O, is given by Eq. (24). In the above expi- sion, one must

keep in mind that the ion Z-functions are to be expanded for large argu aents. Here, A

represents the eigenfrequency and is approximately zero when W ~ wL, and, hence, will

be neglected. The first term in Eq. (24) represents the I x B ion motion in the poloidal

direction whereas the last term represents the ion motion along the field lines.

A trial function of the following form is chosen

2 ±o Ao = constant. (27)
k' C1 (X2 ± ia2)'

Here, a is the variational parameter and it is assumed (a/a)2 < 1 such that at the

boundary, x = a, one has Ell ~ 0. Hence, Eq. (24) becomes

(w) 2  a - (±ia2 _ X2 ) 2  (1+ Z) a 2  1
k c _ a (±ia2 + X2)4 X2 (±ia2 + X2)2

Using the large argument expansions for the Z-functions along with the variable substi-

tution y = x/a and assuming a/a > 1, then the limits of integration can be extended to

infinity. These integrals can be evaluated explicitly to give the expression

~ - 2 A2--c1ii)[ -+ . (29)
k 0 8 43 T2

The variational parameter is then specified according to #54/ba = 0 which yields a 2

V5xi = v/w/(k' Ivipi). Inserting this expression for a 2 back into Eq. (29) then gives

S7r 2 3/2/ \1/2
y'g~ 3/ AZ c (±i). (30)ZO F33/'jA C klipic

Note that this expression is independent of a, which serves as the variational parameter in

the calculation of the magnetic integrals.

The magnetic contributions to the variational form, S, are now calculated. The

magnetic terms are given by Eq. (25) with the boundary term PA. Assuming x, <

[d In A/dx] -1, then one can approximate the resonance operators, R., by the multiplicative

operators, I,, as given in Eq. (15). Thus
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-CA -AA d A12 + ( _ 2 AA' a(31
-W f + (Q)2 2 2 1+ I(-)

where r = -i(v,/Tvi)(w - we) and A = .W/;XC.

For the trial functions, the following forms are used. In the outer region, jx$ > a, Al

is required to be the ideal MHD solution. That is, All = AMHD for Ix| > a, where AMHD

must solve Eq. (19). To leading order for small x/xj, where x-1 Id/dx(lnJii)I, Eq. (19)

can be solved asymptotically to yield

I AMHD f+C+g for >a32)1A MHD=f +C-g for x<-a

where

f~1+ -lnx2 A2 X2 (Inx2+ 2 b- 3 )+---
2 4

A 2  A2 X 2f' [lnx +2]+ - [lnx +2b-2]+--
2 2

2 2
g~z ---*, g'~A+A2 x+--- (33)

and it is assumed Ax ~ Aa < 1.

Consider the following definition, A'(x) = A'MH_ - A' MD Numerical calculations

for Alcator C parameters 7 indicate A'(x) to be primarily a linear function of x of the form

A'(x) = Ao(1-- x/W). Here, W represents the nonlinear island saturation width's. Hence,
by identifying

C+ - C- = Ao/A; C+ + C- = (34)

and by requiring A2aC± > A2 a, then to leading order, A'(x) ~ Ao(1 - x/W). For the

sake of simplicity in the following calculations, the following approximate forms are used

as definitions.

20



A2x2

f 1 + Ax, g - Ax + 2

f'EA, g',E A + A 2X (35)

By doing this, then one directly obtains the desired result that A'(x) = AO(i - z/W).

Strictly speaking, however, the forms of f and g used in Eq. (35) are only approximately

valid when C± > 1. This constraint can be relaxed, however, if the forms in Eq. (51) are

taken to define the outer trial functions for jxj > a. In any event, requiring AMHD > 0

(as is indicated from experimental profiles) implies the restraint AaC± < 1. Utilizing the

scaling C± ~ Ao/(A2 W), then requiring MHD > 0 implies Aoa/(AW) < 1.

The trial function for the inner region is taken to be a slowly varying linear function

of X.

A JA+=1+L+x for O<x<a
A-=1+L-x for -a<x<O

Requiring this trial function to be continuous at the boundary, x = ±a, with the ideal

MHD solution then defines Li to be

L= A+ C±A 1 -). (37)
2

Using these trial functions, it is now possible to evaluate the magnetic form LA - 3A.

The boundary terms are given by

a

#A A' = A+ A' - A'A' D-a +H la -MH a

= A'(a) + a(L2 + L 2) + 2 (L+C+ - L- C_) (38)

where A'(a) = Ao(1 - a/W).

In the magnetic variational terms, SA = LA - #A, the variational parameter is chosen

to be the limit of integration, a, which also characterizes the slope of the trial function.
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Note that the electrostatic term, 4O, was evaluated approximately to be independent of

a. Thus, only the magnetic terms determine the variational parameter a.

Variation of the magnetic form, SA, with respect to a then gives

= A'2 + b+ - + A2 + . (39)
6a Lc + )2 +2 xC + )2 +a -a ba

Recall that requiring A± > 0 leads to the constraint L±a < 1. Also, in the evaluation of

the boundary term, it suffices to approximate L± as independent of a; that is, L+ ~ C±A.

Hence, to leading order in Lia,

SSA AO 21 1 a2 1 AO

ba W WC 1 + (Qa)2 X2 1 + }1(A-)2 AW

Typically, b ~ A2 , and AO - A. Thus, bW/Ao Aa < 1, and the second term in the

above equation can be ignored. Assuming w = w,, + i-y, then at marginal stability, r 0.

Setting 6 SA/ 6 a = 0 and solving for a yields a2 ~ 2X2

To find the dispersion relation, the integral form SA is evaluated explicitly. From Eq.

(31),

SA = a(L2 + L2) + 2ba+ 2 (tan-- a a
+ ~w -W Txc x

+ 2Axc(L+ + L) a - /2tan- a

- [A'(a) - (L2 + L 2 )a]. (41)

Approximating L+ + L_ ~ -AO/AW and using the result a ~ Vxc along with the

definition A'(V2xc) = Ao(1 - x/dxc/W) then gives

SA A' ( 'iX) + 2x/ibxc + - X'. (42)
(2 We

The overall dispersion relation including the electrostatic terms is given by Eq. (23).

Using the results of Eqs. (25) and (42) gives the following dispersion relation
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2F ,_2 d (vL 2 ( 1/2
-xc = A xc - 2Vdxbc - - (1± i). (43)wc T \VAI k11pivi

The above expression is valid provided bW/Ao < 1 and Aoa/AW < 1. On the right hand

side of Eq. (43), one can approximate w ~ w,, d ~ 2, and r = 1. Recalling the definition

of r and letting w = wR + iy with |Y/WRI < 1, then gives a real frequency

V e ( k L) W*e (44)V, L,

and a growth rate given by

3 =k~pve A' X 2v'bxe] - 2 1 2.(45)

In the limit bW/Ao < 1, then stability is obtained when -y < 0, or

Xc > viW 1 - 2 Ls r ) 1/ 2  (46)
. A \L, V/ )

Thus, it is apparent that the coupling to the electrostatic branch, represented by the second

term on the right of Eq. (46) is a stabilizing effect. Physically, this term represents that

fraction of the available energy which is necessary to maintain the ion motion.

The first term on the right in the expression for the growth rate, Eq. (45), represents

the magnetic energy drive from the ideal MHD region. Recall, A'(x) .- Ao (1-x/W), where

W corresponds to the island saturation width of resistive MHD. Hence, the tearing mode

will be stabilized if A'(xc) < 0 or x, > W. Since x, ~ D1 / 3 , this implies that if D ~ 1/n,

then there exists a density threshold which must be surpassed before instability occurs.

Physically, A'(x,) is interpreted as the magnetic energy in the outer region available to

drive the tearing mode. In essence, the turbulent electron diffusion prohibits the formation

of, or flattens, the perturbed parallel current, J1,, within a finite correlation distance, xc,

of the rational surface. This has the effect of reducing the available magnetic energy drive

from the value A'(0) to A'(xc). The second term on the right of Eq. (45) represents

line bending in the inner dissipative region and is stabilizing. The last term is ion inertia

stabilization, and represents that portion of energy necessary to sustain the ion oscillation

at frequency w,,.
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IV. Numerical Results

This section presents numerical solutions of the eigenmodes and eigenfrequency for

the tearing mode. The equations governing the evolution of perturbed particle densities, fe

and f;, are solved numerically and through the aid of Ampere's Law and Quasineutrality

the eigenmodes, 4 and AH, along with the eigenfrequency, w, are calculated. Two numerical

codes are employed in this calculation of the eigenfrequency for two different limits. The

first method, which is the more exact method, involves the use of an initial value code,

TEDIT 1 , previously used in the study of the finite beta drift wave. Specifically, TEDIT

solves for the electron response utilizing the full diffusion operator, Da2 /aX2. The second

method involves a shooting code, inherently simpler than the initial value code, which

solves for the electron response in the Krook approximation: Both codes give qualitatively

similar results and support the above analytical expression for the dispersion relation

arrived at through the variational calculation.

The initial value code, TEDIT, follows the time evolution of all the perturbed quanti-

ties. One begins with arbitrary perturbed potentials, 4 and Al, and distribution functions,

fe and fi. Regardless of the initial functions, if a growing (unstable) eigenmode exists, it

will eventually dominate the long time solution. By definition, an eigenmode exists when

all quantities 4, All, i. and fi vary as exp(-iwt), where the eigenfrequency w is constant

for all x. The main virtue of this initial value approach is that it allows for the electron

response to be evolved with the inclusion of a spatial diffusion operator according to Eq.

(4) of Sec. II. The ion response evolves according to the linearized Vlasov equation. The

time-evolution code TEDIT uses an implicit-iterative scheme to advance the electron and

ion kinetic equations in time, with 4 and Ali being calculated from the quasineutrality con-

dition and Ampere's Law. The equations for the electron and ion responses are advanced

in time until

a ll (x, t)
W (X, t) = (47)

AIj(x,t) at

becomes independent of both x and t, indicating that an eigenmode of frequency w has been

established. For a given set of parameters, TEDIT yields the most unstable eigenmode.
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In the Krook approximation, a shooting code is employed to solve for the eigen-

frequency in the case where the electron response evolves according to Eq. (4) with

-D 2 /,x 2 replaced with a Krook type diffusion frequency, w. As discussed above in

Sec. III, this is analytically shown to be valid when Xc/XT < 1, and when All is approxi-

mately a constant (an even function) near the rational surface. Under this approximation,

a shooting code can be used to directly solve the coupled equations for 4 and Al, given by

Eqs. (12) and (13) in Sec. II. In this case, the resonance operators appearing in L1 , L 2

and L, can be written in terms of the plasma dispersion function as discussed in Sec. III.

The above coupled equations can then be solved using standard shooting methods which

is inherently simpler numerically than the initial value method used in the time-evolving

code TEDIT.

In either case, the above numerical codes are used to calculate the eigenfunctions,

and Al, in an intermediate slab region extending approximately thirty ion gyroradii

on either side of the rational surface at x = 0. At the edges of this slab region, and

All are required to match onto the ideal MHD solutions which obey the marginal stability

equation, Eq. (19), along with E| = 0. Specifically, the ratios (A /I!A)MHD are calculated

at each edge of the slab region and their values are chosen such that, to leading order

A, (a) At (-a) I a ).
A'(a) = -g (I g 0 AO 1- - . (48)

All(O) MHD A11(O) IMHD /

Here, ±a indicates the edges of the intermediate slab region. Hence, the boundary condi-

tions are specified by inputting values of AO and W. Figure 1 shows a typical plot Al and

calculated using the above procedure.

The results from TEDIT and the shooting code agree qualitatively, as previously

observed for the case of the finite beta drift wave. Figure 2 depicts the growth rate as a

function of the diffusion coefficient as obtained from the two codes. Since both codes are

observed to give the same qualitative results, the shooting code is used to generate the

numerical data discussed below due to its faster computational speed compared to that of

TEDIT.

A plot of Ao = A'(x = 0) as a function of x, at marginal stability (y = 0) is shown in

25



Fig. 3 for various values of W. These results agree qualitatively with the analytical formula

obtained from the variational calculation which specifies marginal stability to occur when

Eq. (48) is satisfied with an equality sign. Solving the above equation for AO gives

L, r 1/2 1e (49

A o = 20i ( f_ 1 - . 49

The plot in Fig. 3 of AO versus x, shows the qualitative behavior indicated in Eq. (49).

In particular, note that the slope of the curve increases as the parameter W is decreased.

Also notice that the value of AO at which x, = 0 is independent of W.

Figure 4 plots a similar graph of Ao as a function of xc at marginal stability for several

values of 3i. Figure 5 shows the same curve of Ao versus x, for different values of L,/L.

Both figures are in qualitative agreement with expression (49); that is, an increase in either

fi or L,/L, leads to a simple vertical displacement of the Ao versus xc curve.

The variational calculation performed in Sec. IV gave the result of Eq. (45). As is

often the case in a variational calculation, one expects the functional dependence of the

result with respect to the various parameters involved to be similar to that of the exact

solution. The numerical coefficients appearing in the variational solution, however, are only

approximations to those of the exact solution whose values can be made more exact by

using trial functions closer to the exact eigenfunction. In order to reflect this uncertainty in

the numerical coefficients of the variational solution, Eq. (45), two adjustment parameters,

a1 and a 2 , are introduced into the above expression for the growth rate as follows

k 2r 1sL 1/2

r = -- A'(a1 X) - a2 7. (50)
7rV, I i (/ LF2

where A'(x) = Ao(1 - x/W). Here, a, reflects the uncertainty in the variational determi-

nation of the magnitude of the value of the parameter a (the edge of slab region about the

rational surface) as performed in the calculation of the magnetic terms, LA, appearing in

Sec. III. Likewise, a2 reflects the uncertainty in the overall magnitude of the contribution

of the electrostatic terms, 4, to the variational integral due to such approximations as

extending the limits of integration to infinity (see Sec. III). By comparing expression (50)

to the numerical data displayed in Figs. 3-5, one can fit this numerical data to a high
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degree of accuracy by choosing the values of a 1 and a2 to be

ai 4.5 a2 ~ 4/3 (51)

Results indicate that a1 is a weakly dependent function of the ratio xC/W (a, decreases as

xc/W increases). This reflects the fact that the function A'(x) is not strictly a decreasing

linear function of x, as approximated analytically (A'(x) = Ao(1 - xc/W)); rather, A'(x)

is a function whose slope increases (becomes less negative) as x increases.

In summary, the numerical results obtained form the shooting code agree remarkably

well with the analytical expression for the growth rate, Eq. (50), where the parameters

a, and a2 are given by Eq. (51). Numerically, the real frequency of the tearing mode is

found to be w.e, which agrees with the analytical predictions.
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V. Conclusion

Both numerical and analytical results indicate the tearing mode to have a real fre-

quency equal to the electron diamagnetic frequency and a growth rate given by Eq. (50).

The fact that w,, = w,e indicates that the tearing mode is, in fact, an electron drift wave

driven unstable by the equilibrium current gradient. Here, the first term on the right of

Eq. (50) is the contribution from the electron magnetic terms and is similar to the basic

collisionless tearing mode result" (-y A'(0)) modified to include diffusive electron effects.

The second term on the right is the contribution from ion electrostatic terms. Physically,

the first term represents the free magnetic energy in the outer region (IxI > x,) available

to drive the tearing mode. The second term represents the energy required to maintain the

ion motion. Since this mode now has a finite real frequency, energy is needed to sustain

the ion motion, whereas in resistive MHD, the mode is purely growing. At low densities

the first term dominates, indicating that the tearing mode can be stabilized for sufficiently

large values of the electron diffusion coefficient. At high densities, the second term becomes

important and consequently the tearing mode can be stabilized for sufficiently high fli.

Numerical calculations of A'(x) for Alcator-C profiles indicate that A'(x) is a mono-

tonically decreasing function of x with A'(0) > 0. Hence, for low densities, stability is

obtained for alxc > W, where A'(W) = 0 and a1 is a numerical constant. This stability

criterion can be written as De > 3k'Iv(W/ai)3 with k' = mq'/Rq2 , where the func-

tional dependence of W on the profile quantities must be determined numerically. This

equation indicates that increased turbulent electron diffusion stabilizes the tearing mode.

Consequently, if De ~ 1/n, then there exists some critical density below which the tearing

mode is stabilized. Theoretically predicted values of the critical density are in approximate

agreement with experimental values; however, the experimental scaling7 of n, ~ B 2 has

not been explicitly derived unless De - B 2 . (Note that for the parameters a = 16cm,

L /Ln = 16, W = 1cm and Te = lKev, then stabilization occurs for De ;> 10 4 cm 2 /secs).

A related analysis reported by Meiss et al. 17 also treated the problem of the effect

of electron diffusion on the tearing mode. They arrived at a very different conclusion,

however; namely, that diffusion has virtually no effect on the tearing mode nor did they find
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the additional stabilizing term due to ion inertial effects. The results of the present work for

the "magnetic" tearing mode (neglecting the effects of a finite electrostatic potential) differ

only by the inclusion of the additional physical effect of turbulent smearing of the perturbed

current which thus reduces the available energy to the value A'(ajxc). The analysis by

Meiss et al., by asymptotically matching an inner solution to an ideal MHD solution at

large x, intrinsically contained the full MHD energy, A'(0), and could not consider this

effect. Besides the fact that Meiss et al. ignored this the stabilizing phenomena due to

the ion inertia, their results agree with the above results of the "magnetic" tearing mode

except for the phenomena of turbulent smearing of the perturbed current.

The growth rate as expressed by Eq. (50) also indicates that at high densities, the

tearing mode can also be stabilized due to the effects of ion inertia. Assuming the effect of

electron diffusion can be ignored, this stabilization takes the form of specifying a critical

ion #, above which the tearing mode is stabilized. Setting x, = 0, this critical 8 is given

by

3 v/Z2 L. 1/2 (2fi > #i 3-AO ,)- Ao A'(0). (52)4 Ir ")

Here, AO is normalized in units of the ion gyroradius. For typical lcator-C parameters,

the above formula indicates that the tearing mode is stable, contrary to experimental

observation. (Note that for the parameters Ao = 0.1cm, pi = 0.03cm, L,/L, = 16 and

r = 1, then fc ~ 10-3)

The result of stabilization at ion betas above some critical value, #c Ao(L./L.) ,

was calculated previously by Basu and Coppi9 through a kinetic treatment utilizing asymp-

totic analysis. The work of Basu and Coppi9 and of Coppi et al. 8 also modified this result

to include the effects of finite temperature gradients in which they found stabilization to

occur when the ion beta exceeded a critical value of P, ~ .1Ao(L,/L,) 2I. Here I, is a

function of the electron temperature gradient whose magnitude is on the order of unity.

This critical ion beta is much lower than that occurring in the absence of temperature

gradients, indicating that the effects of finite temperature gradients on the m = 2 mode

are strongly stabilizing. A recent analysis by Drake et al.1 9 based on the Braginski fluid

equations including the effects of finite temperature gradients also gave a result of the
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form #c .1Ao(L,/L) 2 e for the onset of stabilization. It is interesting to note that the

growth given by Eq. (50), neglecting the effects of turbulent diffusion, indicates the m = 2

mode to be stable for typical Alcator C parameters. This is especially true if one considers

the results cited above which include the effects of finite temperature gradients. In light

of this observation, as well as the fact that the above stabilization mechanism is a purely

linear affect which has been established in both kinetic and fluid models, indicates that the

m = 2 modes present in current tokamak experiments are driven unstable by additional

effects in conjuncture with that of an equilibrium current gradient.

In summary, the tearing mode is stabilized at low densities for sufficiently large values

of the turbulent electron diffusion coefficient, De, and at high densities stabilization is

obtained for sufficiently large values of Pi. For low /i, in which one can approximate

A'(aizc), then stability is obtained when z > W, where A'(W) = 0. Provided

De ~ 1/n, this implies that a density threshold must be surpassed before the m = 2

tearing mode is observed. Physically, turbulent electron diffusion prevents a perturbed

current from forming within a correlation distance, x,, of the rational surface. Hence,

turbulent diffusion cuts into the available magnetic driving energy, A'. At high plasma

P, the effects of ion inertia become important. At high densities in which the effects of

electron diffusion become negligible, then this ion inertia effect implies that the tearing

mode is again stabilized for Pi above some critical value. These results indicate that it

may be possible for a tokamak experiment to operate in a parameter regime such that

the tearing mode is stabilized at all densities due to the combined effects of turbulent

diffusive stabilization and ion inertial stabilization. Making this work in practice would be

an important step toward the elimination of major disruptions in tokamaks.
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Figure 3.

Plots showing the amount of diffusion (z) necessary to obtain marginal stability

(-y = 0) verses given values of free energy (A'(0)) for several values of W, where

A'(W) = 0. The dashed curves are plots of the analytical results indicated by Eq.

(49).
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Figure 4.

Plots showing the amount of diffusion (z,) necessary to obtain marginal stability

(-y = 0) verses given values of free energy (A'(0)) for several values of the plasma ion

beta, Pi. The dashed curves are plots of the analytical results indicated by Eq. (49).
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Figure 5.

Plots showing the amount of diffusion (xe) necessary to obtain marginal stability

(-y = 0) verses given values of free energy (A'(O)) for several values of magnetic shear,

L,/L,,. The dashed curves are plots of the analytical results indicated by Eq. (49).


