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ABSTRACT

A novel method for cold testing a gyrotron resonator for total Q is

presented. Probing radiation is coupled into and out of the resonator

through its radiation pattern. A sensitive heterodyne receiver is used in

the far field to detect the cavity resonances. Good agreement between

measurement and calculated total Q is found for several 140 GHz gyrotron

resonators in the TE0 3 1, TE0 32, TE2 3 1 , and TE6 1 1 modes.



I. INTRODUCTION

The development of gyrotron millimeter wave sources is currently a

very active field. The trend is toward higher power levels (over 1 MW) and

higher frequencies (into the submillimeter wavelength range). This in turn

requires operation on increasingly higher order resonator modes to keep the

resonator dimensions practical. For example, recent 140 GHz, >100 kW

gyrotron experiments have operated in the cylindrical TE0 3 1 [11 and TE6 11 [21

modes. A 1 MW, 120 GHz experiment will operate in TEm,p,1 modes with m >> 1

and p = 1 or 2[31. The resonators of these and most gyrotrons are simple

straight cylinders with tapers at either end[4].

The resonator Q factor determines the gyrotron operating characteristics.

High power (>100 kW) gyrotrons, intended for electron cyclotron heating of

fusion plasmas, require low Q's ((1500) to minimize resonator wall loading.

Moderate power gyrotrons (<10 kW), for applications such as plasma diagnos-

tics[51, require high Q's (>5000) to optimize lower power efficiency and

for narrow linewidth, stable frequency operation. It is important to

achieve the design Q of the resonator in order to realize the design perfor-

mance of a gyrotron.

At the high frequencies of current interest the tolerances for fabri-

cation of gyratron resonators are very small. Small cavity imperfrections

not apparent from visible inspection can result in resonator Q's very

different from design. For example, one resonator described in this paper

was designed for a diffractive Q of 7,000 in the TE0 3 1 mode at 137 GHz, but

measurements showed it to be approximately 40,000.

In this paper we describe a simple, non-destructive method for experi-

mentally measuring the resonator Q factor. It is based on a variation of

the standard transmission resonance technique[6]. Drilling multiple holes
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into the cavity, as used in past application of this technique[4], is not

required. Instead we make use of the resonator radiation pattern for

coupling in and detecting the probing radiation. The advantages of this

method are: any resonator mode can be studied with the same experimental

set up (no mode converters are required); the resonator is not damaged in

any way; and it is not dependent on resonator design, applicable even to

quasi-optical gyrotrons[7].

II. Q FACTOR

The resonator Q factor measured here is the total or loaded Q. It is

related to the diffractive and ohmic Q by

QT = Q + Q21>)~1 (1)

The tested resonators were designed for diffractive Q's as determined by a

computer code described in [8]. The ohmic Q is given by the equation

Ro m2

Q2 -= - (2)
6 

22
where Ro is the cavity radius, 6 is the skin depth, vmp is the pth zero

of the J' Bessel function, and m and are the mode indices as previously

defined. For comparison with the measurements the published value for

copper conductivity of 59 mhos/m was used for calculating ohmic Q.

III. EXPERIMENTAL SET UP

The experimental set up is illustrated in Fig. 1. The source of

probing radiation was a 10mW, 135-144 GHz tunable Impatt diode. The radia-

tion which was reflected or reradiated by the gyrotron resonator under test

was detected with a heterodyne receiver. For most of the measurements this
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receiver consisted of: a 46 + .25 GHz Gunn diode and Millitech frequency

tripler as the local oscillator (LO), a Hughes single ended mixer, a 3dB

directional coupler as the diplexer, and 5-1500 MHz intermediate frequency

(IF) amplifiers with a total gain of 60dB. Higher frequency IF amplifiers

were also used to increase the frequency range covered. Standard Hughes

24dB gain horns were used both at the receiver and Impatt diode. The

receiver noise temperature was approximately 10,000K double side band.

The gyrotron resonator under test was placed in the receiver field of

view which was approximately collimated with some focusing mirrors. The

resonator was angled so that a peak or null of the resonator mode far field

pattern was directed toward the receiver. The Impatt diode beam was coupled

into the cavity from a direction opposite the receiver with respect to the

resonator axis. The precise alignment of the resonator and Impatt diode

was adjusted experimentally for a good signal.

The key to the success of this measurement technique is the use of a

heterodyne receiver for detection. Because of its sensitivity it could be

placed very far in the far field, up to 2m. This allowed for good resolution

of a feature in the far field pattern and eliminated any interaction between

the resonator under test and the receiver. The output diameter of the

resonators tested was either 1.27 or 2.54cm so the far field (R > D2/X)

was greater than 7.5 or 30cm away, respectively. However, best cavity reso-

nances were observed with the Impatt diode horn very close to the test

cavity, within 10cm. About 20dB of attenuation was typically used at the

Impatt diode because signal levels were more than adequate.
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IV. MEASUREMENTS

The measurements were made by rapidly sweeping the Impatt diode

frequency and displaying the detected spectrum on an oscilloscope. Six

different gyrotron resonators were tested with design diffractive Q's

ranging from 400 to 9000. Some of these resonators were assembled from

three machined copper parts (down taper, straight section, and up taper)

and the others were electroformed as a single piece. Typical receiver

signals are illustrated in Fig. 2 which shows the results for a machined

137 GHz, TE0 3 resonator with a design QD = 9000.

The full double sideband output from the receiver is shown in Fig. 2a.

Signal levels are negative. The sharp null near the middle of the trace

corresponds to receiver IF frequencies between +5 MHz which are not amplified.

This null serves as a frequency reference marker, corresponding to an LO

frequency of 137.5 GHz in this case. The frequency sweep rate was 1.15

MHz/us from low to high frequencies. The detected spectrum is modulated

by a standing wave which originates in the resonator under test. Cavity

resonances can be observed in the lower sideband superimposed on the standing

wave pattern.

In Fig. 2b these resonances are shown on expanded scales. The peaks

are negative going which could be interperted as emission peaks. Different

resonator orientations are also possible where these peaks appear as absorp-

tions as shown in Fig. 2c. The background standing wave pattern also

varies with resonator orientation. Best results are obtained if the cavity

is oriented so that a resonance occurs on a peak or minimum of the standing

wave pattern. In this way the half maximum width of the resonance can be

more accurately determined for the Q measurement. A by-product of this

measurement is an accurate determination of the cavity resonate frequencies.
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The resonances in Fig. 2 were identified as the TE0 3 1 and TE0 3 2 modes.

Their frequency separation of 250 MHz agrees with computer calculations[5,81

and the width of the TE0 32 resonance is larger as expected for the lower Q

mode. The results for this resonator and the others tested are listed in

Table I.

Good agreement between measured and calculated total Q was obtained

for the first four resonators listed in Table I. The electroformed 1500 and

400 design QD cavities and the machined 6000 design QD cavity are the same

ones used in gyrotrons previously reported[9,2,51. The machined gyrotron

resonators, assembled from parts, are susceptible to higher Q values than

design if the resonator parts are not precisely mated or aligned. This may

be the reason for the high value measured for the 6000 design QD cavity.

The most interesting difference between measurement and calculated

total Q was for the last cavity listed in Table I. This was an electroformed

resonator which was silver plated in an attempt to improve ohmic Q slightly.

Use of this resonator in a gyrotron resulted in poor performance. Competition

betwen the TE031, TE0 3 2 , and TE0 3 3 modes was observed with best output

efficiency achieved in the TE032 mode. Cold testing explained these results.

The measured total Q for the TE0 3 2 mode corresponded to a diffractive Q of

10,000. The TE0 3 1 mode was not observed in cold testing, but scaling the

diffractive Q as the inverse square of the axial mode number implies a

value of 40,000. Subsequent inspection of the resonator straight section

with a reaming tool revealed small constrictions (<25 gm) at the input and

output. This example supports the validity of this Q measurement technique.

The main source of error for these measurements is the standing wave

background on which the resonances are superimposed. Using eccosorb10l

wherever possible around the outside of the test cavity had little effect.
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Apparently this background is due to a coherent interference between

components of the probing radiation which are reflected from inside the

front and back ends of the resonator. This interpertation is supported by

the observation that the cavity resonances appear as absorptions on the

standing wave peaks and emissions at the standing wave minimums when a

null in the far field pattern is aligned toward the receiver. For this

orientation the cavity resonance blocks the reflection from the back end of

the resonator. Another observation which supports this interpretation is

that the frequency separation between the standing wave peaks decreases in

proportion to increasing angle of incidence of the probe radiation with

respect to the resonator axis. This would be expected if the path difference

between the two interfering components increases with angle.

It seems unlikely that this standing wave background can be eliminated

without effecting the resonator under test. Nevertheless, this technique

for Q measurements should be accurate enough for most purposes.

V. CONCLUSIONS

The gyrotron resonator cold cavity Q measurement technique described

here is simple to implement, does not require damaging the cavity, and is

not mode specific. Making use of the resonator radiation pattern for

coupling in and detecting the probing radiation makes this technique very

general, applicable to any gyrotron resonator. In particular, it will be

useful for future high power, high frequency gyrotrons which will operate

on higher order resonator modes for which reliable Q measurement techniques

have not yet been demonstrated.
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Measurements presented in this paper agreed well with most design

values of resonators used in successful gyrotron operation. In one case

poor gyrotron performance was explained by a measured Q value very different

from design. The checking of resonator Q is necessary to avoided wasted

time and effort in assembling gyrotrons which will not meet performance

goals. Such a method will also be valuable for developing novel new resona-

tors which minimize mode competition. This Q measurement technique should

become very useful.
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FIGURE CAPTIONS

1. Experimental set up.

2. Results for a maehined 137 GHz, TE0 3 resonator with QD = 9,000.

Oscilloscope displays are shown of the receiver signal (going negative)

with Impatt diode frequency swept at 1.15 MHz/us. (a) Full double

sideband output from receiver. TE0 31 and TE032 cavity resonances evident

in lower sideband. (b) Cavity resonances on expanded scales appear as

emission peaks. (c) For different resonator orientation cavity

resonances appear as absorptions.
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TABLE I

COMPARISON

GYROTRON

CAVITY

(DESIGN QD) MODE

OF MEASURED AND CALCULATED

RESONATOR TOTAL Q FACTOR

FREQUENCY

(GHz)

QT
MEASURED CALCULATED*

ELECTROFORMED

(1500)

ELECTROFORMED

(400)

ELECTROFORMED

(7000)

MACHINED

(9000)

MACHINED

(6000)

TE0 3 1

TE231

TE611

TE0 3 1

TE0 3 2

ELECTROFORMED

SILVER PLATED

(7000)

139.75

136.65

143.06

136.70

136.93

136.95

137.20

137.18

137.48

136.90

137.27

1520

1600

+ 200

+ 200

550 + 100

5700

2000

7000

3100

6800

2400

+ 400

+ 200

+ 600

+ 300

+ 600

+ 300

13,400**

6,700 + 600

* Using Qg with copper conductivity assumed to be 59 mhos/m

**Determined from TE032 measurement

1400

1400

370

5200

1600

6200

2000

4600

1400

5200

1600
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