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The anomalous Doppler instability is investigated for two-dimensional

velocity distributions f(v11,v1 ) appropriate for lower-hybrid current drive.

In this case, in contrast to the runaway electron problem, this mode becomes

unstable at high density when the ratio W e/w e is sufficiently large.

Increasing the maximum velocity v2 of the RF plateau, v, v v2, is also

a destabilizing influence.

In this paper we give expressions for the growth rate of the electrostatic

waves obeying the dispersion relation w = W (1 + W2 /w 2 )-1/2k /k, employingpe pe ce k 1 k

both analytic expressions for f(v11,v1 ) and numerical solutions for f from the

two-dimensional Fokker-Planck equation. The analytical and numerical results

are in close agreement.
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I. INTODUCTION

In the present paper, we examine the nonrelativistic anomalous Doppler in-

stability (ADI) of electron distributions which result from RF current drive.

In plasmas with currents driven by RF waves, a velocity space anisotropy arises

as a basic consequence of the current drive process. Thus, it is natural to

look for possible destabilization of the anisotropy-driven modes. In the anom-

alous Doppler instability, electrostatic modes are driven unstable through in-

teraction with fast electrons at the anomalous Doppler resonance velocity, v =

v A = (wce + w)/k I, where wce is the electron cyclotron frequency, k11 is the

parallel wavenumber, and w is the frequency of the unstable wave. This insta-

bility is well-known to play an important role in the low density runaway elec-

tron regime of tokamak operation, and considerable theoretical work has eluci-

dated the characteristics of this mode using electron velocity distribution

functions, f (v, vj), appropriate for the runaway electron tail (see Ref. 1

and references contained therein). In the case of RF current drive the growth

rate and marginal stability condition of this mode was calculated earlier
2 us-

ing a simple model for the RF driven distribution function. Here we use a

more sophisticated model that is an approximate analytical solution to the 2D

Fokker-Planck equation,3 and then make comparisons to results from the full

numerical solution of the Fokker-Planck- equation.

As far as the ADI is concerned, there are three principal differences

between the runaway problem and the RF current drive problem, which stem from

the form of the raised plateau of F(v1 ) = ff 21rv dv, in the velocity space

region v, < v11 < v 2 in which the externally injected spectrum of waves causes

substantial quasi-linear diffusion. First, for strong RF diffusion, the slope

of F(vl1) on the RF plateau is smaller than the slope of the corresponding

distribution function for a runaway tail near the critical runaway velocity.

Hence, Landau damping of the unstable waves will be weaker in the RF case.
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Second, the RF-generated plateau height is generally larger than the runaway

tail height for typical tokamak experiments, thus contributing a

correspondingly larger effect from the anomalous Doppler resonance. And

third, the upper velocity limit of the plateau, v 2, is generally smaller than

the maximum velocity of the runaway tail. This latter difference will result

in a substantial difference in the density regime for which instability is

expected. In particular, we will show that in the RF current drive case, the

parameter y = wpe/Wce must exceed a minimum value (typically - 0.3) before

instability can occur.

The electrostatic plasma waves of interest are described by the

nonrelativistic dispersion function D(kw).

2 J (kIvt/wcj)
3 nnj vD(k,w) = 1 + -- d - kVv - + D nD f(v 1 vj(

for a uniform magnetized plasma, where j = e, i (electrons, ions), and n runs

through n = 0,±1,±2,... .Further,

S = 47rn e /mj, Wcj = jeB/mjcI. (2)

Jn is the ordinary Bessel function of order n, and the operator Dnj is given

by:

nwcj + k
nj v vi av + k - ,()

and f (viv 1 ) is the velocity distribution function. The dispersion relation

and the growth rate are, respectively,
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Re(D) = 0, Y = - Im(D)/(3Re(D)/3w) Re(D) = 0

Provided that k /k (< mi/me, we can neglect the ion contributions in (1),

and, for w2 " wUH W wpe + wce, we get the dispersion relation:

W2 =k 1l Y2
2 2 2

W e k2 1 + y2

Wpe

y = . (5)

The corresponding most general form of the growth rate for an arbitrary

distribution function is:

72 Ww2 1Y =pe A vjdv J 2 Dne fe ,
n k2 |kjII 0 ce

(6)

where vin = (w - nwce)/kii are the resonant values of v 1, and the factor

r 2 '~r2

A = 1 _ - 1 + y2 _ 1 arises from the evaluation of 3Re(D)/@w[ 2 W -

"ce Wce

discussed in the Appendix. In the following calculations, normalized

variables are used according to:

(14)

v + v/ve with V2 Te/Me, W + W/ Y ce k + kve/Wce (

Of the terms in (6), only the n = 0,±1 resonance terms need to be retained;

the other resonances occur in regions where f is negligibly small.

Conventionally these three resonances are called the Landau (n = 0), the

anomalous Doppler (n = -1), and the Doppler cyclotron (n = 1) resonances.

The resonant velocities are, respectively:
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W 1VAD=- k1l VDC k11

and we label their contributions in Eq. (6) as YL' YAD, and YDC, respectively.

The growth rate (6) then becomes:

2TtG vjdv 1 J2 (kjv1 ) Dn n),
10nn v'vnPY = I1

n=0, ±1

where

G =r W0 y2 (1 _ W2)

2 2 (1 + y 2 _W 2 )

Dnf = sign(k ) + n |k

(9a)

(9b)

(10)

It can be seen from Eqs. (9) and (10) that yAD becomes large and positive when

|af/av I| << If/avji at the resonance velocity vj1 - VAD - (Wce + w)/k 11.

Thus, the low phase velocity electrostatic waves can interact with energetic

electrons via the anomalous Doppler resonance, and, due to the anisotropy in

the RF-created electron distribution function f(v1 ,vjj), this resonance.

contributes the positive term, YAD, to the overall growth rate of the wave.

II. NECESSARY CONDITIONS FOR INSTABILITY

The two-dimensional electron distribution function for RF current drive

is shown schematically in Figure 1. The velocities of electrons resonant with

VL =
(8)
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the wave are also indicated; the important resonances are VAD = (w + 1)/k I,

VDC - (w - 1)/k 1 , and VL = w/k1 . Instability occurs when the magnitude of the

sum of the two damping rates, IIL + 1DC|, is less than the growth rate YAD at

the anomalous Doppler resonance. We can obtain necessary conditions for

instability by examining limiting cases where each of the damping rates is

small and the growth term is maximum. The damping rate YL is obviously

relatively small when the wave phase velocity falls into the plateau region,

that is, when the inequality w/k1 > v, is obeyed. On the other hand, if

w/k 1< v , then waves will suffer heavy Landau damping owing to the rapid

transition of f(v1 ,vII) to the Maxwellian bulk at v11 values below vi. The

growth rate due to the anomalous Doppler resonance will be largest when

VAD = (w + 1)/k 1 is less than v2, that is, when the inequality k11 v2 > W + 1 is

obeyed. If vAD > V 2, then YAD will be small or negative, which follows from

the fact that for v11 > v2 RF diffusion is absent, so that pitch angle

scattering will tend to isotropize f(v11,v1 ) along contours of constant energy,

v+ v2 = constant. Evidently, the above two inequalities are necessary

conditions for instability. The Doppler cyclotron resonance affects particles

with vii < 0, Figure 1. In this region, we have DRF = 0, and f will be

dominated by pitch angle scattering. For vDC v1, the Doppler cyclotron

resonance may fall into the bulk causing significant damping of the waves on

the thermal particles. Hence, vDC < - vi, or w < - vik11 + 1, is roughly an

additional necessary condition for instability, assuming there is no backward

going RF current. These three necessary conditions for instability are tabu-

lated in Table I and are represented as lines in (w,k11)-space in Fig. 2. The

dispersion relation places a further constraint on the wave-frequency, namely,

W < max = y1 + y2)-i, also listed in Table I; the line Wmax is shown in Fig.

2. For suitable values of vi, v 2, and y it is possible to satisfy all three
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conditions in a'particular region of the (w,kii) plane, the shaded region in

Fig. 2. Waves with w and k in this region are potentially unstable. Clearly,

if the parameter y=w /w is sufficiently small, the unstable region of (w,k 1)-

space vanishes, and all wave modes would be stable. Thus, we expect instabili-

ty only in plasmas with sufficiently high density, i.e., having large enough y.

The (w,kii) representation is useful for quickly determining if any set of

experimental conditions, as given by y, v,, and v2, is favorable or

unfavorable for instability.

The necessary conditions for wave growth (the inequalities given in

Table I) can be combined to give the two conditions,

v2 >3v1  (11)

and

y2 = 2 (12)
(v2 /V 1  ~1)2 _ 1

for the existence of an unstable region in (w,ki)-space. Evidently,

increasing the values of v2 and y are destabilizing influences.

The conditions (11) and (12) will be modified by relativistic effects.

The relativistic generalization of the anomalous Doppler resonance condition

is:

VII = VAD Wce (13)

where Y = (1 - v2 /c2 1/2 and wce = IeB/mcl is the nonrelativistic cyclotron

frequency. Combining (13) with the other inequalities in Table I and

neglecting vj/c2 gives, instead of (11) and (12),
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- > 1 + -2 (4)
v1 2

and

y2 >1 (15)

2 v2/ _ /2

where Y = (1 - V/2-1/2 for the necessary conditions for instability. It

can be seen that the relativistic effects tend to be destabilizing since

Y2 > 1. This is clear also in Figure 2, where the dashed ine is the anomalous

Doppler resonance line for the case Y2 > 1. The AD line moves to the left as

Y2 increases, hence the allowed zone of unstable waves increases.

In the following, the preceding considerations based on physical argu-

ments are verified in the nonrelativistic limit, by explicit calculation of

YL' YAD, and yDC for model distribution functions, and for numerically com-

puted two-dimensional solutions of the Fokker-Planck equation. The above pic-

ture is useful for identifying the parameter ranges in which the anomalous Dop-

pler instability can exist; however, to ascertain theimportance of this insta-

bility, the growth rate (6) must be evaluated.

III. DISTRIBUTION FUNCTION

The distribution function of interest is produced by a combination of

quasilinear diffusion from the externally applied RF waves and of collisional

processes, energy drag and diffusion, and pitch angle scattering.
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In the resonant region v, < v11 < v2, where the externally imposed

spectrum of RF waves causes quasilinear diffusion, an RF plateau (Figure 1) is

formed. On the plateau, thermal particles are pulled out from the bulk and

rapidly quasilinearly diffused and simultaneously pitch angle scattered to

large values of vi. The distribution function, f = f - fm, where fm is the bulk

Maxwellian, is therefore broadened in the perpendicular direction.

The Fokker-Planck equation describing this distribution function f is:

VvS = 0, (16)

where the components of the velocity space flux S, parallel and perpendicular

to the magnetic field, are:

Sj= - Bf - - 1 -vi v - Df +~ +A B + 1[ vi.(8
'3  2 v v v I vJ

Bf af 1 A B 1f 1 A f (17

Si = - Bf -i + viii + LI af1 LV B -1(8

v a v v3 2 v 2 BVJ V3 2 11 V2

The normalized velocity variable, v + v/ve, where ve = (Te/m)1/2, is used.

The doefficients A Q 1 + Zi and B z 1 are discussed in Ref. 3, and

D = DL /Vv 2, with vo = 4hn e4lnA/m 2 v3 . For a given form of the quasilinearQL 0e'V e e e

diffusion coefficient D, the solution of (16) can be carried out numerically,

as discussed in Ref. 3. In section V of this paper, we calculate growth rates

using the numerical solution of Eq. (16). To obtain analytical results for

the growth rates, we will use the approximate analytical form for f presented

in Ref. 3.
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The analytical distribution function is written in terms of the bulk

Maxwellian, fm, and a population of suprathermal electrons f:

f = fm + P. (19)

The normalized Maxwellian is:

fm = (21)-3/2 exp(- V 2 /2), (20)

and the distribution function of the suprathermal particles is:

= F(vj) exp(- v /2TI), 
(21)

21T(v 11)

where the quantities entering (21) are related to the perpendicular velocity

moments of f according to:

E =21 vidvi , = 21f vidvif. (22)
10 2F 10

The form (21) for P is substantiated by the two-dimensional numerical results

discussed in Ref. 3.

The plateau perpendicular temperature, because of pitch angle scattering,

is much greater than the temperature of the bulk. In our normalizations,

Ti .L T >> 1, with T1 = 1 for the bulk particles, fm. The perpendicular

temperature, Tp, of the suprathermal component depends on the limits of the

resonant region, v, and v2, and on the ion charge, Zi. Following Ref. 3, we

have:
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v va+1
2 1

-_____ - (v v a

T +1 2 (23)

2(v2 - v )V2 - 2 1
2 11 a-

where

a = 2(1 + Zi)/(2 + Zi). (24)

An approximate analytical solution to (16) can be obtained in the region

v < v11 < v2, where D is sufficiently large. A moment equation approach is

used, and Ref. 3 gives:

1 + Zi 2

FI ~ - v a + v -

F(v) = 1 Z 1 -v H(v ), (25)
Dav + (1 + Zi)Ti/aI + a3 /a5

where an = 1 + nTj/v , and Zi is the ion charge. For the calculations of the

growth rates in the next section, we do not solve the differential equation

(25) explicitly, but rather we use (25) to calculate the derivative F'(v )

for a plateau height, F(vI1), determined self-consistently with the total

RF-driven current, JRF. We can do this because, for RF power levels of

interest, D is relatively large (D > 1), and the plateau is consequently

rather flat (typically a few percent change in T from v11 = vI up to v = v2).

The plateau height itself can be estimated using the approximation3
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Fm(Vi)
F FM~v) - .(26)

exp ( (A + B) (
AT + B vI/2
p

Our procedure then is to take the experimental value of J, determine the

plateau height from the equality, J = f_ vjdv F(v 1), and self-consistently

choose v1 according to Eq. (26). We use this procedure in deriving the data

of Table II, where the theory parameters v,, Tj, and Fp, the plateau height,

are obtained for the given experimental conditions.

The described procedure is sufficient to give an explicit analytical form

for P in the region v, < v11 < v2 for any given set of experimental conditions,

J, v 2, and Te. In the region v11 > v2, pitch angle scattering dominates, and

the steady state solution is highly isotropic with F - exp[- (v + v )/2T,].

In the region vii < 0, the thermal Maxwellian component dominates over the

population of hot electrons pitch angle scattered from the plateau. The

backward-going hot electron component (vj1 < 0) does not, in most

circumstances, significantly contribute to the growth rates, as will be shown

in the calculations with the full 2-D numerical distribution function.

IV. ANALYTICAL GROWTH RATES

The growth rates (9) will first be evaluated using the distribution

function given in the form of Eq. (21). The growth rate as a function of the

characteristic quantities T1 (vii) and F'(v 1 ) will be given explicitly. Only

two types of integrals occur in the evaluation of Eq. (9), namely,
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xdx j (ax) e = e-a2/2p In(a 2/2p) i Pn(a,p), and (27a)

2

x 3dx J2 (ax) e PX P (a,p), (27b)

where the In are the modified Bessel functions. Terms of all order in k pce

are retained; Pce is the gyroradius, vI/4ce. We find, for k > 0:

y = G W (q) F' + F q - 1 v =_ (28)

YAD = G{W(q) F' + F 7 q - - q - v (29)

yDC = G W (q) F' + F T q - q - 1 - T kjvjIvDC (30)

where

G = - 2 (1 -W 2 ) (31)2 k2  (1 + y2 - 2)

VL, VAD, and vDC are the resonant velocities defined in Eq. (8),

Wn(q) = In(q) exp(- q), and the argument of the modified Bessel functions is:

q = kITI(vI). (32)

If the anomalous Doppler resonance is on the plateau (vAD < v'2

the dominant contribution to YAD comes from the term F/Tkij in Eq. (29).

Thus, when vi < vAD < V 2 1 YAD will provide a positive contribution to the
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growth rate. In the region v11 > v2, ? is comparatively isotropic:

- exp[-(v2 + VI)/2TI], with T' 0, so that YAD reduces to:

~AD EGW (q)F(vI) v [ A + T. k]lvAD

GW1(q)F(v1 ) - + 1 + 1
I 0 1=vAD kiT Tik

-G W(q)F(v ) < 0. (33)
kIT 1 VI=VAD

Hence, no growth can occur for VAD > v2.

The Landau contribution is clearly negative since F' < 0 for these waves,

as is the Doppler cyclotron growth rate, YDC* The YDC term comes from

resonance with electrons with v = vDC = (Wce - w)/k 1 < 0. Generally, YDC

will be small unless vDC moves into the bulk region, vDC > - 4, or if an

RF plateau is formed in the negative vii direction. This latter possibility

can occur under experimental conditions where usually a fraction of the RF

wave power propagates opposite to the main power flow, generating a small

current opposing the main current. Here, we will neglect this effect.

Now, the individual contributions YL' YAC, and YDC can be evaluated using

.the analytical expression (25), recalling that:

F = Fm + F, (34)

where the parallel Maxwellian is Fm = (21)-1/ 2 exp(- v /2). First, we deal

with the Landau damping term (29).
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Landau Damping

The Maxwellian part of F11 immediately gives, on substitution into

Eq. (28):

ym) = - G[ W(q) vj1 Fm(ov-) (35)

where q = ki, since Ti = 1 for the bulk Maxwellian. The suprathermal part of

the distribution, F, has T = Tp, by Eq. (23), and on the plateau, with 9'

given by Eq. (25), we get:

Y - G [ W (q) v,1 F(vII) H(v1 ) vy(36)

where we have neglected terms proportional to Tj/Ti, and the function H is

defined in Eq. (25).

Anomalous Doppler Growth

The anomalous Doppler term in the growth rate (27) can be evaluated in a

similar way. The contribution from the Maxwellian Fm is:

fm = - G [ W (q) v11 Fm(v v=( + 1)/k(37)

which is negative definite, but is obviously extremely small in cases of

interest since vAD = (w + 1)/k 1 is much larger than the bulk thermal

velocity, ve. The factor FmC D) is thus very small compared to the Landau

damping term in Eq. (35).
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In contrast, the contribution of the suprathermals is destabilizing on

the plateau, where, upon neglecting the small terms with T1 and F', we get:

= G(vAD - VL) W [ W1(q) (38)
p || AD

In Eq. (38), we note that VAD > 2vL, which follows from the definition of vAD

and vL and the wave dispersion relation. Using these relations we find:

VAD +(1 + y21/2

VL 1 +) (39)

Outside the RF region for vjj > v2 , f(vjj1v1 ) is defined by pitch angle

scattering effects, and, as discussed in section III, we have:

F(v > V2) z F- exp - (1 + B/A)], (40)

which, when substituted into Eq. (29), immediately gives:

(vL + VAD B/A)
AD)v >v2 G [W(q) F ] v1-vAD 2

This expression is negative definite, and because all other terms contributing

to Y are also negative it follows that instability cannot occur when v1 > v2 .

This result was to be expected since the distribution function with v1 > v2 is

nearly isotropic.
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Doppler Cyclotron Term

Finally, we consider the effects of the Doppler cyclotron resonance

(n = +1) located at v11 = vDC (W - wce)/kll. Since waves of interest have

W < Wce and k1l > 0, vDC will lie in the negative v11 region and will become

significant when vDC approaches the thermal bulk, i.e., vDC - 4 ye. The

contribution originating from the Maxwellian background due to the DC

resonance is negative definite and is given by:

Y = - G [ W (q) v1 Fm ]vvC (42)

where:

VDC = (w - 1)/k = 2 vL - vAD < 0. (43)

This contribution to the total damping can become significant for small

(i.e., bulk) values of IvDCI, which is possible only for waves with

frequencies w > wce/2. The latter condition follows from the fact that

- vDC = vL(wce/w - 1) and that vL. - 4 Ve for waves of interest, and hence the

requirement for Doppler cyclotron damping on the bulk, - vDC 4 ye, implies

that w wce/2 . Waves in this frequency range are allowed by the dispersion

relation only if y is sufficiently large, that is, y a 0.5 + 1.0. The Doppler

cyclotron contribution to Y, therefore, must be included in the case of high

density plasmas, with y Z 1.

The relevant contributions to Y from both the thermal and suprathermal

particles can now be written as:
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= Y~(m) , iii) + (P) '~)(4
L ~DC L AD'(4)

where the individual terms are given by Eqs. (35), (36), (38), and (42). The

expression for YAD in Eq. (38) applies when vAD < V 2 . In the case where

vAD > v2 f YAD is negative definite and no growth is possible.

The numerical values of Y can now be calculated as a function of the wave

parameters w and k1l for a given set of experimental conditions: y2 , v2, j,

Te, etc.

V. GROWTH RATES FOR VERSATOR II

As an example, we will now apply the results of the preceding section to

calculate the growth rates for a set of conditions typical of the Versator II

5
current drive experiment. The parameters for six cases tabulated in Table II

are chosen to simulate an experiment in which the density is varied while

keeping the RF-driven current and toroidal field constant.

In this example, we take Btoroidal = 1.2 Tesla, Te = 200 eV,

J = 390 A/cm 2 , f0 = 2.45 GHz, Zeff = 3, and the density is varied

in the six cases of Table II. The velocity v2 is the highest phase

velocity of the RF power spectrum, and is limited by the accessibility

condition, nii = ck/i/w n . For the slow lower hybrid wave,

nfCC = (1 + We/Wce 2 /pi W2)1/ 2 + Wpe/Wce In Table II, v2 is taken to be

c/n CC; hence v2 changes for each value of the density. In Table II,

velocities are normalized to the thermal velocity, ve = (Te/m)1/2 = 6 x 10

cm/sec.

The remaining parameters of the distribution function, Tp, F (the

plateau height), and v, are calculated using the formulas, (23) and (26),
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and definition, J = f vjjdvj1 F(vjj), where J is the current density normalized

to eneve.

In case (d) of Table II, we have n = 1 x 1013 cm~ , We /W e = y2 - 0.694,

J = 0.41 eneve, and v2 = 23.8 ve. Using the formulae of section III, we find

that T = 82 Tbulk, Fp = 1.44 x 10-3, and V, . 4 ve, as given in Table II.

The growth rates Y(w,kii) calculated from Eq. (44) are plotted in Figures

3(a)-(f), corresponding, respectively, to the cases (a)-(f) of Table II. For

example, in Figure 3(d), n = 1 x 1013, and we show ten equally spaced contours

of Y = constant > 0. These contours extend from the marginal stability limit,

Y - 0, to Y = Ymax = 1.82 x 10 W ce. The fastest growing wave has a

frequency of w = 0.38 wce and k11 = 5.8 x 10-2 wce/ve, as seen in Figure 3(d).

These values are in substantial agreement with the calculation of Ref. 2,

which employs a different model distribution function.

The Y, w, and k of the fastest growing mode for each case are tabulated

in Table II. These growth rates, though small compared to wce, are

sufficiently large to lead to significant wave growth in the experimental

situation. The theory also predicts the frequency width of the unstable wave

spectrum. For example, in Figure 3(d), the Y 0 contour spans from 0.22 wce

to 0.61 wce. The bandwidth of unstable frequencies could be measured in the

experiments as a test of this theory. Examining Figures 3(a)-(f) also shows

that, as the density is increased, the frequency range of the unstable wave

spectrum shifts upward toward woce'

The necessary conditions for instability derived in section II are also

plotted in Figures 3(a)-(f). In all cases, the positive Y contours indeed lie

within these boundaries. This is a convincing verification that the

conditions of Table I obtained on the basis of physical arguments are indeed

necessary conditions for instability.
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All growth rates shown so far in Figures 3(a)-(f) and Table II were

obtained from the analytical expressions derived in section IV. In some

particular cases, we have verified these results by two-dimensional numerical

integration of the Fokker-Planck equation (16). The example shown in

Table III compares analytical results with Y calculated using the distribution

functions from the two-dimensional numerical calculations. The agreement

between the analytical theory and the two-dimensional numerical calculations

is satisfactory, confirming that the analytical f can be used with confidence.

The satisfactory agreement between the two-dimensional numerical and

analytical results is also of some practical computational interest since, in

the two-dimensional numerical calculations, the production of plots of the

type shown in Figures 3(a)-(f) requires a large amount of computer time. In

order to obtain the maximum growth rate in the two-dimensional calculations,

and to avoid having to sweep the allowable (w,k1 )-space, we can take for

(w,k1j) the point at which the analytic theory predicts a maximum growth rate.

This was done in Table III.

The resonance conditions can be used to further understand certain

features of the growth rates and of the unstable regions in (w,ki)-space.

The part of the stability boundary (Y = 0) along the line vAD = v2 is due to

the transition of the anomalous Doppler resonance from the highly anisotropic

RF plateau to the nearly isotropic region of velocity space above the plateau,

v > v2 . The growth rate peaks at this boundary and precipitously drops to

negative values as vAD exceeds v2 and YAD becomes negative, as discussed in

section IV. The part of the stability boundary which lies near the line

VL = V1 is due to strong Landau damping in the region of vii close to the bulk

of the distribution function. In the higher density regime, shown in Figures

3(c)-(f), the high frequency part of the stability boundary is principally due
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to the rapidly increasing contribution of the Doppler cyclotron resonance

damping as vDC = (- Wce/kjI) moves toward the bulk with increasing w.

Finally, a point of interest to current drive is that the stability

boundary, Y = 0, does not cross the line w = k 11v. In other words, the

unstable spectrum of magnetized plasma waves does not extend below the lower

velocity limit of the plateau. This is made clear in Figure 4, where the

maximum growth rate at each wave phase velocity is plotted. The growth rate

as a function of phase velocity is obtained from the data in Figures 3(a)-(f)

by sweeping the line w = vphkll through the unstable region and selecting the

maximum Y for each given value of vph. In this example, the unstable wave

spectrum lies between 4.3 < w/kii < 7.9, while the plateau extends from

V= = 3.95 to v2 = 20.7. The corresponding F(vii) and Tj(vj1 ) are shown in

Figure 5. This means that quasi-linear diffusion produced at the Landau

resonance of these waves will not substantially add to the plateau height, as

it might if the unstable wave spectrum extended below v,. On the other hand,

the unstable spectrum may lead to strong quasilinear pitch angle scattering of

the particles near v :v2and this will change the plateau in that region.

In the presence of strong RF diffusion, these particles, even though

back-scattered in v1 by the unstable fields, can be maintained in the

vjj < v2 region of the RF spectrum, and thus continue to contribute to the

current. The new steady-state fe (viri), in the presence of both the applied

RF spectrum and the unstable fields, remains to be determined.

VI. CONCLUSIONS

The above stability and growth rate calculations can easily be applied to

assess the stability of the anomalous Doppler mode for any particular set of
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experimental conditions, as was done in section V for the Versator II

experiment. In the Versator II experiments the relatively large value of

y 2 /W 2 = 1 admits a comparatively broad frequency spectrum of unstable

waves, the upper bound of the frequency spectrum given approximately by

Wmax/w ce = y/ TJ + y2. In other lower-hybrid current drive experiments,

y2 is small; for example, in the PLT6 and Alcator C' experiments, y2 is

typically less than 0.15. The lower values of y2 tend to be stabilizing

for this mode, Eq. (12); therefore, in experiments with low values of y

the AD mode is expected to be unstable only in a narrow frequency range,

(v2 /vi < 1)ce < max, or entirely stable.

The stability of the anomalous Doppler mode for parameters typical of

an RF-driven tokamak fusion reactor can also be assessed using the above

criteria. The value of 8 = 2nT/(B 2 /2pj) turns out to be an important

parameter in the stability analysis. In reactor grade plasmas the needed

value of a constrains y2 to be of order 1 or larger. In particular,

B = 7% y2T,, where T4 = (Te + Ti)/2 is the average temperature in units of

10 eV. For a plasma with central a of 14% and average temperature of 10 keV,

it follows that y2 = 2. Since relativistic electron energies are projected

for efficient current drive in the reactor regime, it will be necessary to use

a relativistically correct model electron distribution function to calculate

the growth rate of this mode in the RF-driven reactor. The model discussed

above for f(v1 ,v11) must be extended to relativistic velocities before the

reactor problem can be solved. We can, however, apply the relativistic

necessary condition for instability, Eq. (15). We consider a sufficient

condition for stability obtained by reversing the inequality (15). Taking

y = 2, the stability condition then depends on the values of V, and v2 For

example, if we take v, = 3, we have v2 < 0.8 c, or n112 > 1.25 for stability,
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decreasing n1l below 1.25, which is desirable for improved current drive

efficiency would be a destabilizing influence for the ADI. It is possible,

however, that in a hot reactor-grade plasma this mode may be stabilized by

increased Landau damping on the thermal bulk. To fully assess the stability

of the ADI in the reactor regime, further calculations will be needed,

including a relativistically correct distribution function model.

As far as the efficiency of RF current drive is concerned, the ADI will

have two main effects. First, the excitation of unstable waves will cause

power to be lost from the RF-driven tail at a rate larger than the collisional

rate. This power loss will tend to reduce the efficiency of RF current drive.

Second, a quasi-linear, perpendicular broadening of the plateau at the

anomalous Doppler resonance is expected; hence, the effective perpendicular

temperature of the plateau will increase. The increase in Ti will tend to

increase the efficiency of RF current drive. To assess which of these

competing effects will be dominant, it will be necessary to solve the full

Fokker-Planck/quasi-linear equations, including quasi-linear diffusion caused

by the unstable waves. However, as a matter of practical importance, the

undesirable effects of the ADI can be eliminated by application of electron

cyclotron heating. As seen from Eq. (29), the destabilizing term, F/(kT),

can be reduced by increasing T , which could be accomplished by ECRH.



APPENDIX

Here we evaluate the quantity BRe(D)/DwIRe(D)-O which appears in the

growth rate of the electrostatic wave, Eq. (4). We have, from Eq. (1):

k4 2 W2 k2
Re(D) = 1 - --

k2 2 2 2 k2

and:

2we(D) 2w k W 2 W e k

aw k 2( W2 Wk2

Considering the root of Eqn. (45), w2 - (k2/k2) y 2 /(1 + y 2), where

y = ( e/W e, and neglecting ( 2 /WUH where WUH = e + Woe is the upper hybrid

resonance frequency, then from Eqs. (45) and (46) we find

) 2 k2 -
3Re(D) 

1 pe3W iRe(D)=0 2

2w 2 2 k 2

2 _ 3k2
(1 Wee

2 + 2 _ W 2A / 2 ] .3Re(D) 2e(D+ y2 [ce

3W iRe(D)=0 W W2 /We~L13 I 2

(45)

(46)

so that

(147)

(148)
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TABLE I

Necessary Conditions for Instability

Landau resonance on plateau

A.D. resonance on plateau

D.C. resonance out of bulk

Dispersion relation

* v k1

* v2 kii - 1

* < 1 - v kjj

w < y
(1 + y2)1/2
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FIGURE CAPTIONS

Figure 1.

Figure 2.

Figure 3.

Figure 4.

Figure 5.

Two-dimensional distribution function for RF current drive, and

velocity space resonances for Landau damping, anomalous Doppler

resonance, and Doppler cyclotron resonance.

Necessary conditions for instability in (w,k 1 )-space: vL = w/k ,

the Landau velocity; vAD = (Wce + w)/k, the anomalous Doppler

resonance velocity; and vDC = (W ce)/, the Doppler cyclotron

resonance velocity. Wmax is the maximum frequency allowed by the

wave dispersion relation. The condition that v 2 equals the relativ-

istic anomalous Doppler resonance is indicated by the dashed line.

(a)-(f) Plots of the growth rate, y, and the necessary conditions

for instability, with y2 as a parameter for the conditions in Table

II.

Plot of y max(w/k ) and F(v ) for the case where y
2 = 1.04, vi =

3.95, and v 2 = 20.7.

Numerical F(v ) and T (v ) obtained from numerical solution of the

two-dimensional Fokker-Planck equation. D = D /(v v2 ), Z=Z the
QL ee s

ion charge state, and J is the current density in units of en e ve
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