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ABSTRACT

Detailed properties of the Weibel instability in a relativistic unmag-

netized plasma are investigated for a particular choice of anisotropic dis-

tribution function F(p ,PZ) that permits an exact analytical solution to the

dispersion relation for arbitrary energy anisotropy. The particular equi-

librium distribution function considered in the present analysis assumes that

all particles move on a surface with perpendicular momentum p- = pj = const.

and are uniformly distributed in parallel momentum from pz .~z = const. to

pz ~ +z = const. (Here, the propagation direction is the z-direction.) The

resulting dispersion relation is solved analytically, and detailed stability

properties are determined for a wide range of energy anisotropy.
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The classical Weibel instability 1,2 in a uniform plasma is a transverse

electromagnetic instability driven by an anisotropy in the average kinetic energy

of the constituent electrons and/or ions. This instability has a wide range

of applicability to astrophysical plasmas, 3,4 and to laboratory plasmas 4

with intense microwave heating. For nonrelativistic anisotropic plasma,

detailed properties of the Weibel instability are readily calculated 1,2 for

a wide range of equilibrium distribution functions F.(p ,pz). For relativistic

anisotropic plasma, however, because of the coupling of the perpendicular and

parallel particle motions through the relativistic mass factor y= (1 + p2/m c2 +
_LiJ

p /m c2 )1, stability properties are usually calculated in the limit of extremez j
energy anisotropy, or long perturbation wavelength, 4 which allow

approximate analytical solutions to the electromagnetic dispersion relation.

Here, "perpendicular" and "parallel" refer to directions relative to the pro-

pagation direction (the z-direction).

The purpose of the present brief communication is to investigate detailed

properties of the Weibel instability in a relativistic unmagnetized plasma for

a particular choice of anisotropic distribution function that permits an

exact analytical solution to the dispersion relation for arbitrary energy

anisotropy. This calculation is intended to provide qualitative insights

regarding stability behavior for more general choices of equilibrium distribu-

tion function. The particular distribution function [Eq.(3)] considered in

the present analysis assumes that all particles move on a surface with perpen-

dicular momentum p1 = p = const. and are uniformly distributed in parallel

momentum between pz = ~-z = const. and pz = = const. The resulting disper-

sion relation [Eq.(8)] can be solved analytically, and detailed stability
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properties are determined for a wide range of energy anisotropy. The dis-

persion relation [Eq.(15)] is also derived for the case where the particles

have a thermal equilibrium distribution in parallel momentum pz [Eq.(13)],

and the corresponding range of unstable wavenumbers is determined in closed

form [Eq.(18)]. Extension of the present analysis to include a uniform

applied magnetic field B will be the subject of a future investigation.

A. Theoretical Model

We investigate the electromagnetic stability properties of relativistic

anisotropic plasma for wave perturbations propagating in the z-direction with

wavevector k = k z . Perturbations are about the class of uniform, field-free

equilibria with distribution function

f9(p) = n Fj(p ,spz) (1)

where 6. = const. is the ambient density of the j'th plasma component, p =

(p + p ) is the particle momentum perpendicular to the propagation direction,

and pz is the parallel momentum. In the absence of applied magnetic field,

the linear dispersion relation for transverse electromagnetic wave perturba-

tions propagating in the z-direction is given by

C 2k 2 W2 -d 3p (p /2)
0 = DT(kzw) = 1 - - I: (pY f) y (w - k ZP/Ym)

(2)

kz z + kzp a 2
x -- - - +F (p ,pz Z

2=Here, = 4irn e./m is the nonrelativistic plasma frequency-squared; e and

m. are the charge and rest mass, respectively, of a j'th component particle;

c is the speed of light in vacuo; y = (1 + pl/m c2 + p2/m c2)1 is the rela-

tivistic mass factor; the range of integration is fd 3p 21T f dp p1 fdpz
0 -0
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and the normalization of F is fd3pF.(p , p) 1. In obtaining Eq.(2), the

perturbations are assumed to have z- and t-dependence proportional to

exp[i(kz z - WOt)], where kz is the wavenumber and w is the complex oscillation

frequency with Imw > 0, which corresponds to instability (temporal growth).

For relativistic anisotropic plasma, we note that the perpendicular and

parallel particle motions in Eq.(2) are inexorably coupled through the

relativistic mass factor y = (1 + p 2/m c2 + p /m c2f

In the analysis that follows, we specialize to the case of stationary

ions (m + o) and consider a single active component of relativistic

anisotropic electrons. Moreover, for simplicity of notation, the electron

species labels are omitted from we , m , F ( pz), etc. The resulting dis-

persion relations [Eqs.(8) and (15)] are readily generalized to the multi-

component case.

B. Waterbag Distribution in Parallel Momentum

The dispersion relation (2) can be used to investigate detailed electro-

magnetic stability properties for a wide range of anisotropic distribution

functions F(p ,pz). For purposes of elucidating the essential features of the

Weibel instability in relativistic anisotropic plasma, we make a particular

choice of F(p ,pz) for which the momentum integrals in Eq.(2) can be carried

out in closed analytical form. In particular, it is assumed that the electrons

move on a surface with perpendicular momentum p, = = const. and are uni-

formly distributed in parallel momentum between pz = = const. and pz ~

+pz = const. That is, F(pL,pz) is specified by

21 1 ( 2 2
F(pji,pz) = 2r 6 (pj - J ) H( -z p ) ,(3)

where H(x) is the Heaviside step function defined by H(x) = +1 for x > 0,

and H(x) = 0 for x < 0. Note from Eq.(3) that fd3 pF(p ,pz) = 1. Because
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the electrons are uniformly distributed in parallel momentum for Ipz < Z, we

refer to the pz-dependence of the distribution function in Eq.(3) as a "water-

bag" distribution in pz For future reference, it is useful to introduce

the maximum energy mc2, parallel speed caz, and perpendicular speed ca

defined by

imc ymC

.2 i 2

mc= 1 + (4)

We further introduce the effective perpendicular and parallel temperatures

defined by
2

T1 = d3P 2ym F(p ,p )
f 2ym Z

(5)
23 2 2

-T = (d3p F(pZp p)'
2 T2ym

Substituting Eq.(3) into Eq.(5) and carrying out the required integrations

over p1 and pz give

=
T,= - ymc2 aG(iz '

(6)
1.[1 + 2-2

T = Ymc - G(az) +O G(Oz]

where G(az) is defined by

1 1 +
G( Z) = in Z (7)

2a z I z

From Eq.(7), we note that G(az) is a slowly increasing function of az with

G() =1 + /3' for 2 < 1. Moreover, in the limit of a nonrelativistic
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2 2A
plasma with z << 1 and 2 << 1, Eq.(7) reduces to the expected results,

T + (1/2)mc 2  and T H + (1/3)mc 2. Depending on the relative values of 8

and az, it is clear that the choice of distribution function in Eq.(3) can

cover a wide range of energy anisotropy.

For the choice of distribution function F(p ,pz) in Eq.(3), the p-

and pr- integrations required in Eq.(2) can be carried out in closed ana-

lytical form. Some straightforward algebra that makes use of Eqs.(2), (3),

(4) and (7) gives the dispersion relation

c2k2  2

0 = DT(kzw)r - G(z

W L (8)

1 02 c k2 _ 2
+ - .2 z

2 (1 - W) I - c k a

Equation (8) is readily extended to the case of a multicomponent plasma by
21 + EAw A1 A A Amaking the replacements (w /) + ) - - - ,z j ' + aj, etc.

For a single active (electron) component, Eq.(8) can be expressed in the

equivalent form

2 -2 2 ^2

0 4 2 2 c2k (1+ ̂2) + 2  
- - 2 B - G(zIZ 2z j ^2(1 - z

(9)
2 ^

+ 2 2k - G( z)'
1~ _20Z(1 -z j

which is a quadratic equation for w2. In Eq.(9), w2 = 4,, Ae 2/m is the non-

relativistic electron plasma frequency-squared, and G( z) is defined in

Eq.(7).

The dispersion relation (9) can be solved exactly for the complex

oscillation frequency w. In this regard, a careful examination of Eq.(9)

shows that there are two classes of solutions for w2, namely, a fast-wave
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branch corresponding to stable oscillations with Imw = 0 and (Rew)2 > c2k 2,z

and a slow-wave branch which may or may not exhibit instability, depending

on the degree of energy anisotropy. It is readily shown that the necessary

and sufficient condition for the slow-wave branch to exhibit instability

(Imw > 0) is given by
2

> (1 - R)G(z (10)
zz

Moreover, when Eq.(10) is satisfied, the corresponding range of k2 corre-

sponding to instability is given by

2 .2
0 < k 2< k -J G(Az (1

ic 2AZII S

When Eq.(10) is satisfied, and k is in the range specified by Eq.(11), thez

real oscillation frequency of the slow-wave branch satisfies Rew = 0 and the

growth rate of the unstable mode is given by

1 +2 -2 - 2

Im ( c2k - c2(k$ - k ) + 4c4k a (k0 - kZ)
/2 Y 20

- c2k & + '- - c2(k - k)
2 z

Note from Eq.(12) that Imw = 0 for kz = 0 and k = k2, and that Imw passesz z 0'

through a maximum for some value of k intermediate between 0 and k2.

In the nonrelativistic limit with ^., I 2 < 1, the necessary and sufficient

condition for instability in Eq.(10) becomes $I/2% > 1, and the range of in-

stability is given by 0 < k < k ± ( /C 1/2a - 1). In the relativistic

regime, however, the instability criterion in Eq.(10) is more complicated,

which is illustrated in Fig. 1. In Fig. 1, the region of ($ ,2R) parameter

space corresonding to instability is above the contour connecting the origin

to ( ,2 ) = (0.580,0.840), which corresponds to y = >. While the detailed
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form of the instability criterion in Eq.(10) differs from the nonrelativistic

case, it is evident from Fig. 1 that the condition for instability in the re-

lativistic regime is qualitatively the same, i.e., the Weibel instability

exists for sufficiently large values of s2/2a2. Put another way, for the choice

of distribution function in Eq.(3), the Weibel instability in a relativistic

anisotropic plasma can be completely stabilized by increasing the thermal

anisotropy 22/R2 to sufficiently large values.

As a numerical example, shown in Fig. 2 are plots of normalized real fre-

quency Rew/[w p/i] [Fig. 2(a)] and growth rate Imw/[w p/i] [Fig. 2(b)] versus

normalized wavenumber ckz /[W il] for 9 = 9 and several values of energy

anisotropy /2 . The real oscillation frequencies for both the fast-wave

and slow-wave branches are presented in Fig. 2(a). Moreover, for 9 = 9, the

slow-wave branch becomes completely stable (Imw = 0 and k2 = 0) for = /2az

0.697. It is evident from Fig. 2(b) that the strongest instability occurs

for the largest energy anisotropy, i.e., A2 = 0 and 2 = 80/81 (for 9 = 9).z _

Moreover, depending on the value of /2, the maximum growth rate in Fig. 2(b)

can be a substantial fraction of w /9 .

C. Thermal Equilibrium Distribution in Parallel Momentum

As a second example, we consider the case where the electron distribution

function is specified by

2 ) -1 exp(-ymc 2/T1 IF(p 6(,pzpL - kd 2
27rp 2y mcK1 (9L mc /T1 )

Here, the ions are treated as a fixed background (mi + co), a

ponent of relativistic, anisotropic electrons is assumed. I

is the modified Bessel function of the second kind of order n

p2/m2c2)' is the relativistic mass factor; the constant 9 iz

(+ 2 / 22) 1; and T1 is a positive constant. Note that t

(13)

nd a single com-

n Eq.(13), Kn(x)

; y (1+p /m2c2 +

s defined by 9 =

he exponential
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factor in Eq.(13) corresponds to a thermal equilibrium distribution in parallel

momentum pz. Some straightforward algebra that makes use of Eqs.(5) and (13)

shows that T1  can be identified with the parallel temperature fd3 p(p2/Ym)
2

x F(p ,PZ), and that the effective perpendicular temperature T =

fd3p(pl/2ym)F(p ,pz) is given by

1 2 (k)2 K0(j mc
2/T11)

T = - y mc2 (14)
2 m m Ki(iLmc /T )

Substituting Eq.(13) into Eq.(2) and carrying out the integrations over

P and pz give the dispersion relation

= D(kzw) =1 c2k (/ ) Ko(5lmc2/T )
0 T kz 2 2W w K1(~mc /T )

1 I 2(15)

T (2 c2k )
+ -p - f dTTKO(C)
Ymc K0( mc 2/T )

Y 0

In Eq.(15), the complex argument of K0() is defined by

C ( T -I I\1 + c k 2 , (16)

where Imw > 0 corresponds to instability, and T is defined in Eq.(14). The

T-integral in Eq.(15) must generally be evaluated numerically,5,6 or in the con-

text of asymptotic expansions for large or small values of Ic|. Unlike

Eq.(8) [or Eq.(9)], the dispersion relation (15) generally incorporates the

effects of collisionless dissipation (Landau damping) by the pz-distribution

in Eq.(13). For the slow-wave branch, it can be shown from Eq.(15) that the

necessary and sufficient condition for instability is given by

T KO(^ mc2 /T 
2

- 2 (17)
T [K1(9)c 2/T )

where T is defined in Eq.(14). Moreover, when Eq.(17) is satisfied, it is
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found that Rew = 0 (for the slow-wave branch) over the range of unstable wave-

numbers specified by

2 2 2 T Kj(y mc2/T11 ) KO(y mc 2IT1 )0 < k z< k 0 2 2 .2(18)
Y c 1  K0( mc /T 11) K1j(mc /T )I

2
Note from Eq.(18) that the marginal stability point ko (where Imw = 0 = Rew)

can be calculated in closed analytical form. This follows from the identity

- 2

Im +0+ c2k 2dTTKO) Yc 2 K mc2/T) (19)
0 Rew = 0 11

Finally, shown in Fig. 3 is a plot of the stability boundary in the parameter

space (T /y mc2, T, 1/ Vmc 2) calculated numerically from Eq.(17). The region

above the curve in Fig. 3 corresponds to instability, which requires suffi-

ciently large thermal anisotropy TI/TH.
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FIGURE CAPTIONS

Fig. 1. Region of (A2,2R2) parameter space corresponding to instability-L Z

[Eq.(10)].

Fig. 2 Plots of (a) normalized real frequency Rew/[w IP/] and (b)

normalized growth rate Imw/[w p/0] versus ck z/[ p/], for

= 9 and several values of A2/22 [Eq.(9)].

Fig. 3. Regions of (T1/j mc2,T 1/Ymc2) parameter space corresponding

to instability [Eq.(17)].



13

2

0
0.

Fig. 1

A2 2.0
213z

UNPHYSICAL

0.580/

UNSTABLE

S TA BLE

0.840

0



14

9.0

Rew
^P A /2

py

0.0L_
0.0 c kz

p/ 1/2

Fig. 2(a)

y9.0

FAST WAVE

^ 2 ^ 2
18 /23z =2.0

9.0
-



15

0.9

Imw
AI/2

Wp/y

0.0
0.0 c kz 9.0

1/2

Fig. 2(b)

y=9.0
^2 ^2

20.0
10.0

.0

2.0-



16

I.0

UNSTABLE

TI-

^mc 2

ST ABLE

0.0
0.0 1.0

TImI
A M2

Xm

Fig. 3


