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ABSTRACT

This paper gives an extensive analytical and numerical characterization of the growth
rate curves (imaginary frequency versus wavenumber) derived from the free electron laser
dispersion relation for a warm relativistic electron beam propagating through a constant-
amplitude helical magnetic wiggler field. The electron beam is treated as infinite in
transverse extent. A detailed mathematical analysis is given of the exact dispersion rela-
tion and its Compton approximation for the case of a waterbag equilibrium distribution
function (uniform distribution in axial momentum pz). Applicability of the waterbag
results to the case of a Gaussian equilibrium distribution in p. is tested numerically. One
result of the waterbag analysis is a set of validity conditions for the Compton approx-
imation. Numerical and analytical results indicate that these conditions are applicable
to the Gaussian case far outside the parameter range where the individual waterbag and
corresponding Gaussian growth rate curves agree.
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1. INTRODUCTION AND SUMMARY

Davidson and Uhm (1980, hereafter referred to as I) developed a fully self-consistent,

linearized treatment of the free electron laser instability based on the Vlasov-Maxwell

equations. Their analysis treats an intense relativistic electron beam, with uniform cross-

section, propagating through an idealized helical wiggler magnetic field. The beam is as-

sumed cold in the transverse directions, so that the distribution function (2) is a product of

delta funtions of the transverse components of canonical momentum and the longitudinal

distribution G(z,pz,t). Equilibrium self fields are neglected. No further approximations

(other than linearization) are made in deriving the dispersion relation (19), which is re-

ferred to as the full dispersion relation (FDR). In particular, no higher-order couplings are

neglected in the matrix dispersion relation (9). Because of its completeness, the FDR is

useful both for identifying important physical mechanisms and for determining the ranges

of validity of commonly used approximate disperion relations.

The full Compton dispersion relation (20), referred to as the CDR, is derived in the

same manner as the FDR, but with the neglect of longitudinal perturbations. [See Dimos

and Davidson (1985) for a quasilinear analysis of the warm-beam CDR.] The comparison

of FDR and CDR stability behavior [such as growth rate curves, i.e., curves of Im(c.) vs.

f] gives a direct indication of the consequences of neglecting the longitudinal electric field.

In a recent calculation, Davies, Davidson and Johnston (1985, hereafter referred to

as II) analyzed properties of the cold-beam FDR and CDR. The purpose of the present

analysis is to determine the influence of thermal effects on the stability results in II.

Two equilibrium distribution functions Go (pz) are employed. The first is the waterbag

distribution (35) (which corresponds to a uniform distribution in axial momentum p,) from

which the waterbag FDR (50) and the waterbag CDR (51)are obtained. These dispersion

relations can be treated analytically by a simple extension of techniques used in II for the

analysis of the cold-beam FDR and CDR. The second equilibrium distribution function

employed is a narrow Gaussian distribution in pz (45). The resulting Gaussian FDR and

CDR are obtained by substituting (46), (47), and (28) - (31) into the FDR (19) and

the CDR (20). Analytical results obtained using the waterbag dispersion relations are
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compared with numerical resu't s obtained using the Gaussian dispersion relations.

The analysis of I is briefly reviewed in §2 in order to introduce equations and definitions

used later in this paper. The waterbag and Gaussian dispersion relations are derived in

§3. By requiring that the mean value ((pz - po) 2 ) be the same for the waterbag and the

Gaussian distributions, we relate the widths of the waterbag and Gaussian distributions

in (49).

A graphical method of analyzing the nature of the roots of the waterbag FDR (similar

to that used in II for the cold-beam FDR) is intoduced in §4. This construct serves as a

basis for much of the analysis in later sections. Use of this method gives rigorous upper

(kub) and lower (kib) bounds (62) in the FEL growth interval [Im(J) > 0 corresponding

to positive wavenumber k.

In II, a sufficient condition that the cold-beam FDR be stable for all k was derived.

The condition holds for beams with sufficiently high density and sufficiently low energy

-Yo. In §5, we derive the corresponding stability condition (70) for the waterbag FDR.

It is shown that increasing the longitudinal temperature reduces the density required for

stability. However, this reduction is small for typical FEL beam temperatures.

The graphical method of analyzing the nature of the roots of the waterbag CDR is

introduced in §6. In II it was noted that the CDR upshifted growth rate curve [Im(C.)

vs. k] does not terminate as k ) oo. Thus, the cold-beam CDR can never be used

to approximate the shape of the FDR growth rate curve. We show that the waterbag

CDR growth rate curve (at nonzero temperature) terminates beyond some finite value of

k and determine the upper (Vub) and lower (k,') bounds (75) on the growth interval of

wavenumber k-. A sufficient condition that the waterbag CDR be stable for all k is derived.

However, it can be satisfied only for very low-yb beams, regardless of the longitudinal

temperature. It is shown that the waterbag CDR has at most one branch exhibiting

growth for each k. This section also contains a discussion of the shape of the waterbag

CDR downshifted growth rate curve.

In II, it was shown that some cold-beam FDR growth rate curves exhibit a tail ex-

tending from the upshifted growth maximum towards larger values of k. The tail occurs in

cold-beam systems for which the Compton approximation is valid at the upshifted growth
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maximum. It is produced by the coupling of the positive- and negative-energy longitudinal

modes by the wiggler and radiation fields. In §7, we show that the waterbag FDR tails

shorten and eventually disappear with increasing temperature. The waterbag CDR may

also exhibit a tail region. Here, the tail is produced by the coupling of the Doppler-shifted

beam oscillations by the wiggler and radiation fields. A condition (91) for the existence

of a CDR tail is derived. As the temperature is reduced, all CDR systems develop tails

which approach infinite length as the temperature approaches zero. This fact acounts for

the infinite length of the cold-beam CDR upshifted growth rate curves.

In §8, we discuss the Raman approximation [referred to as the longitudinal-transverse

(LT) approximation in this paper]. For the waterbag FDR, the coupling in this ap-

proximation (95) is between the negative-energy, electrostatic mode and the forward-

propagating, left-hand-polarized radiation mode. At sufficiently high temperatures, the

LT-approximation (98) applies to the waterbag CDR. The coupling is between the lower-

frequency, Doppler-shifted beam oscillation and the forward-propagating, left-hand-circularly

polarized radiation mode. Validity criteria (96) and (102) are given for the LT approxi-

mation to the waterbag FDR and CDR, respectively.

Using the results of previous sections based on the waterbag distribution in axial

momentum pz, we analyze the validity of the Compton approximation in §9. The Compton

approximation is considered valid only if the waterbag CDR upshifted growth rate curve

[Im ) vs k] adequately approximates both the maximum value and shape of the waterbag

FDR upshifted growth rate curve. Conditions for validity of the Compton approximation

are developed. They are based on the three conditions (104), (106) and (109). The

Compton approximation is valid if (104) and either one of (106) or (109) are satisfied.

Alternatively, it is valid if both (106) and (109) are satisfied.

The principal results of this paper concerning the waterbag dispersion relations are

compared in §10 with numerical computations based on the Gaussian dispersion relations.

Results of these comparisons indicate that the validity condition for the Compton approx-

imation developed in §9 are also applicable to the Gaussian dispersion relations even in

parameter regions where significant discrepancies exist between the individual waterbag

and corresponding Gaussian growth rate curves. It is shown analytically that the valid-
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ity conditions developed in §9 extend into the resonant, warm-Compton region for the

case of a Gaussian equilibrium distribution function in axial momentum pz. In particular,

it is shown that the Compton approximation validity conditions of §9.3. when satisfied

sufficiently strongly, imply the condition (119) for validity of the Compton approxima-

tion in the resonance region. It is also shown that the validity condition for the resonant

warm-Compton regime is included in the conditions developed in §9.
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2. THEORETICAL MODEL

In this section we give a brief summary of the Davidson and Uhm stability analysis (I),

with emphasis on those equations and results which are used in this work. The relativistic

electron beam propagates axially through the ideal helical wiggler field

B (z) = -Bo cos koz -B 0 sinkozi , (1)

with corresponding vector potential

A4() - ko cos kozi + Bsinko~z .

Here, Bo = const. is the wiggler amplitude, and \ = 27r/ko = const. is the wiggler

wavelength. It is assumed that spatial variations are only in the beam direction (a/ax =

a/ay = 0). The beam is cold in the transverse directions with distribution function given

by

f(ZPt)=nob p - -- 6 (p - cA Y)G(,pz, ). (2)

Here, A.(z, t) and A.(z, t) are the x- and y- components of the total vector potential.

The distribution function G(z, p., t) is normalized such that

no dp2 G(Z, pZ, t) = n(:, t),

where no = const. is the average number density, and n(z, t) is the (varying) number

density.

The distribution function G(z, p2 , t) satisfies the one-dimensional Vlasov equation

+ - aH(z,pzt) a G(z, p., t) = 0, (3)
wt :z , is d p

where the effective potential H (z, p, t) is defined by

H (Z, p , 0) = -YTme2 _ eb#(z, t).



The quantity 64 is the electrostatic potential, and the total particle energy yTmc 2 is

defined by

yTmc2 = [M2c4 + p c2 + e 2 (A2 + A )]1/. (4)

Maxwell's equations (with the choice of Coulomb gauge) can be expresssed as

0 2 2 4,rnoe2  dp.. fp
I 2 - a26A, = - 2 A, G(z,p,t) - Ao, Go(pz)] , (5)

C2 at2 a:2 )mc2-T

( 1 82 8241-oe
1 '2 91)) Ay = - A7n y d- G( I, pz ,1t) - Aoy -- Go( p -) , (6 )

c2 &2 - 2 mc2

and

29260
S- 47re(n - no). (7)

,9Z2

In the above equations, 6A, = A, - Ao,, 6A = AY -- Aoy, Go(p2 ) is the equilibrium

distribution function, and amc2 is the equilibrium particle energy defined by

-yznc2 =[ 2 c4 +pc 2 + e2B Ik0]1/ 2 . (8)

By linearizing (3) and (5) - (7) for small-amplitude perturbations 6Am, 6Ay, 60 and

6G = G - Go about the equilibrium state, Davidson and Uhm obtain the following matrix

equation relating the field perturbations:

(bt (k + 1, + (k, ,) , _ (, ), C-'c*' (k, A+ (k + 1, )

0 ,b t ( kc - 1, ,0 ) + # (Ik, ,) , - aC; 1 ( ke, c) bA -- ( k - 1,,

= 0, 
(9)

0)

where
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In (9), we have introduced the complex vector potential amplitudes, 6A+ and 6A-, corre-

sponding to right- and left-circular polarization respectively. These are given by

6A' =6A, ± i6AY. (10)

Other quantities appearing in (9) include the dimensionless wavenumber and frequency,

(11)

(12)

k = k/ko,

w = w/cko,

the dimensionless susceptibilities,

(nj n+IMC 2 dpz lk&Go/8p_
("k, ) mc 2 J Y ,/

f -t L - kev;,/c'
(13)

the longitudinal and transverse dielectric functions,

bk(,0) = I2 + x-j(0 )(k,c), (14)

( ) 2 _2 - 2, (15)

and the coefficients

ny f 'P Go(p). (16)

Finally, (9) also contains the normalized relativistic cylotron frequency defined by

L,. = Wc /cko, (17)

where
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We = eBo/30mc,

and the normalized relativistic plasma frequency-squared defined by

'2 = w2/(cko (18)

where

2
p = 47rnoe2 /yom.

The quantity j'omc 2 is the average particle energy, which will be defined explicitly later.

We refer to the dispersion relation obtained by setting the determinant in (9) equal

to zero as the full dispersion relation (FDR). The FDR is given by

,) -1, )bt (f + 1,( k )

2 b ( + 1, ) + & (I (19)

X { (, - b,(k) [32 + (2(c,)] }
If the longitudinal perturbation 6 is neglected in the above derivation, the resulting

two-by-two matrix equation corresponds to the upper left-hand portion of (9). We refer

to the corresponding dispersion relation as the Compton dispersion relation (CDR). The

CDR is given by

- 1,J)b t (k +1,J) =- [b (k - 1,J)+ bt(k + 1,) a3 WP + kU(kw). (20)
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3. DISPERSION RELATION FOR NARROW MOMENTUM SPREAD

Ve assume that Go(p.) has a maximum at p. = po and is symmetric about P- = P0.

Let . denote the characteristic width of Go(pz) in momentum space. We define the

quantity 10, which appears in (13), (16), (17) and (18) by

2 24 2 22 1/2
1omc = c + poc + e B2/k ] . (21)

That is, 10 mc 2 is the equilibrium electron energy (8) evaluated at p, = Po. We now assume

that Go(pz) has a narrow momentum spread with

A = < 1. (22)
yomc

Therefore, y and v., which appear in the integrands of (13) and (16), are expanded to first

order in (pz - po). We obtain

1 == I1 n (Ps PO) (23)
0 y "Yo 'yOmc

and

vs, b - b+ . (24)
c ymc ^g- omc

In the above equations, fib and -Yb are defined by

fib po/omC, (25)

and

lYb (1-b)' 2  (26)

From (17), (21), (25) and (26), a useful relation between yo and ay is given by

1 _1 ~
2 =2 + WC. (27)

)b Yo
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Making use of the expansions (23) and (24), and assuming that Go(p,) is symmetric about,

pz = po, the following expressions are obtained for the quantities (13) and (16) appearing

in the FDR (19) and the CDR (20):

(k, ) = _omc, --b d 9 , (28)

(k, a) = (1 - b4a()X()(k,), (29)

=(1 - 23bA )- 0t)(k,J3), (30)

and

an = 1. (31)

In the above equations ( and ( are defined by

(32)

and

(P- - PO) (33)
A

The fractional energy spread Ay/yo is related to the normalized momentum spread n =

A/yomc by

= b .(34)

Two equilibrium distribution functions will be used to study the influence of thermal

effects on the stability results in II. To obtain a dispersion relation which is easily ana-

lyzed, we choose a "waterbag" equilibrium distribution, which corresponds to a uniform

distribution in axial momentum p.. Results obtained using this distribution function are

then compared numerically with those obtained using a Gaussian distribution function

with narrow momentum spread.
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The waterbag distribution in p. is defined by

Go (p)= , IP-Pol6(35)
0, otherwise.

For present purposes, we identify

6 = 6/romc

with A in the formulas presented earlier in this section. Substituting (35) into (28) gives

- 1 -I
(fe, ~~ 4 _) = 27( -kb )2 .(6

P62 62 k 2  (36)

Moveover, substituting (28) - (31) and (36) into the FDR (19) yields the dispersion relation

(a- kk)2 _ _ 2 W -_ 2 (+1)2 _

(37)

_ 2; [ 2 -k2 -1- 2]{[ - k 2 1+ -)- k

where

____2_ 2 ~2 2~

) 4 [(-3b) 2 _ 4 j (38)

For future reference, we introduce the following frequencies which are solutions to the

individual dielectric factors on the left-hand side of (37). These are the positive- ((;) and

negative- (L'j) energy longitudinal frequencies defined by

( 2 + 2k2 )1/2

k~b ± - + 4 (39)

and the left- (Co-) and right- (;+) hand circularly-polarized radiation frequencies defined

by



13

±1)2 =4- 2 1/2 (40)

For the wiggler field in (1), it is the radiative mode with left-hand polarization which

couples with the longitudinal modes to produce growth.

Equation (37) is an eighth-degree polynomial for the complex oscillation frequency J,

whereas the cold-beam FDR analyzed in II is a sixth-degree polynomial. We reduce (37)

to a sixth-degree polynomial for L by showing that the term e(k,c2) can be neglected. We

estimate the ratio of terms on the right-hand side of (37) defined by

r(kk) ;(41)

Approximating the numerator in (41) by setting L' = Gj., approximating the denominator

by setting L& = L (see I), and neglecting the termin the denominator proportional to i2,

we obtain

r(k, O) ~ _ -- 62. (42)
S 12kc -- 1

In both the neighborhoods of the upshifted growth rate maximum where k ~ 1/(1 - [6)

and the downshifted growth rate maximum where k ~ 1/(1 + Ob), (see I), we find that (42)

reduces to

Typical values of 62 considered in the present analysis are less than 10-2. Thus, in what,

follows, we neglect (k, ;) in (37). We also neglect the term j2/_Y appearing on the

right-hand side of (37). Thus, the waterbag FDR (37) is approximated by

[o -fl)2 _2 2 _ (k_ 1)2 _L2 [ 2( +1)2 2
^Yb 3b

(43)

C (P ( - k2 P 1.,) (&2 ~24~).
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The waterbag FDR differs from the-cold-beam FDR of II only through the addition of the

thermal correction term appearing in the electrostatic dielectric function on the left-hand

side of (43).

The derivation of the waterbag CDR from (20) is straightforward because we are

not required to neglect any term analogous to ((k, i). Again making the approximation

(1 + 62 /-y4) I 1 on the right-hand side, we obtain the waterbag CDR

-00~) 2~ [4 1)~~2 [,2 _ (k + 1)2 _-

(44)

;2 2
C P \k P J \/;2-

In §10, we will check numerically to determine the conditions for the conclusions based

on the waterbag distribution to remain valid when a Gaussian distribution in p- is used.

For comparison purposes, we choose GO(pz) to be a narrow Gaussian of the form

Go(pz) 1 exp [(P p) . (45)

Then (28) reduces to

-2 2 -2 2

X(0) (k, J) = P Y 2 [1 + (Z(()] Y- Z'(0, (46)

where Z(() is the plasma dispersion function defined by (for ImJ > 0)

1 fex(- 2 )
Z( =K - d (47)

and l = - kbe)/lk [see (32)]. The FDR for a narrow Gaussian is obtained by

substituting (46) and (28) - (31) into the FDR (19). The narrow Gaussian CDR is obtained

by substituting (46), (28), (30) and (31) into the CDR (20). Since these dispersion relations

are used only for purposes of comparing numerical results, they are not presented explicitly

here.
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Finally, we relate the momentum spread of the waterbag distribution (6) to that of

the Gaussian (i). This relation is defined by requiring that both distribution functions

give the same mean value ((p. - pO) 2). Using (35) and (45), we obtain

((P - PO))waterbag -2

and

(48)

A2((Pz - PO)2 Gaussjan 2

Comparing the above expressions, we find

2 2 (49)
2

Therefore, expressed in terms of the effective A for a Gaussian, the waterbag FDR (43)

becomes

a-3\)2 2 k2 2 _ 2 2 ( 1)2
Yb ^ybIIcI

(50)

-C72 '22 D2 ;2 2 C
WC P W I P) kw P)

Similarly, the waterbag CDR (44) is given by

)2 232k2 1)2 4 ] [;;2 (+1)2 ;;2
b (k-Pbk+P

(51)

-L22 L22 2 __ 2 2 2

We remark that (50) and (51) can also be derived from fluid equations obtained from

the zeroth- and p.-moments of the one-dimensional Vlasov equation (2), together with an
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assumed equation of state Pn- 3 = const., where P is the longitudinal pressure. With the

neglect of terms of order i2 in the coupling term, the resulting fluid dispersion relation is

the same as the waterbag dispersion relation.
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4. INFLUENCE OF THERMAL EFFECTS

ON PROPERTIES OF THE FULL DISPERSION RELATION

In II, general properties of the cold-beam FDR were analyzed by means of a graphical

construction. A similar construction can be applied to the waterbag FDR in order to study

the influence of thermal effects on the stability results in II. We express the waterbag FDR

(50) in the form

LHS(k,') RHS(k,,') (52)

where

2 _& a2
L HS(I, k) = ( k2' - 2b3b) - - - 4 , (53)

-b 2 -y

and

RHS(kIe') = - Q ,2 - 2 1 (54)CP (,3 2  2 )(C02  2)

In the above equations, C+, w-, w1 and 02 are defined by

0+= [(k + 1)2 + ] (55)

)1/2/ + 0(57)

and

1/2

L 2 =(k2 + 1 + .; 1/ (58)

These frequencies have the following orderings for I > 0:

1
01 <0- <02 <0+,if 0< Ic< ,(59)
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5. SUFFICIENT CONDITION FOR STABILITY

In II, we derived a sufficient condition that a cold electron beam be stable for all

values of k. If (66) has no real solutions (b2 - 4c < 0), then khb and kib do not exist and

the system is stable. The cold-beam stability criterion can be expressed as

2 1(1+ + + [ ]min. (69)
10 16 % 2 ) +42)

That is, for given values of yo and yb, a cold electron beam is stable for all values of k

provided L > ]min

The corresponding stability criterion for A > 0 is obtained from (62) and properties

of the cubic equation. The waterbag FDR (50) exhibits no FEL instability if

B2 A3
+ - > 0, (70)

4 27

where A and B are defined by

A =-(3q - p2)3

and

B - (2P3 - 9pq + 27r) .
27

The quantities p, q and r are defined in (63) - (65).

In terms of the graphical construct of the previous section, stability for all values

of k occurs when the LHS parabola in figure lb fails to become detached from the RHS

(in the interval 0 < L' < c_), as the parabola shifts first to the right and then to the

left with increasing kc. The sufficiency condition (70) is satisfied if the minimum of the

parabola fails to intersect the LHS for all values of k. The only effect of increasing a in the

graphs in figure lb is to shift the LHS parabola downward. The RHS curve is temperature

independent. Thus, increasing the temperature reduces the value of '2 actually required

for stability. Furthermore, it reduces the minimum value of 2 defined in (70) which is

sufficient for stability.



For given values of yo, Yb and A, the corresponding value of [;21min is readily ob-

tained numerically from (70). In agreement with the discussion in the previous paragraph.

the value of [j] mi decreases with increasing . Nevertheless, for typical FEL beam

temperatures, there is little difference between the density limits imposed by (69) and

(70). Figure 5 shows contours of 'JPmiIn in a plot of Yo vs Yb for a cold beam, and for

(very large) beam temperature corresponding to A = 0.10. (A beam with given ^ 2 will be

stable for all values of Yo and Yb below the corresponding contour in figure 5.) We note

that even for high beam temperatures (and moderate densities), the stability condition

(70) applies only to systems with relatively low energies.

The approach to stability predicted by the waterbag FDR (50), with increasing ej,

is illustrated in figure 6 for the choice of system parameters Yo = 1.3 and yb = 1.1. Two

cases corresponding to i = 0 and A = 0.04 are shown. The respective values of [^2]min
are 0.498 and 0.494. A detailed numerical analysis of the dispersion relation (50) shows

that FEL instability ceases at ej = 0.37 for A = 0, and at Lj = 0.365 for A = 0.04.
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6. INFLUENCE OF THERMAL EFFECTS

ON PROPERTIES OF THE COMPTON DISPERSION RELATION

We use a graphical construction analogous to that for the FDR (§4) to analyze the

influence of thermal effects on FEL st.b')ility behavior for the CDR (51). In this regard.,

we express the waterbag CDR in the form

LHS'(k, ) = RHS'(k, c), (71)

where

LHS'(k, Ca) = k( - 2 ) -3 &2 , (72)

(2 - ) 2 - k2)
RH S'(lk, co) = -0;,2 2 2)

The frequencies in the above equations are defined by equation (55), &+ =

equation (56), .=_ - 1)2 + 2 1/2 , and equation (58), w2 = (k2 +

that these frequencies satisfy the orderings

k < Z. < w 2 < C+, for 0 < k < (1 + 02) /2,

and

L2, < k < 02 < +, fork > (1 + j) /2.

Schematic plots of RHS'(k, a) and LHS'(k, 2) vs L2 for the above orderings are illustrated

in figures 7a and 7b, respectively. The intersections of the LHS' parabola with the C2-axis

are the Doppler-shifted beam oscillation frequencies defined by

3,2 1/2
O'k2 4

=y / (74)

and

(73)

2 1/2

(k + N) + ot ,

1+ 2 1/ . Note
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The general scheme given in §4 (of growth intervals appearing as the LHS moves to

the right relative to the RHS and then back to the left) holds for the CDR (71) when

A > 0. In particular, if the situation analogous to that depicted in figure 3 does not occur,

then there will be just one growth rate curve as shown in figure 2a. Otherwise separated

downshifted and upshifted growth rate curves will be present as shown in figure 2b. It is

easily demonstrated for small i that the waterbag CDR has at most one pair of complex

conjugate roots a( k) for each k. Referring to figures 7a and 7b, we note that at least four

of the six roots J.(k) must be real if .Z' < k for all k. From (74), we find that this condition

is satisfied provided < (2/3)1/2(1 +Ob)--1>0.41, an inequality which is readily satisfied

in practical FEL applications.

In II, we discussed the fact that the cold-beam CDR upshifted growth rate curve never

adequately approximates the shape of the cold-beam FDR upshifted growth curve. That

is, if = 0, then the minimum of the LHS' parabola (71) for the CDR always lies on

the ;-axis in figures 7a and 7b. Thus, it cannot link with the RHS' curve in the interval

0 < 0 < a_ to terminate the instability at large k. In fact, it was shown in II that

Im(.) -- *ev as k - oo for the cold-beam CDR.

For A > 0, the CDR behavior is qualitatively different, because the minimum of the

LHS' parabola moves downward in figure 7b with increasing k. In this case, there exists

some value of k above which instability ceases. In particular, if k is sufficiently large, then

the minimum of the LHS' parabola (72) lies in the interval 0 < t < &_ of figure 7b. From

(73), it follows that

lim RHS' (k, e = 0,5) = P12
k-+oo (

whereas from (72) we obtain

lim LHS' kb = ,) = -1 for i > 0.
r-oo

Nevertheless, the width of the Compton upshifted growth rate curve may greatly exceed

the width of the FDR growth rate curve for some system parameters with & > 0, even
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when there is good agreement between the values of the maximum growth rates. We

discuss this property in §9.

Upper and lower bounds on the waterbag CDR growth interval in k-space are deter-

mined by setting = k3b in the CDR (51) and solving for k. (See the corresponding

discussion for the FDR in §4.) One solution is k = 0. This root merely shows that when

k = 0 the LHS' and RHS' are tangent at c = 0 in figure 7a. The remaining solutions,

which correspond to the bounds, are given by

b ~ 21 /12'

k 2b (b2 - 4ac) (75)
I b 2a

wherea, b and c are defined by

3i 2

a = -

3 2 (1+ ) :2
b = 2- 2

'Yb I 7b Ib

3 = 2 [1 + L2] 2 - L 2L (1+ 2)

and

2 ~3 2 2 (1+ - OP) (3&2 + g2-

b 2 -4ac =-16 , - + 4 + 2 (76)
b b b~ Yb J

Solutions with real kIb > 0 do not exist unless c > 0, i.e.,

3i_ 2 Lg22

2 > - C P(77)
2 (1L+2)

A sufficient condition that the waterbag CDR (51) gives stable solutions for all values

of k is b2 - 4ac < 0. Using (76), we express this sufficiency criterion as two conditions

(78)1+ 2 > 1,
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and

3 2  -e2 '

For moderate beam density with <1, the sufficiency condition is satisfied only for systems

of small 1b, regardless of the value of A.

In II, we showed in the case of a cold beam that the shape of the CDR downshifted

growth rate curve differs qualitatively from that of the FDR even when there is good

agreement between the maximum growth rates. It is evident from figure 7a and (72) that,

for = 0, the CDR downshifted growth region begins at k 0. In contrast, the left

edge of the FDR downshifted growth curve lies above k = 1/2. (This type of behavior is

illustrated schematically in figure 2b.) We now investigate the influence of thermal effects

on this small-k behavior using the waterbag CDR. We first consider figure 7a. When k = 0,

the LHS' parabola and the RHS' curve are tangent at the origin. For sufficiently small &,

the LHS' will not move downward and to the right rapidly enough (with increasing k) to

link immediately with the RHS' curve near the origin. Then the CDR downshifted growth

rate curve begins at k - 0 as in the cold-beam case. Solving the waterbag CDR (51) for

L 0 as a function of 2 ~ 0, we obtain the first-order result

+(i±2) - 2;,]

K±-~l 1/2

k 2 + L 2(9

Therefore, a sufficient condition that the waterbag CDR downshifted growth region begins

at ke = 0 is given by

+~~ ~ ~ ~ -)1 ,2] P

< -p + + + -- . (80)



27

However, the above is not a ,Iecessary condition because second-order imaginary terms

may have been neglected in the derivation of (79).

A sufficient condition for stability in the immediate neighborhood of k = 0 is the

existence of k,, > 0 'see (75)]. Therefore, (77) is a sufficient condition that the downshifted

growth does not begin at k = 0. In figure 8, we illustrate this behavior of the waterbag

CDR downshifted growth rate curve for a system with parameters -Yo = 10, L;), = 0.05 and

L = 0.01. In this example, the sufficient condition (77) for stability in the immediatep

neighborhood of k= 0 is satisfied by 3k> 0.037.
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7. COUPLED LONGITUDINAL OSCILLATIONS

In II, we discussed the existence of tails in k-space, which occur in some cold-beam

FDR growth rate curves, extending from the upshifted growth maximum to larger values

of k. It was shown that the instability in the tail region is due to a coupling of the negative-

and positive-energy, longitudinal modes by the radiation and wiggler fields. A combination

of numerical and analytical results showed that the cold-beam systems possessing an FDR

tail region are those systems whose FDR and CDR upshifted growth rate curves agree

closely in the region of maximum growth. [See §9 of II.] The condition for close agreement

between cold-beam FDR and CDR stability properties at maximum growth is given by

4As (1 - 13b) 1 <4 t ~ <~bW «1. (81)

[See equation (62) of II with k = 1/(1 - fi).] For the cold-beam FDR, such tails were

shown to occur when the LHS parabola (see figure 1b), shifting to the left, relinks with

the RHS (in the interval 0 < Co < a') at a point where their common slope is very small.

Then, L2 ~ k/3b in some k-interval in the right-most region of the upshifted growth rate

curve, and both 1' - aLI and JL - I may be simultaneously small. [See (61) with & = 0.]

If in addition 4L2 - .Z' I< JL2 - :, 1, then the interval is a tail region. In II, we refer to the

approximation to the FDR, valid in the tail region, as the longitudinal-longitudinal (LL)

approximation.

In order to investigate the influence of thermal effects on stability properties in the

tail region, we derive the longitudinal-longitudinal approximation to the waterbag FDR.

Assuming that IJ' - 42, I > l2 - I_ and that 4' ~ kdIb, we approximate the waterbag FDR

(50) by

(42-42l);-,) = RHS (0, 0 4=kb), (82)

where RHS (k, L) is defined in (54), and 4;;' and 2',, are defined in (61). Solving (82) for

the unstable root, we obtain the approximate result
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A/2

_ _ _ _[__;,2_ 
+ _ 1/2, (83)

where '+, -, and LZ2 are defined in (55) - (58). With decreasing k, the instability in (83)

begins at k = kb [equation (62)]. The growth rate approaches infinity as the value of k

satisfying k73b = G is approached from above. Below this value of k and in the interval

of the upshifted growth rate curve, the growth rate in (83) is zero.

For the sake of definiteness, we define the tail region of a waterbag FDR growth rate

curve as that portion of the curve which is approximated closely by (83). If no part of the

curve is approximated closely by (83), then no tail region exists.

Because an increase in beam temperature shifts the LHS parabola downward in figure

1b, we expect that increasing the beam temperature will shorten and finally eliminate the

tail region. In figures 9 and 10, are shown typical growth rate curves calculated from the

waterbag FDR (50) for a system with parameters -yo = 7.6, Oc = 0.363 and ^ = 0.0157.

Henceforth we refer to this case as System C, since its FDR and CDR upshifted growth

maxima agree closely when A = 0. [The values of yo and $, in figures 9 and 10 correspond

to parameters cited by Orzechowski, et al., (1985). The value of Gj corresponds to a beam

current of 1000A instead of the 500A cited by these authors.] LL-FDR growth rate curves

are shown in figure 9 for A = 0.005 and 0.02 (dashed curves), and in figure 10 for 3 = 0.04.

With increasing A, the length of the tail region (and the range of validity of the LL-FDR)

decrease. For = 0.04 (figure 10), there is no tail region because the LL approximation is

not valid. Graphs of the frequency mismatches including , - k 3b1, w - 1,- , - LI and

1- ,;; are shown in figures 11 and 12 for A= 0.005 and 3 = 0.04, respectively. At the

lower value, A = 0.005, the relations 1,' - k/3bj < !,' - Gij L - ,I < Ie - y- , which

are characteristic of a tail region, hold over much of the upshifted growth interval. At the

higher value, A = 0.04, these relations are not valid anywhere in the growth interval.

The growth rate curves for the CDR (51) may also exhibit tail regions. In this case

the tail is produced by a coupling of the Doppler-shifted beam oscillations by the radiative

and wiggler fields. The graphical explanation based on figure 7b is similar to that for the
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FDR tail region. The corresponding longitudinal-longitudinal approximation for the CDR

(LL-CDR) for the waterbag distribution is obtained from the approximation

(,Z, - L ) (, -, ) = RHS' ( . D= 0, b)

where RHS' (k, W-) is defined in (73), and &' and ' are defined in (74). Solving the above

equation for ;, we obtain

(2 - k202~~ 2 k32~ 
2 k2 1/2

L:'= ko3 + (Q - 0 # (c2 _ -2 J (84)
k2,32 (~- - k2032)

for the unstable branch. With decreasing k, the instability in (84) begins at k = ku b

[equation (75)]. The growth rate approaches infinity as the value of k satisfying O_ =kfeb

is approached from above. Below this value of k and in the upshifted growth interval, the

growth rate in (84) is zero. We define the tail region of a waterbag CDR growth rate curve

as that portion of the curve which is approximated closely by (84).

All growth rate curves obtained from the cold-beam CDR possess a tail which does

not vanish as k - oc. Substituting,& = 0 into (84) yields Im(J.) - CV, as k -+ 00. As a

result, the cold-beam CDR never provides an adequate approximation of the shape of the

upshifted growth rate curve for the cold-beam FDR.

In figures 13 and 14, we show the growth rate curves calculated from the waterbag

CDR (51) for System C (1o = 7.6, &c = 0.363, 2 = 0.0157). Comparing figures 9 and

13, we note that these lower temperature CDR tails (although finite in length) are much

longer than those obtained from the FDR (50). From figure 14, it is clear that no CDR tail

region is present when A = 0.04. At this temperature, the shape of the CDR growth rate

curve is a good approximation to the shape of the FDR growth curve. (Compare figures

10 and 14.)

We now derive a condition for the existence of a waterbag CDR tail region, assuming

that y2 >> 1. The first requirement for a waterbag CDR tail region is the existance of an

interval of k where the frequency mismatches of the modes that are coupled, jc - L and

)1/2 
-

it; - Cj', are simultaneously smnall. From (74), we recall that C;;' = fOb - (3a2/27 k/-Yb
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S2 1 /2 ^
and ' kb + (3a2/2) b k/Yb. Thus the requirement of small frequency mismatch

is satisfied provided

k 3- 2
-kd ) ( 32) /(85)

at the right edge of the upshifted growth rate curve. The inequality in (85) is satisfied

if the common slope of the LHS' parabola (72) and the RHS' curve (73) is very small at

the point where they relink in the interval 0 < L' < O_ shown in figure 7b. Since the

magnitude of the slope of the parabola (at relinking) is 21 - k/0b1, the condition in (85)

can be expressed as

ORHS' (k', J 2k' 3a2 1/2

< ub (86)
Ow k Obb 'Yb k 2-yb)(6

where we have approximated the upper boundary of the growth curve by the upper bound

on the growth interval k'b [equation (75)]. Differentiating (73) and assuming Ik'b > b > 1

(because 2-y ~ k at the maximum), we reduce the inequality in (86) to

2' 2 [k,2 - -1 (3A2 1/2

C1 P L " -4 < . (87)

Making use of (76) and assuming that fe' > N > 1, < 1, and , we approximate

(75) by

k12= 4? [1 + 4 6 . (88)

Substituting (88) into (87) yields the first validity condition for the existence of a waterbag

CDR tail region, i.e.,

3/2 2L2

(3a2 < CP (89)
4v/2

The second requirement for existence of a tail region is that



32

" '-wj < - DI. (90)

Making the same approximations as those used to derive (89) [including (88)], we reduce

(90) to the condition

/2-1/2

(6i < -1 -2 (91)

It is easily shown that (91) is the stronger condition for the existence of a tail region. If

C j/62 < 1, then (91) reduces to (89).

As a numerical example, we again consider System C (-yo = 7.6,, Oc = 0.363, e,2

0.0157). Reference to figure 14 shows that no CDR tail region is present when A = 0.04.

Substituting these parameters into (91) yields the incorrect result 9.80 x 10-2 < 9.30 x

10~2. Reference to figure 13 shows that a tail region is present when & is reduced to the

value of 0.01. In this case, condition (91) is satisfied with 2.45 x 10-2 < 5.26 x 10-1.

We have not, derived a condition for the existence of an FDR tail region. However,

from an examination of numerical examples, we find that the condition (91) together with

condition (81) for the existence of a cold-beam FDR tail region are useful for predicting

the existence of FDR tail regions.

Finally, we note that both the FDR and CDR downshifted growth rate curves may

possess a tail region (due to coupled longitudinal oscillations), extending from the down-

shifted maximum towards lower values of k. Equation (83) for the FDR, and (84) for the

CDR are also applicable to these downshifted tails. The waterbag FDR tail must termi-

nate above k = 1/2. On the other hand, it is the CDR downshifted tail which causes

the left edge of the CDR downshifted growth rate curve to be located at = 0 for lower

temperatures. [See figure 8 and the discussion at the end of §6.] Equation (84) can be

used to estimate the values of A required to shift the left edge of the CDR downshifted

tail above k = 0, and the result is the same as (77).
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8. THE RAMAN APPROXIMATION

If - .II ~j - G < < la - ,lI in an interval of the FDR growth rate curve, then

the coupling producing growth in the interval is between the left-hand-circularly polarized

radiative mode and the negative energy longitudinal mode. We refer to this approximation

as the longitudinal-transverse approximation to the FDR (LT-FDR). This approximation

is also referred to as the Raman approximation. The waterbag LT-FDR is obtained by

approximating the waterbag FDR (50) by

R (k ,c =,_=
2L

where

L 43k22 ,/2  (92)

R (k, =&= (2f-1), (93)

From (92) and (61),

=~ Icb -:F L,

and from (56), Q_ = k - 1)2 + 1 . In the above, we have assumed that

and

w - ~ - = -2L. (94)

Solving for the unstable mode, we obtain

= [ + ( _ -)2 2 . (95)
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[Kwan, Dawson and Lin (1977) used a procedure similar to the above in order to obtain

the Raman approximation to the warm-fluid FEL dispersion relation.]

A condition for the validity of (95) at the upshifted growth maximum is obtained by

requiring that (94) and (95). with j = L, be consistent. The validity condition is

[2R/L]11  < 4L. (96)

In order to apply (96), we approximate the wavenumber by kc = 1/(1 - /3b). For systems

with -> 1, k ~ 29 and i 2 < 1, the inequality (96) reduces to

: 4 2 ' 3/4 (97)

As numerical examples, we consider the cases in figure 9 (System C with parameters

10 = 7.6, Jc 0.363, and L 2 = 0.0157). The case with = 0.01 does not satisfy (97) sincep

substitution of the parameters yields 0.045 < 0.051. For the case where A = 0.02, the

inequality in (97) is satisfied only marginally with 0.045 < 0..072. On the other hand, if 3

is increased to the value 0.04, then (97) is readily satisfied with 0.045 < 0.144. Referring

to figure 10, we note that in this case the upshifted growth rate curved obtained from the

LT-FDR (95) provides a good approximation to that of the FDR (50).

The cold-beam CDR must be approximated by a cubic equation because growth is

produced by a coupling of two free-streaming modes and the forward-propagating, left-

band-polarized, electromagnetic mode. However, with a sufficient increase in &, the pri-

mary coupling is between the lower-frequency Doppler-shifted beam oscillation and the

electromagnetic mode. Then the longitudinal-transverse approximation becomes valid for

the CDR. A procedure analogous to that for the FDR is used to derive the LT-CDR for

the waterbag distribution. Using (51), we obtain the LT-CDR approximate result

L + [(J' - -) L' 1 , (98)

where
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R' = 2kP 2k -1- (99)

L' = , , (100)
-)b 2 b

From (74), the beam oscillation frequencies are

The assumptions made in the derivation of (98) are

and

- D - = -2L'. (101)

Requiring that (98) and (101) be consistent at the growth curve maximum (Z = -) leads

to the validity condition

(2R'/L')/ < 4L', (102)

where we approximate k by 1/ (1- #3) If y >> , k 2 , and E2 «1, then the above

validity condition becomes

WJp < 4 (6A2) 3/. (103)

Note that (102) and (103) cannot be satisfied by a cold beam with L = 0.

Apart from numerical factors, the square of (102) or (103) is the converse of the

weaker condition (89) for the existence of a CDR (51) tail region. Furthermore, the weaker

condition (89) may be used in place of the stronger condition (91) when "Z'i/6,2 < 1,
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i.e., when E3 > '-A i/6. Therefore, we also consider (102) or (103) as the condition

which assures that no CDR tail region exists.

Substituting the parameters for System C (yo = 7.6, 1c = 0.363, 2 = 0.0157) with

A - 0.04 into (103) yields 0.045 < 0.123. For this system, figure 14 shows that the

waterbag LT-CDR (98) growth rate curve provides a good approximation to that of the

waterbag CDR (51). Also note that the CDR (51) growth rate curve has no tail region

when E = 0.04. Figure 15 shows the frequency mismatches obtained from (51) as functions

of I in the CDR growth region for this system. The assumptions made in the LT-CDR

derivation (|e - 2!f ~ j| - _| < J - 04j) are valid over most of the growth rate curve.

Finally, we emphasize that the validity condition (102) or (103) for the LT-CDR

indicates that the LT-CDR is a valid approximation to the waterbag CDR (51). It does

not necessarily indicate that the LT-CDR is a valid approximation to the waterbag FDR

(50).
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9. RANGE OF VALIDITY OF THE COMPTON APPROXIMATION

In this section, we obtain conditions for the validity of the Compton approximation.

The Compton approximation is considered to be valid if the CDR adequately approximates

both the shape of the FDR upshifted growth rate curve and its maximum value. The

validity conditions obtained in this section are based upon an analysis of the waterbag

FDR (50) and CDR (51). The numerical and analytical results presented in §10 indicate

that these validity conditions are also applicable when a Gaussian equilibrium distribution

in pzis assumed.

Two conditions for validity of the Compton approximation are derived below. If

the system parameters satisfy either condition, then the Compton approximation is valid.

The condition derived in §9.1 assures validity of the Compton approximation for systems

whose cold-beam CDR and FDR upshifted maximum growth rates closely agree. The

condition derived in §9.2 assures validity of the Compton approximation even if the cold-

beam CDRand FDR maximum growth rates do not agree.

9.1 First Validity Condition

For cold beams, the condition that the CDR be valid at the upshifted growth curve

maximum is derived in II using the cubic approximation to the CDR. This condition [see

(81)] is given by

4« (1 - O) Cp < 1. (104)
YbWe

For -yb >> 1, the inequality in (104) reduces to

« 1. (105)

Our numerical computations indicate that increasing the temperature (i) improves the

agreement between the CDR and FDR at the growth rate maximum. Therefore, we assume

that, (104) is sufficient for validity of the CDR at the growth rate maximum for all values

of i
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Numerical results indicate that if the CDR and FDR upshifted maxima are in close

agreement, then the shapes of the growth rate curves are also in close agreement provided

no CDR tail region exists. However, when a CDR tail is present, the shape of the CDR

growth curve may differ greatly from that of the FDR.

In II, it was noted that the cold-beam (A = 0) CDR never adequately approximates

the shape of the corresponding FDR upshifted growth rate curve. The reason for this is

that the CDR growth rate in the tail region [given by (84) with E = 0] approaches the

value Lc.,' as k approaches infinity, whereas the FDR instability terminates after some

finite maximum value of k. We compare the cold-beam (, = 0) growth rate curve in

figure 9 with the corresponding CDR growth rate curve in figure 13. With the exception

of a relatively small interval of k just to the right of the maximum, the CDR growth rate

curve provides an extremely poor approximation to that of the FDR over the interval of

the FDR tail. This behavior is typical of all cold-beam systems for which we have obtained

numerical results.

If 3 > 0, then the CDR growth rate curve vanishes beyond some finite value of k.

[The waterbag CDR growth curve is bounded above by khb in (75).] Nevertheless, at

sufficiently low beam temperatures the CDR tail will be much too long to provide an

adequate approximation to the shape of the FDR growth curve. For example, compare

the FDR (50) growth rate curves in figure 9 with the corresponding CDR (51) growth rate

curves in figure 13 for A > 0.

To summarize, if the shapes of the FDR and CDR growth rate curves are not to

disagree in shape because of an excessively long CDR tail, it is necessary either that the

temperature be sufficiently high that no CDR tail exists, or that it be sufficiently high that

the CDR tail provides an adequate approximation to the FDR tail if an FDR tail exists.

(For some systems, we will show below that the tails cease to exist before the CDR tail

adequately approximates the FDR tail.)

Recall from §8 that the condition which insures that no CDR tail exists is also the

validity condition for the LT-CDR (102). Thus, the condition that the temperature is

sufficiently high that no CDR tail remains is given by
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4L' > 2RI 1 / 2  (106)

where R' = P (2k - 1 - 2) /4'_ [equation (99)], L' /(3 /2 [equation

(100)7 and k = 1/ (1 - 3b). If -2 > 1, k ~ 2y, and a2 < 1, then (106) reduces to (103).

That is, the condition becomes

4( (6 _2 >/4> OC P. (107)

The condition which insures that the temperature is sufficiently high that the waterbag

CDR is an adequate approximation to the waterbag FDR in the tail region is obtained by

comparing the LL-FDR (83) and the LL-CDR (84). The condition is given by

2 >2 _ . (108)

In contrast to the relative behavior of the CDR and FDR in the regions of maximum

growth, approximating the waterbag FDR by the CDR at any fixed k in the tail region

becomes less adequate with increasing temperature. [In Appendix A, we show that at

any fixed k (within both the FDR and CDR tails) the relative error of the CDR growth

rate (relative to that of the FDR) increases with increasing temperature.] As a result, as

A increases, the CDR and FDR tails agree only if the tails shrink into a region of k for

which there is good agreement between the cold-beam tails. [Recall that the numerical

computations sometimes show a relatively small interval of the tail, just to the right of the

growth curve maximum, where the cold-beam CDR and FDR growth rates agree closely.]

Therefore, we can approximate k in (108) by 1/(1 - 3b), its value near maximum growth.

Then, the condition that the FDR and CDR tails agree can be expressed as

3A 2 (1+ 3 ) -2
>> .2 (109)

2(1-lb )

For yf > 1, this inequality reduces to

2
6a'2 > .P (110)
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Equation (109) is the condition for agreement of the FDR and CDR tail remnants,

if indeed the tails still exist at a given value of . Equation (106) is the condition that

the CDR tail no longer exists. Therefore, we can state the first condition for validity of

the Compton approximation. That is, if (104) [(105)] is satisfied and either one of (106)

(107)_ or (109) [(110) is satisfied. then the C'ompton approximation is valid.

9.2 Second Validity Condition

Systems whose cold-beam CDR and FDR upshifted growth maxima differ significantly

do not satisfy (104). Furthermore, such systems do not, possess FDR tail regions. There-

fore, only (106) can be used to assure agreement between the shapes of the CDR and FDR

growth rate curves. If (106) is satisfied, then validity of the Compton approximation also

requires that the CDR growth maximum closely approximates the FDR growth maximum.

Recall that (106) is also the validity condition for the LT-CDR. Comparing conditions (96)

and (102), we see that validity of the LT-CDR (98) [with respect to the CDR (51)] implies

validity of the LT-FDR (95) [with respect to the FDR (50)]. Therefore, comparing (95)

and (98), at the growth maxima, we find that the condition assuring that the CDR (51)

adequately approximates the FDR (50) growth rate maximum is

3 i 2 (1 + 0b) 2(1
2 (1 - b) '-

[To obtain (111), we have assumed that 2k - 1 > 02 at the growth maximum, i.e.

(1+- 3 ) /(1 - 0b) > ;2. This condition is readily satisfied in all practical FEL appli-

cations.] The inequality in (111) is identical to condition (109).

On the basis of the preceding analysis, we state the second validity condition. That

is, if both (106) [(107)] and (109) [(110)] are satisfied, then the Compton approximation is

valid.

9.3 Summary of Validity Conditions

We summarize here the validity conditions obtained in §9.1 and §9.2. If (104) [(105)]

is satsified and either one of (106) [(107)] or (109) [(110)] is satisfied, then the Compton

approximation is valid. Alternatively, if both (106) [(107)] and (109) [(110)] are satisfied,



41

then the Compton approximation is valid.

Inequalities in (104) and (109) (in the second condition) pertain to the validity of the

CDR at the growth maximum. Inequality (104) is temperature-independent and is satisfied

by increasing the strength of the wiggler field, reducing the beam density, and increasing

the beam energy. (It is also satisfied as 3 6 approaches zero.) Inequality (109) is satisfied

by increasing the beam temperature, reducing the beam density, and increasing the beam

energy. Inequalities in (106) and (109) (in the first condition) pertain to the validity of

the shape of the CDR growth rate curve. Inequality (106) is satisfied by increasing the

temperature and reducing the dimensionless coupling constant acaP.

Finally, we point out that the dimensionless momentum spread a used in the above

inequalities is related to the beam energy spread Ay/y by (34), i.e., Ay/-y = Obi

9.4 Numerical Examples

As a numerical example, we compare figures 10 and 14. We note that the waterbag

CDR (51) provides a good approximation to the corresponding FDR (50) upshifted growth

rate curve in both its shape and maximum value for System C (yo = 7.6, 'c = 0.363,

,2 = 0.0157) when A 0.04. Substituting these parameters into (104), the validity con-

dition for the cold-beam CDR at the growth maximum, becomes 0.105 < 1. Substituting

the parameters into (106), the condition that no CDR tail exists, becomes 0.38 > 0.15.

Substituting the parameters into (109), the condition for agreement of the FDR and CDR

tails, becomes 0.060 > 0.0157. If is reduced to 0.01, neither (106) nor (109) is satisfied.

(Substituting the parameters yields the erroneous results 0.094 > 0.30 and 0.0037 > 0.157,

respectively.) Referring to figures 9 and 13, we find that the CDR does not provide an

adequate approximation of the FDR growth curve shape in this case.

As a second example, we consider a system with parameters -yo = 50, '.c = 0.015 and

2 = 3.6 x 10-5. These parameters approximate those of the Stanford beam experiment

[Elias, et al. (1976)]. The numerical results in figure 16 show that when A = 0.0002

the waterbag CDR maximum adequately approximates that of the FDR even though the

remnant of a tail region still exists. (The cold-beam growth rate curve for this system

is shown in II, figure 18.) Substituting the parameters into (105) yields 8.3 x 104 < 1.
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Thus, the condition for agreement of the cold-beam CDR and FDR at the growth maxima

is strongly satisfied. Substituting the parameters into (107) yields the incorrect result

4.34 x 10-5 > 9.00 x 10'. Thus, 3 is not sufficiently large to assure that there is no

CDR tail. On the other hand, substituting the parameters into (110) yields 2.4 x 10-7 >

2.25 x 10-8, indicating that the CDR and FDR tail remnants agree and that the Compton

approximation is valid.

As a final example, we consider a system with parameters jo = 1.3, 4) = 0.236 and

0.0039 [Fajans and Bekefi (1986)]. We refer to this system as System R because

the Raman approximation is valid at i 0. [That is, the LT-FDR (95) provides a good

approximation of the FDR (50) upshifted growth rate curve when A = 0.] This system

does not satisfy (104), because a substitution of parameters yields 0.87 < 1. Therefore,

the conditions for the validity of the Compton approximation are given by (106) and (109).

The FDR (50) and CDR (51) growth rate curves for = 0 and & = 0.02 are plotted in

figure 17. The CDR is seen to provide a poor approximation to the FDR growth curve

when a = 0.02. In this case, substituting the parameters shows that (106) is satisfied

marginally with 0.156 > 0.086. Substitution of the parameters into (109) leads to the

incorrect result. 2.4 x 10-3 > 3.9 x 10-3. The FDR and CDR growth rate curves for

A = 0.04 and = 0.06 are shown in figure 18. When i = 0.04, the CDR is seen

to provide a fair approximation to the FDR growth curve. Substituting the parameters

shows that (106) is satisfied with 0.312 > 0.0610, and that (109) is maginally satisfied

with 9.4 x 10-3 > 3.9 x 10-3. Finally, the FDR and CDR growth curves are found to

agree well when A = 0.06. Condition (106) is satisfied with 0.468 > 0.0498. Condition

(109) is satisfied with 2.1 x 10-2 > 3.9 x 10-3.
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10. COMPARISON WITH THE DISPERSION

RELATION FOR A GAUSSIAN DISTRIBUTION

We have not carried out an extensive analytical study of the FDR and CDR for a

narrow Gaussian distribution in pz developed in §3. [The FDR and CDR for a narrow

Gaussian distribution are obtained by substituting (46), (47) and (28) - (31) into the FDR

(19) and CDR (20), respectively.] Nevertheless, by using a combination of numerical and

analytical techniques, it is possible to obtain an understanding of how well the stability

results based on the waterbag distribution correspond to the stability results based on the

Gaussian distribution.

10.1 Condition For the Growth Rate to Be Insensitive to the Form of Go(pz)

For the case of a narrow, equilibrium distribution function,symmetric in pz, the sus-

ceptibilities appearing in the exact FDR (19) and CDR (20) are given by (28) - (30). [The

only remaining Go(p 5 )-dependence in (19) and (20) is in the constants, a, and a3, which

are approximated by unity for a narrow, symmetric equilibrium distribution. [See (16) and

(31).] Therefore, both (19) and (20) depend upon Go(pz) only through the integral

I1 d Go/,9 1 f Go (fl()2I-~ Jd 0  - ~ ~d( o . (112)
'I (_ - A ( - ()2*

In the above equation, ( = (p - po) /A [equation (33)], and ( = 2 - kgb) /c& [equa-

tion (32)].

It follows that Go( ) is a function which is relatively large over the interval A = 1

centered at ( = 0. If the relative change of ( - () 2 is small over the interval A(= 1, i.e.,

(F - ()2 1=oA < 1 -2 Lj=o, (113)

then the integral in (112) can be approximated by

3 fdp (P_ -po) 2 Go(p 2 ).A2(2 A4(4 J
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Here, the product A( is independent of A. In this case, the susceptibilities occurring

in (19) and (20) depend only on the mean value of (p. - po) 2 and not on the detailed

form of Go(p). Then, from (32), (33) and (113), we find that the dispersion relations are

insensitive to the specific form of Go(p) provided the mean value of (p. - po)2 is the same

and

= >> 2. (114)

Referring to (48) and (49), we note that (114) is the condition for agreement between

the waterbag and Gaussian dispersion relations, and therefore the corresponding stability

properties.

However, failure to satisfy (114) does not necessarily imply that the stability criteria

obtained from the waterbag dispersion relation do not apply to the Gaussian dispersion

relation. For example, numerical and analytical results in §10.2 and §10.3 indicate that the

validity conditions for the Compton approximation (§9.3) are applicable to the Gaussian

FDR and CDR growth rate curves even when the details of these curves depend strongly

on the shape of Go(pz).

10.2 Numerical Comparison of Waterbag and Gaussian Growth Rate Curves

In this section, we compare the waterbag growth rate curves discussed earlier in this

paper with the corresponding growth rate curves obtained for a Gaussian Go(p 2 ). The

purpose of this analysis is to gain a qualitative understanding of how well the previous

results (based on the waterbag distribution) apply to the case of a Gaussian distribution.

In §4, we developed a sufficient condition (70) that the waterbag FDR exhibit no

FEL instability. For the waterbag, figure 6 shows the onset of stability with increasing

density for a system with parameters 10 = 1.3, -Yb = 1.1 and & = 0.04. The corresponding

graph for the Gaussian FDR is shown in figure 19. Evidently, the two graphs are in close

agreement.

In §6, we discussed the behavior of the CDR downshifted growth rate curve. Unlike

the cold-beam FDR downshifted growth curve, that of the CDR begins increasing from zero

growth rate (with increasing k) at k = 0. This behavior is due to the CDR downshifted tail
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and

1
a_< Las < L 2 < +, if ke > -. (60)

Plots of LHS(Iek) and RHS(k,,') vs real L' at, fixed k for the cases in (59) and (60) are

shown in figures la and 1b, respectively. The zeros of the LHS parabola are the positive-

energy a, and negative-energy &i longitudinal frequencies defined by

2 +3 a22/2
= 4 (61)

The relative behavior of the LHS parabola and the RHS for the waterbag model is similar

to that for the case of a cold beam discussed in II. As k increases from zero, the LHS

parabola first shifts to the right relative to the RHS, and then shifts back to the left. For

example, the quantity kdb - w_ (where k = 3b is the -coordinate of the minimum of

the parabola) increases from the value - (1 + ,2)112 at k = 0 to a maximum value of

Ob - Q,/-y at - = 1 + 3Vb6Yp, and then approaches -oo as k tends to +oo. Similarly, for

small values of a[a < 2/3(1 + /b)], the quantity 0, - V (where ' = w 1 , w2 , (+ or L_

at first increases as k increases from zero, and then approaches -oo as k tends to +oo.

The occurence of pairs of complex conjugate roots (k), one of which represents

growth, is similar to that discussed in II for the case of the cold-beam FDR [equation (50)

with.& = 0]. The FEL instability arises if, with increasing kc, the LHS parabola (shifting to

the right in figure 1b) becomes detached from the RHS curve in the interval 0 < < _.

Then the number of intersections of the LHS and RHS curves is reduced to four, and two

complex roots of the waterbag FDR (50) appear. One of these roots represents growth

[Im(J.) > 0]. If with further increase in k, the LHS simply shifts back (relatively) and

reattaches, then a single growth maximum in Imf(k) vs k will occur. (See figure 2a.) On

the other hand, if the situation depicted in figure 3 develops before the final reattachment

in the interval 0 < Co < L_, then an interval of no growth will occur as a function of k,

thereby leading to separated downshifted and upshifted growth rate curves. (See figure

2b.) There is always some finite value of k beyond which no growth occurs. This follows

because, from (53) and (27),
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lim LHS (k =kL.3) =jP '

whereas from (54)

lim R HS (k, L = Ic,) = -P.

In II, it was shown that the behavior illustrated in figures 4a and 4b does not occur in

plots of LHS and RHS vs : for the cold-beam FDR. We cannot prove that this behavior

does not occur for the waterbag FDR (50) for special choices of parameters when a > 0.

Figure 4a would represent the existence of an unstable mode inside the interval 0 < k < I

For small . , the behavior illustrated in figure 4b would represent a second unstable mode

over a narrow interval of k-space above k = 1/2. However, we find that the possibility

of such behavior is very sensitive to corrections of order '&2 in the coupling term in (50).

Such terms were dropped in the approximations made between equations (37) and (43).

Furthermore, the second order terms in 6 in the coupling term of (37) are incomplete

because of our assumption that Go(p:) is sufficiently narrow that the expansions (23) and

(24) are valid. Carrying out, the expansions of (23) and (24) to higher order in (p, - po)

would be inappropiate for a distribution function with as little detail as the waterbag

distribution. Therefore, we regard the possibility of such unstable modes of the waterbag

FDR (50) as spurious and neglect the possibility in the following treatment. [We also note

that such modes have never been found in the numerical computations.] If the situation

shown in figure 4a does not occur, then instability is not possible for k < 1. This follows

because it is easily shown that the minimum of the LHS parabola in figure la is lower than

the minimum of the RHS curve in the interval 0 < C < Z 1.

Referring to figure 1b, we now obtain upper (kfb) and lower (kib) bounds on the entire

FEL growth region (including both the downshifted and upshifted growth curves). We

note that 2 = kIb will become a root of the waterbag FDR (50) before the LHS parabola,

shifting to the right, becomes detached from the RHS in the interval 0 < O < a_. It

becomes a root a second time after the LHS, shifting to the left, reattaches. Thus, kb and
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kib are the two positive roots obtained by setting 2 = k/3b in (50) and solving for k. The

result of this substitution is a cubic equation in k2, which can be expressed as

(k2)3 + p(k2 )2 + qk2 + r = 0, (62)

where

P = - - 2 2 (63)
3 A2 72 b 2

q - 7 b -02 4 _ _ _ _ + -Y (1 + 2)2, (64)
3 A2 IY 1) b6 1 .

and

2 -y8 L 2
r - (1 +2) + - . (65)

From Descartes' rule of signs, it follows that (62) has either two real, positive solutions or

no real, positive solutions for k?. Thus, both keb > 0 and kib > 0 exist or neither exists.

For a - 0, equation (62) reduces to the quadratic equation (derived in II) which

gives kub and kib in the cold-beam limit, i.e.,

(k2) 2 + bI + c =0, (66)

where

and

c=(+ ) )2 (Y2+ 6.8(68)



region discussed in §7. Using the v'aterbag model, we found (for sufficiently large A) that

the left edge of the CDR growth curve is located at k > 0. For the waterbag distribution,

(80) is a sufficient condition that the CDR growth interval begins at k' = 0, and (77) is a

sufficient condition that it begins at a larger value of k. The downshifted waterbag CDR

growth curves (for system parameters -o = 10, D, = 0.05. Cj = 0.01, and several values of

A) are shown in figure 8. The plots (not shown) obtained for a Gaussian distribution are

very similar. However, whereas (77) and (80) predict, that growth begins at k > 0 for all

a Z 0.037, this does not occur in the Gaussian case until & Z 0.062. Therefore at best,

(77) and (80) can be used only to make order-of-magnitude estimates for the Gaussian

CDR.

The attenuation of the FDR upshifted tail regions with increasing temperature was

discussed in §7. A comparison of the tail regions for the waterbag and Gaussian distribu-

tions is made by examining figures 9 and 20. These figures refer to System C (yo = 7.6,

= 0.363, (j = 0.0157). The waterbag (figure 9) and Gaussian (figure 20) graphs are

similar except that the Gaussian tails are significantly longer for each temperature. A

consideration of the inequality in (114) shows that discrepancies should occur between

the waterbag and Gaussian tail regions unless A is very close to zero. As the end of

the waterbag tail is approached (with increasing k), Re(; - k/3b) becomes very small (see

§7) and Im(J) tends to zero. Therefore, the left-hand side of (114) becomes very small.

For example, consider the waterbag curve in figure 9 with A = 0.01. Near maximum

growth at k = 13.0, the numerical computations show that Re(2) - kIb = -0.0467 and

Im(L ) = 0.0917. Substituting the parameters into (114) yields 5.3 > 2. Close to the edge

of the tail region at kc = 28.1, we obtain Rc;; - kI^b =-0.000329 and Im(L.) = 0.00328.

Substituting the parameters into (114) yields the incorrect result 0.079 >> 2.

A corresponding comparison of the attenuation of the waterbag and Gaussian CDR

tails with increasing A is made by examining figures 13 and 21. Although the Gaussian

CDR tails are shortened with increasing A, they are much longer than the corresponding

waterbag tails.

In §9.4, numerical computations of waterbag FDR and CDR growth rate curves were

presented as examples of the application of the validity conditions for the Compton ap-

45
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proxirnation derived in §9.3. Here, we parallel the examples in (§9.4) for the case of a

Gaussian distribution. The inequality (114) is violated in the tail regions at small values

of i and at the growth maxima for sufficiently large values of i. Therefore, one might

expect that the validity conditions in §9.3, based on an analysis of the waterbag dispersion

relation, would have a very limited range of applicability to the Gaussian distribution.

Nevertheless, the numerical results, such as those presented below, indicate that the va-

lidity conditions are also applicable to the Gaussian growth rate curves even when (114)

is violated strongly. However, in some examples, we do find that the inequalities must be

stronger in the Gaussian case.

The first example studied in §9.3 corresponded to System C (Yo = 7.6, Oc = 0.363,

C = 0.0157), which for = 0.04 satisfies (104), (106) and (109). Reference to figures

10 and 14 shows that the FDR and CDR upshifted growth rate curves for the waterbag

distribution agree closely in both their maximum values and shapes. The corresponding

FDR and CDR growth rate curves for the Gaussian are shown in figure 22. The Gaussian

CDR is seen to provide a good approximation to the Gaussian FDR growth rate curve

in spite of the fact that corresponding waterbag and Gaussian growth rate curves do not

agree closely in shape. Numerical results for the waterbag FDR show that at k = 13.8,

near the right edge of the growth curve, the inequality in (114) is disobeyed with 0.54 >> 2.

The second example studied in §9.4 corresponded to parameters for the Stanford beam

(1o = 50, J.c = 0.015, C0 = 3.6 x 10-5). For the waterbag distribution we found that the

Compton approximation is valid when A = 0.0002. At this beam temperature, a remnant

of the CDR tail remains. However, the condition in (110) for agreement between the FDR

and CDR tails is valid [as well as the condition in (105)1. Both the waterbag and Gaussian

FDR and CDR growth rate curves for this system are plotted in figure 16. Note that in

spite of the longer tails in the Gaussian case, the relation between the FDR and CDR

curves is similar in both cases. The Gaussian CDR growth rate curve provides a good

approximation to the Gaussian FDR curve.

The last example given in the previous section corresponded to System R (Yo = 1.3,

= 0.236, e2 = 0.0039). From figure 18, we found for the case of the waterbag distri-

bution that there is fair agreement between the FDR and CDR growth rate curves when



47

A = 0.04. At this temperature, (106) is satisfied and (109) is satisfied marginally. We

also found that there is good agreement between the waterbag FDR and CDR growth

curves when A = 0.06. Then both the inequalities in (106) and (109) are satisfied. The

corresponding growth rate curves for the Gaussian case are shown in figure 23. Compar-

ing figures 18 and 23, we find at these temperatures that there are significant differences

between the corresponding waterbag and Gaussian growth curves even though there are

no tail regions. The waterbag growth curves are higher and narrower than the Gaus-

sian growth curves. However, the qualitative relations between the corresponding FDR

and CDR growth curves in the waterbag and Gaussian cases are similar. Clearly, in the

Gaussian case, the inequalities in (106) and (109) must be satisfied more strongly than is

required in the waterbag case. There is, however, fair agreement between Gaussian CDR

and FDR growth rate curves when A = 0.06.

10.3 The Resonant Warm-Compton Regime

In this section, we show analytically that the applicability of the Compton-approximation

validity conditions in §9.3 extends to the resonant, warm-Compton region for the case of a

Gaussian equilibrium distribution in pz. This result (together with the numerical results

discussed in §10.2) strongly indicates that the validity conditions in §9.3, which were de-

rived for the case of a waterbag distribution function, can also be applied to the Gaussian

case for all parameter regimes of practical interest.

At sufficiently high beam temperatures that Im(w)/k is much less than the thermal

spread Av2 in the longitudinal velocity, the CDR (20) predicts that the growth rate as

a function of k is proportional to oGo/Opz evaluated at v_ = Re(w)/k. [Here Go(pz)

is a smoothly varying function.] If in addition the CDR (20) is a valid approximation to

the FDR (19), then this parameter regime is referred to as the resonant, warm-Compton

regime. Clearly, the waterbag and Gaussian growth rates cannot agree in this regime.

This regime has been studied by Kroll and McMullin (1978), and more recently by

Dimos and Davidson (1985). Using the CDR (20), the latter authors obtained an approx-

imate expression for the growth rate for the case of a Gaussian distribution, i.e.,
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Im(J) =1, j
2 3 Re(')

(115)

[ 3b - Re()/)1
x exp -

where Re (L) - 1. We refer to (115) as the warm-Compton growth rate.

From the requirement that Im(w)/k < Avz (the condition for strong resonance),

Dimos and Davidson obtained the following condition for validity of (115), i.e.,

2 0,' 3 >L2L 2

2.630, (l + C52g ' jf. (116)

For y6 > 1, this condition reduces to

10.5a 3 >> C (117)

We now obtain a second validity condition for (115) by requiring that the upshifted

growth rate curve obtained from the CDR (20) adequately approximates that of the FDR

(19) in the region of maximum growth. We compare the FDR (19) with the CDR (20)

and also note (for a narrow distribution) that (28) - (30) imply that the susceptibilities

-(0, jlf and 1 (2)1 are of similar magnitude. It follows that the CDR (20) adequately

approximates the FDR (19) provided b' (k,0) = 2 + (0) (k, ;) ~ k2. That is, we

require that

5, a I <52.(118)

For a narrow Gaussian distribution "(O) = 2 2Y2 [1 + (Z (C)] /A2 [equation (46)], where

=b (a - k --) /k[equation (32)]. Evaluating X (0) at the maximum of the growth rate

curve in (115) (i.e., -1/ v"2) and substituting the result into (118), we obtain a second

condition for validity of the warm-Compton approximation, i.e.,
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2

Finally, we approximate k by 1/ (1 - Ob) in the above equation and obtain the condition

2 , 1 6 (1 - 3b) (119)
(1+Ob ) P

The inequality in (119) assures that the CDR (20) is valid at the upshifted growth maxi-

mum. If -b > 1, then (119) reduces to

2
A 2 ' . (120)

2.5-yr

In summary, the inequality in (116) [(117)] assures strong resonance, and the inequality

in (119) [(120)] assures that the CDR (20) is valid at the growth maximum. Similar

relations were obtained by Kroll and McMullin (1978) for the case where -y, > 1.

We now demonstrate that the validity conditions for the Compton approximation

derived from the waterbag dispersion relations in §9.3 extrapolate to the resonant, warm-

Compton regime for the case of a Gaussian distribution. We show that if any one of the

validity conditions in §9.3 is satisfied sufficiently strongly for a system in the resonance

regime, then (119) (the condition for validity of the Compton approximation in the reso-

nance regime) is satisfied. There are three ways of satisfying a Compton approximation

validity conditon in §9.3. A condition is satisfied if both (104) and (109) are true, or if

both (106) and (109) are true. Except for numerical coefficients, (109) is the same as (119).

The remaining condition in §9.3 is that both (104) and (106) are satisfied. Assuming that

(k - 1) > Cj in the upshifted growth interval of k-space, and using (99), (100) and (56)

with k =1/ (1 - 3 b), we express (106) in the form

7.67(1 + b)/3 3/2 >5> P. (121)

Moreover, combining (121) and (104), we obtain the inequality

3/4 20.130>0 (1 - 30) 3/4 (122)
[(1 + Ob)# 3 ( 11b) PI
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Except for numerical coefficients, the 4/3-power of (122) is the same as (119).

Finally we show that the validity condition for the warm-Compton growth rate (115)

[i.e., that both (116) and (119) are satisfied] is included in the validity conditions for the

Compton approximation in §9.3. If (109) is satisfied sufficiently strongly. then (119) is

satisfied. Referring to (121), we find that, except for numerical coefficients, (106) is the

same as the square root of (116). Therefore, if (106) is satisfied sufficiently strongly, then

(116) is satisfied. It follows that the resonance regime condition is included in the second

validity condition for the Compton approximation in §9.3 [i.e., that both (106) and (109)

are satisfied].

The above results show analytically that the conditions of §9.3 extrapolate into the

warm-Compton regime for a Gaussian equilibrium distribution. Together with the numer-

ical results in §9.2, they show that the conditions in §9.3 are widely applicable to the case

of a narrow Gaussian distribution.
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11. CONCLUSIONS

In II, we analyzed properties of growth rate curves [Im(L') vs k] of the FEL instability

for the case of a cold beam. In this paper, we have determined the influence of thermal

effects on these cold-beam stability results using the FDR (19) and the CDR (20). Two

equilibrium distribution functions are employed. These are a simple waterbag distribution

(35) in axial momentum pz and a narrow Gaussian distribution (45). Analytic results are

obtained using the waterbag FDR (50) and CDR (51), and their longitudinal-transverse

(Raman) and longitudinal-longitudinal (tail region) approximations. The analytical results

are compared numerically with both the waterbag dispersion relations and the Gaussian

FDR and CDR (§3).

In II, it was shown that (for low beam energies) the cold-beam FEL becomes stable at

sufficiently large beam densities [i.e., for the FDR, Im(J) = 0 for all k at sufficiently large

densities]. Using the waterbag FDR, we find that increasing the longitudinal temperature

causes the the FEL instability to stabilize at somewhat lower densities than for the cold-

beam case. However, the thermal effects are small for realistic FEL beam temperatures.

Numerical results show that the decrease in growth rate with increasing density (near the

waterbag stability region) is similar for the waterbag and Gaussian FDR.

In the case of a cold beam (II), we found that for some systems the FDR upshifted

growth rate curve possesses a tail of finite length extending from the growth rate maximum

towards larger values of k. The tail occurs in cold-beam systems for which the CDR ad-

equately approximates the FDR upshifted growth rate maximum. The primary coupling

producing the tail is between the positive- and negative-energy longitudinal modes. In the

present analysis, we find that increasing the beam temperature shortens and finally extin-

guishes the FDR tail. We also find that the CDR upshifted growth rate curve may exhibit

a tail. The coupling producing the CDR tail is between the lower- and higher-frequency

Doppler shifted beam oscillations. As the longitudinal temperature is decreased, a CDR

tail develops, which approaches infinite length in k-space as the temperature approaches

zero. As a consequence of the infinitely long CDR tail, the cold-beam CDR never ade-

quately approximates the shape of the upshifted FDR growth rate curve.
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An important result of this analysis is a set of validity conditions for the Compton

approximation. We consider the Compton approximation to be valid if the CDR adequately

approximates the FDR upshifted growth rate curve [Im(c') vs k] both in its maximum

value and shape. The validity conditions are that either (106) [(107)] and (109) [(110)]

are satisfied, or that (104) [(105)] and either (106) [(107)] or (109) [(110)] are satisfied.

These conditions are derived using a waterbag equilibrium distribution function in the

CDR and FDR. However, numerical computations indicate that they are also applicable

to the case of a Gaussian equilibrium distribution function, even in parameter regions

where significant differences exist between corresponding waterbag and Gaussian growth

rate curves. We show analytically that the applicability of the validity conditions based

on the waterbag distribution extends into the resonant, warm Compton region for the

Gaussian case. In particular, it is shown that if the conditions (§9.3) based on the waterbag

distribution are satisfied sufficiently strongly, then the condition (119) for validity of the

Compton approximation in the resonance region is satisfied. Furthermore, it is shown that

the condition for the resonant warm-Compton regime [i.e., that both (116) and (119) are

satisfied] is included in the condition in §9.3.
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APPENDIX A. RELATIVE ERROR OF THE CDR IN THE TAIL REGION

Consider a value of k which is in both the CDR and FDR tail regions. The square

of the FDR growth rate [Irn2 (FDR)] and the CDR growth rate [Im2 ('.ZCDR) appear in

the square roots in (83) and (84). respectively. Subtracting with the aid of (55) - (58), we

obtain

Im 2 ('CDR)- IM 2 (FDR)

(A.1)

= P =D.

2 2DYb (L,2 - k232) (L2 -02)

The difference D is independent of 3L. The relative error of the waterbag CDR versus the

waterbag FDR is

Im (CDR) - IM (FDR)

Im(JJFDR)
(A.2)

D

Im (FDR) JM (FDR) + IM (PCDR)Y

Since D is independent of temperature, and the growth rates decrease with increasing A,

the relative error increases with increasing .
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FIGURE CAPTIONS

Fig. 1 Schematic plots of LHS (- - -) and RHS (-) vs ; for fixed k in the intervals (a)

0 < k < 1/2, and (b) k > 1/2 [equations (53) and (54)].

Fig. 2 Schematic plots of the FDR (-) and CDR (- - -) growth rate curves for the

cases corresponding to: (a) a single growth rate maximum, and (b) two distinct

downshifted and upshifted growth rate curves.

Fig. 3 Schematic plot of LHS (- - -) and RHS (-) for k in the interval between the

upshifted and downshifted growth rate curves [equations (53) and (54)].

Fig. 4 Illustrative plots for spurious instabilities of the waterbag FDR (50) with (a)

0 < k < 1/2, and (b) k > 1/2.

Fig. 5 Plot showing the sufficient condition for stability of a cold beam (-) and for

the waterbag FDR with 3 = 0.10 (- - -) [equation (70)].

Fig. 6 Plots of growth rate Im(.) vs k obtained numerically from the FDR (50) for

several values of e2 for a cold electron beam with A = 0 (-) and for a warm

waterbag distribution with i 0.04 (- - -). Other system parameters are yo

1.3, and Yb = 1.1.

Fig. 7 Schematic plots of LHS' (- - -) and RHS' (-) vs ;; for fixed k in the intervals

(a) 0 < / < (1 + 2 )/2, and (b) k> (1 + L )/2 [equations (72) and (73)].

Fig. 8 Plots of downshifted growth rate Im(.) vs k,obtained numerically from the CDR

(51) for several values of . Other system parameters are -yo = 10, Oc = 0.05,

and -j = 0.01.

Fig. 9 Plots of the upshifted growth rate Im(L') vs k obtained numerically from the

waterbag FDR (50) for several values of A (-). The system parameters are

yo = 7.6, Oc = 0.363 and L; = 0.01570. The growth rate curves --- -) obtained

from the LL-FDR (83) are presented for a = 0.005 and i = 0.02.
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Fig. 10 Plots of the upshifted growth rate Im(.) vs k obtained numerically from (a) the

waterbag FDR (50), (b) the LT-FDR (95), and (c) the LL-FDR (83) for system

parameters yo = 7.6, 'c 0.363, 2 = 0.0157, and a = 0.04.

Fig. 11 Plots of the frequency mismatches (a) l' - +J, (b) 10 - k/b 1, (c) I - _, (d)

1, - :l, and (e) iL - versus k for system parameters Yo = 7.6, LZe = 0.363,

L2 =0.0157, and A = 0.005. The complex L in figure 11 solves the waterbag

FDR (50).

Fig. 12 Plots of the frequency mismatches (a) 2 - +J, (b) pG - kIobl, (c) p' -- Q, (d)

1, - l, and (e) JL - a, versus k for system parameters -yo = 7.6, ac = 0.363,

= 0.0157, and = 0.04. The complex & in figure 12 solves the waterbag FDR

(50).

Fig. 13 Plots of the upshifted growth rate Im(') vs k obtained numerically from the

waterbag CDR (51) (-) for several values of A. Other system parameters are

-o = 7.6, &c = 0.363 and ,2 = 0.0157. The LL-CDR curves --- -) obtained fromp

(84) are shown for A 0.005, and A = 0.02.

Fig. 14 Plots of the upshifted growth rate Im(,') vs k obtained numerically from (a) the

waterbag CDR (50), (b) the LT-CDR (98), and (c) the LL-CDR (84) for system

parameters yo = 7.6, oc = 0.363, L2 = 0.0157, and a = 0.04.

Fig. 15 Plots of the frequency mismatches (a) |' - +J, (b) p - kfbl, (c) p - z-1, (d)

|L -aD and (e) |L - I versus k for the system parameters Yo = 7.6, Lc = 0.363,

-j = 0.0157 and A = 0.04. The complex & in figure 15 solves the waterbag CDR
P

(51).

Fig. 16 Plots of the upshifted growth rate Im(p) vs k obtained numerically from the

waterbag FDR (50) and CDR (51), and from the Gaussian FDR and CDR. The

system parameters are jo = 50, De = 0.015, & = 3.6 x 10-5, and = 0.0002.
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Fig. 17 Plots of the upshifted growth rate Im(.) vs k

waterbag FDR (50) (-) and CDR (51) --- -)

system parameters are 10 = 1.3, J, = 0.236, and

Fig. 18 Plots of the upshifted growth rate Im(LZ) vs f
waterbag FDR (50) (-) and CDR (51) (- - -)

system parameters are go = 1.3, oc = 0.236, and

obtained numerically from the

for several values of A. Other

Gj = 0.0039.

obtained numerically from the

for several values of A. Other

,2 = 0.0039.

Fig. 19 Plots of the upshifted growth rate Im(J) vs k obtained numerically from the

Gaussian FDR for several values of e2. Other system parameters are -yo = 1.3,

1.1, and i =0.04.

Fig. 20 Plots of the upshifted growth rate Im(&) vs k obtained numerically from the

Gaussian FDR for several values of . Other system parameters are -yo = 7.6,

Lc = 0.363, and 0) = 0.0157.

Fig. 21 Plots of the upshifted growth rate Im(&) vs k obtained numerically from the

Gaussian CDR for several values of A. Other system parameters are yo = 7.6,

Oc = 0.363, and .2 = 0.0157.

Fig. 22 Plots of the upshifted growth rate Im(&) vs k, obtained numerically from the

Gaussian (a) FDR and (b) CDR. The system parameters are -o = 7.6, c, = 0.363,

L2 = 0.0157, and A = 0.04.

Fig. 23 Plots of the upshifted growth rate Im(&) vs k obtained numerically from the

Gaussian FDR (-) and the Gaussian CDR(- - -) for several values of i. Other

system parameters are go = 1.3, Oc = 0.236, and Gj = 0.0039.
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