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Abstract

In this thesis, we propose a methodology for incorporating attitudinal data in a choice
model to capture unobservable heterogeneity across the population. The key features
of this approach are, 1) the concept of latent attitudes, and the assumption that 2)
the respondent’s answers to psychometric attitudinal questions relating to the impor-
tance of attributes are manifestations of these attitudes and that 3) those attitudinal
data bring sufficient information to capture unobservable heterogeneity across the
population in the context of choice behavior. Each individual is probabilistically
assigned to a finite number of segments according to his/her own value of latent at-
titudinal variable(s) as well as to threshold parameter(s) common to the population.
Segment-specific parameters are estimated simultaneously. An empirical case study
on shopping trip mode choice demonstrates the effectiveness of the methodology.
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Chapter 1

Introduction

Consumers are often treated as“optimizing black boxes” in econometric models. In-
puts might be attributes of alternatives, socioeconomic characteristics, market in-
formation, historical experience, and market constraints. Figure 1-1 gives a path
diagram for the decision-making process. This path diagram builds on earlier con-
ceptualizations of McFadden (1986), Ben-Akiva and Boccara (1987), Morikawa (1989,
1996), and Gopinath (1995). Terms in ovals are theoretical or latent variables, while
those in boxes are observed directly or measured by suitable experiments. Percep-
tions and attitudes are influenced by attributes of alternatives and by decision-maker
characteristics. Attitudes affect latent segments, and latent segments and perceptions
together determine preference, and preferences are the major source of the market

behavior.

1.1 Heterogeneity across Population

Since the late 1970s, many researchers have widely employed the multinomial logit
model to study consumer choice behavior (e.g. Green et al. 1977, Guadagni and Little
1983, Ben-Akiva and Lerman 1985, Krishnamurthi and Raj 1988). While the appli-
cation of the multinomial logit has been widespread, research on proper control for
heterogeneity has been limited. However, unmeasured individual/household-specific

factors may influence an individual’s/household’s choice behavior. Even with the
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Figure 1-1: Path Diagram for Consumer Behavior
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specification of demographic variables, individuals/households may differ in their re-
sponses to marketing mix variables. Failure to account for such heterogeneity results

in biased and inconsistent parameter estimates.

1.2 Market Segmentation

Consumers differ in one or more respects. They may differ in their socio-econometric
characteristics and each individual has different attitudes and different preferences.
In the context of preference heterogeneity in the market, there are three different

patterns (Figure 1-2 presents an illustration of each pattern.) :

Homogeneous Preference

All the consumers in the market have roughly the same preference. In other words,
there are no natural segments in the market. However, this situation seldom happens

in reality.

Diffused Preference

At the other extreme case, consumer preferences may be scattered through out the
space. In such a case, instead of segmenting the market, estimating the parameters

at the individual/household level might be desirable but is rarely, if ever, practical.

Clustered Preference

The market might reveal distinct preference clusters, called natural market segments.
In this case, it is necessary to make a model capturing heterogeneity. Most practical

cases might fall in this pattern.

13
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1.3 Literature Review

1.3.1 Importance of Capturing Heterogeneity

The theoretical development of discrete choice models is based on utility-maximizing
behavior at the individual or household level. Therefore, ideally, the parameters
of the choice model should be estimated at the individual/household level. Even
in panel data, however, the number of observations per individual/household is of-
ten insufficient for consistent and efficient estimation of individual/household-specific
parameters. Further, from the standpoint of marketing decision making, the param-
eter estimates are meaningful only at the aggregate or market level. Accordingly,
researchers have resorted to pooling the data across individuals/households and es-
timating a set of aggregate-level parameters. A pertinent question is: What is the
effect of heterogeneity across individuals/households on the estimated parameters of
a logit model of mode choice? In general, failure to control for such heterogeneity
is likely to yield biased and inconsistent parameter estimates, and more importantly,

biased and inconsistent estimates of choice probabilities (Hsiao 1986).

1.3.2 Segmentation according to Past Choice Behavior

Researchers have recently addressed the preceding issue in one of two ways. The
first approach is incorporating heterogeneity in preferences in the context of a choice
model using observed past choice behavior. Guadagni and Little (1983) used two
variables referred to as “brand loyalty” and “size loyalty”, which are exponentially
weighted averages of past brand and brand-size choices, to account for heterogeneity
across households. Their approach tracks changes in households tastes over time us-
ing a weighted average of past choice behavior in which recent choice is weighted more
heavily. Thus, this loyalty variable captures not only much of the cross-sectional het-
erogeneity but also a good part the purchase-to-purchase dynamics. Krishnamurthi
and Raj (1988) used a household-specific variable based on the share of purchases of

a particular brand in relation to all brands. Kamakura and Russell (1989) develop a
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model to identify a finite number of segments allowing parameters to remain constant
within each segment but differ across segments. A latent class approach is used to
estimate endogenously the size and logit-model parameters of each segment. Accord-
ingly, the approach proposed by Kamakura and Russel to analyze brand choice of
households consists of a finite mixture of logit models. They apply this approach
to study the competition between national brands and private labels in one product
category. Allenby and Rossi (1990) used a somewhat different operationalization,
wherein heterogeneity is captured via a fixed term that is measured as the difference
between the predicted choice probabilities and the probabilities estimated by a rel-
ative frequency approach. A justificatio.. for the use of such variables is that they
attempt to capture the differences in brand preferences across households. Fader and
Lattin (1993) separate the heterogeneity and non-stationarity components of brand
loyalty. Chintagunta (1994) has developed a latent class model that segment specific
brand intercepts are constrained to lie within a subspace of few dimensions, with the
inferred brand and segment locations in that space constituting a product-market
map. Bucklin, Gupta and Siddarth (1998) consider response segmentation through
a latent class model that simultaneously incorporates all three purchase behaviors:
choice, incidence, and quantity.

A question that arises in using observed past brand/mode choice histories to
capture heterogeneity across households/individuals is whether it would affect the
estimates of the unknown parameters such as price and travel time. Gonil and
Srinivasan (1993) claim that the purchase history measure includes unobserved choice
behavior and, as a result, could be correlated with the random component resulting in
biased and inconsistent estimates. In other words, the effect of past brand choices on
current choice will be overstated if the past choices are not adjusted for the possible
effects of price and other promotional variables. Consequently, the effect of some of

the other variables included in the model would be understated.
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1.3.3 Random-Coefficients Specification

The second approach dealing with unobserved heterogeneity is to use a random-
coefficients specification in which the parameters of the household-level logit model
of brand choice are treated as realizations of random variables representing the pref-
erences of households and their responses to marketing activities. These random
variables are assumed to follow a continuous probability distribution. The studies
by Chintagunta, Jain, and Vilcassim (1991), Goniil and Srinivasan (1993), and Jain,
Vilcassim, and Chintagunta (1994) are in this vein. Chintagunta, Jain, and Vilcas-
sim (1991) suggest that in attempting to capture heterogeneity, imposing a single
probability distribution across all brands would not be appropriate. Their model has
a choice specific random component on the intercept term and their random distri-
butions are estimated non-parametrically by the Hecman and Singer (1984) proce-
dure. They estimate a finite number of support points and associated prcbabilities
for the distribution of intrinsic preferences across households. Goniil and Srinivasan
(1993) use Universal Product Code scanner data on disposable diapers and present
the multinomial logit model integrating random variations in intrinsic brand utilities
(intercepts), random variations in response to marketing variables, and loyalty. Jain,
Vilcassim, and Chintagunta (1994) approximate the unknown underlying distribu-
tion of unobserved heterogeneity by a discrete distribution. An advantage of using
a random-coefficients specification to account for heterogeneity is the parsimony in
the number of parameters to be estimated relative to estimating household-specific
parameters (e.g., Rossi and Allenby 1993). Gopinath (1995) develops the latent class
choice model (LCCM) for taste heterogeneity with specific reference to the classes
characterized along cost sensitivity and time sensitivity dimensions. Since the mem-
bership of individuals in groups is unobserved, the groups are characterized by latent
classes. In his model, the underlying choice process is hypothesized to vary across a
finite set of groups of individuals in the population, and to be homogeneous within

each such group.
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1.4 Objective of Research

The major objectives of this research are to 1) capture the unobservable heterogeneity
across the population, and 2) incorporate the captured heterogeneity in discrete choice
model. Unobservable heterogeneity is captured by using structural equations with
latent variables, which is well known as the LISREL model. The motivation of this
research is based on the idea that the captured latent variables could bring “good”
information to extract the difference of sensitivities across the population, and the
captured heterogeneity enables to improve the explanatory power of discrete choice
model. We accounted for unobserved heterogeneity across individuals in a logit model
of mode choice by assuming the existence of a finite number of segments. Each
segment consists of a set of individuals having identical overall mode preference and
response to mode attribute variables.

It has been argued that consumer’s choice behavior is affected by latent factors
such as “comfort” as well as manifest ones such as “price”. In some cases, to capture
heterogeneity across the population, using latent variables might be more reasonable
than using observable variables. We consider shopping trip mode choice as an empir-
ical case study. Comparing mode choice for shopping mall trips with mode choice for
commuting, shopping mall trip data might reflect a wider variety of decision-protocols,
taste variations, and latent factors such as attitudes and perceptions which affect the
decision making process, because of fewer constraints in shopping trips. In such a
case, a model using only observed variables sometimes fails to control for heterogene-
ity, which is a typical problem encountered in estimating models from observed data.
Obtaining an acceptable model specification is often very difficult because the actual
behavior is influenced by related attributes, which are usually latent, while the avail-
able data are limited. Therefore, we use latent variables, which might provide useful
information on heterogeneity across the population, and might enable us to obtain
unbiased parameters in the resulting choice model. To deal with the latent variables,
we apply structural equations with latent variable techniques. Structural equations

with latent variables have some familiar specifications such as the multiple indicator

18



multiple cause (MIMIC) model and the higher-order factor analysis (HOFA) model,
which will be reviewed in the next chapter. In our case study, the HOFA model is
combined with the segment likelihood membership model to capture unobservable
heterogeneity. The reason we focus on the HOFA model is that assuming the ex-
istence of more general and abstract factors behind the “first-order” factor is more
reasonable and realistic, and it results in the improvement of the explanatory power of
the model. The MIMIC model, on the other hand, uses observed exogenous variables
and those variables are assumed as a perfect measure of latent exogenous variables.
This assumption could be unreasonable in some cases.

In principle, our approach is an extension of the work of Gopinath (1995). Gopinath
doesn’t specify explicit indicators for the classes in LCCM. Rather, only the choice
indicator was utilized as an indirect indicator of the latent class. Our approach,
on the other hand, uses psychometric data as direct indicators of latent segments.
Those indicators specify latent attitudinal variables that are included in the segment
likelihood membership model, not in the choice model. Further, latent attitudinal
variables are captured by the HOFA model which includes both latent endogenous
and exogenous variables. The latent exogenous variable is used in the segment likeli-

hood membership model.

1.5 OQutline of Thesis

This thesis is composed of five chapters. Chapter 2 reviews structural equations with
latent variables, focusing on the higher-order factor analysis model. The multiple
indicator multiple cause model is also presented in this chapter. Chapter 3 proposes
a methodology of incorporating unobservable heterogeneity in demand modeling, in
which the mode choice model includes latent variables to capture the heterogeneity
across the population. In Chapter 4, an empirical analysis of the model is pre-
sented using shopping trip survey data collected in a shopping mall. This survey
includes psychometric data, obtained through perceptual and attitudinal questions.

Those psychometric data are used as observable indicators of the latent heterogene-

19



ity. Finally, Chapter 5 summmarizes the thesis and presents the conclusions and future

research topics.
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Chapter 2

Structural Equations with Latent

Variables

2.1 Introduction

In this section, we review structural equations with latent variables and their sub-
models: multiple indicator multiple cause (MIMIC) model and higher-order factor
analysis (HOFA) model. The purpose of this chapter is to introduce the HOFA
model and clarify the difference between the MIMIC and the HOFA model.

The structural equation model is used to specify the phenomenon under study
in terms of cause and effect variables and various causal effects. Each equation in
the model represents a causal link rather than a mere empirical association, and
the structural parameters do not, in general, coincide with coefficients of regressions
among observed variables. The structural parameters rep}esent relatively unmixed,
invariant and autonomous features of the mechanism that generates the observable
variables (Joreskog 1982). Background material and advanced topics are covered
by Everitt (1984) and Bollen (1989). In this chapter, starting with the review of
structural equation models, we will discuss two sub-models, the MIMIC model and

the HOFA model, and then the rules of identification.
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2.2 Structural Equation Model and Measurement

Equation Model

Structural equations with latent variables consist of two parts: structural equation

model and measurement equation model. The structural equation model specifies the

causal relationships among the latent variables and are used to describe the causal

effects and the amount of unexpected variance. The measurement equation model

specifies how the latent variables or hypothetical constructs are measured in terms of

the observed variables and is used to describe the measurement properties (validity

and reliabilities) of the observed variables. The general matrix representation of the

structural equations for the latent variable model is given by:

Structural Equation Model
n" = Byn +T€ +(,
Measurement Equation Model
z = A"+ K& +¢,

where

*

n* : m x 1 vector of latent endogenous variables,

& : g x 1 vector of latent exogenous variables,

By: m x m coefficient matrix for latent endogenous variables, where all
diagonal elements are zero,

I' : m x q coefficient vector for the latent exogenous variables,

¢ : m x 1 vector of latent random components,

: p x 1 vector of observable multivariate data,

N

-

: p X m coefficient matrix for the latent endogenous variables,

K : p x q coefficient matrix for the latent exogenous variables,

22
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€ : p x 1 vector of random components.

In general, the models involve some standard assumptions:

Assumption 1

EE¢) = O,
E(n) = O,
E() = O,
E(e) = O.

Assumption 2
Covariance-variance matrix of exogenous variables ¥, where ¢ = (€/¢'§*")’, is restricted

as

¢

I
O O @
O & O

O O

mn

Assumption 8

(1 — By) is non-singular.

2.3 Basic Structure of Covariance Matrix
By using the Assumption 3, we can rewrite Equation 2.1 as
n* = BT'¢* + BC, (2.3)

where B = (1 — By)™".
Substituting Equation 2.3 into Equation 2.2, the observable variables are described

as linear function of latent exogenous variables.

z2=(ABl' + K)¢* + AB( +e. (2.4)

23



Since the variance-covariance matrix of observable variables is described as

Cov(z) =X, = E(27), (2.5)

with Assumption 2, the variance-covariance matrix ¥, becomes

%, = (ABT + K)Z(ABT + K)' + ABUB'A + ©. (2.6)

This ¥, shows the basic structure of the variance-covariance matrix of structural
equations model. The variance-covariance matrix X, is a function of the elements of
A K,B,T,Z, ¥, and ©. In applications some of these elements are fixed and equal
to assigned values. For the remaining non-fixed elements of the seven parameter
matrices one or more subsets may have identical but unknown values. Thus, the

elements in A, K, B,T,Z, ¥, and O are categorized into three types:
1. fized parameters that have been assigned given values,

2. constrained parameters that are unknown but equal to one or more other pa-

rameters, and

3. free parameters that are unknown and not constrained to be equal to any other

parameter.

A structural equation model is fully defined by the specification of the structure of

the following seven matrices:

A K,B,T,=, 0,0, (2.7)

where the first four matrices are the parameter matrices and the last three matrices
are the variance-covariance matrices of £*, (, and ¢, respectively. Also, all the matrices

may contain fixed, free, or constrained elements.
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2.4 Estimation

Let 7 be the vector of all free and constrained parameters in all seven parameter
matrices. In estimation of the structural equations, maximum likelihood (ML), least
squares (LS), or generalized least squares (GLS) is usually used. The goal of estima-
tion is to choose values for the unknown parameters that lead to an implied covariance
matrix, ©,(7), as close to sample covariance matrix, S, as possible. The unknown

parameters are estimated by minimizing the one of the following functions.

FSAS LS[EZ(T)] = %tr(sz - ZZ(T))27 (2°8)
Foas auslBa(n)] = 5tr((S: = Z.(r)S72, (29)
Fsas mLe[Z(1)] = tr(S,(1)7'S;) —In| ,(1)7'S. | —p, (2.10)

FLISRE‘L[Zz(T)] = ln I EZ(T) | +t’7‘(zz(7')—15z) —In | Sz | —p. (211)

where Fs,g[ -] are the functions used in SAS’s CALIS procedures and FyisgpLl -]
is the function used in LISREL. Two stage least squares (2SLS) estimation method
presented by Bollen (1996) is estimable with standard statistical software.

Adding some restrictions to Equations 2.1 and 2.2, one can handle all kinds of reason-
able sub-models in a simple manner (e.g. Bollen 1989), such as the multiple indicator

multiple cause (MIMIC) model and the higher-order factor analysis (HOFA) model.

2.5 Multiple Indicator Multiple Cause (MIMIC)
Model

The MIMIC model assumes the existence of certain latent variables which are directiy
affected by two or more observable dependent variables and which are indicated di-
rectly by one or more observable independent variables. In other words, the MIMIC
model is a three step causal chain system model, in which the variables in the middle

(second) step are described as latent variables (Figure 2-1). In the MIMIC model,
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Figure 2-1: Path Diagram for MIMIC Model
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Equation 2.2 is constrained as:

x 0 I O
2= = n* + £ + , (2.12)
y Ay 0 €

and the structural equation of the MIMIC model is given by

n* = Bun'+Tz+(, (2.13)

where

z : q X 1 vector of observed indicators of &,

y : p x 1 vector of observed indicators of 7},

n* : m x 1 vector of latent endogenous variables,

£ : q x 1 vector of latent exogenous variables,

By: m x m coefficient matrix for latent endogenous variables,
B = (1-Bg)™,

I' : m x n coefficient vector for the latent exogenous variables,
Ay @ p x m coefficient matrix for the latent endogenous variables,
¢ : m x 1 vector of random components,

€ : p x 1 vector of random components,

I : g x g identity matrix,

O : zero matrix.

Note that in the MIMIC model, = is assumed as a perfect measure of £&* and that
only one latent variable, n*, is present in the model.

Since each element of variance-covariance matrix ¥, is given by’

£, = A,(BTEI'B' + B)A, +6, (2.14)
Sy = A,BIE, (2.15)
L., = SI'BAL, (2.16)

!Details are shown in Appendix A
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5, =

[n

, (2.17)

variance-covariance matrix of MIMIC model is

Ay(BTEI'B' + B')A, +© A,BI=

- Ly Xy
yomme = = _ _ , (2.18)
Yo X EI'B'A;, =
where
¥ = E(¢("),
© = E(e€')

2.6 Higher-Order Factor Analysis (HOFA) Model

Factor analysis is used based on the analyst’s recognition that relatively few underly-
ing latent variables may underlie a large number of indicators. Moreover, the assump-
tion that the latent variables more closely correspond to the concepts of psychometric
theory than do the indicators is another motivation. In some cases, assuming the ex-
istence of more general and abstract (second-, third-, or higher-) factors behind the
“first-order” factors is more reasonable and realistic, and it might improve the ex-
planatory power of the model. Such a model is a higher-order factor analysis (HOFA)
model. Here, we review the second-order factor analysis (SOFA) model. Figure 2-2

represents a path diagram for the SOFA model.
Structural Equation Model

= T&+(, (2.19)
Measurement Equation Model

z = Ap*+e (2.20)
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Figure 2-2: Path Diagram for HOFA Model
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The variance-covariance matrix of the SOFA model is 2
zsofe — ATE['A’ + ATA' + O, (2.21)

where

*

n* : m x 1 vector of latent endogenous variables,

£ : 1 x 1 vector of latent exogenous variables,

N

: p x 1 vector of observed indicators of n*,
: m x 1 coefficient vector for the latent exogenous variables,

: p x m coefficient matrix for the latent endogenous variables,

LT

: m % 1 vector of random components,

o™

: p X 1 vector of random components,
= E(£¢"),

v = E(CCI)’

O = E(e€).

4]

In the HOFA model, Equation 2.19 linking 7* to £* is part of the measurement model,
yet it also is an equation linking latent variables. Ncte that if you add the assumption

that £* = z, the HOFA model will be identical to the MIMIC model.

2.7 Identification

One of the issues an analyst should pay attention before specifying models and esti-
mating unknown parameters is identifiability of the model. The parameters in 7 are
globally identified only if no vector 71 and 7, exist such that X(r) = X(72) unless
71 = 7». If all unknown parameters in 7 are identified, then the model is identified.
Rules exist that aid in the identification of the general model. We review some of
these next. Unfortunately, none of these is a necessary and sufficient condition for

n:odel identification.

2Details are shown in Appendix B
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2.7.1 t-Rule

The t-rule for identification is that the number of non-redundant elements in the
covariance matrix of the observed variables must be greater than or equal to the

number of unknown parameters in 7 :

t = GEE+1), (222

where p is the number of observed variables and ¢ is the number of free parameters

in 7. The t-rule is a necessary but not sufficient condition for identification.

2.7.2 MIMIC Rule

The identification rule for MIMIC models is
p=22,q921, (2.23)

where p is the number of y’s, and ¢ is the number of z’s. The MIMIC rule is a

sufficient condition for identification but not a necessary one.

2.7.3 HOFA Rule

The identification rule for HOFA models is
p>2m2>g, (2.24)

where p is the number of indicators, ¢ is the number of {*’s, and m is the number of
n*’s. The HOFA rule is also a sufficient condition for identification but not a necessary

one.
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2.8 Summary

In this chapter, we reviewed the structural equations with latent variables, which
enable us to deal with unobservable variables. The difference of the MIMIC model
and the HOFA model are clarified. By definition, latent variables are unobservable,
so that we should pay attention to the identifiability of the model and method of the
model evaluation. This topic is briefly reviewed in this chapter.

In the next chapter, we present a methodology for incorporating psychometric data
in discrete choice models to capture unobservable heterogeneity across the population.

In principle, this methodology builds on the theme reviewed in this chapter.
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Chapter 3

Framework of Segment-Specific
Choice Model and Segment
Likelihood Membership Model
with Attitudinal Data

3.1 Introduction

Our approach is based on the assumption that each individual can be placed into a
small number of segments according to the differences of attitude, and the differences
of attitude causes the differences of preference. The model includes two sub-models:
1) segment-specific choice model, and 2) segment likelihood membership model. We

will discuss those models in turn.

3.2 Segment-Specific Choice Model

In deriving the model, we start with the usual assumptions of random utility theory:
when facing a mode choice decision, each individual assigns random utilities to each
mode considered and then selects the one with the highest derived utility. This utility

is decomposed into a deterministic component and a random component. Therefore,
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the random utility assigned to alternative i by individual n who belongs to segment

sis
;ilu, = aSXni + Vni, (31)

where

a; : unknown parameter vector for segment s,
Xni: attributes of alternative ¢ and decision maker n’s characteristics,

Vp;i : random component.

Assuming that v,; derive from independent, identical Gumbel distributions, individ-

ual n’s conditional probability of choosing ¢ is given by the multinomial logit model,

exp(po;s Xn;)
¥jec, exp(pas Xn;)’

Prija, (3.2)

where

i : scale parameter of Gumbel distribution,

C,, : choice set of individual n.

Therefore, the log-likelihood function for individual n choosing alternative 2 is given

by

)

I
Ln]as - H(Pm'las)nni7 (33)

=1

where k,; = 1, if individual n chooses alternative 7, and x,; = 0, otherwise.

3.3 Accounting for Heterogeneity

The formulation in Equation 3.2 assumes that a; varies across the segments. Hence,

a; can be assumed to be a realization of the random variable (vector) a that has a
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distribution A(a). Therefore, the unconditional likelihood function for individual n

is given by

1
L, = /,. [I:Il(P,,ﬂa,)""‘]dA(a). (3.4)

We approximate A(«) by a discrete distribution with a finite number of supports S
and their associated probabilities Q(as), s = 1,2,...,S, such that Y5 ,Q(as) = 1.

Therefore, individual n’s likelihood is given by

S I
Lo = Y[[I(Puita)"1Q(ax). (3.5)

s=1i=1

The locations o, and probabilities Q(a,) for all s = 1,2,...,S are then estimated

from the sample data by maximizing the sample likelihood function.

L = INILn. (3.6)

n=1

3.4 Segment Likelihood Membership Model

We assume the existence of s = 1,2,..., S homogeneous segments in preference with
relative sizes. We further assume that likelihood of finding individual n in segment s
is characterized by criterion function G*. The criterion function G}, for individual n

can be written as!

G: = DF!+6,, (3.7)

where

D : 1 x (g+ m) coefficient vector,
F*: (g+m) x 1 vector of latent attitudinal variables,

g : number of latent exogenous variables,

1Criterion functions by Gopinath (1995) use observable variables, such as income, age, and
gender, instesd of F*.
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m : number of latent endogenous variables,

6, : random components following the distribution N (0, 02).

The value of each element of D can be zero or one. The specification of the criterion
function is aided by prior behavioral hypotheses that the relevant individual attitu-
dinal latent variables affect each dimension. For example, an individual’s sensitivity
to travel time might be hypothesized to be affected by the individual’s latent time
consciousness. By assuming the existence of threshold values (), the latent segment

levels in particular dimension are associated with the underlying criterion functions.
s = k,if O <G, <O k=1,---,8, (3.8)

where 6; is threshold parameter (fp = —oo and fs = +oc). Further, assuming a
parametric probability density function for é,, the probability that individual n falls

in the segment s is

Qn(as | F;;D, 0) = Qn(os—l < DF; +0, < os)
= Qn(es—l - DF; <6, <6 — DF;:) (3-9)

Since the criterion function G* is latent, it is necessary to set the scale of the function.

Otherwise, the unknown parameters cannot be identified because:

Qn(BS_l — DF;:'= < 5,, < 93_1 - DF;:) (310)
= Qu(c-bs-1—c-DF; <c-6,<c-6,_1—c-DF})
= Qn(6,.1 — DFE* < 6, <0,_, — DE}), (3.11)

where ¢ is an arbitrary positive scalar, and g, D~F.,'{, and 6, are scaled form of the
corresponding parameters in Equation 3.9. This equation shows that the probability
of individual n falling in latent segment s does not change by scaling values of 6
ana DF}. Therefore, it is necessary to fix the scale of the criterion function G* to

identify the parameters. To make the criterion function G* identifiable, the following
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assumption is added.
3, ~ N(0, 1). (3.12)
Hence, Equation 3.9 becomes
Qnlos | F3;D,0) = @(6, — DF;) — ®(6.-, — DFy), (3.13)

where ®( - ) denotes the cumulative distribution function of the standard normal.

3.5 Structural Equations with Latent Variables

Uncbservable (latent) variable F,; can be represented by the structural equations,
as we reviewed in Chapter 2. Here, we assume the existence of latent endogenous

variables () and latent exogenous variable (£;). Thus, F; = [/ n;,']' is given by

M = T& + G, (3.14)

Yn = Ayn:;+€n, (315)

where

n: : m x 1 vector of latent endogenous variables,

& : q x 1 vector of latent exogenous variables where & ~ MV N(0, Z),
yn : p x 1 vector of observed attitudinal indicators of 7},

I' : m x g coefficient vector for the latent exogenous variables,

A : p x m coefficient matrix for the latent endogenous variables,

¢, : m x 1 vector of random components where ¢, ~ MV N(0, ¥),

€» : p X 1 vector of random components where €, ~ MV N(0, O).

Equation 3.14 and 3.15 represent a special case of structural equations with latent
variables. If you assume £* = z then Equation 3.14 and 3.15 would represent the

MIMIC model, or if you assume g = 1, then those two equations would become the
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SOFA model®. The key to our model is expressing a consumer’s choice probabilities

in terms of the choice probabilities corresponding to the various segments.

3.6 Estimation Method

Assuming that the random vectors (, €, and ¢ are independent, the log-likelihood

(LL) function for the model is given by

= > 3 Kin-In{ / / Z exp(pag Xni)

n i€Cn Z]ECn e\P(NaanJ) .
[(I)(es - DF::) - (D(os—-l - DF*)])
Pl ya— A, T 'Inh Ff* 1 fnz
¢:l[=Il O_(drb( P ) hl__[l " ¢( =) - H aw ag.
dn;, d&r}, (3.16)

where k;;, = 1 if individual n chose alternative i, 0 otherwise, and o, o¢, and o¢-
are square root of diagonal elements of ©, ¥, and Z, respectively. Because the
number of segments S is unknown, parameter estimation is carried out conditional
on an assumed value for S. As you might think, Equation 3.16 is computationally
demanding. Usually, in such a case, it is helpful to have good starting values of
unknown parameters before we start the full information estimation. In short, since
the model is a combination of the structural equation model and the multinomial logit
choice model, we can easily get ad-hoc estimation values of unknown parameters by
doing the estimation step wisely; those values will then be good starting values for full
information estimation. Consequently, we can reduce the number of iterations and
lessen the chances of non-convergence for iterative estimators. In the next subsection,

we will give a brief explanation of this procedure.

3.6.1 Estimation of Starting Values

The procedure to obtain approximate values of unknown parameters is as follows:

2Details are shown in Chapter 2
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Notation for estimation of starting values

T
&

1‘ .
Fr.

D
0s
a

I

‘\’m‘t
Cp:

: m x 1 vector of latent endogenous variables,

: ¢ % 1 vector of latent exogenous variables,

(g + m) x 1 matrix of true values of 7}, and &;.

: 1 x (g + m) coefficient vector,
: threshold parameter,
: unknown parameter vector for segment s,

: scale parameter of Gumbel distribution,

attributes of alternative 7 and decision maker n’s characteristics,

choice set of individual n.

. Estimate unknown parameters [\,f‘,é, and ¥ in structural equations (Equa-

tion 3.14 and 3.15) by using structural equation modeling software packages

such as SAS’s CALIS procedure or LISREL.
Calculate the fitted value of F' using the procedure shown in Appendix D.

Estimate the unknown parameters of the utility function, and segment mem-
bership function by using maximum likelihood estimation method. The choice

probability of individual n choosing alternatives ¢ is given by

S

exp(uasXni) [®(6, — DE*) — ®(6,_; — DE*)](3.17)

P,(1
0 = T P Xoy)

The log-likelihood function is given by

Z Z o - ln{z exp(uasXn;)

n i€C, ZJECn exp(ﬂaanJ) .
[®(6, —~ DF;) — (6,1 — DE})]}. (3.18)

Note that estimated values of parameters are inconsistent because latent vari-

able vector F); is treated as non-stochastic in Equation 3.18.
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3.7 Summary

In this chapter, a methodology, for incorporating psychometric data in discrete choice
models to capture the heterogeneity across the population, is presented. The proposed
approach is a combined system of linear structural equations, which identify latent
variables using observable indicators, and non-linear equations, which present the

discrete choice model. In the next chapter, an empirical analysis will be demonstrated.
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Chapter 4

Empirical Analysis

4.1 Introduction

To verify the advantage of the methodology presented at the previous chapter, we
conduct an empirical analysis. This empirical analysis is a clear demonstration of
the effectiveness and practicality of incorporating attitudinal data in discrete choice

model to capture unobservable heterogeneity across the population.

4.2 Description of the Data

In 1995, a Japanese contractor conducted a survey of a shopping mall located in
Chiba, Japan, to get some knowledge of mode choice behaviors for shopping trips.
Randomly sampled visitors’ data were collected by doing face-to-face interviews. Sev-
enty seven percent of the respondents were female. Twenty one percent were less
than 30 years old, 48% between 35 and 49 years old, and 31% were more than 49
years old. The sample used in this paper comprises 357 home-based person-shopping
trips, which is 80.0% of the sample. The trip modes are drive(DR), shared ride(SR),
and transit(TR). The mode choice shares in the sample are as follows: DR(58.8%),
SR(25.1%) and TR(16.1%). The questionnaire' contained some psychometric ques-

1Questions in the questionnaire are shown in Appendix F
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tions, which asked respondents to rate aspects for the shopping trip in five point
ratings such as 1)not important at all, 2)not very important, 3)somewhat important,

4)very important, and 5)essential.
1. relaxation during the trip (relz)
2. reliability of the arrival time (rela)
3. flexibility of choosing departure time (flex)
4. ease of traveling with heavy bags (ease)
5. inexpensiveness of the trip (inex)
6. safety during the trip (safe)
7. travel time (étme)

Table 4.1 presents a descriptive summary of the importance ratings of the visitors in
the survey. On average, ease of traveling with heavy bags is considered as the most

important attribute.
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Table 4.1: Importance Ratings for Mode Attributes

Frequency Distribution

Mode

Attribute Mean Std. dev. 1 2 3 4 5
relt 3.90 1.11 15 38 34 150 120
rela 3.83 1.04 11 35 55 157 99
flex 4.00 1.01 11 26 38 160 122
ease 4.21 0.96 8 15 40 126 168
inex 3.74 1.15 17 38 78 113 111
safe 3.94 1.05 10 26 68 124 129
ttme 4.08 1.02 11 20 46 132 148
total sample size 357
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4.3 Specification of the Model

4.3.1 Specification of Segment Likelihood Membership Model
Specification of the Structural Equations with Latent Variables

Assuming existence of some latent variables, we applied the second-order factor anal-
ysis (SOFA) model and the multiple indicator multiple cause (MIMIC) model to the
data set to get certain knowledge of structural relationships among the latent and

observable variables. The results might be helpful when specifying the full model.

SOFA Model

Figure 4-1 represents the path diagram of the SOFA model. The single second-order
factor is overall consciousness (£7) that directly influences three first-order factors:
convenience consciousness (1;), time & cost consciousness (n3), and comfort con-
sciousness(n;). These first-order factors have direct effects on two or three indicators

apiece.

The structural equation is specified as

n;n §4! Cln
Mo | = | % |[ &0 ]+ | G |- (41)
77:;7; Y3 C3n
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The specification of the measurement equation is given as

[ relz [ 1.00 O 0 €1n
rela Az 0 0 €2n
flex A3 O 0 Min €3n
inec [=| 0 100 O m, | | €an |- (4.2)
ttme 0 Ao O M3n €5n
safe 0 0 1.00 €6n
| ease | | O 0 sz | | €7n |

In the A, one indicator per construct is chosen to scale the latent first-order factors.

The © and ¥ are assumed to be diagonal.

(o2 0 0 0 0 0 0|
0 63 0 0 0 0 O
0 0 04 0 0 0 O
©=0 0 0 ¢4 0 0 O (4.3)
0 0 0 0 0% 0 0
0 0 0 0 0 o% 0
00 0 0 0 0 o%
o5, 0 O
U = 0 0.22 0 (4.4)
0 0 o4
The = is assumed as
= = 1.00. (4.5)

This assumption is necessary to identify the SOFA model. An alternative assumption

to make the SOFA model identifiable is to normalize one element of T
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Figure 4-1: Path Diagram for SOFA Model
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MIMIC model

By adding the assumption shown below to the SOFA model, the SOFA model will
become the MIMIC model. The additional assumption is

- stp _ [ & -
tpp | _ | & , (4.6)
ocp &

| tspe | i &y ]

where

stp : 1 if the trip is only for shopping, 0 otherwise,
tpp : 1 if the total purchase payment is over 7,000 yen (=~ $64), 0 otherwise,
ocp : 1 if full time worker, O otherwise,

tspe: total time spending in the shopping mall (minute(s)).

Thkis assumption means that we treat the four observable variables (stp, tpp, ocp, and
tspe) as a perfect measure of latent exogenous variables and there are no measurement

errors. Hence, the structural equation of the MIMIC model is

_ o -
Min Y1 Y2 0 O . Cin
pp
Mn | =10 722 0 Y4 + | Con |- (4.7)
ocp
Min 0 772 733 0 (3n
| tspe |

Figure 4-2 shows the path diagram of the MIMIC model.
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Estimation Results of SOFA Model and MIMIC Model

The estimation of unknown parameters is achieved using SAS’s CALIS procedure.

The estimated parameters and their ¢ values of the SOFA model are as follows:

0.52(10.3) (n%,)
Lsora = | 0.68(12.6) (13,)
0.81(15.6) (n,)

(M) ) (m3n)
1.00 0 0 (relz)
1.13(11.4) 0 0 (rela)
Ruoge = 1.00(10.7) 0 0 (flex)
0 1.00 0 (inex)
0 1.01(11.9) 0 (ttme)
0 0 1.00 (safe)
i 0 0 0.74(10.7) (ease) ]
Osofa =
[ 0.53(10.4) 0 0 0 0 0 0o
0  040(83) 0 0 0 0 0
0 0  053(104) 0 0 0 0
0 0 0 0.46(9.4) 0 0 0
0 0 0 0 045(9.0) 0 0
0 0 0 0 0 0.31(5.8) 0
i 0 0 0 0 0 0 0.63(11.7) |
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0.205.1) 0 0
Vooa = 0 . 00819 O
0 0 0.03(0.5)

All coefficients have reasonable sign and almost all t-statistics values are high enough
to reject the null hypothesis that an estimated value is equal to zero.

The estimation results of the MIMIC model are as follows:

(stp) (tpp) (ocp) (tspe)
N 0.06(1.5)  0.09(2.1) 0 0 (min)
0 0.08(1.6) 0 —0.05(—1.0) (n3,)
|0 —0.05(—1.4) 0.09(1.9) 0 () |
(1n) () (M3n)
1.00 0 0 (relz)
1.14(10.2) 0 0 (rela)
R = 0.95(10.1) 0 0 (flez)
0 1.00 0 (inez)
0 0.77(1.6) 0 (ttme)
0 0 1.00 (safe)
i 0 0 1.79(2.3) (ease; ]
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[ 0.51(9.1) 0 0 0 0 0 0o |
0 03660 0 0 0 0 0
0 0 0559.9) 0 0 0 0
0 0 0 027(06) 0 0 0
0 0 0 0 057(21) 0 0
0 0 0 0 0 072(54) 0
o 0 0 0 0 0 010(0.3) |
0.48(65) 0 0
U mimic = 0  0.72016) 0
0 0 0.27(22)

Table 4.2 presents fit indices? on each model. Most of indices indicate that the SOFA
model is better than the MIMIC model from the viewpoint of fit of the data, so that
we use the SOFA model to describe the latent attitudinal variables. Further, we
assume overall consciousness (£]) has essential information to capture heterogeneity
across the population.

Assuming that in the population there are three latent classes at most, one or two
threshold parameters, 6, are needed in the segment likelihood membership model.
Therefore, the probability that individual n has parameter vector as,s =1,...,S is
given by:

Two segments model

Qnlar | &;61) = @6, - &), (4.8)
Qnloz | &0:0)) = 1- 20, - &) (4.9)

2Those fit indices are reviewed in Appendix C
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Table 4.2: Comparison of Fit Indices

SOFA Model MIMIC Model
PGFI 0.51 0.55
CFI 0.97 0.60
AIC 12.1 323.1
A 0.96 0.59
GFI 0.97 0.83
AGFI 0.93 0.69

Three segments model

Q

Q

4.3.2 Specification of Segment-Specific Choice Model

n(aa | 65:0)) = @[ — &,
Qnlaz | £:601,0,) = @0 —&] — @[6: — &,
nlas | &:0:) = 1— @6, - &

(4.10)
(4.11)
(4.12)

I arrived at the final specification based on a systematic process of eliminating vari-

ables found to be statistically insignificant in previous specifications. Each utility

function is specified as:

UDR*

nilas

SRx*
U,

ilas

UTR*

nijas

where

= a3, DRIt + aszage + agsgen + v,

= ais + a3, SRit + azsage + agsgen + v,

= s + a3, TRt + ayscost + agsnp + vs,

ay, and aw, : coefficient for alternative specific constant,

92

(4.13)
(4.14)
(4.15)



DRtt, SRtt, and TRit : total travel time for each mode,
cost : travel cost per persen,

age : 1 if 30 years or older, 0 otherwise,

gen : 1 if female, 0 otherwise,

np : 1if accompanied, 0 otherwise.

The path diagram of the full model is shown in Figure 4-3.

4.4 Estimation Results

Maximization of the log-likelihood function (Equation 3.16) is achieved using the
GAUSS matrix programming language. To make the log-likelihood function es-
timable, we add the assumption that (3, = 0. In order to study the effectiveness
of the latent segment model, we estimated four different models of mode choice. The

estimated models are:
1. no-heterogeneity model (MNL model).
2. a priori segment model (2APS model).
3. two latent segments model with overall consciousness (2LS model).
4. three latent segments model with overall consciousness (3LS model).

In 2APS model, we divided the sample according to 1) trip purpose, 2) total purchase
payment, 3) occupation, and 4) total time spent in the shopping mall and then model
estimations were conducted for each group. As the result, the model using the total
purchase payment as the criterion value showed the best fit to the data. The sample
is divided into two data sets according to the individual’s total purchase payment in

the mall and the criterion value is 7,000 yen (=~ $64).
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Table 4.3: Estimation Result of Multinomial Logit (MNL) Model

Parameters Estimates Std. err. t-stat.
SR constant -3.40 0.55 -6.2
TR constant -1.59 0.64 -2.5
travel time -0.01 0.005 -2.9
cost 0.0009 0.001 0.9
age(specific to DR) 0.14 0.39 0.4
age(specific to SR) 0.50 0.39 1.3
gen(specific to DR) -0.94 0.45 -2.1
gen(specific to SR) 0.83 0.52 1.6
np -0.99 0.33 -3.0
Number of observations 357

LL of at zero -360.98

LL of at convergence -249.08

4.4.1 Estimated Multinomial Logit Model

This model represents the no-heterogeneity case and is the simplest of the estimated
models. The estimated MNL model is presented in Table 4.3. Most of coefficients are
significant; however, the coefficient for cost is insignificant and has a counterintuitive

sign.

4.4.2 Estimated a Priori Segment Choice Model

The estimated a priori segment model is presented in Table 4.4. Many estimates
are insignificant and the estimated parameter for cost in segment 1 has a positive
sign, which is counterintuitive. The differences between the estimated parameters
for segment 1 and segment 2 indicate that some coefficier:s might vary across the

population.

95



Table 4.4: Estimation Result of a Priori Seginent Choice (2APS) Model

Parameters Estimates Std. err. t-stat.
Under $64 segment

SR constant -3.41 0.65 -5.2
TR constant -1.9 0.75 -2.6
travel time -0.01 0.005 -2.0
cost 0.001 0.001 1.1
age(specific to DR) -0.33 047  -0.7
age(specific to SR) 0.11 046  0.24
gen(specific to DR) -1.13 0.54 -2.1
gen(specific to SR) 0.79 0.62 1.3
np -1.06 0.41 -2.6
Number of observations 214

LL at zero -216.39

LL at convergence -156.42

Over $64 segment

SR constant -5.72 1.10 -3.4
TR constant -0.57 1.50 -0.4
travel time -0.021 0.01 -2.2
cost -0.062 0.003 -0.7
age(specific to DR) 0.92 0.89 1.0
age(specific to SR) 1.57 0.84 1.9
gen(specific to DR) -1.15 097 -1.2
gen(specific to SR) 0.32 1.08 0.3
np -1.14 0.60 -1.9
Number of observations 143

LL at zere -144.59

LL at convergence -87.87
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Table 4.5: Estimation Result of 2LS Model, Choice Model

Parameters Estimates Std. err. t-stat.
o -0.89 0.06 -15.9
Segment 1

SR constant -5.30 1.34 -4.0
TR constant 12.33 4.57 2.7
travel time -0.48 0.19 -2.6
cost -0.06 0.05 -1.1
age(specific to DR) 0.25 0.31 0.8
age(specific to SR) 0.69 0.68 1.0
gen(specific to DR) -0.66 0.29 -2.3
gen(specific to SR) 1.09 0.78 14
np -0.82 0.34 24
Segment 2

SR constant -3.96 0.61 -6.5
TR constant 10.90 3.76 2.9
travel time -3.01 2.00 -1.5
cost -0.08 0.05 -1.5
age{specific to DR) 0.25 0.86 0.3
age(specific to SR) 0.63 0.35 1.8
gen(specific to DR) -0.82 0.34 -2.4
gen(specific to SR) 1.36 0.85 1.6
np -0.80 0.35 -2.3
Number of observations 357

LL of choice model at zero -360.98

LL of choice model at convergence -235.85

4.4.3 Estimated Two Latent Segments Choice Model with

Overall Consciousness

The estimated two latent segments model with overall consciousness is presented
in Table 4.5 and Table 4.6. In this model, mest of coefficients are significant and
all coefficients have expected signs. The coefficients for intercepts and alternative
characteristics (travel time and cost) vary across the segments. Judging from the
values of the estimated coefficients, an individual who belongs to segment 2 wouid
have a relatively higher time and cost sensitivity, and value of time, and conscious of

comforts of the modes.
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Table 4.6: Estimation Result of 2LS Model, Structural Model (t-stat.)

0.52 (10.3) (n,)

I“12ls = [ 0.84 (96) (n;n) :|
0.91 (13.4) (n3,)

[ (n1n) (M3n) (M35)
1.00 0 0 (relx)
1.00 (9.3) © 0 (rela)
. 0.96 (9.9) 0 0 (flex)
2As= 10 1.00 0 (inez)
0 098 (11.1) ©0 (ttme)
0 0 1.00 (safe)
| 0 0 0.66 (10.6) (ease) |
_ ele - -
0.55 (9.6) 0 0 0 0 0 C
0 0.50 (11.3) 0 0 0 0 0
0 0 0.61 (12.5) 0 0 0 0
0 0 0 0.30 (9.6) 0 0 0
0 0 0 0 0.57 (10.4) 0 0
0 0 0 0 0 0.33 (6.9) 0
0 0 0 0 0 0 062 (124) |
0.18 (6.3) 0 0
Wop = 0 0.07(2.0) ©
0 0 0.00
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4.4.4 Estimated Three Latent Segments Choice Model with

Overall Consciousness

The estimated three latent segments model with overall consciousness is presented
in Table 4.7 and Table 4.8. In the choice model, although some ? statistics are
insignificant, all parameters have expected signs. All the parameters in the structural
equations have positive signs as expected and sufficiently large t-statistics. It seems
that segment 1 is the group which has the lowest time and cost sensitivity, while in
contrast, segment 2 is the highest time and cost sensitivity group. Segment 3 has

moderate sensitivity for time and cost.

4.4.5 Summary of Estimated Models

Comparing the estimates across the four model specifications, we see that the co-
efficients of marketing variables in the no-heterogeneity model (= MNL model) are
different from the estimates obtained from the other three formulations. In particular,
we note that the estimates for travel time and cost variables are biased downward
in magnitude in the MNL model. Table 4.9 presents the summary of the estimated
models. We find a improvement in the Akaike information criterion, Bayesian infor-
mation criterion3, and p? values for the two models that account for unobservable
heterogeneity. In terms of the Akaike information criterion and p?, the three latent
segments choice (3LS) model has the best fit among all the models. Meanwhile, look-
ing at the Bayesian information criterion, the two latent segments choice (2LS) model
fits the data the best. From the results of all the models, it might be reasonable to say
that by incorporating latent attitudinal variables (in this case, overall consciousness)

to segment the population, the explanatory power of the choice model is improved.

30One advantage of BIC over AIC is that it takes into consideration both the number of observa-
tions and the number of parameters used in the analysis.
BIC = —LL +1/2- R - log(T), where LL denotes the log-likelihood, R denotes the number of
parameters estimated, and T denotes the total number of observations.
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Table 4.7: Estimation Result of 3LS Model, Choice Model

Parameters Estimates Std. err. t-stat.
& -0.87 0.05 -16.7
0, 0.99 0.05 18.6
Segment 1

SR constant -6.93 1.73 -4.0
TR constant 11.93 3.85 3.1
travel time -0.25 0.13 -1.9
cost -0.05 0.03 -1.5
age(specific to DR) 0.22 0.32 0.7
age(specific to SR) 0.68 0.40 1.7
gen(specific to DR) -0.74 0.32 -2.3
gen(specific to SR) 1.14 0.52 2.2
np -0.79 0.30 -2.6
Segment 2

SR constant -3.96 0.61 -6.5
TR constant 11.05 3.16 3.5
travel time -3.36 1.60 -2.1
cost -0.08 0.04 -2.0
age(specific to DR) 0.25 0.27 0.9
age(specific to SR) 0.62 0.31 2.0
gen(specific to DR) -0.69 0.28 -2.5
gen(specific to SR) 1.46 0.61 2.4
np -0.76 0.30 -2.5
Segment 3

SR constant -3.87 0.70 -5.5
TR constant 12.70 4.54 2.8
travel time -3.11 1.24 -2.5
cost -0.08 0.05 -1.8
age(specific to DR) 0.26 0.21 1.2
age(specific to SR) 0.60 0.40 1.5
gen(specific to DR) -0.96 0.33 -2.9
gen(specific to SR) 1.12 0.62 1.8
np -0.83 0.30 -2.8
Number of observations 357

LL of choice model at zero -360.98

LL of choice model at convergence -214.23
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Table 4.8: Estimation Result of 3LS Model, Structural Model (t-stat.)

0.53 (9.8)  (nf,)

IA13ls = [ 0.92 (130) (n;n) jl
0.95 (14.4) (13,)

[ (71n) (m3n) (M3n)
1.00 0 0 (relz)
1.11 (11.5) 0 0 (rela)
i _|093(95) 0 0 (flez)
#7010 1.00 0 (inez)
0 1.06 (11.6) 0 (ttme)
0 0 1.00 (safe)
| 0 0 0.69 (10.9) (ease) |
) O35 = )
0.40 (8.2) 0 0 0 0 0 0
0 0.43 (12.6) 0 0 0 0 0
0 0 0.50 (11.5) 0 0 0 0
0 0 0 0.29 (8.6) 0 0 0
0 0 0 0 0.71 (11.3) 0 0
0 0 0 0 0 0.29 (7.2) 0
0 0 0 0 0 0 0.80 (11.8) |
) 0.14 (5.9) 0 0
By = 0  0.09(23) 0
0 0 0.00
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Table 4.9: Summary of Estimated Models

Indices MNL  2APS 2LS 3LS
Number of observations 357 357 357 357
Complete LL at convergence -249.08 -244.29 -1472.52 -1352.52

LL of choice model at convergence -249.08 -244.29 -235.85 -214.23

# of parameters of choice model 9 18 19 29
AIC 516.15  524.58 448.54 422.71
BIC 275.52 297.19  261.11  267.58
p? 0.29 0.27 0.38 0.41

4.5 Summary

In this chapter, we have conducted an empirical analysis. The four models
1. no-heterogeneity model,
2. a priori segment model,
3. two latent segments model, and
4. three latent segments model

are estimated using shopping trip data. The data for this analysis were obtained
from a survey of shopping mall visitors. In latent segment models, latent variables
are captured by the SOFA structure, and one latent exogenous variable is incorporated
in the choice model to account for the unobservable heterogeneity. No-heterogeneity
model and a priori segment model cannot successfully estimate important parameters
because those models failed to control heterogeneity across the population. The

results indicate that there could be severe biases in the parameter estimates for the
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effects of marketing variables if heterogeneity is not properly accounted for in the
analysis. In this empirical analysis, the bias appears to be especially severe for the
travel time and cost parameters, which are both important parameters in demand
analysis. In contrast, parameters estimated by latent segment models have reasonable
signs and statistically significant t-statistics. In the context of the fit of the data,
latent segment models also show better fit than no-heterogeneity and a priori segment
models. This empirical study provided a clear demonstration of the usefulness of the

latent segment model.
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Chapter 5

Conclusions

In this chapter, we summarize the key conclusions from the thesis, and suggest some
issues to be addressed. Regarding future research topics, we mention issues of robust-

ness of models and enhancements in data collection efforts.

5.1 Summary and Conclusions

In this thesis, we have provided an approach to accounting for unobservable hetero-
geneity across individuals in their response to marketing variables. The proposed
approach used latent attitudinal variables to characterize the unobservable hetero-
geneity across individuals in relation to their behavior in a market. In Chapter 2,
we reviewed structural equations with latent variables and presented two sub-models,
the higher-order factor analysis (HOFA) model and the multiple indicator multiple
cause (MIMIC) model. Our approach presented in Chapter 3, while allowing for
very general patterns of heterogeneity, is also empirically tractable. In addition, the
methodology makes it possible to take a very flexible approach to accounting for
unobservable heterogeneity, which would be an essential consideration factor in prac-
tical situations. Maximizing log-likelihood is computationally demanding; however,
a methodology to be able to reduce the number of iterations and lessen the chance of
non-convergence was presented. In Chapter 4, an empirical analysis was conducted

using shopping trip data. The second-order factor analysis model, which is a special
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case of the HOFA model, was used to describe the latent attitudinal variables, and
was combined with a discrete choice model. Simultaneous estimation was conducted
to obtain unknown parameters. The empirical results indicate that there could be
biases in the parameter estimates for the effects of marketing variables if heterogene-
ity is not accounted for in the analysis. Specifically, we find a downward bias in
magnitude in the estimates of travel time and cost when the model fails to account
for heterogeneity in the estimation. Proper control of heterogeneity will yield robust
estimates of the model parameters. Moreover, latent segment models fit better than
no-heterogeneity and a priori segment models. The effectiveness and practicality of

the methodology were demonstrated through this empirical analysis.

5.2 Future Research

Several possible avenues for future research exist. It would be interesting to assess
the robustness of the model given in this thesis using non-parametric techniques
such as bootstrap, jack-knife, or cross-validation!. In general, researchers have little
knowledge about the behavior or, in another word, robustness, of their models, and
non-parametric techniques would appear to be an ideal means to tackle this prob-
lem. One of the advantages of non-parametric techniques is that it does not require
distributional assumptions. Further, in structural equation models, very little work
has been done on how well those non-parametric techniques work in practice. Chat-
terjee (1984) demonstrates the use of the bootstrap for estimation of the variances
of the factor loading estimates. Lambert, Wildt and Durand (1991) investigate the
bootstrap confidence intervals for factor loadings and suggest their usefulness as an
aid in factor interpretation. Bollen and Stine (1990, 1992) discuss the application of
the bootstrap methods in structural equation models. Ichikawa and Konishi (1995)

conduct a Monte Carlo experiment to investigate the performance of the bootstrap

1This future research direction is suggested by Associate Professor Satosi Yamasita, Institute of
Statistical Mathematics.
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in normal theory maximum likelihood factor analysis both when the distributional
assumption is satisfied and unsatisfied. They note that more research is needed to
investigate the performance of the bootstrap methods in factor analysis under various

conditions.

Another area of future research interest is data collection methods. The statisti-
cally advanced and conceptually sophisticated set of tools for discrete choice analysis
provided in this thesis depends heavily on the availability of high quality data such
as attitudinal indicators. Such data, routinely collected in the marketing research
context, are rarely collected in travel demand analysis. Therefore, more substantive
research is needed in survey and questionnaire design to reflect the changing needs
of travel demand analysis, and more importantly, to assess the practical significance

and benefits of such modeling approaches.
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Appendix A

Variance-Covariance Matrix of

MIMIC Model

Notation for MIMIC model

z : n x 1 vector of observed indicators of &*,

y : p x 1 vector of observed indicators of n*,

n* : m x 1 vector of latent endogenous variables,

£ : n x 1 vector of latent exogenous variables,

By: m x m coefficient matrix for latent endogenous variables,
B = (1-By)™!

' : m x n coefficient vector for the latent exogenous variables,
Ay : p x m coefficient matrix for the latent endogenous variables,
¢ : m x 1 vector of random components,

€ : p x 1 vector of random components,

I : n X niden.ity matrix,

O : zero matrix.

The structural and measurement equations of MIMIC model are

;

(0]
Ay

(A1)
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n* = Byn*+Tz+(. (A.2)
Thus, each element of the variance-covariance matrix is described as:

%, = E(yy)

= E[(Ayn" +e)(Ayn” +€)]

= E[(Ay(BT¢" + BC) + €)(Ay(BIE" + BC) +€)]

= AB(E€)'B'A, + A,BE((C)B'A, + Eee)

= A (BTEI'B'+ BUB')A, + O, (A.3)
Yy = E(y2))

= E[(Ayn" +¢€)(€")]

= E[(Ay(BT¢" + BQ) +€)(€))]

= A,BTE(£*¢)

= A,BIE, (A.4)
Yoy = E(zy)

= E[€)(Ayn" +¢)’]

= E[(€)(Ay(BTE + BC) +¢)']

= E(&¢)I'BA,

= EZI'B'A,, (A.5)
¥, = E(£¢)

= E. (A.6)

Therefore, the variance-covariance matrix of MIMIC model is
5 - Yy Yy _ Ay(BTZI'B' + BYB')A, +© A BI'E
Szy zz

I (A'7)
EI'BA, =
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where

v = E((),
© = E(e€).
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Appendix B

Variance-Covariance Matrix of

SOFA Model

Notation for SOFA model

*

n
IS
Y

I
A

LaY

4]

v
©

: m % 1 vector of latent endogenous variables,

: 1 x 1 vector of latent exogenous variables,

: p x 1 vector of observed indicators of n*,

: m X 1 coefficient vector for the latent exogenous variables,

: p x m coeflicient matrix for the latent endogenous variables,
: m X 1 vector of random components,

: p x 1 vector of random components,

= E(£7¢"),

= E(¢("),

= E(e€).

The second-order factor analysis is described as:

Structural equation

nt = T +¢.
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Measurement equation

y = A7 +e (B.2)

Therefore, the variance-covariance matrix of SOFA model is

£ = E(yy)
= E[(An" +€)(An* +¢€)]
= E[(ATE +) + (ATE +¢) +€)]
= ATE(€")I'N + AE((C)A + E(ee')
= ATEI'A’ 4+ AUA' +O. (B.3)
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Appendix C

Model Evaluation

To help in the evaluation of a structural equation model, a number of statistical
measures of fit have been proposed. At the same time, the issue of fit assessment has
been the subject of both theoretical and empirical papers (e.g., Bentler and Bonnet
1980, Bentler 1990). Given the large number of alternative fit ‘indices available,
investigators may have difficulty choosing among them because the articles on this
topics reach no consensus about what constitutes “gcod fit”. Here we review some

formulas for the computation of the various fit indices.

C.1 GFI

Joreskog and Sérbom (1981) propose a Goodness of Fit Index (GFI).

_ tr[(B:(A) 1S — 1))

R (NG REA

(C.1)

The GFI measures the relative amount of the variance and covariance in S, that are

predicted by 3(7).
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C.2 AGFI

Adjusted GFI (AGFI) is

p(p+1)

AGFI = 1-[Z2T2) Saqr M-

GFI), (C.2)

where df is degrees of freedom. The AGFI adjusts for the degrees of freedom of a

model relative to the number of variables.

C.3 PGFI
Mulaik et al. (1989) propose a Parsimonious Goodness-of-Fit Index (PGFI) defined
as
2df
PGFI = [———=]GFLI. C3
C.4 CFI

The Comparative Fit Index (CFI), (Bentler 1990) is based on the non-centrality
parameter of the chi-square of the goodness-of-fit test statistic. Let a baseline model
have a test statistic Ty with dfy degrees of freedom. Let the model being evaluated
have associated test statistic 77, with df;, degrees of freedom. Let ly = Ty — dfp and
l; = Ty — df;. Then the CFI can be computed in sample as

CFI = 1-3, (C.4)

where [; = maz(l;,0) and l; = maz(ly, [;, 0).

C.5 Normed Fit Index (A)

Let f, be the value of a discrepancy function (e.g., ML, GLS) for some baseline model

and f be the value of the discrepancy function for some model for interest. Then, the
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normed fit index A proposed by Bentler and Bonett (1980) is defined as

A= fzh (C.5)
fo

C.6 AIC

Strictly applicable only for maximum likelihood estimation, the Akaike Information

Criterion (AIC), (Akaike 1987) is defined as

AIC = —2(T-7), (C.6)

where r refers to the number of free parameters in the model being evaluated and T

is the value of the test statistic for the model being evaluated.
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Appendix D

Estimation of Values of Latent

Variables

In most cases, the latent variables cannot be measured directly because they are
“latent”. Only scores on indicators for these variables can be obtained; for example,
attitudes cannot be measured directly, but it is possible to collect verbal expressions
of attitudinal indicators in questionnaire. Sometimes researchers wish to know the
values of the latent variables for each individual observations. Getting fitted values of
latent variables is also useful to get starting values for simultaneous estimation for the
choice model that contains latent variables in its equation. The best we can do is to
estimate these by forming some weighted function of observed variables. In estimating
the values of latent variables, the observed variables are used to estimate the values
of the respondents on the unmeasured variables (n*, £*), given that A, K, B,T',=Z, ¥,
and © are known. Restricting ourselves to linear estimates, this means that we look
for a matrix W of weights which, when multiplied with Z, gives the best estimates

of F* according to some criteria.

F* = WZ (D.1)
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where F* is the estimate of F*, which is (m +n) x 1 ! matrix of true values of 7* and
£
o= [ 7 (D.2)
L&
and W is (m + ¢) x p 2 matrix, and Z is p x 1 observable multivariate data. Here,

we set the criterion that

o = %tr(F*—F’*)? (D.3)

is minimal. We can rewrite Equation 2.2 as:

z = [A K] Z ny (D.4)
Z = [A K|JF*+E (D.5)

and substituting Equation D.1 into Equation D.3 gives
fre = tr(Sy+ WS,W' - 2W[A K|Sy) (D.6)

where S; is variance-covariance matrix of F*, and S, is sample variance-covariance

matrix. The first-order condition of Equation D.6 is given as

10fp-

SZmr = WS.—SiA KI'=0 (D.7)

and it is solved as®:

W = Sf[A I{]'SZ_1

1m: number of latent endogenous variables, n: number of latent exogenous variables.
2p: number of observed indicators of 7*, g: number of observed indicators of £*.
3How to calculate Sy is shown in Appendix E
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_ PR [A K]:S-l

| e Zeeer

[ Br=I'B' + BYB' BIS

- - (A K)SI. (D.8)
=I'B =

By substituting the estimated values into Equation D.8, you can get the matrix of

weights W. Thus, the fitted values of F* is given as

o[ ][ BrevE s pes Bz

i A KISz (D.9)
13 =B

(1}

Note that since F** are a weighted combination of Z and since F* # F*, we can regard
F* as an indicator of F* that contains measurement errors. So in most cases using
factor score estimates to replace latent variables and then employing classical econo-
metric procedures on these estimates still leads to inconsistent coefficient estimators

of choice model coefficients.
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Appendix E

Variance-Covariance Matrix of

Latent Variables (S¢)

Notation

n* : m x 1 vector of latent endogenous variables,

o
*

: ¢ x 1 vector of latent exogenous variables,

N

: p X 1 vector of observed indicators of n*,
: m x 1 coefficient vector for the latent exogenous variables,
: p X m coefficient matrix for the latent endogenous variables,

: p X q coefficient matrix for the latent exogenous variables,

: m X 1 vector of random components,

™

: p x 1 vector of random components,
= B(e'e),

v = E(((),

© = E(e€').

(1

Structural Equation Model

= Bun +T& +(¢ (E.1)
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Measurement Equation Model
z = AP+ KE +¢
Thus, each element of variance-covariance model is described as:

Yy = E[(BAE + BC)(BAE + BQ)')
— BAE(£'¢")AN'B' + BE(C(')B'
= BAZA'B'+ BYB,

Sre = E[(BAE + BO)EY]
= BAE(£¢")
= BAZ,

Sey = E[€*(BAE + BC)
= E(Ee€NB'
= ZA'B,

e = E(£7€)

_—
—

Therefore, the variance-covariance matrix is

[z,,.,,. 2,,.9} _ | Brere + Bup Br=
E{yn— 2&-5:

=B’ =
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Appendix F

Survey Questionnaire for

Shepping Trip Data

1. What is your sex?
1) male

2) female

2. What is your age?

)

3. What is your occupation?
1) junior high school student
2) high school student
3) college or junior college student
4) employee (full time)
5) self-employed
6) part time job
7) house wife

8) other { )
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4. How many people made this trip with you (yourself included)?
1) alone

2

~N O Ot = W

oo
© 00 N O Ot b= W

)2
)
)
)
)
)
)
)

W

10) 10 or more people

5. With whom do you come?
1) male friend(s)
2) female friend(s)
3) male and female friend(s)
4) couple
5) family
6) alone

7) other ()

6. Is shopping at this mall your main purpose of this trip?
1) Yes
2) No

7. Please respond only if you answered “No” to the previous question.
What is the main purpose for the trip?
1) to work at a work place
2) business

3) school
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4) visit
5) recreation

6) other ()

8. How did you know this shopping mall?
1) TV
2) radio
3) newspapers
4) magazines
5) posters
6) advertisements in train cars

7) word of mouth

8) other ()

9. Where do you live?
( )City,( ) Ward, ( ) Town, ( ) Street

10. Do you have a driver’s license?
1) Yes
2) No

11. Please respond only if you answered “Yes” to the previous question.
Do you have a car which is usually available for you?
1) Yes
2) No

12. Do you have a bicycle and/or moped, which is usually available for you?

bicycle 1) Yes 2) No
moped 1) Yes 2) No
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13. Do you have a rail pass card?
1) Yes
2) No

14. Please respond only if you answered “Yes” to the previous question.
What are the origin and the destination stations of your pass?

() station <> ( ) station

15. Where did your trip begin?
1) your home
2) workplace
3) school
4) other ()

16. How did you come here?
1) rail
2) bus
3) auto
4) taxi
5) bike/moped
6) bicycle
7) by foot

17. Why did you choose the mode mentioned above?
Because
1) The distance between home and the mall is shor
2) I thought it was the fastest mode
3) it is easy to take
4) it is easier to carry shopping bags

5) it is convenient
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6) I came accompanied
7) it is the most inexpensive
8) I usually choose the mode whenever I go out

9) other ( )

18. How long did it take you to get to here?
() hour(s) ( ) min.

19. Do you usually choose the same mode as today’s to come here?
1) Yes
2) No = Which mode do you choose usually?
1) rail 2) bus 3) auto 4) taxi 5)bike/moped 6) bicycle 7) by foot
Why did you not choose the usual mode today? ( )

20. Please give the appropriate level of the each mode as a means to come here.
rail 1 2 3 ) 6
bus

auto

bike/moped
bicycle

P N . T

1 3 )
1 3 )
taxi 1 3 )
1 3 )
1 3 5
1 3 )

NN NN
[«> I« >R I D I = B = ]

by foot

availability level:

1 = appropriate

2 = more or less appropriate

3 = neutral

4 = more or less inappropriate
inappropriate

Hh=
6 = impossible
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21. Please rate the following aspects of the shopping trip.
A: Relaxation during the trip 1
B: Reliability of the arrival time
C: Flexibility of choosing departure time
D: Ease of traveling with heavy bags
E: Inexpensiveness of the trip

F: Safety during the trip

L T - S
NN NN NN
W W W W W w W
L - -~ S~ N N
o o Qv Ot Ov Ot Ot

G: Travel time

aspect level:

1 = not important at all

2 = not very important
= somewhat important

4 = very important

= essential

22. Among the above seven aspects, which do you take into account most in
choosing your mode?

1) A

2) B

3)C

4) D

5) E

6) F

G

23. Please respond only if you came by auto. Which services could make you
give up using an auto?

1) free delivery service
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2) free ride service between your residential area and shopping mall
3) charging for parking

4) pedestrian walkway to the station with roof

5) expanding shopping cart area availability to the station

6) expanding shopping cart area availability to bus stops

7) other ()

24. If you chose rail or bus, please give the route. If you chose auto,

please give the route assuming you take rail or bus.

Access

origin 1) your home 2) other

how? 1) by foot 2) bicycle 3) auto 4) other( )
the name of station/bus stop you got on ()

the name of station/bus stop you transfered ( )

the name of station/bus stop you transfered ( )

Egress

You got off at KAMATORI station

1) Yes

2) No = Please give the station name you got off ( )
How did you get to here from the station? ( )

25. Please respond only if you chose auto.

How many people were in the car?

()

26. Please respond only if you took auto.

Did you drive by yourself?
1) Yes
2) No
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27. Please respond only if you took auto.
Which highway did you take to come here?
origin 1) your home

2) other
highway () = highway ( )= ---

— shopping mall

28. Please respond only if you took auto.
Did you follow the shopping mall’s direction signs?

If so, please give the location of the sign(s).

29. Where do you go after your shopping?
1) your home
2) visit a facility around here
3) Chiba city
4) KEIYO HOME CENTER, Oyumino branch
5) KEIYO HOME CENTER, Kamatori branch
6) Tokyo Metropolitan area
7) other ()

30. What kind of mode will you take?
1) rail
2
3
4

) bus
)
)
5) bike/moped
)
)

auto

taxi

6) bicycle
7) by foot

31. What was your main purpose in coming here?
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1) grocery / commodity

2) clothes for kids, underwear
3) stylish clothes

4) furniture, electricity
5) restaurant

6) bowling

7) culture center

8) Fantasy Island

9) other (specify) ()

10) nothing special

32. How much money did you spend in this mall?
1) less than 1,000 yen
2) 1,000 - 2,000 yen
3) 2,000 - 3,000 yen
4) 3,000 - 4,000 yen
5) 4,000 - 5,000 yen
6) 5,000 - 6,000 yen
7) 6,000 - 7,000 yen
8) 7,000 - 8,000 yen
9) 8,000 - 9,000 yen
10)9,000 - 10,000 yen
11)10,000 - 15,000 yen
12)15,000 - 20,000 yen
13) 20,000 - 25,000 yen
14) 25,000 - 30,000 yen
15) 30,000 yen or more

33. How many hours did you spend in this mall?

( ) hour(s) ( ) min.
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34. How many times have you come here?
1) This is the first time
2) 2 - 5 times
3) 6 - 9 times

4) 10 or more times
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