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Abstract

It is shown that for tokamak equilibria with vanishing current density at the plasma

edge, the ratio faB/I has an upper bound which itself depends only on the safety factor

at the magnetic axis and the geometry of the plasma boundary. This result follows solely

from tokamak equilibrium constraints.
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One of the most important issues in the ideal magnetohydrodynamic theory of toka-

mak plasmas is the determination of the maximum ratio 3 of plasma kinetic pressure to

magnetic pressure that can be achieved under conditions of MHD equilibrium and stabil-

ity. In the last few years it has become well established [1-4] that, under a wide variety of

circumstances, the maximum g compatible with ideal MHD stability obeys a law of the

form

Imax =C/aB, (1)

where I is the plasma current, a its minor radius, B is the magnetic field and C is a

proportionality factor that depends on the geometrical characteristics of the plasma cross

section [5]. This scaling applies for values of I below the current limit set by the external

kink instability (usually qa > 2 where qa is the edge safety factor), namely for the range

of plasma parameters where ideal MHD stability limits are set by pressure driven modes.

The expression (1) for the tokamak beta limit is of very general validity, as it holds

for both low [1,2] and high (1,3,5] toroidal mode numbers with only some variation in the

numerical value of C, and agrees with the available experimental evidence [4]. However,

despite its generality and simplicity, this scaling has been obtained only empirically as

the result of fits to either experimental data or numerical simulations: no satisfactory

demonstration based on first principles is known to this date. Another intriguing feature

is the linear relation between max and the normalized current I/aB: essentially f is

inversely proportional to the square of the toroidal field (or the edge safety factor) whereas

I/aB is inversely proportional to the toroidal field (or qa), so that a quadratic relation

between Omax and I/aB might have been expected.

In this work we show that for a fixed plasma boundary geometry and a fixed safety

factor at the magnetic axis q,, the ratio aB/I must have an upper bound for tokamak

equilibria whose toroidal current density vanishes (and tends to zero smoothly) at the

plasma edge. The existence of this upper bound is due solely to equilibrium constraints

which is highly suggestive of the universal character of the 0maX = CI/aB scaling, where

only the numerical value of C would be determined by the stability constraints.
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As pointed out earlier, the proportionality factor C between f3 ma, and I/aB depends

on the geometry of the plasma boundary. We shall not address such dependence in the

present work, but rather shall carry out the analysis for a fixed boundary shape. On the

other hand, we shall also carry out the analysis for a fixed value of q,, and consider C to be

a function of q, as well. (One may later optimize C with respect to q0 as done in Ref. 2).

Retaining the dependence of C on q0 is useful because this helps correct the mismatch in

powers of B (or q) between f and I/aB, provided C scales like q; 1. Of course it remains to

be explained why C should scale like q0-1 and not like q-' (or q;agq'1). Our work shows

that qo,aB/I is bounded from above, but no such bound can be proven for q'aq-"/3aB/I

with x > 0.

Let us begin by defining a dimensionless characterization of fixed boundary tokamak

equilibria. All dimensioned equilibrium quantities can be "scaled out" by using the trivial

invariance of the Grad-Shafranov equation under changes of units. Thus, up to trivial

scalings, a tokamak equilibrium solution is completely specified by a dimensionless repre-

sentation F of its boundary and two dimensionless flux functions. Usually the geometry

of the plasma boundary is defined by a set of dimensionless parameters, F = (A, , 6...),

representing the aspect ratio, elongation, triangularity, etc. These shall be held constant

throughout our analysis. We find it convenient to split the representation of the two inde-

pendent equilibrium flux functions into two normalized functions that carry only "profile

shape" information, plus two dimensionless parameters that define the proper scale of the

relevant flux functions. We choose as our independent, pure profiles a normalized aver-

age current density j() and a normalized pressure P(4) defined by j = jav(,)/jav(0o),

p =(#p)/p(Oo) and b = (0 - ko)/(ka - b0 ); here jav(b) is some magnetic surface av-

erage of the plasma current density, 27ir is the poloidal flux and the subscripts "a" and

"o" refer to the plasma edge and the magnetic axis respectively. By definition j and P

satisfy j(0) = P(0) = 1. Besides we consider only equilibria with vanishing pressure and

current density at the plasma edge, hence P(1) = dp(1)/d4 = j(1) = 0. The dimen-

sionless parameters that set the proper scale of the current density and the pressure are

chosen to be the safety factor on axis q, (to be held constant throughout our analysis) and
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the beta-like fl = #q2/e whose precise definition is given below. Therefore we consider

F, j(b), A(p), q, and ,3. as the independent input variables that define an equilibrium. All

other dimensionless equilibrium quantities (i.e., %, or Op) are derived from these.

Next we give the definitions of several equilibrium functions and parameters. We

define a "radial" flux function r( b) by V(O) 27r2 Ror 2 (?b), where V(ik) is the volume

enclosed by the flux surface and R, is the radius of the magnetic axis. The plasma minor

radius a is defined to be equal to the value of r at the plasma edge, and our inverse aspect

ratio parameter E is defined as c = a/R0 = (Va/27r2 R')1/ 2 . Notice that E is not a purely

geometrical quantity since R. depends on the details of the tokamak equilbirum. However

E is bounded by two purely geometrical parameters, E _ E < e+, E+ and e- being obtained

respectively by using the minimum and maximum values of R around the plasma boundary

instead of R0 in the above definition. The plasma beta and poloidal beta parameters are

defined as
fVa

S2B~2 Va p dV, (2)

OP = 4I-2R p dV, (3)

where B. is the vacuum field at the magnetic axis [RB, = (RBt)(ba)], Va is the total

plasma volume and I is the total plasma current. Then,

3aB0 _ 1 / *1 / 2 (f )1/2

I1 27r 27qa

We can now proceed to optimize the ratio #aB 0/I at constant F and q. We do this

in two stages. In the first one we hold 0* fixed and maximize aB/I with respect to

variations of the normalized profiles j(&) and pi(V), subject to the condition of ideal MHD

stability plus the constraints i(0) =P(0) = 1, j(1) = i(1) = P'(1) = 0. The result (if it

exists) is a function (faB0/I)pi = F(F, q,,3*). In the second stage we let 0* vary and

obtain the maximum of F(F, qo,0*) with respect to 0,.

The existence of the function F(F, q., 0*) for any finite 0* is guaranteed by the equilib-

rium limit on Ep. This implies that Ep cannot exceed a certain value (c#p)1ii of the order
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of one, that depends on the geometrical characteristics of the plasma and is determined by

the formation of a separatrix at the plasma boundary. To our knowledge, no general proof

of this assertion exists, but the overwhelming evidence supports it. Thus in the particular

equilbrium solution of Haas [6], the relation between 0, and Eop is 3, = Eop/(1 - P),

with the separatrix touching the plasma edge at E#, = 1. In all numerical solutions of the

Grad-Shafranov equation (see e.g. Ref. 7) E/p saturates about some value of order unity. A

recent analytic result [8] for large aspect ratio circular tokamaks with general profiles also

shows the limit on E#,. Here we show numerically the Ef, limit for a sequence of tokamak

equilibria satisfying our constraints of fixed %, and vanishing edge current density. For the

sake of simplicity and to facilitate comparison with analytic models, we assume a large

aspect ratio (A = 10) circular plasma boundary. The flux surface averaged current density

used to specify our equilibria is the ohmic current ja, = joh() (j-B)/(R V4. B), where

(...) stands for the conventional flux surface average. We generate a sequence of equilibria

characterized by the profiles p(o) = p"(1 - 2)2 and i.,h() = j0 (1 - 4), where j, is ad-

justed to keep %, = 1.00 and po is increased to increase the beta parameters. We find that

E/p cannot exceed a value of 2 at which point qa tends to infinity and beyond which the

equilbrium code fails to converge. The relation between EO, and 01 is shown in Fig. 1. Once

we accept the existence of the equilibrium limit on Eo,, it is immediate to derive an upper

bound for OaB,/I at fixed 0,, from which the existence of F(F, qo, 0,) = (0aBo/I)opt

follows. To this end we only need to use the tokamak condition qa ; q, and write:

# a o _ 01/2 E P 1/2 1/2 .1(2

I 27rqa 27rqg

The second part of our argument consists of showing that, as /* varies, F(F, qo,/0)

also has an upper bound. For finite /, this is an obvious consequence of the above bound

(5). However /3* = #q2/E can grow arbitrarily large. Thus as we approach the conventional

tokamak equilibrium limit at fixed plasma current O/E is limited but qa tends to infinity,

whereas in a flux conserving sequence q, is fixed but O/E is unlimited. In any case if, as

assumed from the start, we restrict ourselves to equilibria with vanishing current density

at the plasma edge, we can prove that, as /3 tends to infinity, qa/qo also tends to infinity at
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least as fast as 3/ as a consequence of the zero edge current density constraint. Therefore

aB 0  /1/2 (60P)1/2
(6)

I qa/qo 27rq ,

is also bounded from above as * -- oo. To show that, for vanishing edge current density,

(qa/qo)(3* -+ oo) #3* , we introduce the flux function

g(r) 2 r3 B )2 (r) rr2 dp d, (7)

with the properties g(0) = 0 and g(a) = 3*. We also define s(r) = (r/q) dq/dr and

v(r) = (r/g) dg/dr. Now, the condition that the toroidal current density be equal to zero

around the plasma boundary implies

dp(a) d(RBt)(a) (8)
dr dr -0,

hence

v(a) = 2s(a) - 3. (9)

The ratio qa/qo can be expressed as

= exp ai dr (10)
qO q dr

or, changing variables from r to g(r),

qa exp s dg (11)
qO ( o V g

In the limit 3* -+ oo the integral in Eq. (11) diverges logarithmically because (s/v)(g

03) = sa/(2sa -3) > 1/2. No such divergence occurs at the lower integration limit because

(s/v)(g = 0) = 0. Therefore for 0* -- oo, the main contribution to that integral comes

from the values of g near its upper limit, . In this region we approximate s/v by its

limit value:

~ , (12)
V Va 23a - 3
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(assuming that the plasma current density tends to zero smoothly as we approach the

plasma edge, g -+ 4.). Thus we obtain

qa 32.8a 3 > /2 (13)
qo /*-oo

Notice that the bound (qa/qo)(* --+ oo) >#1/2 is the least needed to prove the bound-

edness of 3aBO/I, so that qa/3aBo/I with x > 0 need not be bounded. Moreover, it only

guarantees that the function F(F, qO, 0*) is bounded (not that F tends to zero) as 3, -4 o0.

Therefore the maximum of F with respect to 3*, Fmax = C(F, q) = (flaBo/I)max may

be rather broad. This would explain an approximate linear scaling 3ma: ~ CI/aBo if one

were to maximize # at constant I/aBo.

These predictions are verified in our numerical example. Figures 2 and 3 display the

dependence of qa and OaB,/I on 0* for our equlibrium sequence. They show clearly that

qa is proportional to P/ as 3* -* oo, and that 3aBO/I is bounded. Its maximum value

is C = 0.086, or in terms of the more familiar CT = 10 8#(aBo/I)MKS = 407rC = 10.9.

Figure 4 shows the q(o) profile for the highest E,3p equilibrium obtained (E#p = 2), right

before the equilibrium limit. It shows that the largest increase in q occurs near the plasma

edge, which confirms the validity of our approximation (13). The flux and toroidal current

density contours for this highest E#p equilibrium are displayed in Fig. 5.

As regards a further optimization of C(P, q) with respect to %, we have

C(r, q,) = [,31/ 2 /3pI1/2 (14)27rrgo qa/lqo ma

where [/3/2(f/P)1/2q 0 /qa] is itself a function of r and qO. If the latter dependence

is weak, we can expect that, due to the more fundamental factor of q; 1 , C(F, qo) is a

decreasing function of qo at large qo. At the opposite end, arbitrarily low values of q,

are forbidden by the Mercier stability criterion. Therefore the existence of an optimum

/3aBo/I when qO is also varied should be expected. In order to test the dependence of C

on qo, we generate a second sequence of numerical equilibria with the same characteristics

as the one discussed before, except that now qO is fixed at 2.00. The maximum equilibrium

value of /aBo/I is found to be CT = 5.5, to be compared with CT = 10.9 for qo = 1.00.
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A point worth mentioning is that since the limit #aBo,/I < C results only from

equilibrium constraints, it should apply equally to plasmas in the first and second stability

regimes. The numerical value of C may of course be different for these two regimes, but

the ratio faB,/I cannot be arbitrarily large even in the second stability regime.

Finally we stress that in order to obtain our bound on 3aB,/I we need that the

tokamak equilibrium profiles be "sufficiently mild". Specifically, the toroidal current den-

sity should tend to zero smoothly near the plasma edge and qa should be greater than qO

or better yet q(r) and g(r) should be monotonically increasing functions of r. Thus the

aBo/I limit might be avoided by considering equilibria with more exotic though physi-

cally possible profiles. Examples of these are flux conserving equilibria which violate the

zero edge current density condition, equilibria with sharp current gradients at the plasma

edge such as in H-mode plasmas, and equilibria with hollow profiles.

The author thanks M. Phillips for providing the EQGRUM equilibrium code with

which the numerical calculations were carried out. This work was supported by the US

Department of Energy under contract No. DE-AC02-78ET-51013.
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Figure Captions

Fig. 1 Variation of c3,, with 0. for a sequence of circular tokamak equilibria characterized

by the profiles p = p,(1 _ 2)2 and joh = jo(1 - 4), and constant q. = 1.00.

Fig. 2 Dependence of qa on 3, for our q, = 1, zero edge current density equilibrium

sequence.

Fig. 3 Dependence of 3aB/I on 0. for our q. = 1, zero edge current density equilibrium

sequence.

Fig. 4 Inverse rotational transform profile at the highest 0, equilibrium computed, right

before the equilibrium limit.

Fig. 5 Flux and toroidal current density contours for our highest 03 equilibrium. The

shift of the magnetic axis equals 2/3 of the minor radius.
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