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Abstract

Separation processes are used extensively in the chemical process industries and by far
the most comnon of these is distillation. Although several alternative strategies have
been developed, distillation will likely remain dominant particularly for the large-
scale separation of non-ideal liquid mixtures. A topic of particular interest in recent
years has been heterogeneous azeotropic distillation or heteroazeotropic distillation.
This technique is commonly employed to separate azeotropic mixtures by introducing
a heterogeneous entrainer that causes liquid-liquid phase separation. Although the
design and simulation of heteroazeotropic systems is far more complicated than its
homogeneous counterpart, heteroazeotropic distillation is often preferred due to the
ease of recovery of the entrainer and the crossing of distillation boundaries due to the
liquid-liquid phase split in the decanter.

The topic of this thesis is the analysis of heteroazeotropic systems. Specifically,
an algorithm has been developed which, under reasonable assumptions, will compute
all homogeneous and heterogeneous azeotropes present in a multicomponent mixture
predicted by the phase equilibrium model employed. The approach is independent of
both the particular representation of the nonideality of the mixture and the topol-
ogy of the liquid-liquid region. Furthermore, the approach can be readily extended
to handle any number of liquid and/or solid phases in equilibrium. Moreover, the
heteroazeotrope finding algorithm can be extended to explore the phase equilibrium
structure of a multicomponent mixture under system and/or property model param-
eter variation, including the detection of incipient homogeneous and heterogeneous
azeotopes and the determination of the bifurcation values of the parameters where
they appear, disappear, or switch between each other. The ability to predict the in-
cipient homogeneous and heterogeneous azeotropes that may appear under different
conditions or property parameter values can be incorporated into design algorithms
to expand the number of alternative designs. Furthermore, the ability to systemati-
cally and efficiently explore the phase equilibrium structure is a valuable tool when
fitting property model parameters, allowing the experimentalist to rapidly explore
the capabilities and limitations of the phase equilibirum model.

The techniques mentioned above are useful when analyzing heteroazetropic sys-






tems for design purposes. The second product of this thesis improves the efficiency of
the actual simulation of the heteroazeotropic system (or any system for that matter).
Specifically, a new class of automatic differentiation methods, known as ‘subgraph
reduction methods’, have been developed that offer substantial improvement over ex-
isting techniques both in the increase in speed of the derivative evaluation and the
reduction in memory required to store and evaluate the Jacobian matrix of a sparse
system of equations. Furthermore, a variant of the subgraph reduction approach
has been custom-tailored for use within an interpretive simulator architecture that
dramatically increases speed and reduces memory requirements compared to other
techniques commonly employed in this environment.

Thesis Supervisor: Paul 1. Barton
Title: Assistant Professor of Chemical Engineering
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Chapter 1

Heteroazeotropic Distillation

This thesis is divided into three parts. The first part, Analysis of Heteroazeotropic
Systems (chapters one through four), presents topics associated with the analysis
of heteroazeotropic systems. In particular, a new homotopy continuation based ap-
proach for the computation of the heteroazeotropes present in a multicomponent
mixture and the efficient analysis of changes in phase equilibrium structure under
system and/or property model parameter variation is discussed. The second part,
Computational Differentiation (chapters five through eight), presents topics associ-
ated with the simulation of heteroazeotropic systemns, in particular, the generation of
analytical derivatives. This thesis concludes with a chapter describing a technique for
the optimization of problems exhibiting multiple local optima, based on the combined

application of computational differentiation and homotopy continuation.

1.1 Overview

Separation processes are used extensively in the chemical process industries. Virtu-
ally every chemical process involves the separation of products from byproducts and
unreacted raw materials, the recovery of solvent from waste streams, and possibly
the purification of feed stocks prior to processing. By far the most common of these
processes is distillation, and although many new technologies are being developed,

distillation is likely to remain dominant, especially for the large-scale separation of

20



thermodynamically nonideal liquid mixtures. This argument in convincingly pre-
sented by Fair [40].

Azeotropy is the condition where a vapor and liquid in equilibrium have the same
composition. Azeotropes are characterized by extrema in the equilibrium surfaces of
the mixture. Figure 1-1 contains a schematic of a Try-diagram for a binary mixture

exhibiting a maximum boiling azeotrope. As will be shown later in this chapter, the

r A A

TAz }— — —

0 X Az 1

Figure 1-1: Schematic of a binary mixture exhibiting a maximum boiling azeotrope.

presence of azeotropes effectively divides the composition space into different regions
characterized by the separations possible with distillation.

A topic of particular interest in recent years has been heterogeneous azeotropic
distillation or heteroazeotropic distillation. This technique is commonly employed to
separate azeotropic mixtures by introducing a heterogeneous entrainer that causes
liquid-liquid phase separation. Heteroazeotropy is the condition where the tempera-
ture, pressure, and overall liquid composition of a mixture of two or more immiscible
liquid phases is equal to that of the equilibrium vapor phase. Heteroazeotropy is
characterized by strong positive deviations from Raoult’s law and occurs when the
azeotropic point on the vapor-liquid equilibrium surface intersects the multiple lig-

uid region. Figure 1-2 contains a schematic of a Try-diagram for a binary mixture

21



exhibiting a heteroazeotrope. Heteroazeotropic distillation is often preferred over the

r | 4

TAZ L

0 XAz A 1

Figure 1-2: Schematic of a binary mixture exhibiting a heteroazeotrope.

more traditional homogeneous distillation due the ease of recovery of the entrainer
and the crossing of distillation boundaries due to the liquid-liquid phase split in the
decanter (see Figure 1-5). Although heteroazeotropic systems are primarily studied
with regard to methods for separating azeotropic mixtures, these systems are also
important from the viewpoint of separation system integration [3] within a chemical
plant where various process streams may form heterogeneous liquid mixtures when
combined, and also from the viewpoint of design and simulation of heterogeneous
reactive distillation systems.

This chapter discusses some of the key issues associated with the analysis, design,

and simulation of heteroazeotropic systems.

1.1.1 Computation of Homogeneous and Heterogeneous

Azeotropes

Obviously an important task when analyzing homogeneous and heterogeneous azeo-

tropic systems is the a priori determination of the homogeneous and heterogeneous

22



azeotropes present in the mixture of interest. Several approaches have been developed
in the past for the computation of homogeneous azeotropes. A few of them are
discussed below.

Teja and Rowlinson [111] developed a.1 algorithm based on corresponding states
and an equation of state to compute the binary azeotropes present in a mixture. Given

a binary mixture, the following equations are satisfied at the azeotropic conditions:

A'(V)-A(V) = 0 (1.1)
Av(:l,‘l) - A'(a:l) = 0 (12)
AY + 1A% (z,) — VP AU (V) — Al — 1,4 (z)) + VIAY(V) = 0, (1.3)

where A® and A' are the Helmholtz free energy of the vapor and liquid phases, re-
spectively, V, V?, and V! are the total molar volume, the vapor molar volume, and
the liquid molar volume, respectively, and (z;,z:) is the composition of the liquid
and vapor phase, equal at the azeotrope. The authors use Powell’s method [90] to
minimize the sum of the squares of the right-hand-side of equations (1.1)-(1.3) with
respect to the partial molar volumes of each phase, V* and V', and composition,
T, = ) = 7. At constant temperature and volume, the azeotrope corresponds to a
global minimum of the Helmholtz free energy of the mixture, which is not guaranteed
using a local search strategy such as Powell’s method. Therefore, solutions obtained
will have to be checked for stability (see following section).

Wang and Whiting extended the work of Teja and Rowlinson to multicompo-
nent mixtures [116]. The authors compute azeotropes at constant pressure (or tem-
perature) using a nested iteration. The outer iteration adjusts the composition by

performing a secant update with the following system of equations,
In (¢:’/43f) =0 i=1,...,n (1.4)

where qS}’ and &f are the mixture fugacity coefficients of the vapor and liquid phases,

respectively, for an n component mixture. The inner iteration adjusts temperature
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(or pressure) by performing a secant update with the following équation,
A" — Al =PV - V7). . (1.5)

Equation (1.5) is simply an expression for the equality of the Gibbs energy between the
vapor and liquid phases. This approach has been applied successfully to several binary
and one ternary mixture. Like the approach of Teja and Rowlinson, the solutions
obtained satisfy only the necessary conditions for azeotropy and must be checked for
stability. Although the approach can be applied to multicomponent mixtures, there
are no guarantees that all azeotropes, if any, will be computed.

An approach devel,ped by Fidkowski et al.[45] computes the homogeneous azeotropes
present in a multicomponent mixture using homotopy continuation. Higher dimen-
sional azeotropes are obtained through a series of bifurcations from lower dimensional
homotopy branches. This approach provides the basis for an algorithm developed in
this thesis for the computation of heteroazeotropes and is thus described in more de-
tail in the following chapter. Fidkowski et al. conjecture that all azeotropes present
ina multicpmponent mixture will be computed but present no proof. A detai'ed anal-
ysis in this thesis provides conditions under which all azeotropes will be computed
using this method. Implementation improvements also result from this analysis.

A second approach guaranteeing the computation of all homogeneous azeotropes
has been developed by Harding et al. [55). The authors enclose all solutions to the
necessary conditions for azeotropy using global optimization. The use of convex un-
derestimators within a branch and bound framework partitions the search space into
rectangles of decreasing size containing the solutions. In this work, the vapor phase
is treated as an ideal gas and the liquid phase nonideality is modeled with activ-
ity coefficients computed through the NRTL, UNIQUAC, and UNIFAC equations.
These activity coefficient models satisfy the convexity requirements of the global op-
timization algorithm employed. By employing the aBB-method [2], this method
can in principle be extended to any twice continuously differentiable mode! for phase

equilibrium. As with Fidkowski's method, this approach only computes solutions
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satisfying the necessary conditions for azeotropy, which must be checked for stability.

Less attention has been given to the more difficult heterogeneous case. One ap-
proach has been developed by Chapman and Goodwin [22]. Ir this work, the authors
use the Levenberg-Marquardt method to find multiple solutions to the necessary con-
ditions for azeotropy. Solutions are then checked for stability using the Gibbs tangent
plane analysis (see following section). Unstable solutions are used as starting points
for a new search to find the heteroazeotropes. There are several problems with this
approach. First, the solution procedure used to find homogeneous azeotropes does
not guarantee any, let alone all, solutions will be obtained. Second, an unstable
homogeneous solution corresponding to an actual heteroazeotrope does not neces-
sarily exist in the physical composition region (i.e., the regular simplex defined by
{freR | Y, ,zi=1andz; >0 i=1,...,n}). In this thesis, it is shown that
homogeneous azeotropes corresponding to heteroazeotropes (referred to as spurious
homogeneous azeotropes) will exist and very often lie outside the physical region, and
are thus of little use to the algorithm described above.

Another approach has recently been briefly described by Harding et al.[54] for
the computation of heteroazeotropes. This approach is very similar to the global
optimization approach described above.

A new approach has been developed in this thesis for the computation of the ho-
mogeneous and heterogeneous azeotropes present in a multicomponent mixture. The
approach is independent of the liquid-liquid region topology and phase equilibrium
model. Furthermore, this approach is capable of predicting incipient homogeneous
and heterogeneous azeotropes and computing the bifurcation values of system and/or
property model parameters at which they appear, disappear, or switch between each
other.

All of the approaches described above find solutions satisfying the necessary con-
ditions for homogeneous and heterogeneous azeotropy. The necessary and sufficient
conditions as well as several phase stability tests are described in the following sec-
tion. Once the homogeneous and heterogeneous azeotropes have been computed, the

set can be tested for topological consistency [124, 45]. As will be shown later in this
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chapter, the pure components and homogeneous and heterogeneous azeotropes are
the fixed-points of a certain dynamical system. Furthermore, the compositions on
the trajectories associated with these dynamical systems are confined to lie within
the compact physical composition region. Consequently, the fixed-points of an n
component mixture are subject to the Poincaré-Hopf Theorem and their indices must

satisfy the following constraint,
Y ooMIF - L) = (-1)" ' +1 (1.6)
k=

where I," and I are the number of fixed-points with k nonzero mole fraction ele-
ments that have indices +1 and -1, respectively. If the set of computed homogeneous
and heterogeneous azeotropes do not satisfy this constraint, then either one or more
solutions were not computed or one or more additional spurious solutions were com-

puted.

1.1.2 Phase Stability Analysis

Necessary conditions for a nonreacting mixture of n components and 7 phases to be

in equilibrium are

TI=T? = ...=T",
P’=pP? = ...=P" and
ﬂi!:ul = =ﬂzr z=1, ,n’

where uf-' denotes the chemical potential of species 7 in phase j. For a mixture satis-
fying the conditions above to be a stable equilibrium state, at constant temperature
and pressure, the Gibbs free energy of the mixture must be at a global minimum.
Determining solutions satisfying the necessary conditions is equivalent to finding a
tangent plane to the Gibbs energy of mixing surface cf the mixture. Sufficient con-
ditions correspond to finding a supporting hyperplane, that is, a tangent hyperplane

that lies completely below the Gibbs energy surface (see Figure 1-3). This equiv-
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Figure 1-3: Schematic of hyperplanes to the Gibbs energy of mixing surface for a
binary mixture with overall composition z.

alence between a global minimum of the Gibbs free energy of the mixture and the
tangent plane criteria was presented by Baker et al. [8] and an algorithm for phase
stability testing based on this criteria was subsequently developed by Michelsen [77].

Michelsen derives a tangent plane distance function,
F(z) =) zilm(z) - 1), (1.7)
i=1

which is equal to the vertical distance from the supporting hyperplane at composition
z°, (where u? = p;(z°)), to the Gibbs energy surface. Hence, a mixture at conditions

(z°, T, P) is unstable if for any z,
F(z) <o. (1.8)

At such a point, the tangent plane lies above the Gibbs energy surface. It is shown
in [77] that F(z) will be non-negative for all z in the physical composition space if it

is non-negative at all stationary points in the physical composition space. Stationary
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points of (1.7) are defined by the following n equations:

(82) - (),-(82) + (m),=0 i=tiin-t

where m(z) = AgM/RT is the Gibbs free energy of mixing (scaled by RT) and the
subscript o denotes the quantity is evaluated at the test composition z°. The number
of stationary points indicates the potential number of phauses the liquid will split into
and provide a good initial guess to the composition of each of the resulting phases.

It is important that any phase stability test distinguish an absolutely stable state
from a metastable or unstable state. Metastable states are effectively unstable from
the viewpoint of heteroazeotropic distillation. The tangent plane criteria correctly
classifies metastability as being unstable.

Several phase stability tests have been developed in the past that attempt to
solve equation system (1.9) for all stationary points and then check to make sure non-
negativity of F(z) is satisfied at all solutions. Unless the test is capable of computing,
with certainty, all stationary points or at least the stationary point corresponding to
the global minimum of (1.7), stability cannot be guaranteed. Of course, only one
stationary point satisfying F(z) < 0 is required to correctly conclude the phase is
unstable (with respect to the phase equilibrium model assumed to formulate F(z)).
Solution procedures based on sophisticated initialization strategies and homotopy
continuation have been developed to make the solution procedure robust, however,
only few have been developed that can guarantee either all stationary points or the one
corresponding to the minimum value for F'(z) will be obtained. One such approach,
developed by McDonald and Floudas [76], applies to a certain class of models used to
compute the Gibbs free energy and computes the global minimum value for F(z) using
global optimization. Obviously, if F(z) > 0 at the global minimum, the test phase is
stable. Another approach, developed by Stadtherr et al. [105], computes all stationary
points using interval Newton/generalized bisection techniques. This approach applies

to any model used to compute the Gibbs energy. If F(z) is non-negative at every
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stationary point then it is non-negative everywhere within the physical composition
space and the test phase is stable. Both McDonald’s and Stadtherr’s approaches
guarantee correct determination of the stability of the phase, however, they are very
computationally costly.

When the nonideality in multiple phases is represented with the same model, one
possible solution to the phase equilibrium problem is the trivial solution. At the trivial
solution, the composition, temperature, and pressure in all phases (associated with
the same model) are equal. For the vapor-liquid-liquid equilibrium (VLLE) problem
or the liquid-liquid equilibrium (LLE) problem, the trivial solution is the correct
solution outside the liquid-liquid region and incorrect within the liquid-liquid region.
Unfortunately, this trivial solution has a large region of convergence and unless a phase
stability test is employed, there is no way to determine if it is the correct solution.
Pham and Doherty [86] developed an algorithm for a limited class of mixtures that
provides conditions whether or not the trivial solution should be rejected or not. The
algorithm applies to liquids that may potentially split into at most two immiscible
liquid phases and have liquid-liquid binodals characterized by either an upper critical
solution temperature (UCST) or a lower critical solution temperature (LCST). For
the UCST case, the algorithm is based on finding a maximum temperature, T,,,, for
which a given liquid of composition z° and at pressure P will split into two stable
liquid phases. This temperature is used during a phase equilibrium calculation to
determine if a VLE calculation or a VLLE calculation should be performed. If a
VLLE calculation is performed, the trivial solution can be confidently rejected. In
the case of mixtures exhibiting a LCST, a minimum temperature, T,,;,, is computed
and a similar procedure is applied. The disadvantage with this approach, aside from
being applicable to a limited class of problems!, is that the test simply indicates
whether or not the trivial solution should be rejected but not how to obtain the
actual solution. Furthermore, due to the possibility of multiple nontrivial liquid-

liquid solutions, stability is not guaranteed.

IThe class of problems may be limited, but many liquid mixtures, particularly those of industrial
importance, fall into this category.
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1.1.3 Residue Curve Maps and Distillation Lines

As mentioned above, azeotropes limit the separation possible with distillation. The
presence of azeotropes effectively divides the composition space into regions charac-
terized by the separations possible using a single distillation column. The analysis of
these regions is very often carried out through the use of residue curve maps. Residue
curve maps have been used since the turn of the century to characterize the behav-
ior of binary distillation [101, 102]. The analysis of residue curve maps was greatly
extended in the work of Matsuyama and Nishimura [75] and Doherty and Perkins
(35, 36, 37], including the application of the analysis to the separation of homoge-
neous mixtures. In addition, residue curve maps have been the basis for many column
sequencing algorithms [38, 87] and entrainer selection rules [34, 106].

The residue curves of an n component homogeneous mixture are defined by the

following system of n — 1 ODEs:

(fl—:?=:c.-—y.-(x) i=1,...,n—-1, (1.10)
where £ is a dimensionless “warped time” (see Appendix A for derivation of (1.10)).
According to the Gibbs phase rule, at a specified, constant pressure (or tempera-
ture), the equilibrium vapor composition, y, is uniquely defined by n — 1 liquid mole
fractions, z;. It is shown in [35] that the pure components and azeotropes are ex-
actly fixed points of the dynamical system (1.10) and can either be stable or unstable
nodes, saddle points, or non-elementary arm-chair fixed-points. Moreover, they are
subject to the topological constraints described above. The presence of azeotropes
often introduces stable and unstable separatices and the projection of these separatri-
ces onto the physical composition space defines simple distillation regions; a residue
curve starting in one simple distillation region remains in this region for all £&. These
separatrices define simple distillation boundaries. It is generally assumed that the
trajectories of (1.10), the residue curves, approximate the composition profiles of an
actual distillation column at total reflux. Consequently, the simple distillation bound-

aries mentioned above are assumed to restrict the separations possible with a single
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distillation column. There are two problems with this. First, the residue curves only
approximate the column profiles at total reflux. Second, it is possible for a column
profile to cross the convex side of a curved simple distillation boundary due to the
fact that near the boundary, the vapor composition associated with the residue curve
lies in the simple distillation region adjacent to the boundary [115]. This has led
several authors in the past to report distillation ‘anomalies’. The correct tool to em-
ploy in this type of analysis are the distillation lines which are the column operating
lines at total reflux [119]). The behavior of both the residue curves and distillation
lines are identical in the immediate vicinity of the fixed-points of the system (pure
components and homogeneous and heterogeneous azeotropes) and, like the residue
curves, the distillation lines often introduce distillation-line boundaries that divide
the composition space into distinct regions. Even though the residue curve maps are
only approximations to the distillation lines and column profiles at finite reflux, they
have proven to be invaluable in the analysis of distillation and have been successfully
applied in several column sequencing and entrainer selection algorithms.

Residue curve map analysis is extended to heterogeneous systems in [74] and [88].

The residue curves of an n component heterogeneous mixture are defined by
— =g —g(z®) i=1,...,n—1, (1.11)

where z° denotes the overall liquid composition (see Appendix A for derivation of
(1.11)). For a heterogeneous mixture with n, liquid phases in equilibrium, there
are ng, additional liquid compositions and n; — 1 phase fractions embedded in the
equilibrium calculation used to compute y. The heteroazeotropes are fixed points of
(1.11), which like the homogeneous case, are restricted to stable and unstable nodes
and saddles. Non-elementary arm-chair fixed points are found in systems exhibiting
positive and negative deviations from Raoult’s Law. Since heteroazeotropy is charac-
terized by strong positive deviations from Raoult’s Law over a range of composition,
the non-elementary fixed-points are not likely to be found in heterogeneous mixtures.

Furthermore, it is shown in [74] that the presence of multiple liquid phases further
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restricts the number of different types of fixed points of (1.11) to n — ny, + 1. The
residue curves of a heterogeneous mixture are smooth and continuous as they move
through the boundary of the heterogeneous liquid boiling surface, at which point
(1.10) correctly describes their behavior. The crossing of the heterogeneous residue
curve into the homogeneous liquid region is illustrated in the schematic in Figure

1-4. Figure 1-5 contains a schematic of a two column distillation sequence used to
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Figure 1-4: Schematic of a heterogeneous Txy-diagram showing the residue curve
moving into the homogeneous liquid region.

separate components A and B (which form a binary homogneous azeotrope) using
C as a heterogeneous entrainer. The addition of C causes a liquid-liquid phase split
and introduces an additional binary BC homogenous azeotrope, a binary AC hetero-
geneous azeotrope, and a ternary heterogeneous azeotrope. This figure illustrates the
partitioning of the composition space into different regions by separatrices and the
use of the liquid-liquid phase split in the decanter to move the feed compositions into

different distillation regions. Heterogeneous residue curve maps have been employed
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Figure 1-5: Schematic of a two column distillation sequence used to separate com-
ponents A and B using C as an entrainer and the associated residue curve map. Mass
balance lines associated with the columns, decanter, and mixing, as well as distillation
boundaries are illustrated in the Gibbs composition triangle.

in the column sequencing algorithm described in [87].

1.1.4 Simulation of Heteroazeotropic Distillation Columns

The discussion above presents topics that are important when analyzing hetero-
azeotropic systems for design purposes. Once the preliminary designs for a distillation
system have been developed (e.g., entrainer selection, column sequencing, etc.) the
next step is to simulate the process. Several approaches have been developed for the
steady-state and dynamic simulation of heteroazeotropic distillation systems, some of
which are discussed below. Heteroazeotropic distillation is far more complicated than
its homogeneous counterpart. Often, the liquid-liquid phase is not restricted to the
decanter and can appear on as much as seventy percent of the trays. The appearace
of a second liquid phase on the trays results in singularities and multiple solutions
in the model [120]. Furthermore, a large temperature gradient is associated with the
movement of the liquid-liquid front within the column. Heteroazeotropic columns are
also characterized by multiple steady-states and extreme parametric sensitivity. Like

a homogeneous azeotropic column, a heterogeneous tower exhibits a maximum reflux
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ratio, above which separation deteriorates.

Steady-state Simulation

The steady-state simulation of heteroazeotropic columns has been studied extensively
in the past [15, 96, 44, 62, 109, 7, 17, 18, 19].

An algorithm employing homotopy continuation has been developed by Kovach
and Seider [62] for the steady-state simulation of a three phase distillation tower and
associated phase separator. This approach uses homotopy continuation to avoid limit
points when multiple liquid phases appear on some of the trays and to compute the
liquid-liquid phase equilibrium. This approach uses homotopy continuation to avoid
the trivial solution (improving the robustness of the LLE calculation), however, it
does not employ a proper phase stability test and thus correct column profiles cannot
be guaranteed.

Another algorithm for the steady-state simulation of heteroazeotropic towers has
been developed by Cairns and Furzer [17, 18, 19]. The authors employ the modified
Naphthali-Sandholm approach of Furzer [46] to express the MESH (material balance,
equilibrium, summation of mole fractions, and heat balance) equations and solve them
using Newton’s method. A phase stability test is employed each time the activity
coefficients are computed to ensure the phase is stable, however, the authors do not
employ an implementation that guarantees correct results (e.g., the two approaches
described in the phase stability section above). Consequently, very little can be said

on the correctness of the column profiles.

Dynamic Simulation

Several approaches have been developed for the dynamic simulation of heteroazeotropic
distillation columns [93, 122, 121]. In contrast to the steady-state models above which
simply contain the MESH equations, the dynamic models of heteroazeotropic columns
must be very detailed (e.g. including tray hydraulics, geometry, etc.) in order to ac-
curately predict the dynamic behavior under various conditions such as the response

to process disturbances.
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Rovaglio and Doherty [93] developed a dynamic model for a heteroazeotropic distil-
lation column and examined the effect of disturbances in a column used to dehydrate
ethanol using benzene as an entrainer. The model predictions are consistent with
previous work in that these columns exhibit multiple steady-states, complex behav-
ior, extreme parametric sensitivity and that the liquid-liquid region is not confined
to the decanter and can be found on as much as sixty percent of the trays. Further-
more, they show that small perturbations in pressure can lead to separation failure
over the course of a 24-hour period. Rather than performing a phase stability test
at each time step and on every tray, the authors fit a spline to the boundary of the
heterogeneous liquid boiling surface in order to check whether or not the overall liquid
composition lies inside or outside the liquid-liquid region. Asshown in [121], the loca-
tion of the liquid-liquid region within the column is sensitive to small perturbations.
Furthermore, sharp temperature g;adients are associated with the movement of the
liquid-liquid region through the column. Consequently, accurate determination of the
puint at which a second liquid phase appears or disappears is crucial for accurately
predicting the column dynamics. Although the approach based on the spline fit of
the heterogeneous liquid boiling surface boundary is a very rapid way of checking
whether or not the overall liquid composition is stable, a better approach may be to
use the spline to determine if the overall liquid composition is ‘near’ the liquid-liquid
boundary (based on the interpolation error of the spline) and if it is, use a more
robust, but computationally expensive, phase stability test to accurately locate the
point at which liquid-liquid phase splitting occurs.

In [122], Wong et al.solve a dynamic model using a semi-implicit Runge-Kutta
integrator to simulate a tower to dehydrate ethanol using benzene as an entrainer. At
each time step, a phase stability test is performed on every tray to determine stability.
The authors employ the phase stability algorithm based on the tangent plane criteria,
but do not describe how they compute all stationary points or the global minimum of
the tangent plane distance function. Judging from the computational times reported,
they are probably not using a method such as that of McDonald or Stadtherr and,

thus, stability cannot be guaranteed.
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A similar approach is described in [121]. Here, the authors solve a dynamic model
using DASSL [16], a differential-algebraic equation (DAE) integrator based on the
backwards differentiation formula (BDF) method. After each successful time step
and on every tray, a phase stability test is employed. The authors address the prob-
lem of accurately detecting the real bifurcation occurring at the point where a second
liquid phase appears or disappears and develop a branch switching algorithm to cor-
rectly reinitialize the system on the correct branch, thereby avoiding the problem of
converging to the trivial solution outside the heterogeneous liquid region. The au-
thors employ the phase stability test of Michelsen as implemented in the UNIFLASH
program [78, 79]. Unfortunately, this algorithm does not guarantee stability, leaving

the computed column profiles in question.

1.2 Challenges

Although the topic of heteroazeotropic distillation has been studied by many re-
searchers in the past, there are still several issues that remain to be addressed. First,
there are limited tools available for the systematic analysis of heteroazeotropic sys-
tems. Robust and efficient procedures are required for the computation of all homo-
geneous and heterogeneous azeotropes present in a multicomponent mixture. These
tools should be independent of the model used to represent the nonideality of the
system and should be capable of dealing with complex liquid-liquid topologies, as
well as systems containing three or more liquid phases in equilibrium. Furthermore,
operation of a heteroazeotropic column is very sensitive to perturbations in process
parameters, leading to complex dynamics and multiple steady-states. Greater under-
standing of the phase equilibrium structure will improve interpretation of simulation
results as well as improve the understanding of how the column should be operated.

Several models and algorithms have been developed for both steady-state and
dynamic simulation of heteroazeotropic columns. None of the approaches described
apply a phase stability test that guarantees stability. However, the phase stability

tests employed are far better than not performing any test at all (i.e., assuming if
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a solution to the VLLE model can be found then the overall liquid composition is
unstable and if no solution can be found the liquid is stable). These approaches are
fast (relative to the approaches of McDonald or Stadtherr) and provide satisfactory
results, particularly if the system is well understood (e.g., number of possible phases
that can form and which components they are rich in), however, conclusions based
on the results of such simulations should bear in mind the results may be incorrect.

A better approach would be to employ a hybrid phase stability test such as that
described above. With the developement of appropriate tools, the liquid-liguid region
can be rapidly determined a priori and enclosed within a collection of convex sets.
During the simulation, the location of the temperature, pressure, and overall liquid
composition relative to these sets can be used as a basis for deciding whether or not
a robust phase stability test should be performed.

The remainder of this part of the thesis addresses the first deficiency described
above. Chapter 2 describes a new approach for the computation of homogeneous and
heterogeneous azeotropes present in a multicomponent mixture. Theoretical analysis
is performed, resulting in conditions under which all homogeneous and heterogeneous
- azeotropes will be computed as well as several algorithmic improvements. The fol-
lowing chapter describes how this approach can be extended to compute efficiently
changes in phase equilibrium structure under system and/or property model param-
eter variation, including the bifurcation values of the parameters Where homogeneous
and heterogeneous azeotropes appear, disappear, and switch between each other. This
part of the thesis is concluded with a chapter containing several numerical examples

illustrating the approaches developed in chapters 2 and 3.

¥
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Chapter 2

Computation of Heteroazeotropes

2.1 Imntroduction

Azeotropes and heteroazeotropes of an n component system satisfy the following

system of nonlinear equations:

-y = 0 (2.1)
feg(z,y,T,P) = 0 (2.2)
i_:yi—l =0 (2.3)
= z,y > 0 (2.4)
T,P > 0 (2.5)

where z € R is the liquid composition, y € R" is the vapor composition, and f,
is some equilibrium relationship between the liquid and the vapor. If the system
is heterogeneous (two or more liquid phases in equilibrium), z is the overall liquid
composition and there are Ny additional liquid compositions and N — 1 liquid phase
fractions embedded within the equilibrium relationship, where N is the number of
distinct liquid phases present. It should be noted that the equations above are a
necessary but not sufficient condition for azeotropy. As described in the previous

chapter, the solution to equations (2.1)-(2.5) corresponds to a tangent hyperplane to
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the Gibbs energy of mixing surface at a temperature T and pressure P where the
liquid composition is equal to the vapor composition (overall liquid composition in
the heterogeneous case). The sufficient condition for stability is that the composition,
temperature, and pressure minimize the Gibbs free energy of the mixture or equiva-
lently, the tangent hyperplane supports the entire Gibbs free energy surface. Figures
2-1 and 2-2 contain schematics of the supporting hyperplanes to the Gibbs free energy
surface for a binary homogeneous azeotrope and a binary heterogeneous azeotrope,

respectively. Solutions satisfying the necessary conditions must be further examined
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Figure 2-1: Schematic of supporting hyperplane to the Gibbs free energy surface for
a binary homogeneous azeotrope.

to determine if they are stable using a phase stability test such as those described in
the previous chapter [77, 76, 105].

This chapter describes a systematic approach developed in this thesis for com-
puting the homogeneous and heterogeneous azeotropes present in a multicomponent
mixture containing any number of liquid phases in equilibrium and with any liquid-
liquid region topology. For example, liquid-liquid binodals exhibiting an upper crit-
ical solution temperature (UCST), or a lower critical solution temperature (LCST),
or both an UCST and a LCST, disjoint liquid-liquid regions, etc. The approach is
an extension of a method developed by Fidkowski et al. [45] for the computation

of homogeneous azeotropes. Other approaches for the computation of homogeneous

39



Composition

x =y X!

Y x

T——————

Gibbs Free Energy
£
|
|
|
]
|
I
|

Figure 2-2: Schematic of supporting hyperplane to the Gibbs free energy surface for
a binary heterogeneous azeotrope.

and heterogeneous azeotropes are reviewed in the previous chapter. Our approach has
the advantage of being able to compute efficiently changes in the phase equilibrium
structure under system and/or property model parameter variation including the ca-
pability of detecting incipient homogeneous azeotropes and heterogeneous azeotropes
that may exist under different conditions. This extension of the algorithm is discussed
in detail in chapter 3 of this thesis.

The first section of this chapter describes Fidkowski’s approach followed by some
previously unreported analysis of the method. The following section describes our
extension for the computation of heteroazeotropes. This section also includes an
analysis of our approach. The effectiveness of the method is illustrated through
several numerica! examples contained in chapter 4. In the remainder of this part of
the thesis, azeotropes will refer to homogeneous azeotropes and heteroazeotropes will,
obviously, refer to heterogeneous azeotropes. The homogeneous qualifier will only be

used where necessary to avoid confusion.
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2.2 Computation of Homogeneous Azeotropes

Fidkowski’s approach for computing homogeneous azeotropes is based on solving the

necessary conditions for azeotropy using homotopy continuation. The homotopy map

is given by
hi(z, A) = A(z; — yi(z)) + (1 = N)(z: — ¥i4(z)) i=1,...,n—-1 (2.6)

where z € R" is the liquid composition, ¢ € R is the vapor composition in equilib-
rium with the liquid computed using Raoult’s Law, y € R" is the vapor in equilibrium
with the liquid computed using some nonideal vapor-liquid equilibrium model, and
X € R is the homotopy parameter. The summation of mole fraction constraint is han-
dled implicitly by removing z,, ¥, and y?. At a given pressure, system (2.6) is n — 1
equations in terms of n unknowns (n — 1 independent mole fractions and A). By set-
ting this underdetermined system equal to zero, a homotopy path is defined that can
be tracked numerically using standard continuation methods [4, 117, 95]. At A =0,
the homotopy map reduces to h(z,0) = z —y'¥(z) = 0 and since Raoult’s Law cannot
predict azeotropy, there are precisely n solutions to this system of equations, the pure
components. Provided the pure component boiling temperatures are distinct at the
specified pressure, these n solutions correspond to n pure component branches. If the
pure component boiling temperatures are not distinct, then more than n branches
may exist at A = 0. This is discussed in detail in chapter 3. The basic idea of the
approach is to start with A initialized to zero and r initialized to each of the pure
components and track these n paths to A = 1 where the homotopy map reduces to
h(z,1) = £ — y(z) = 0, the necessary conditions for azeotropy. Along some of these
pure component branches bifurcation points appear that correspond to intersections
with binary branches (branches with two nonzero mole fraction elements). These
binary branches result in points satisfying the necessary conditions for azeotropy for
a binary mixture at A = 1. Similarly, along some of the binary branches, bifurca-
tion points are identified that correspond to intersections with ternary branches from

which solutions satisfying the necessary conditions for azeotropy of ternary mixtures
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are obtained at A = 1. In general, k-ary azeotropes are obtained from branches that
bifurcate off (k—1)-ary branches. Figure 2-3 contains a bifurcation diagram (T versus
)) for the acetone, chloroform, methanol, ethanol, and benzene system at a pressure
of one bar. The six binary azeotropes, two ternary azeotropes, and one quarternary
azeotrope present in the mixture are computed.

Temperature versus homotopy parameter for the ACMEB system. P=1.0bar
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Figure 2-3: Bifurcation diagram for the acetone, chloroform, methanol, ethanol, and

benzene system at one bar.

Although the bifurcation points correspond to intersections between branches of
different dimension, the term intersection point will refer to a specific intersection

discussed in section 2.4.
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2.2.1 Analysis

The homogeneous homotopy map, equation (2.6), can be expressed in the following

alternative form:

/ -y

yi — MK+ (1= AP/ Play
F(z,y*,T,)\) = :
Yn — [AKn + (1= A)P;/P]z,
\ = U1 d

/

where y* € R" is the perturbed vapor composition and the term K; = MK + (1 —

A)P;/P is a pseudo K-value. In this form, the summation of mole fraction constraint

is handled explicitly. The perturbed vapor composition can be removed from (2.7)

using the first n equations:

(o (1= MKy + (1= N)P;/P]) )

F I,1,A)=
@) Tn (1= [AKa + (1 — A)P3/P))

\ Sl

(2.8)

Setting system (2.8) to zero defines a 1-manifold in (x,T, A)-space. Alternatively,

temperature can be fixed in which case setting (2.8) to zero defines a 1-manifold in

(z, P, \)-space. This curve will be referred to as a homogeneous homotopy path or

branch or as simply a homogeneous branch. The Jacobian matrix of (2.8) can be

expressed as:
( aj-Az1K1n =M1 K2 =Az1 K1,n -z161
-Az2K2,1  az-Az2K22 - ~Az2K2,n —z202
VF(z,T\)=
—AznKn,1 —AznKn 2 . an=AznKnn —Tnfn
\ 1 1 1 0
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where

o; = 1—[MK;+(1-))P}/P]=1-K;, (2.10)
_ 0K; (1-X)dFP;
B =2 (W) YR 1)
¢; = Kj— ?", and (2.12)
Ki; = (aK") , (2.13)
az] zilj)v.T,P
fori,5 =1,...,n and the sﬁbscript z;[j) denotes all mole fraction elements are held

constant except ;.

Without loss of generality, a k-ary branch of 2n n component mixture satisfies the

following

;i # 0 Vi=1,... k, (2.14)
a = 0 Vj=1,... F, (2.15)
zj = 0 Vj=k+1,...,n, and (2.16)
aj # 0 Vi=k+1,...,n. (2.17)

Constraints (2.14) and (2.17) may be simultaneously violated at isolated points along
the homotopy branch. As shown below, there violations are of particular interest. Let
¢(€) € F~1(0) denote a homotopy branch where ¢ is some suitable parameterization
(e.g., arclength) and suppose we are currently on a k-ary branch. On &(£) the following
holds:

aj=0forall j=1,...,k.
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Thus,

( “An Ky -AnKiz - A K 0 =Aan K —np —né \
=Azi Kpy —AxpKgo 0 Az Kepgpr 0 =AzkKgkn  —ZkPr —Trdn
VF(EE)= 0 0 v owp 0 0 o | (2.18)
0 0 0 an 0 0
\ i 1 1 1 0 0 J

The following lemma provides useful information for identifying bifurcation points
and is used in the discussion of when all azeotropes will be computed, presented later

in this section.

Lemma 1 A necessary condition for a transcritical bifurcation from a k-ary branch

onto a (k + 1)-ary branch at a point &(§) is
o;(€) = 0 for some j € {k+1,...,n}. (2.19)

A necessary condition for a transcritical bifurcation from a (k + 1)-ary branch to

a k-ary branch at a point E(E) 1S
z;(€) =0 for some j € {1,... ,k +1}. (2.20)

Condition (2.20) becomes necessary and sufficient for the bifurcation from a (k +

1)-ary branch onto a k-ary branch by adding the following:
2. rank VF() = N — 1 where N =n +1, and

3. 8F/6.1:,-|£=€- ER (VU]F(E)) where V[; denotes partial derivatives with respect

to all variables except ;.
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Proof. See Appendix B.
The bifurcation points on the pure component branches can be identified a priori

without any branch tracking. First, define the following quantity:

1-P)(T7)/P
Ki(eiieia 7?, P) - R;(T;’)/P
1-P)(T})/P
(¥55 — VP (TY)/P

Aij =

(i # 5) (2.21)

where T is the boiling point of pure component ¢ at pressure P and

1 P
~RT b V,dP

D
© = lim ZJ——"-exp
z;,—1 V;

i.j

(9; is the fugacity coefficient for species j in a mixture and v} is the fugacity of
saturated pure j). At low to moderate pressure, the quantity Y75 is approximately
equal to the infinite dilution activity coefficient, 75° in a binary mixture of 7 and j.
There will be a bifurcation point on the pure component ¢ branch corresponding to a
binary branch of components 7 and j if 0 < A; ; < 1. Actually, the bifurcation point
will exist regardless of the value of ); ; provided ¢ # 1. However, as explained later
in this section, it is branches associated with bifurcation points between A = 0 and
A =1 that lead to solutions satisfying the necessary conditions for azeotropy at A = 1.
Assume that component 2 forms an azeotrope with component 1 and this is not an
isolated azeotrope. An isolated azeotrope is an azeotrope with the zy-diagram shown
in Figure 2-4. According to Fidkowski [45], although isolated azeotropes cannot be
ruled out on thermodynamic grounds, there are no known physical examples of them
and it is extremely unlikely they even exist. The authors cite only one known case
of multiple azeotropy, formed in a mixture of benzene and hexaflourobenzene. In
this mixture both azeotropes are computed with this method: a minimum boiling
binary azeotrope bifurcates from the lower boiling species’ homotopy branch and
the maximum boiling azeotrope bifurcates from the higher boiling species’ homotopy

branch. When computing homogeneous azeotropes, we are interested in bifurcations
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Y

0

0 X1 1

Figure 2-4: Binary mixture exhibiting an isolated azeotrope and a pair of azeotropes

(at another pressure) that bifurcate from the isolated azeotrope.

in 0 < A < 1. Criteria (2.21) will be satisfied if

Py(T? w P (T?)
0<1——2§31)<(1—‘/’1.2 2;‘
or
Pa Ta‘ Pa Ts
(1-953) 2§)‘)<1————2$,‘)<0.
Thus,
Pa Ta mPs L]
——2;‘) > 1 and wm——zgl) <1
or
P (T o B(T?
%dandwm 2g,‘)>1.

(2.22)

(2.23)

(2.24)

(2.25)

Now, if a binary azeotrope actually exists, it can be readily seen from the zy-plot

that if the azeotrope is minimum boiling,

'pg?lPIgZ) > 1 and d’f;Pz(Tl)

P

> 1,
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or if the azeotrope is maximum boiling,

¢ooPi'(Tff) P3(T7)
2,1 P

P

<1 and 97, <1, (2.27)

provided the azeotrope is not isolated. Finally, if the azeotrope is maximum boiling
and component 1 is less volatile than component 2 (i.e., T{ > T3) then P3(T})/P > 1
and the bifurcation point will appear on the pure component 1 branch (the higher
boiling component). If, however, the azeotrope is minimum boiling (and component
1 is still less volatile than component 2) then the bifurcation appears on the pure
component 2 branch. Thus, for the binary case, if the azeotrope actually exists, the
bifurcation point will appear at some 0 < A < 1 and a minimum boiling azeotrope
will be obtained through a bifurcation on the lower boiling component branch and a
maximum boiling azeotrope will be obtained through a bifurcation on the higher boil-
ing component branch (assuming the phase equilibrium model employed accurately
represents the physical behavior). Unfortunately, the exact values for the bifurcation
A’s cannot be predicted a priori for k£ > 1 since ax = ax(¢(€)) and &(£) is not known
a priori.

The exact condition under which a bifurcation point occurs is important because
it allows for a more aggressive stepsize strategy to be used during the numerical
continuation. If the bifurcation points were identified by monitoring the sign of the
determinant of the Jacobian matrix, there is a possibility of jumping over multiple
bifurcation points in which case it would possible to miss an even number of them due
to a cancellation of sign changes or incorrectly conclude there is only one when there
may be an odd number of them greater than one. By using the explicit necessary con-
ditions for the existence of a bifurcation point, it is possible to use more sophisticated
approaches for detecting them, thereby increasing the efficiency and robustness of the
algorithm. This is described in the implementation section later in this chapter.

The remainder of this section discusses under what conditions all homogeneous
azeotropes will be computed using the homotopy method. First, a brief outline of

the proof is given. A bounded region, S, will be constructed in (z, T, A)-space. If an
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azeotrope exists, it will be located on a side of S and the homogeneous path through
this azeotrope will move into S. If zero is a regular value (i.e., VF has full rank n+1)
inside this region, it will be shown that, except under extremely pathological cases,
the homogeneous path will leave S at a bifurcation point associated with a lower
dimensional homogeneous branch. Once on thtis lower dimensional branch, the same
reasoning above is applied. This process is continued until a pure component branch
is obtained and the computation of the original azeotrope is guaranteed. The section
concludes with a discussion of the conditions under which zero will be a regular value
in this region.

The bounded, connected set mentioned above is defined as follows:
S =C X [Thin, Trnaz) % (0,1] (2.28)
where
C={zeR" | 0<Lz;<1, j=1,...,n, and Y . z; =1} (2.29)

is the physical composition space and 0 < T,;;;s < Thaz- The bounds on the temper-
ature, Tnin and Tpn.. are based on the fact that K ; is a convex combination of two
smooth functions, K; and P} /P in S. Suppose an n-ary azeotrope exists. Denote
this point on the homotopy path as &(€) = (z(€), T(€),1) € S. Assuming that d¢/d¢
is not tangent to the level set C X [Trnin, Tmaz] X {1} at € (this exception will be dis-
cussed later), ¢(£) will point into S (defining the positive £ direction as the direction
of decreasing X at £). If zero is a regular value of F in the interior of S (i.e., VF
has maximal rank n + 1 along ¢(€) € int(S)) then after finite &, ¢(£) will leave S.
Obviously, zero will not be a regular value of F' on the boundary of S since this is
where bifurcations onto lower dimensional branches occur. This homotopy path will
leave S in one of two ways: through a sid: of S where z; = 0 for some 1 < i< nor
turn back around and exit through the side where A = 1 (see Figure 2-5). A branch

with n > 1 cannot, in general; leave through the side where A = 0 since as a con-

sequence of Raoult’s Law, the pure components are the only solutions at this point.
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It is possible, however, for the homotopy branch to leave S at A = 0. This special
case, discussed in detail in chapter 3, occurs only at specific values of pressure and
does not present any problem for this algorithm. If ¢(&€) leaves through a side of S
where ; = 0 then this point corresponds to a transcritical bifurcation point onto an
(n — 1)-ary branch provided the conditions of lemma 1 are satisfied. The case where
é(£) leaves through the side defined by A = 1 corresponds to the case of multiple
azeotropes bifurcating from an isolated azeotrope (see Figure 2-4). As stated above,
this has never been observed experimentally. Nevertheless, the method will fail in
this case. Furthermore, the case where d¢/df is tangent to C X [Tiin, Trnaz] X {1} at £
corresponds to the isolated azeotrope. If the homotopy branch passes through a side
defined by z; = 0, we are able to jump onto a lower dimensional branch. The set S
is redefined for this new lower dimensional space by reducing the dimensionality of
the composition space C. If zero is a regular value of F in the interior of the new S
and the homotopy path does not leave this new S through the side defined by A =1,
we will be able to bifurcate onto a branch of even lower dimension. This reasoning is
continued until we reach a pure component branch. If we are able to do this then the
original n-ary azeotrope can be obtained through the homotopy method. The next

question to examine is under what conditions zero will be a regular value of F'.

x5 A x A

1] )0 >
0 12 o ! 1 A

Figure 2-5: Two possible ways ¢(§) can leave S.

Zero will be a regular value of F' along a path &(£) if the Jacobian matrix (2.18)

has rank n+ 1. To facilitate the analysis, the vapor is treated as ain ideal gas and the
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Jacobian matrix is rewritten as

( ;/\$1K1.1 A K2 -0 A0 K, -5 —T1th \
VF(e(€)) =
_Aann,l _Aannﬂ e _/\InKn,n —'xnﬂn —xn¢n
\ ! 1 1 0 0 )
( A Kigin —AnKigz o =AnKgn  —miKwey -5 Kb \
B —d\anngn,l —Aanngn,z "'\:nKngn.n —zZnKnwn —ZnKabn
\ 1 1 1 0 0 )
( —l'lKl 0 -« 0 \ ( /\91,1 Agl.n w 01 \
_ 0 —I2K2 : : : :
el Agn,l Agn,n Wn 0n
\ 0 A | ) \ 1 1 0 0 /
( —$1K1 0 ..o 0 \
_ 0 —-zKy ¢ AG w 0 (2.30)
. i\l oo '
\ o0 -1y
where

dIn P

Bln'y.-) ( 1-A
w; = A +{ 2+

)

T (2.31)

(2.32)

(2.33)

(2.34)

Note that G is the Hessian matrix of the excess Gibbs free energy of mixing (scaled

by RT) and thus,

1. G =GT € R**" and
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2. By the Gibbs-Duhem relation, the rank of G is at most n — 1.

The first term in the factored Jacobian matrix, equation (2.30), is a diagonal matrix
which is nonsingular in the interior of S. Thus, it is sufficient to look only at the

second term to examine the rank of the overall Jacobian matrix.

Theorem 1 Zero will be a regular value of F in the interior of S if

1. rank(G) > n — 2,

2. HE < AH!®® fori = 1,...,n (HF and AH]®® are the ezcess partial molar

enthalpy and the molar heat of evaporation of component i, respectively), and

8. zT(A — kw) # 0 for any constant k where x is the current composition at which

0 and w are evaluated (this constraint is only necessary if rank(G) =n — 2)
(assuming the vapor may be treated as an ideal gas).

Proof. Zero will be a regular value of F' in the interior of S if

AG w 6
rank =n+1

el 00
Suppose u € R(G) = R(G"). Then u =Y} cig: where G = [g; g» --- gn] and

0k
9k = : Vk=1,...,n.

Gn k

By the Gibbs-Duhem relation, zTu = 3_7_ ¢;zTg; = 0 since 2Tg; = 0 for all i where z

is the current liquid composition on the curve . However, z7e # 0 and if H? < AH!*?

for all 7 then w > 0 in the interior of S and 7w # 0. This implies the following

AG
rank =rank(G) +1
T

AG w
rank =rank(G) + 2

el 0
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This completes the proof if rank(G) = n — 1. If condition (3) also holds,

G w 6
rank = max{rank(G) + 3,n + 1}.
e 00
Corollary 1 There will be no isolated azeotropes nor multiple azeotropes that bifur-

cate from isolated azeotropes if the rank of G is equal to n —1 and condition (2) holds

in the interior of S.

There must be a turning point in the interior of S for there to be an isolated branch
(i.e., a branch not connected to a lower dimensional branch) connecting a pair of
azeotropes that bifurcate off an isolated azeotrope (see Figure 2-4). The corollary
above excludes turning points in A in the interior of S and thus, these isolated branches
and corresponding azeotropes are not possible.

The condition for non-negativity of w is derived as follows:

dln; 1-A\dnFP;
o= (%) 00 50) T

. )‘I?,-E+ A LoA AH}
~ "RT? v ) RT?AZ}*P

where HF is the excess partial molar enthalpy of mixing for species ¢, AH;*" is the
molar heat of evaporation for species 7, and AZ;" is the change in the compressibility
factor associated with evaporation for species ¢ (which is very close to unity at low
to moderate pressure). Since, in the interior of S, 0 < A < A+ (1 — A)/7i, wi > 0 if
HE < AH!®P. This is not at all an unreasonable assumption.

The exact conditions under which the rank of G is less than n — 2 in the interior
of S, if this may occur at all, have not been determined. However, the only physically
meaningful case where the rank of G is equal n — 2 is at a non-elementary arm-chair
azeotrope (of which the isolated azeotrope is an example), which are extremely rare
and will occur only at specific values of pressure. Furthermore, arm-chair azeotropes
which are not isolated azeotropes are readily computed with this method. Within

the interior of S, the phase equilibrium is modeled using pseudo K-values which
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are convex combinations of the nonideal and ideal K-values. Thus, the “pseudo
equilibrium” is not likely to be significantly different from the actual phase equilibrium
except for the most pathological cases.

If the approach described above is applied to systems containing heteroazeotropes,
solutions are found at A = 1 that either don’t satisfy the necessary conditions for
azeotropy due to a violation of the non-negativity of the mole fractions constraint or
they satisfy the necessary conditions, but a subsequent phase stability test indicates
the liquid at the computed composition, temperature, and pressure will split into
multiple liquid phases. These spurious homogeneous solutions, discussed in detail in
the following section, correspond to actual heteroazeotropes present in the mixture.

The spurious solutions themselves do not assist in the computation of the corre-
sponding heteroazeotropes: the composition and temperature of these spurious so-
lutions, even when within their respective bounds, are significantly different from
the actual heteroazeotrope composition and temperature and there is no systematic
way to initialize the additional variables associated with the heterogeneous model.
However, sections 2.3 and 2.4 describe how two additional homotopy maps can be
constructed so that heteroazeotropes can be computed using the spurious homoge-

neous azeotropes and branches.

2.3 Spurious Homogeneous Azeotropes

In this section, the existence of spurious homogeneous azeotropes is considered. It will
be shown in the following section that the spurious azeotropes need not be computed
(only the spurious branches are required to obtain the heteroazeotropes), however,
the following analysis provides some useful insights and an alternative, very efficient
mechanism for computing certain heteroazeotropes. The existence of spurious homo-

geneous azeotropes will be analyzed by examining the following homotopy map:

hi(z,A) = Mzi — yi(z)) + (1 = A)(z: — y{(z)) i=1,...,n—1 (2.35)
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where € R" is the liquid composition, y(z) € R is the vapor composition in
equilibrium with the liquid computed using an appropriate vapor-liquid equilibrium
(VLE) model, y°(z) € R* is the vapor composition in equilibrium with the liquid
computed using an appropriate vapor-liquid-liquid equilibrium (VLLE) model (z is
the overall liquid composition in this case), and A € R is the homotopy parameter.
The equilibrium vapor composition and temperature as well as the additional liquid
compositions and phase fraction in the heterogeneous case are fully determined by
specifying = and pressure. System (2.35) is n — 1 equations in terms of n unknowns
(n — 1 independent liquid compositions and A). The summation of mole fraction
constraint was used to eliminate a mole fraction element, rather than treating the n
compositions as independent and explicitly handling the summation constraint as in
the other homotopies described in this chapter. At A = 0, the homotopy map reduces
to hi(z,0) = z;—y{(z),7 =1,... ,n—1, the necessary conditions for heteroazeotropy.
At A = 1, the homotopy map reduces to hi(z,1) = z; — y;(z), i =1,... ,n — 1, the
necessary conditions for homogeneous azeotropy. This homotopy map is related to
the residue curves of homogeneous and heterogeneous mixtures. The homogeneous

residue curves are defined by the dynamical system

d:l,‘,'

df =.'17,'—y,'($) i=1,...,n—-1 (236)

and the heterogeneous residue curves are defined by

dz:

—d%'=$,-—yf(a:) i=1,...,n—1 (2.37)
The notation is slightly changed from that in chapter 1 to remain consistent in this
chapter. As stated in chapter 1, fixed-points of these dynamical systems are the pure
components, azeotropes, and heteroazeotropes and can only be stable or unstable
nodes, saddles, or non-elementary arm-chair fixed-points [35, 74]. Furthermore, it is
shown in [74] that the number of different types of fixed-points is further restricted in

the heterogeneous case by the number of components present and number of liquid

phases in equilibrium. The homotopy curve defined by h*(z,A) = 0 describes how
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the fixed-points of th¢ following dynamical system vary with A:
== = Mz — yil®)) + (1 = N)(z: — y2(z)) i=1,...,n—1.  (2.38)

Figure 2-6 contains a schematic of the relationship between the fixed-points of the

three dynamical systems above.

Heterogeneous

A=0 O<h<l A=1

dx iy :—:;--Mx-y‘)ﬂl-k)(l-y) qr =Y

Figure 2-6: Schematic of relationship between the fixed-points of the dynamical
systems (2.36), (2.37), and (2.38)

Suppose z° satisfies the necessary and sufficient conditions for heteroazeotropy
and Z satisfies the necessary conditions for homogeneous azeotropy (and is thus, the
composition of a spurious homogeneous azeotrope). We are interested in under what
conditions a smooth path defined by h’(z, ) = O connects (Z°,0) and (Z,1). The

homotopy map can be expressed as:
hi(z,\) =z;[M1-K)+(1-N1-K?)] i=1,...,n-1 (2.39)

where K; is the normal VLE K-value and

1 1 1
ﬁ = Sﬁ + (1 - S)W (240)

1

is the overall K-value for the heterogeneous system.
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The Jacobian of (2.39) is

. _ , | ar°
Vhi(z,A) = (V,h —5)7) (2.41)
(2.42)
where
. _ IK; OK?
(V:h )i.j = Adij—xi ['\6_:1:, +(1-A) oz, ] , (2.43)
A; = AM1-K)+(1-M(1-K?), and (2.44)

fl

on’ o
( 0 ).' -z; (K; — K7). (2.45)
Let c(€) € (h*)~?(0) denote the homotopy path where £ is some suitable parame-
terization. As before, define a k-ary branch, denoted by c()(£), as a connected com-
ponent of (h*)~!(0) such that z; #0for1,... ,kandz; =0fori=k+1,... ,n—1.
On c()(€), Ai=0forall i =1,...,k. On this path, the Jacobian can be written as

~0 Ky o oK o0 —mKyaa \
s —TpKey - —-TkKk,kH v "‘fl?kKk,n—l
V.h (C(k)(g)) =
0 Ais1 0
\ 0 0 - )

and

[z, (K, - K?) )

ok’
(6))

ck)(§) 0
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where K; ; = AK;; + (1 — A)K7?;. As with the other homotopy branches discussed in
this paper, c(€) exhibits transcritical bifurcation points, corresponding to intersections
between k-ary and (k+ 1)-ary branches, where a mole fraction element on the (k +1)-
ary branch and the corresponding A; on the k-ary branch cross zero. (The proof
is very similar to the one shown in Appendix B for the bifurcation points on the
homogeneous branches.) This observation will be shown to be particularly useful in
the heteroazeotrope finding algorithm.

Let s(z) denote the liquid phase fraction computed through a VLLE calculation

with a fixed pressure and overall liquid composition z. Define the following set:
Q={zeR"! | 2T =(T,1- Y 2:) and 0 < s(z) < 1}.

At a specified pressure, this set is constant and does not change along the homotopy
path (it is simply the region where a liquid-liquid phase split is predicted by the
necessary conditions for vapor-liquid-liquid equilibrium). Let é(0) = (2°,0) € @ x R
where z° satisfies the necessary and sufficient conditions for heteroazeotropy. We
are interested in under what conditions a spurious homogeneous azeotrope will exist
when a corresponding heteroazeotrope exists. Thus, we can assume ¢(§) C 2 x R
for —oo < £ < 4+o0o. This is due to the fact that if ¢(£) leaves 2 x R at a point
&€ = (z,X), 0 < X < 1, then 5(Z) = 0 (or 1) and Z will satisfy the necessary
conditions for azeotropy and thus, be the spurious homogeneous azeotrope we are
looking for. Sufficient conditions for the homotopy path to cross the level set 2 x {1}

at a point (Z,1) (where Z is a spurious homogeneous azeotrope) are:
1. Zero is a regular value of h in (2 — 2) x [0,1] and
2. Multiple heteroazeotropy does not occur

where Z = {z € R*' | 27 = (27,1~ Y77} z) and z; = 0 for at least one i} (this
set is removed from Q to exclude the case of transcritical bifurcations onto other
branches when a mole fraction element crosses zero). If the first condition holds then

¢(&) will be diffeomorphic to a circle or the real line and will either cross Q x {1}
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Figure 2-7: Homotopy paths connecting heteroazeotropes to spurious homogeneous
azeotropes for the benzene, ethanol, and water system at 1.0 bar.

or turn around before the A-component of &) reaches unity. Condition (2) prevents
the latter from occurring.

Figure 2-7 contains a plot of the homotopy paths connecting the heteroazeotropes
to the corresponding spurious homogeneous azeotropes in the benzene, ethanol, and
water system at a pressure of one bar. In this figure, the ternary branch intersects
the binary branch where the ethanol mole fraction crosses zero. The binary het-
eroazeotrope is a saddle when the system is viewed as a three component mixture
and the corresponding spurious azeotrope is an unstable node (they are both un-
stable nodes when the system is viewed as a binary benzene-water mixture). This
difference in stability is due to the fact that a ternary homotopy branch experiences
a transcritical bifurcation through the binary branch. Suppose the two conditions
listed above hold on all homotopy paths connecting heteroazeotropes to spurious ho-
mogeneous azeotropes present in an n-component mixture!. In addition, suppose we

are currently on a k-ary branch. At any value of A, the matrix V_h* has n — k — 1

! Actually, condition (1) above can be relaxed: zero need only be a regular value for the homotopy
map, h®(z, ), in the set (2NC) x [0,1).
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eigenvalues equal to A;, i =k +1,...,n — 1. A sufficient condition for the existence

of a higher dimensional branch crossing the k-ary branch is
Ai(A=0)-A;(A=1)<0forsomei=k+1,...,n. (2.46)

(The A corresponding to the component removed using the summation of mole frac-
tions constraint must also be examined.) This observation can be exploited in the het-
eroazeotrope finding algorithm. Given a k-ary heteroazeotrope and its spurious homo-
geneous azeotrope, compare the signs of A;(A =0) and A;(A=1)fori=k+1,... ,n.
If any of these quanéities differ in sign then a (k + 1)-ary heteroazeotrope may exist.
In addition, we know with which additional component this new heteroazeotrope is
formed and that the spurious homogeneous azeotrope lies outside C. Furthermore,
this provides an efficient means of computing the higher dimensional heteroazeotrope.
Suppose (2.46) is satisfied for some k£ +1 < j < n. The homotopy path is tracked
from the k-ary heteroazeotrope to determine where A;(£) crosses zero. A point on
the higher dimensional homotopy branch is then computed by solving the following

system of equations:
( 14, \

.’I:kAk
\ %< )

for some sufficiently small ¢ > 0. This branch is then tracked in the direction of

decreasing A to the heteroazeotrope at A = 0. Obviously, we will need to compute
binary heteroazeotropes in a different manner in order to obtain the higher dimen-
sional heteroazeotropes using the approach described above. The following section

describes another approach for the computation of the heteroazeotropes.
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2.4 Computation of Heterogeneous Azeotropes

This section describes our extension of Fidkowski’s approach for the computation of
the heteroazeotropes present in a multicomponent mixture. The description of the
approach is followed by some analysis. The case of two liquid phases in equilibrium
with vapor is discussed below. However, the approach can be readily extended to
handle any number of liquid phases in equilibrium.

The first step is to derive a heterogeneous homotopy map. Since there is no
equivalent to Raoult’s Law for vapor-liquid-liquid equilibrium, equation (2.6) cannot
be used as a starting point. However, starting with equation (2.7) the following

homotopy map can be derived:

( -y )
yi — [AK{ + (1= \)P;/P] ]

vn — [AKL + (1= \)Py/P] !

At = ot7af’] + (0 - %) [z} - ]

Fo(z,y*,a’,z" T s,)) = (2.47)

A vazn = el ] + (1 - 2) [2] - 2]
r— szl — (1-s)z!!
?:l y: - 1

\ ?:1-'1’:! -1 /

where € R" is the overall liquid composition, y* € R" is the perturbed vapor
composition, z’,z! € R™ are the liquid compositions of liquid phases I and II,
respectively, s is the liquid phase fraction (the fraction of the total number of moles
of liquid in liquid phase I), T is temperature, P is pressure, and A € R is the

homotopy parameter. As in the homogeneous case, the perturbed vapor composition
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can be eliminated from (2.47) using the first n equations:

(o -DKI+-NP /P2l )

zn — [AKL+ (1 — N)P:/P] =},
A izl = w'=l’] + (1= A) [z] - 2{]
Fo(z,z', 2", T,s,)) = : (2.48)
A [wzn —wlwl] + (1= A) [z7 — 2]
z—sz! — (1-s)z!!
i Ti— 1
\ Yz -1 )

Similar to the homogeneous case, at constant pressure setting expression (2.48) to
zero defines a 1-manifold in (z,z’,z'!, T, s, A)-space. This curve will be referred to as
a heterogeneous homotopy path or branch or simply as a heterogeneous branch. This
form of the heterogeneous homotopy map has the following property: when the liquid
phase fraction s on the heterogeneous branch crosses zero or one, a projection of the
heterogeneous branch will intersect the corresponding spurious homogeneous branch
(see Figure 2-8). As stated earlier in this chapter, a spurious homogeneous azeotrope
is a solution to the necessary conditions of azeotropy that fails a stability test or lies
outside the physical bounds of the variables (i.e., mole fractions outside the range of
zero and unity). The basic heteroazeotrope finding algorithm can be summarized in

the following steps:
1. Compute the homogeneous azeotropes using the homogeneous homotopy map,

2. Test all homogeneous azeotropes for stability (this also indicates which azeotropes

are spurious),

3. Retrace all spurious branches and search for the points of intersection with a

projection of a heterogeneous branch,

4. From the intersection points, track the heterogeneous branches to the het-
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Figure 2-8: Schematic of the intersection of spurious homogeneons branch and pro-
jection of heterogeneous branch.

eroazeotropes using the heterogeneous homotopy map, and
5. Test all heterogeneous solutions for stability.

Since only the necessary conditions are satisfied at A = 1, a phase stability test
must be performed on all solutions. The homogeneous azeotropes are easily obtained
through a series of bifurcations from some of the pure component branches. Cri-
teria (2.46) should be checked at each heteroazeotrope computed. If this condition
is satisfied, the approach described in the previous section provides an alternative,
independent means of computing the higher dimensional heteroazeotrope.

At the intersection points, the common components of the homogeneous and het-
erogeneous branches are equal. The following additional constraints are satisfied on

the heterogeneous branch (when s = 1):

Az — J'-'arj')+(1——/\)(:1:,-—a:§') =0 j=1...,n (2.49)

Yool = 1. (2.50)
i=1

The heterogeneous homotopy map was constructed so that it can be assumed the lig-
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uid phase fraction s crosses one. As the spurious homogeneous branches are retraced,
equations (2.49)-(2.50) are monitored to determine if a root exists in the current con-
tinuation step. A root exclusion test based on interval arithmetic [81] is employed
to make this search robust and efficient. This algorithm is described in detail in the
implementation section later in this chapter. If a root is identified in a neighborhood
of the current continuation point, a bounded Newton’s method is used to compute
the missing components associated with the heterogeneous branch (z'’). After com-
puting the intersection point, the heterogeneous homotopy map is used to track the

path from the intersection point to the heteroazeotrope at A = 1.

2.4.1 Analysis

There are two classes of bifurcations that are important in the heterogeneous case:
bifurcations onto higher dimensional heterogeneous branches and intersections with
spurious homogeneous branches. Both of these classes of bifurcations are analyzed in
this section. This section is concluded with a discussion of under what conditions all
heteroazeotropes will be computed using this approach.

In order to make the following Jacobian derivation and analysis clearer,
Fo(z,z', 2", T, s,\)

is partitioned as follows:

(P
Fp
Fo(z,', "1 T,s,\) = | Fe (2.51)
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where
(FY)s
(F3):
Fy
Fy

F

= xl—[/\K"‘F(l—A)R’/P]x" i=1’___,n,
= ’\[’Yllztl_'y;”x,"]+(1—A)[IL':—.'B'"] 1=1,...,n,

= z-—sz' —(1-3s)z",

= iﬂli -1, and

i=1
n

= Zz!—l.

i=1

The Jacobian matrix can then be expressed as follows

( 1 0Fpjos! 0 aFp/ar 0 8!-“;’/3,\\

0 OdFp/oc' 9Fz/oz!! oFz/oT 0 BFf/oA

VFo(z ! 2 Ts =] —sl (s=1)1 0 T 0
eT 0 0 0 0 0
\ 0 eT 0 0 0 0 J
where
oF° ; ,
(a,} )m_ = —[AK! + (1 - NP?/P) 8 - MlKL,
221 1% ] .
= ’ i 'Ji ] - i3
(3:!:’ )i,j A [zl ax; + Yi 04,5 + (1 /\)6 K
9 -20 1 a’Ya" 11
<a$”),'.j = =) [1'.‘ 6:1:}’ + v 6,"]' - (l - ’\)Ji,j,
=0 ; _ \
oF\ _ _[,0K! (1 A)dP,]x{’

P dT

= —[K{—-I;i:]l"-l,

et = od'al) = [ - 21),

(), - -ty
()
()
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(2.57)

(2.58)
(2.59)
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(2.62)
(2.63)
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and the 7 and j indices above vary from 1 to n. Similar to the homogeneous case,

define

K] = MAKj+(1-\P}/P=1-aq;, (2.65)
o= M +(1-)), (2.66)
' = M+ (-, (2.67)
6 = K- (2.69)

Intersections with other Heterogeneous Branches

Let (€ = (2(6),27(6),27(€), T(€),5(6), \€)) € (Fy)™(0) denote a heteroge-
neous branch where z(£), ' (£), '’ (€) each have k nonzero elements. Suppose we are
currently on a k-ary branch of an n component system such that z; #0,i=1,... ,k,
and z; = 0,7 = k+1,... ,n. Without loss of generality, suppose for some ¢, a:k(é) =0.

Then zf(€) = zI/(£) = 0 and
--ﬁ'(';c-l)(]?(k—l)ffk)(g)) = Pp—1) F, (€ () = 0

where P(;_,) is a projection matrix that removes all elements associated with x, x,’c,

and zj' from ¢}, and F{, (i.e., element k, -y — Kjzf, element 2k, 3]z} — 3;'z]!, and
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element 3k, x; — szf — (1 — s)z}’). Furthermore,

(BF}) = = MK+ (1= N)PY/P) 8y = — Kb, (2.70)

oz! J, .

oFs

(a ; ) = [Mi+ (1= N)] 05 = Tbe.jo (2.71)
z! ),

(6F2 ) = = [M{"+ 1= N] ;= -W b (2.72)

= 0, (2.73)

(),
( 3’—’3);: = 0, (2.74)
F{’)

( ) = 0, and (2.75)
(aFf )k Y (2.76)

oA

This point may correspond to a transcritical bifurcation point where the k-ary branch
intersects a (k —1)-ary branch. The first step in proving this is a transcritical point is
to show that rank VF‘(‘;C)(E?,C)(E)) = 3n+1 (i.e., rank deficient by one). When z; =0,
there are three rows in the Jacobian matrix that have entries that become identically
zero (as opposed to other entries that may happen to equal zero coincidentally), rows
k, 2k, and 3k. Removing all zero entries common to all three of these rows, we have

the following ‘reduced’ rows:

1 -K! 0
o % -W
1 —-s s-—1

If these rows are not independent then the original matrix will be rank deficient and

1 -K! o0
det { 0 5 -3/ |=0. (2.77)
1 -s s-1
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Expanding the determinant above,
(s — )W — (s - KD (2.78)

On the k-ary branch, the following holds

Kl = z:/1] (2.79)
I 74l
T — T _ Ki —m
s = T ’;’ = k_ . (280)
T — T 1—m

where 7, = zi!/z{. Furthermore, K/ (£), s(£), and n(£) remain smooth and contin-
uous as & passes through £. In addition, rearranging equation (2.53) (with ¢ = k)
we see that 71 = Ji'ne (m # 1 if 27 # £'). Substituting these quantities into the

expression for the determinant, we have

_ _ . 1 Kl —m
Wl —1) - %'(s - KQ) = (75— -

(1-m)T(s-1) -3 (s~ K{) = W(K{—m—1+m)~
W (K{ —m — K{ + K{n)
= WKL —1) —%'m(Ki - 1)
= WKL -1) - W(Ki~1)

Ki-m -
1) - 3 (FE - &)

=0

and, thus, the original matrix is rank deficient (rank deficient by at least one by
inspection). The derivation above simply shows that the dimension of the null-space
of the Jacobian matrix is at least two. The following lemma contains necessary and
sufficient conditions for a transcritical bifurcation point onto another heterogeneous

branch.

Lemma 2 A necessary condition for a bifurcation from a (k — 1)-ary branch onio a

k-ary branch at a point &°(€) is

[56) — 1] 5(©) - [s0) - K}(©)] 74'(§) =0 for some j € {k,... ,n}. (281)
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A necessary condition for a bifurcation from a k-ary heterogeneous branch onto a

(k — 1)-ary branch at a point e°(€) is
z;(€) = 0 for some j € {1,... ,k}. (2.82)

Condition (2.82) becomes necessary and sufficient for a bifurcation from a k-ary

branch onto a (k — 1)-ary branch by adding the following:

2. rank VF°(§) = N° — 1 where N° =3n + 2, and

3. 3F°/8le =i € R (VU]F“’({-)) where V|;) denotes partial derivatives with respect

to all variables except x;.

Proof. See Appendix C.

Intersections with Homogeneous Branches

In this section, the subscript (k) will be dropped since we are dealing with intersections
with branches with the same number of nonzero elements in the mole fraction vectors

(which will be greater than or equal to two). Suppose for some £, eTeo(€) = s(€) =1,

then z(€) = =/ () (in general, z' () # z'!(€)) and

( 1 oFp/ox! 0 oFp/eT 0 aF‘;'/oA\

0 aFg/ox! o8Fg/oz!! OFg/eT ] OFg (A

VFo(za! 2! T )=| -1 0 o M-z 0 : (2.83)
el 0 0 0 0 0
L 0 eT 0 0 0 0 )

Furthermore, F°(2°(€)) and F{(2°(€)) are identical to the corresponding homogeneous
homotopy map (with the same nonzero mole fraction elements), and thus, this point
is an intersection of the projection of the heterogeneous branch onto (z,T, A)-space

and a spurious homogeneous branch. It can be readily seen that the last n + 2 rows
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of (2.83) can be combined linearly to form a zero row and thus, the matrix is rank
deficient by at least cne at the intersection point. We only need to treat the case
where s = 1 since the designation of liquid phases I and II is arbitrary. If from a
given starting point the branch crossed s = 0 then if the two liquid phase compositions
were swapped and the continuation was performed again from the original starting
point the branch would cross s = 1. The homogeneous homotopy curve, &(&), can be
thought of as a hypersurface in (z,z’, /!, T, s, \)-space, where z', /!, and s are free
to take any value. An intersection point is a point where the heterogeneous homotopy
curve, &°(€) intersects this hypersurface.

The remainder of this section discusses under what conditions all heteroazeotropes
will be computed. The proof is similar to the homogeneous case. A bounded region,
S°, will be constructed in (z,z’,z'!, T, s, \)-space containing the heteroazeotrope on
the side defined by A = 0. The heterogeneous branch will move into S° and if zero is a
regular value of the heterogeneous map in this region, the branch will either leave S°
at a point corresponding to an intersection with a lower dimensional heterogeneous
branch (a bifurcation point as defined in this paper) or at an intersection with a
spurious homogeneous branch. If a bifurcation point is identified then the reasoning
is continued in this lower dimensional space. If an intersection point is identified then
the analysis described in the homogeneous azeotrope section is evoked.

If the heteroazeotrope exists and the Jacobian has maximal rank at this point
then a smooth path ¢°(€) will exist. Let 2°(€) denote the heteroazeotrope. Similar to

the homogeneous case, the following bounded, connected set can be defined:
S8° =C x C x C X [Tpin, Tinaz] % [0,1] x (0,1]. (2.84)
The heteroazeotrope,
&(€) = ((€), 2" (6), 2" (€), T(€), s(€), M(€)),

is located on the side of S° where A = 1. If zero is a regular value of F° in the interior

of §° the heterogeneous branch passing through E"(é) will leave &° after finite &
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(provided de°/d€ is not tangent to S° at €). Again, the positive £ direction is the
direction of decreasing A at £&. Furthermore, the heterogeneous branch will leave S°

in one of three ways:

1. ¢°(€¢) will turn around and leave through the side of S° where A =1,
2. ¢°(€) will leave through a side of S° where s equals zero or unity, or

3. &°(&) will leave through a side of S° where z; = 0 for some 1 < i < n.

Figure 2-9 contains a diagram of the three possible cases. The branch cannot cross

s A s A

0 >
o ! 1A

Figure 2-9: Three possible ways ¢°(§) can leave S°.

A = 0 due to the fact that there is no solution at this point for n > 1 and pure compo-
nent heterogeneous branches are physically meaningless and degenerate. For the case
where n = 1, the only solution is the trivial solution and the liquid phase fraction is
indeterminant. The first case listed above corresponds to multiple heteroazeotropy.
Although multiple heteroazeotropy is not physically possible?, there may arise sit-

uations where one of the two heteroazeotropes is not physical. In this case, the

2In the homogeneous case, multiple azeotropy occurs when there are both positive and negative
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heterogeneous branch will be isolated and the corresponding heteroazeotrope will not
be computed using our approach. This is an extremely pathological case and it is
very unlikely that it will occur. If the second case above occurs, the point at which
the heterogeneous branch leaves S° will correspond to an intersection with a spuri-
ous homogeneous branch. Provided this spurious homogeneous branch is obtainable
from a pure component branch (see discussion on the computation of homogeneous
azeotropes above), the corresponding heteroazeotrope will be computed using our ap-
proach. If the third case above occurs, the point at which the heterogeneous branch
leaves &° will correspond to an intersection with a lower dimensional heterogeneous
branch provided the conditions in lemma 2 are satisfied. As with the homogeneous
case, if a lower dimensional heterogeneous branch is obtained the same analysis is
applied within this lower dimensional space. If the original heterogeneous branch is
obtained through a series of bifurcations on lower dimensional heterogeneous branches
then we must eventually reach a branch that is obtainable from a pure component
branch. Appendix D contains a proof that, under reasonable assumptions, all bi-
nary heteroazeotropes will be obtained from pure component homogeneous branches.
Appendix E contains a discussion of the rank of the Jacobian of the heterogeneous
homotopy map.

Thus, there are three independent mechanisms by which heteroazeotropes may be
obtained: through intersections with spurious homogeneous branches, through bifur-
cations from lower dimensional heterogeneous branches, and, if the spurious azeotrope
lies outside C, through the approach described in section 2.3. Numerical examples
and implementation details are presented in chapter 4. In nearly every case examined,

the heteroazeotropes (k > 2) were obtained through all three mechanisms.

deviations from Raoult’s Law at various compositions. Since heteroazeotropy is associated with
strong positive deviations from Raoult’s Law an analogous situation is not likely to occur.
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2.5 Algorithm

This chapter describes and analyzes a new approach for the computation of azeotropes
and heteroazeotropes present in a multicomponent mixture. Azeotropes are obtained
through a series of bifurcations on the homotopy paths defined by (2.8). The starting
points for these homogeneous branches are (z, T, A) = (e, T¢,0), k = 1,... ,n, where
ex denotes pure component k with boiling temperature T} at the specified pressure.
Heteroazeotropes are obtained using the heterogeneous homotopy map, (2.48). Start-
ing points for the heterogeneous branches are obtained by two mechanisms, ‘through
intersections with spurious homogeneous branches and through bifurcations on lower
dimensional heterogeneous branches. As a consequence of the analysis in this chap-
ter, bifurcation and intersection points of interest for the computation of azeotropes
and heteroazeotropes will occur in the range 0 < A < 1. Heteroazeotropes are also
obtained through a third, independent mechanism described in section 2.3.

The algorithm for computing the homogeneous and heterogeneous azeotropes is
described below. The algorithm described computes the azeotropes at a fixed pres-
sure, however, computing the azeotropes at a fixed temperature is simply a matter
of replacing temperature with pressure in the description below.

Three lists are employed in this algorithm. The first list, AL, holds the homo-
geneous azeotropes, both stable and spurious. The elements of this list are data
structures holding the value of the bifurcation points, (z°, 7%, A®), the value of the
azeotrope, (r,T), and a status field. These are referred to as azeotrope data structures.
The second list, 7L, holds the heterogeneous azeotropes. The elements of this list are
data structures holding the value of the intersection point, (z*,z!!#, T%, \'), the value
of the bifurcation point, (zb, z!tz!"®, T®, sb, Ab), and the value of the heteroazeotrope,
(z,z',2',T,s). These are referred to as heteroazeotrope data structures. The third
list, SL contains the values of the thermodynamically stable homogeneous and hetero-
geneous azeotropes identified. These data structures are referred to as homogeneous
and heterogeneous solution data structures.

As described earlier in this chapter, there are three independent mechanisms by
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which the heteroazeotropes are obtained: 1) bifurcations on lower dimensional het-
erogeneous branches, 2) through the use of lower dimensional heteroazeotropes and
spurious homogeneous azeotropes and the spurious homotopy map, equation (2.39),
and 3) through intersections on spurious homogeneous branches. These three mech-

anisms are summarized in Table 2.1.

Table 2.1: The three mechanisms for computing heteroazeotropes.

Mechanism Starting Point Homotopy Map
Bifurcations on lower Heterogeneous homotopy map,
1 dimensional heterogeneous equation (2.48)
branches
Bifurcation points on the Spurious homotopy map,
2 homotopy branches defined equation (2.39)
by (2.39)
3 Intersection on homogeneous | Heterogeneous homotopy map,
homotopy branches equation (2.48)

Computation of Stable and Spurious Homogeneous Azeotropes

The first step in the heteroazeotrope algorithm is to construct a list containing all
homogeneous azeotropes, both stable and spurious. This is performed in the following

steps.

1. Compute the quantities ), ;, defined by equation (2.21), for all 4,5 =1,... ,n.

2. For each 0 < )A;; < 1 compute a point on the binary branch (see following
section) and store these bifurcation points in the azeotrope data structures and
set status field equal to unprocessed. Append each of these data structures to

the end of AL.

3. For each element of AL, track the homogeneous branch from the bifurcation
point to A = 1. For each new bifurcation point identified along the branch,
compute a point on the new branch, store in a azeotrope data structure as
above, and append to the end of AL. At A = 1, set the azeotrope value field
of the azeotrope data structure containing the bifurcation point from which the

azeotrope was obtained equal to the value of the computed azeotrope.
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Step 3 above will be repeated as many times as there are bifurcation points on the

homogeneous branches (within the set S). Upon completion of the steps above, the

list AL will contain all homogeneous azeotropes predicted by the model (provided the

conditions described in section 2.2.1 are satisfied) and a set of spurious homogeneous

azeotropes.

Computation of Heteroazeotropes

Having computed the list of homogeneous azeotropes, the next step is to compute

the heteroazeotropes. The procedure described below attempts to locate the het-

eroazeotropes through mechanisms 1 and 2 first, using mechanism 3 as a last resort

(although it is necessary for binary branches).

For each entry in the list AL, perform the following steps:

1

Check stability.
If azeotrope is stable, remove entry from list and place in SL.

If azeotrope is unstable or lies outside the physical composition space (and is
thus a spurious homogeneous azeotrope), search the list #L for a correspond-
ing entry to determine if the corresponding heteroazeotrope may be obtained

through mechanisms 1 or 2.

If an entry is found, set the status field equal to possibly_found, move to the

next entry in AL, and go to step 1.

If an entry is not found, retrace the corresponding spurious homogeneous branch
and search for the point of intersection with the projection of a heterogeneous
branch. When found, store the intersection point in the heterogeneous data
structure and append to the list HL. It may be necessary to search the branch
both forward and backward from the bifurcation point, however, the search is

confined to the set S.

Using the heterogeneous map, track the heterogeneous branch from the intersec-

tion point identified in the step above. During the tracking of the heterogeneous
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branch, identify bifurcation points along the heterogeneous branch, compute
points on the new branch, store in heterogenous data structures, append to end
of HL, and continue tracking the original heterogeneous branch to A = 1. Store
the computed heteroazeotrope in the data structure holding the intersection

point from which this heteroazeotrope was obtained.

7. At this point, all bifurcations associated with the current heterogeneous branch
(obtained through the intersection point identified in step 5) are explored.
Preferably, all heteroazeotropes reachable from this branch should be computed
through this mechanism. For all entries in list HL associated with with the het-
eroazeotrope computed in the previous step, track the heterogeneous branch to
A =1 and store the heteroazeotrope value in the appropriate entry of HL. As
the heterogeneous branches are tracked, identify and compute additional bifur-
cation points and append to HL. Continue this step until all heteroazeotropes
reachable from the branch associated with the heteroazeotrope computed in

step 6 have been computed.

8. Next, attempt to compute a higher dimensional heteroazeotrope through mech-
anism 2 as follows. Remove the spurious homogeneous azeotrope corresponding
to heteroazeotrope computed in step 6 from .AL. Check the criteria (2.46) and
if satsified, track the spurious homotopy map, equation (2.39), from the het-
eroazeotrope to the spurious homogeneous azeotrope. If a bifurcation point is
identified on this homotopy branch, scan the heteroazeotrope list, HL, to deter-
mine if it was previously computed through a bifurcation on a lower dimensional
heterogeneous branch in step 7. If not, switch to the higher dimensional branch
and track this new branch to A = 0 (the location of the heteroazeotrope on the
homotopy branches associated with (2.39). Store this new heteroazeotrope in a

heteroazeotrope data structure and append to end of HL.

Upon completion of the steps above, the azeotrope list, AL, will contain spurious
homogeneous azeotropes with status possibly_found, indicating that their corre-

sponding azeotropes may have been obtained through mechanisms 1 or 2. The het-
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eroazeotrope list, H L, will contain values for the heteroazeotropes computed through
mechanisms 1, 2, or 3.

According to theory developed in this chapter, on a given heterogeneous branch,
either an intersection point with a spurious homogeneous branch or a bifurcation point
on a lower dimensional heterogeneous branch will occur within the set S°. Conse-
quently, the intersection point search can be limited to this region. In many of the
systems examined, the heterogeneous branch leaves S° through an intersection on a
spurious homogeneous branch then crosses a lower dimensional heterogeneous branch
(a bifurcation point) outside S°. Obtaining the heterogeneous branches through bi-
furcation points is somewhat more efficient than the intersection search and thus,
it is worthwhile to perform the branch tracking outside S° in an attempt to locate
additional heterogeneous bifurcation points. How far the continuation is performed
outside this set depends on the dimensionality of the current branch (the cost of
the intersection search increases with size faster than the bifurcation point search,
which is extremely efficient for systems containing several components, thus, higher
dimensional branches warrant a more exhaustive bifurcation point search).

The next step is to determine the stability of the heteroazeotropes. For each entry

in list HL, perform the following steps:

1. Compute stability if heteroazeotrope is physical (i.e., variable are within their

respective bounds).

2. If stable, append heteroazeotrope to list S£ and remove corresponding spurious

azeotrope from AL.

Upon completion of the steps above, the sets AL and HL should be empty if the
conditions described in sections 2.2 and 2.4 are satisfied. If %L is nonempty then it
contains nonphysical solutions. If the set AL is nonempty then every entry with a
corresponding entry in HL also corresponds to a nonphysical solution predicted by
the equilibrium model. All other entries may correspond to heteroazeotropes that
were missed in the steps above (theoretical robustness does not imply computational

robustness). For each of these entries, an intersection search is performed. Each

77



resulting heteroazeotrope is tested for stability and stored in SL if stable.

The set SL contains all homogeneous and heterogeneous azeotropes computed
through the approach described in this chapter. The final step of the heteroazeotrope
finding algorithm is to check for topological consistency using the constraint, equation
(1.6), described in chapter 1.

The following chapter considers the case of bifurcation and intersection points
outside the range 0 < A < 1 and describes how the approach above can be used to
explore the phase equilibrium structure under system and/or property model param-
eter variation, including the detection of incipient azeotropes and heteroazeotropes
(i.e., azeotropes and heteroazeotropes that do not appear under current conditions
but may exist if parameters, such as pressure, are perturbed).

Chapter 4 contains several numerical examples illustrating the approach described
in this chapter. In nearly every system examined, the heterogereous branches of di-
mensionality greater than two were obtained through mechanisms 1, 2, and 3. One ex-
ception was the benzene-isopropanol-water system where the ternary spurious branch
is isolated from the other homogeneous branches. This ternary heteroazeotrope was
obtained, however, through mechanisms 1 and 2. Another exception was the water-
acetone-chloroform system where the ternary heterogeneous branch does not intersect
the binary heterogeneous branch. In this case, the ternary heteroazeotrope was ob-

tained through mechanisms 2 and 3.

2.6 Implementation

The basic algorithm for the computation of azeotropes and heteroazeotropes described
in this thesis can be summarized in the following steps: (1) compute the homogeneous
azeotropes using the homogeneous homotopy map, (2) perform a phase stability test
on all homogeneous solutions, (3) identify the spurious homogeneous branches, (4)
retrace spurious branches and search for points of intersection with a projection of the
heterogeneous branches, (5) track the heterogeneous branches to the heteroazeotropes

using the heterogeneous homotopy map, and (6) perform a phase stability test on all
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heterogeneous solutions. There are four key numerical calculations in this algorithm:
1. Branch tracking,
2. Bifurcation point identification and branch switching,
3. Intersection point identification and computation of missing components, and
4. Phase stability test.

These items are discussed below.

2.6.1 Branch Tracking

The main numerical calculation performed in this algorithm is the tracking of the
homogeneous and heterogeneous branches. In every multicomponent mixture ana-
lyzed, no turning points in any of the parameters was exhibited by the homogeneous
branches inside the set S, however, several turning points were found in the more
complicated heterogenous branches (see examples in chapter 4). As a result, a con-
tinuation procedure capable of dealing with turning points must be employed. All
branch tracking in the numerical examples in this thesis were performed using the con-
tinuation code PITCON [95] which uses a locally parameterized continuation method.
Alternatively, a continuation procedure based on arclength continuation [117] can be
used, however, the algorithm used in PITCON was sufficiently robust and efficient.
The remainder of this subsection briefly describes this algorithm.

Consider the following underdetermined system of nonlinear equations:

f(z)=0 (2.85)

where f : D Cc R* — R"~!. The following assumptions on f are made:
1. f is continuously differentiable in D,

2. The derivative Vf of f is locally Lipschitzian on D, and
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3. The regularity set of L, R(f)y = {z e D [ Vf(z) has full rank n — 1} is

nonempty.

‘The connected component ¢(§) € f ~1(0) where ¢ : EER— R s computed by
first selecting an appropriate variable z; to parameterize the system above. The
appropriate choice is based on making V, f nonsingular and as well-conditioned as
possible‘( V) denotes the Jacobian matrix with partial derivative entries with respect
to all variables except 2;). The appropriate selection of z; at any given point on
the curve is based on looking at the local curvature of c(¢), hence the name locally
parameterized continuation method. Given an appropriate parameter, the following

system is solved at the current point on the the path, 2(F) for y(*) ¢ Rn.

Vi(z®)

el

v® =¢ . (2.86)

The matrix on the left-hand-side of the equation above will be referred to as the

augmented Jacebian matrix. The direction to step on the curve is then given by

(%)
*) = g Y
d U”'v(")llg (2.87)
where
V(2%
o = sgn((v*))Te;)sgn det f(T ) (2.88)
e;

Provided conditions (1) through (3) above hold, d® will be uniquely determined.

The next point on the curve is
20D = ) 4 (k) 4k) (2.89)

where h*) is the current stepsize selected by looking at the local curvature.
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If a simple transcritical bifurcation point exists between z(*-!) and 2*) then

U f(z(:-D v f(z*)
sgn det Iz ) sgn det f(: ) =-1 (2.90)

T
€ir_1 €iy

where ix_; and i, are the parameter indices at step k —1 and k, respectively. A better
approach for the identification of the bifurcations of interest in the heteroazeotrope

finding algorithm is described below.

2.6.2 Bifurcation Point Identification

As shown in section 2.2 for the homogeneous case, while moving along a k-ary branch,
a necessary condition for a bifurcation point corresponding to an intersection with a

(k + 1)-ary branch is
a;(§) =0 (2.91)

for some j € {k + 1,...,n}. If the bifurcation point is identified by monitoring the
sign of the determinant of the augmented Jacobian matrix there is a risk that an even
number of bifurcation points might missed due to a cancellation in the sign change of
the determinant or we may incorrectly conclude there is one bifurcation point when
there may acually be an odd number greater than one. The occurrence of a bifurcation
along the homotopy branch is analogous to a state event in a differential/algebraic
equation (DAE) system, that is, a point at which the functional form of the DAE
changes during the course of a simulation. Typically, the state events are identified
by zero crossings of an appropriate discontinuity function. Park and Barton describe
an algorithm for state event location that not only guarantees the identification of
the state event, but also correctly identifies the first zero crossing of the discontinuity
function [84]. Condition (2.91) is analogous to the discontinuity function of a hybrid
discrete/continuous DAE model. By constructing an interpolating polynomial for
each a;, j = k+1,... ,n, using | previously computed points, the algorithm described

in [54] can be used to identify efficiently the bifurcation points along the path.
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Once the bifurcation point has been identified, a point on the (k + 1)-ary branch
is predicted by stepping in the direction of the eigenvector associated with the zero
eigenvalue of the augemented Jacobian matrix [100]. This predicted point is then

moved onto the (k + 1)-ary branch by solving the following system of equations:
( :171(]. - Rl(sz'l ’\)) \

Ik(l - kk(thv A))
Ef:ll zi — 1
a,-(:c, T, /\)

\ zj € /

where k£ + 1 < j < n and ¢ is some sufficiently small positive constant. The exact

=0 (2.92)

direction for stepping onto the new branch, as well as necessary and sufficient condi-
tions for the existence of a transcritical bifurcation point, can be derived from first
and second order derivative information of F' at the singular point [100). However,
experience has shown the approach described above to be more than adequately ro-
bust and efficient. Once this new point is computed, it is saved so that this branch
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