
August, 1981
LIDS-P-1117

ARCHITECTURAL ISSUES

IN THE

IMPLEMENTATION OF DIGITAL COMPENSATORS

by

Paul Moroney

Linkabit Corporation

10453 Roselle Street

San Diego, California 92121

Alan S. Willsky

Laborataory faro "Ivlmationl ad. Decision Systems

Department of Electrical Engineering and

Computer Sciences, MIT

Cambridge, Massachusetts 02139

Paul K. Houpt

Laboratory for Information and Decision Systems

Department of Mechanical Engineering

Massachusetts Institute of Technology

Cambridge, Massachusetts 02139

ABSTRACT

There are many techniques for designing discrete-time

compensators. However, the digital implementation of such

designs has not typically been addressed. The nature of

digital hardware impacts the computational structure of the

compensator and also can affect the original system design
parameters. This paper deals with the architectural issues

of serialism, parallelism and pipelining in implementing

digital feedback compensators. The concepts of serialism

and parallelism are shown to involve essentially the same

considerationsfor digital compensators as for digital
filters. However, the same cannot be said of pipelining,

due to the feedback loop. A design technique is proposed
for dealing with the problem of compensator pipelining,

and several examples of pipelining LQG compensators are

presented.

* This work was performed in part at the MIT Laboratory for

Information and Decision Systems with support provided by

NASA Ames under grant NGL-22-009-124 and in part at the
Charles Stark Draper Laboratory.

I. INTRODUCTION

Control theorists have developed many methods for designing compensators

for discrete-time systems. These include pole-placement concepts, optimal

regulator theory, observer theory, Kalman filtering, and classical control

approaches. Such designs have typically been implemented on large-scale

computer systems. Howeve. the- cu=rent. trends area towards. inc3ease& contrx

applications involving small-scale computers or dedicated digital hardware.

The implementation of control algorithms in such digital hardware has

raised many new issues. These tend to fall into two categories, one involving

the effects of the finite precision and fixed-point arithmetic of small-scale

digital systems, and one involving architectural issues. Such questions

have not generally been treated in the literature. Therefore some methodology

must be established for digital feedback compensator implementation. In

other words, we need some way to specify and order the critical computations

that must take place in a compensator so that the resulting digital hardware

performs as close to the ideal design as is consistent with the expense and

speed requirements of the application.

We have addressed the issue of finite wordlength due to compensator

coefficient rounding and multiplication roundoff in earlier works [1,2].

Our general approach has been to examine the concepts already developed for

digital signal processing. Then, considering the compensator as a digital

filter within a control loop, we can try to apply these ideas. However,

the presence of the feedback path itself, and the emphasis on closed-loop

performance,has frequently required us to adapt and extend the methods of

digital signal processing.

In this paper, we will examine the architectural issues involved in

-1-

compensator implementation, in particular, the notions of serialism,

parallelism and pipelining. We will show that the serialism/parallelism

concept is essentially identical to that involved in the implementation of

any digital system. However, the use of pipelining in digital control

systems raises several difficult questions. We will discuss these points

in the context of linear-quadratic-Gaussian (LQG) control systems, although

they extend easily to maore general cases-.

The organization of this paper will be as follows. In Section II, we

will briefly review the LQG control problem and describe the resulting ideal

compensator equations. The notion of a compensator structure, which is

somewhat different than a conventional filter structure, and an adapted

notation for describing such structures will be reviewed from E1] and [2] in

Section III. In Section IV, we will introduce and describe the notions of

serialism, parallelism and pipelining for digital systems. The application of

pipelining specifically to digital feedback compensators will be treated in

Section VI. A typical application of pipelining for compensators will be

described in Section VII, and several examples presented.

-2-

II. LQG COMPENSATOR DESIGN

In this section we will briefly review the single-input single-output

steady-state LQG control problem. and the optimal compensator that results.

Let us assume that we wish to design a digital discrete-time compensator

for a continuous-time system (plant), and that the control signal will be

piecewise constant. We will also assume that the output of the plant is

sampled at the rate 1/T. Given a quadratic performance index J, and a linear

discrete-time model of a continuous-time plant subject to disturbances

modeled as white Gaussian noise,the LQG compensator is the linear compensator

that minimizes J.

Consider the following discrete-time model of a plant:

x(k+l) = x(k) + r u(k) + w((k)

(1)

y(k)- L x(k) + w 2(k)

where x is the state n-vector, u and y are the control and output variables,

0 is the nxn state transition matrix, r is the nXl input gain matrix and

L is the lXn output gain matrix. The quantities wl and w2 are discrete

Gaussian noises with covariance matrices 01 (nXn) and Q2 (lxl) respectively.

The performance index J is written as follows:

I"-~w 21 k--I'J -E{Ilm 21 z x=h)+ -I u(I0+u'(A)R uC0)} (2)

Thus J reflects the weighted squared deviations of the states and control.

The parameters Q, M and R can be specified by the designer.

The determination of a linear compensator that minimizes J involves

the solution of two Ricatti equations involving the plant and weighting

parameters. However, typically the resulting control u(k) will depend on

past values of the plant output up to and including y(k) C3]. Unfortunately,

-3-

the resulting compensator is not directly feasible for implementation, since

a certain amount of time must be allowed to compute u(k) from y(k), y(k-l),

etc-. Yet- u-(k) and y (k) refer to the control and plant. output at identical.

times. Some delay must be accounted for and thus the design as described

so far is unfeasible.

Fortunately, Kwakernaak and Sivan [4] have presented a design procedure

that does account for this delay. The resulting compensator is optimal in

the sense that it produces the u(k) that minimizes J, but based only on a

linear function of y(k-l), y(k-2)..., and not on y(k). Such a compensator

can be implemented, essentially allowing one full sample period for the

computation of u(k) after the y(k-l) sample is generated. (If, however, the

computation time is much shorter than the sample interval, this implies some

inefficiency; the output u(k) will be available long before it is used as a

control. Thus Kwakernaak and Sivan also describe a method for skewing the

sample time of the plant output with respect to the rest of the compensator,

which eliminates the inefficiency.)

The optimal compensator described above is of the following form:

Q (k+l) = (k) + ru(k) + K(y(k) - L(k))(3)

u(k+l) = -Gx(k+l)

where x is the estimated state vector, and the nxl Kalman filter matrix

K and lXn regulator matrix G result from the solution of two discrete-time

algebraic Ricatti equations [4]. Note that in equations (3), the next

control u(k+l) depends only on inputs y(k), y(k-l)... . Thus the

computational delay has been allowed for in this formulation.

Now if we treat this compensator as a discrete linear system and

-4-

examine its transfer function, we have:

_(z) -1U(z) = -G(z--+KL+rG) K (4)

In a more conventional form, this can be written:

__ -2 _n

(5)
Y(z) -1 -2 -n1Y b z+b .z +b z

Note the lack of a term a0 in the numerator. The presence of such a term

would reflect a dependence of the present output on the present input. Since

(5) represents a compensator that can be implemented, the a0 term must be zero.

This delay has an important implication in the way we look at structures

for implementing digital compensators, as we will show in Section III.

Note that we have taken u to be the output of the digital network and
y to be the input. This may be contrary to the expectations of some
readers.

-5-

III. STRUCTURES FOR DIGITAL COMPENSATORS

In the nomenclature of digital signal processing [5,6] the term

structure refers to the specific combination of (finite-precision) arithmetic

operations by which a filter output sample is generated from intermediate

values and the input. Typically, a structure can be represented by a

signal-flow graph. Let us examine a simple digital filter structure to see

whether it will be appropriate for representing the compensator of (5).

Specifically, let us examine a fourth-order (n=4) direct form II filter

structure [5,6]: (See Figure 1, with transfer function (6)).

-1 1

z

Vb4 <b

a4

Figure 1: Direct Form II Filter Structure

-+ az + a-2 + az-3 + a z-4
U(z) 0 1 2 3 (6)

1 + bz b2z +b3z +b4z
1 2 -3 4-

-6-

Note the presence of the a0 term. Such a structure cannot exactly represent

an implementation, since computational delay (as discussed in Section II)

has not been accounted for. However, such a signal-flow graph is taken to

represent a structure in digital signal processing; basically, the extra

series delay needed for computations is assumed to be present, and is ignored.

In most digital filter applications, series delay is of no consequence.

However, in any control system, all delays that exist must be adequately repre-

sented in the structure notation. If series delay exists in the compensator

and has not been accounted for, the entire control system may be unstable.

Thus any treatment of compensator structures must include specification of all

calculation delays. This consideration basically led to the form of

equation (5).

Now, let us take Figure 1 and set a0 to zero, as in equation (5). (See

Figure 2)

y(k) u(k)

-1N

Figure 2: Direct Form II Filter Structure (ao=0)

The signal-flow graph of Figure 2 is still not an accurate representation

of an implementation of equation (5). The only time available for

-7-

computation is between sample times. Yet Figure 2 shows u(k) depending on

compensator state nodes (defined to be the outputs of delay elements), also

at the same time k.. Time must be allowe& for the multiplications a. through

a4. Thus u(k) cannot be in existence until after the state node values are

calculated.

A structure for implementing equation (5) is depicted in Figure 3. This

can be derived from Figure 2 by elementary signal-flow graph manipulation.

a -1
1 z>

y(k) u(k)

b a2 4

- / | ' - ia\ -1/

VZ 4

-1

1~b4 l

Figure 3: Direct Form II Compensator Structure

For controller implementations, this will be defined as the 'direct form II'

structure. One clear result emerges; a unit delay must precede the u(k) node.

Thus the u(k) node is always a compensator state node. Note that this

organization of the computations was only possible due to the zero value of

a . Thus our design procedure, allowing u(k) to depend only on past y values,
0

results in a controller which can be implemented if we are careful to include

all the actual delays inherent in the structure.

In addition to representing compensator structures with the signal-flow

-8-

graph, we need a mathematical notation for describing a structure. In order

to accomplish this, we will adapt the filter notation developed by Chan [5]

to the case of compensator structures. Chan's notation accounts for the

specific multiplier coefficients in the structure, and for the exact sequence,

or precedence to the computations and qunitizations involved. Using y and u

to represent a filter output and input respectively, and v the filter states

(delay-element outputs), the Chan notation can be written as:

v(kil) k)

= T q q ~ 1(7)
Y (k)q q-l 1 u(k)J

Each (rounded) coefficient in the filter structure occurs once and only

once as an entry in one of the .i matrices. The remainder of the matrix

entries are ones and zeros. The precedence to the operations is shown by

the ordering of the matrices. The operations involved in computing the

intermediate (non-state) nodes v(k)

r l~k) = 1 ~u(k)=~r 1 (k)]

are completed first, then r (k) = '2 rl(k) next, and so forth. The parameter

q specifies the number of such precedence levels.

For representing compensator structures as discussed above, several

changes are necessary. First, u and y are reversed in definition: u is now

the compensator output, and y the input. But more importantly, the u(k) node

is now a state of the compensator. Inclusion of these changes produces the

following modified state space notation:

vu(k+l) = (8)
u(k+l) q q-l' 1 'y(k

Examples of the modified state space representation can be found in Section IV

and in [1,2].

-9-

IV. SERIALISM, PARALLELISM, AND PIPELINING

In this and the following sections, we will examine the architectural

issues involved in the implementation of digital feedback compensators. We

will show that the basic concepts of serialism and parallelism as they apply

to digital filter structures represented in Chan's notation extend without

modification to digital compensator structures represented in the modified

state space notation. However, the same cannot be said concerning the

application of pipelining techniques to compensators. In fact, we willi how

that pipelining in control systems brings out another important issue: the

interaction between the ideal design procedure described in Section II and

the implementation of the resulting compensator.

Perhaps the most basic issue in any consideration of digital system

architecture involves the concepts of serialism and parallelism. Essentially,

this notion involves the degree to which processes, or operations, in the

system run in sequence (serially) and the degree to which they execute con-

currently (in parallel). At one extreme, any system can be implemented with

a completely serial architecture -- executing all its processes one at a time.

This procedure requires the minimum number of actual hardware modules and the

maximum amount of processing time for completion of the system task. On the

other hand, any system can also be implemented with a maximally-parallel

architecture, having as many concurrent processes as possible. Such a design

requires the maximal amount of hardware, but completes the overall system task

in minimum time. Thus, the serialism/parallelism tradeoff is another example

of the frequently encountered space-time tradeoff [8].

There is an important asymmetry implicit in the exploitation of serialism

and parallelism. It is always possible to execute processes one at a time

(totally serially). However it is not always possible to execute them all at

-10-

once (in a totally parallel manner). There is a minimum amount of serialism

required. Figure 4 gives a typical example, consisting of three processes

P1 I

P3

Figure 4: Three-Process System

(P1, P2, and P3), and data cells [83 for input, output, and intermediate

results. Assume that each of the three processes require t seconds for com-

pletion (given specific hardware modules) and that each process executes as

soon as all of its inputs are valid. Given general-purpose computing modules,

then clearly a serial architecture that would use one module only and require

3t seconds to complete the overall task is possible. However, a totally

parallel architecture (total time t with 3 hardware modules) is not possible;

Figure 4 clearly shows that processes P1 and P2 must be finished before

process P3 can begin. Consequently, only processes P1 and P2 can operate in

parallel. For such a maximally-parallel architecture, two hardware modules

would be required, and the total computation time would be reduced to 2t seconds.

Under certain conditions, this 'speed barrier' can be broken through the

-11-

use of pipelining. If the original objective of the system is to perform a

task repeatedly (as soon.- as the present task is completed, a new task begins),

then pipelining could realize an effective throughput rate equal to (or at

least closer to) that of a totally-parallel architecture. Reconsider Figure 4.

Suppose that a separate hardware module is reserved for each process, the

input data rate is 2t and the maximally-parallel 2t second architecture is

used. The input and output data cells now represent registers clocked at rate

2t ' while the intermediate result registers are clocked t seconds after the

input. Let us examine any 2t-second interval. During the first t seconds,

module 3 (for executing process P3) will be idle, since its inputs are not yet

valid. During the last t seconds, while module 3 is active, modules 1 and 2

will be idle. The total 2t second time from a task initiation until its

completion cannot be reduced without faster hardware modules. However, the

idle modules can be put to use by pipelining the processes. While module 3

is active and modules 1 and 2 otherwise idle, the next task may as well begin

and use modules 1 and 2. The net result for this example is a doubling of

1 1the throughput rate (task completions per second) from 2 to t . It must be
2t t

stressed here that any given task still takes 2t seconds from start to finish;

however, successive task completions occur at t second intervals. In terms of

hardware required, the pipeline would be effected by the presence of the third

hardware module and by clocking all the above-mentioned registers at rate .

Figure 5 shows two ways of modeling the pipelined case for this example.

Basically, the pipeline splits a larger task not implementable in a totally-

parallel architecture into smaller sequential sub-tasks, each of which can be

implemented in a more parallel fashion (Figure 5a). An equivalent viewpoint

(Figure 5b) considers pipelining to be represented by a faster-executing task

coupled with some series delay.

-12-

Sub-Task 1 Sub-Task 2
(t sec) (t sec)

Fast-Executing
(b) Task

(t sec)

Figure 5: Models For Pipelining

An important example of pipelining is in the implementation of digital

filter structures [9,10]. In such a case, the system task corresponds to

the generation of a filtered output value from an input sample, and the

individual processes correspond to the hardware digital multiplications

and additions that exist in the particular structure (algorithm) implemented

(ignore A/D and D/A operations for now). Figure 6a shows a two-pole

digital filter with input y and output u. As shown, the unit (t second)

delay z can be implemented as a storage register. Thus, however they

are implemented, all the arithmetic and quantization operations and the

intermediate storage required must be completed in one sampling period.

Computing the signal u(k+l) at node A in Figure 6a requires three multi-

plications and an addition. Assume that we have selected an architecture

where the multiplications involving b1 and b2 operate in parallel, then the

addition occurs, and finally the multiplication by al. Using three

-13-

(a) Sample Filter Structure:

/-1

-b

(b) Pipelined Structure:
z al z.

y(k)) u(k)

(c) NodeMlnimal Pipellned Structure:

/ al z- 1

-b
y)u(k)

Figure 6: Pipelining a Simple Digital Filter

hardware multipliers instead of two, and assuming negligible add time, the

multiply operations can be pipelined and the sample rate doubled. Since

the new pipelined configuration operates at a doubled rate, each unit delay

now represents half the delay time as in the original structure. Thus

an additional series unit delay must be shown for the pipeline, since the total

time for completing the three multiplications has not changed. The new

signal-flow graph of Figure 6b can be simplified, since it contains two

-14-

states that are exactly equivalent. Removal of one of-these states produces

the node-minimal signal-flow graph shown in Figure 6c. Thus, the pipelined

structure of Figure 6c has the same number of unit delays (storage resisters)

as the original structure in Figure 6a. For this particular example,

pipelining did not require an overall increase in the number of unit delays.

This would not be true in general. In terms of the signal-flow graph,

pipelining has essentially created a new structure.

From the example of Figure 6, it is clear that pipelining ties in

closely with the digital filter notion of precedence. Specifically, let us

consider node precedence, that is, the precedence relations involved in the

addition, multiplication, and quantization operations needed to compute the

node signals. In this case, the modified state space representation (See

Section III) is very convenient since it explicitly shows the number of

precedence levels involved. If a structure represented in this notation has

only one precedence level, then it can have a totally-parallel architecture

(parallel in terms of the multiply/add computations involved in each

precedence level). If more than one such level is required, no totally-

parallel architecture is possible, and the number of levels q will equal

the minimum degree of serialism required. Pipelining, if applicable, would

actually change the structure by inserting unit delays so that a new

structure (one with fewer levels and thus a faster sample clock rate) is

formed. The pipelined structure would have the same transfer function as

the original non-pipelined structure, except for some series delay, and

would probably have more state nodes. Series delay is of little consequence

in most digital filtering applications. Thus a two-level structure can

T
be designed for a sampling period of 2 even though the calculations

require T seconds, since pipelining (given a two-level structure) will fit

-15-

T
the calculations into a 2 slot at the expense only of a series delay of

T
2 seconds. Equations (9) through (12) show the modified state space

representations and transfer functions of the non-pipelined (sampling

period T) and pipelined (sampling period --) filters of Figure 6a and

6c respectively:

iQoJ. f CT

'2I1h'[1 -b 2 -b 1 o (9)

. - 1

H ()- -1a Z

p 1 +lb z - 1 + b2Z-2

O 1 0 0

1 -b2 -bl 0 1 (11)
a1 0 0

P 1 +b 1 Z- 1 +b2Z-2

Note the reduction from two to one levels (see (9) and (11)) allowing the

doubled sampling rate, and also the extra z factor in the numerator of (12).

The number of states in (11) remained at three due to the simplification

possible in Figure 6b.

Let us now consider pipelining as it applies just to the multiply

operations in a structure. Such a consideration will be valuable whenever

the multiply time dominates over all the addition and quantization operation

times in a structure, a situation that is not uncommon in microprocessor-

based digital systems. Since we are neglecting all calculation times

-16-

other than the multiply times, it is sufficient to know the precedence

to the multiply operations alone in order to determine the architectures

that are possible. Thus the node precedence evident from the different

.i matrices of a modified state space representation will not be adequate

to describe the multiplier precedence relations [9]. Such relations can

be determined from the signal-flow graph or from an examination of the

specific location of eacit m rttg1ter Ccrfftcteit if ¢ t V'iT ftrices. Tn'

either case, the multipliers can be grouped into precedence classes.

Frequently, the number of multiplier precedence classes and node precedence

levels will be the same, but the multiplier coefficients in class 1 (of

highest multiplier precedence) and the multiplier coefficients in node

precedence level 1 (the matrix T1) need not be identical. It will be true

that all the multiplier coefficients in the matrix T1 will also be in

multiplier precedence class 1. Furthermore, multiple-level structures

often have fewer multiplier classes than node precedence levels.

As an example, consider the cascade structure of Figure 7 and its

modified state space representation (13). For this example, assume all

scaling multipliers to be simple shifts (powers of two); thus they will not

I I

I l

I Idi

y(k) >Az

I-1.2,- t" / / (iY-c

~I 1I I

Figure 7: Cascade Structure (Direct Form II)

-17-

0 1 0 0 0 0 0

1 0 0 0 0 0 0

O 0 0 1 0 0 0
=

4 O 0 1 0 0 0 0

O 0 0 0 0 1 0

Q Q 0 Q 0 Qa 1

0 0 0 0 d d 1

1 0 0 0 0 0 0 0 0 0 0 0 1

0 1 0 0 0 0 0 1 0 0 0 0 0

0 O O O 0 0 1 0 1 0 0 0 0

= 3:= (13')
O 0 0 1 0 0 0 0 0 1 0 0 0

0 0 0 0 1 0 0 0 0 0 1 0 0

O O O O 0 1 0 O O O 0 1 0

0 0 d d 3 -c 1* d 2 - c 3 0 0 d
4 3 6 5 24

0 1 0 0 0 0 0 0

0 0 1 0 0 0 0 0

0 0 0 1 0 0 0 0
I1 =

0 0 0 0 1 0 0 0

0 0 0 0 0 1 0 0

-c 2 -C 1 0 0 0 0 0 1*

involve hardware multipliers. All the multiplications of coefficients by

state node or input signals can occur immediately after each sampling

instant and therefore fall in multiplier precedence class 1. Thus the

Cl, c2, c3, c4, c51 c6, d2, d3, d4, d5, ' d d6 multiplies can operate in

-18-

parallel given enough hardware multiplier modules. Only the dl multiplication

lies in class 2; it must await the completion of the cl and c2 multiplies.

Of course, given the two classes and 12 multiplies, an optimal, that. is

maximal, use of the hardware is made with only 6 hardware multipliers

(assuming no pipelining). Five of the class 1 multiplies (but not cl or c2)

would be computed in the second multiply cycle with the d multiply. Thus

the cascade of Figure 7 has two multiplier precedence classes, although

it has four node precedence levels. This notion of multiplier precedence

is more completely formulated in [9], but the basic conclusion is as

follows: although the modified state space representation correctly describes

the operations that must occur in computing the node values within a

structure, the multiplier precedence relations (more easily seen directly

from the signal-flow graph) are more significant for determining the possible

hardware architectures when the multiply time is dominant.

Certain basic restrictions [9] must be observed when pipelining a

complex structure. The first limitation in applying pipelining concerns

parallel data paths within the structure. Whenever any portion of a system

is pipelined to increase the sampling rate (which adds unit delays), all

parts of the system that feedforward in parallel with the pipelined portion

must receive equivalent delays. Otherwise, the overall transfer function

of the pipelined system will be quite different from the original; the

differences will be more than just a series delay. The second difficulty

encountered in applying pipelining techniques involves feedback. Suppose

there exists a series of operations which makes up part of a closed feed-

back loop within a structure. Pipelining these operations would result

again in a very different transfer function. Unfortunately, there is no

simple way around this problem. Consequently, pipelining within a feed-

-19-

back loop is typically avoided. Examples of feedforward and feedback

in the application of pipelining can be found in [1].

-20-

V. PIPELINING FEEDBACK COMPENSATORS

In the context of the control problem formulated in Section II, the

ideas of serialism and parallelism apply unchanged to the implementation

of digital controller architectures. However, since a global feedback

loop exists around the entire compensator-(that is, through the plant)

pipelining seems to be out of the question, as described above. Suppose

that we design an LQG compensator for a system with a sampling rate of

2
T the resulting compensator has two multiplier precedence levels, and

T
the multiply time t equals 2 . Pipelining would seem to be necessary

m 2

unless we were willing to drop the sampling rate to T . Unfortunately,

the series delay that would result from pipelining this compensator would

introduce an unplanned-for pure time delay. The deleterious effects of

pure time delay (linearly-increasing negative phase shift) on the stability

and phase margin of a feedback system are well known. Even if instability

does not result, the performance index J will be larger than expected and

the qualitative dynamic performance will be compromised.

Fortunately, there is an approach to pipelining that will be effective

for control systems. Consider the LQG system and compensator design

technique described in Section II. Assume that for some original controller

design, the sampling interval is not long enough to complete all the

calculations involved in the compensator (which is the situation as described

above). In principle, pipelining techniques could help, but unavoidable

delay would be introduced. An effective use of pipelining simply means

that we somehow include this unavoidable delay in the original design

procedure. This aim can be realized through state augmentation [4]. Suppose

that pipelining would allow a factor of two increase in the sampling rate,

-21-

thus adding only a single series delay. If the plant is described at the

doubled sampling rate -- by (14):

x(k+l) - x(k) +ru(k) + w (k)

y(k) - L x(k)+w2 k) (14)

(the matrix parameters above depend on T) then, preceding u(k) with

the series delay to form u(ki), the augmented piant can be modveIed~ as fbtgiows

(see Figure 8):

o []0 X](k)+ [U()+ []
(]5)

y(k) -[L o] x(k)+w 2 (k)

where x(k+l) = [(k+l).] For this augmented system, the weighting matrices

Q and M in the expression for the performance index (2) must also be

augmented, adding an all-zero row and column to Q, and a single zero element

to M. The weighting parameter R will be the same as for the system (14).

Now we must treat (15) as a new system and design an LQG compensator for

it. Then that design can be pipelined, which introduces the inherent added

delay shown in Figure 8.

wik) WW2(k)

w/(k) yw(k)

-22-~~~----~zlr -1 L----------- ~-

For this situation, two observations can be made. First, the Kalman

filter portion of the LQG design for (15) will have what seems to be a

difficulty due to the added delay -- the numerical routines blow up. Common

sense dictates however that there is no need to estimate xn+l(k) = u(k)
n+l

since it is the actual plant input, which is known. Thus we need only

estimate xl(k) through xn(k), namely the vector x(k). That estimation problem

has already been sofved7 as the n -order Kalman f3lter for (T4f, wftfi

gains kl through k . Using these results, the optimal filtering gains for
1 nn

the augmented system (15) can be written:

k2

Xk~~~~ -=~~~ A(16)

th
The (n+l) -order optimal regulator problem for (15) can be solved with no

difficulty at all.

The second observation that we can make for this augmented-system

pipelining technique involves the consistency of the design technique. A

delay-canonic structure (a structure having a minimal number of unit delays)

(1] for the optimal LQG compensator for (15) will be of order n+2 since (15)

is of order n+l, and not of order n+l as is the canonic compensator structure

for (14). Thus this approach to controller pipelining gives rise to a

compensator of higher dimension (more poles), requiring more states (delay

elements) and more coefficients. Along with this increase in order comes

a more important point -- the new higher dimensional compensator structure

must allow the same degree of pipelining as the original structure, or the

whole controller pipelining design procedure is invalid - that is, inconsistent.

-23-

This point is especially of concern when using structures whose number

of precedence levels is a function of the number of compensator states

(for example, the cascade forms). As an example, consider a second-order

plant and a direct form II compensator structure, which requires three

delays and two precedence levels. To exploit pipelining, we must augment

the plant and redesign the compensator -- its direct form II structure

now requires four delfays (states)'. TEere wouid stf£f Se onfy two

precedence levels as before, so pipelining to double the sampling rate

will work as planned. However, if we decide to use a cascade of two

direct form sections (assume one second-order section, one first-order

section, and general scaling multipliers), then the result is three

precedence levels. Pipelining to allow the - sampling rate will not now

result in the effect of a single added unit delay as assumed, but will

involve two series unit delays, making the design procedure invalid. In

other words, if we implemented the pipeline as described above, the system

would not perform as expected; more delay would be present in the loop

than had been accounted for in the design. Such problems can be avoided with

a proper choice of structure.

There is one positive note associated with the increased dimensionality

of the compensator, and it is related to the particular form of (16). Usually,

an increase in dimension (number of states) by one involves at least two

additional coefficient multipliers. (A fifth-order plant requires a compen-

sator with at least ten coefficients, a sixth-order plant requires one with

twelve coefficients, etcetera [11.) However, by virtue of the zero entry in

(16)., the general form of the compensator transfer function for the augmented

system is simpler, involving only one additional coefficient [1]. This

fact helps make the pipelining approach a bit more attractive, at least with

-24-

certain structures(for example, any direct form and any cascade or parallel

structure based on a direct form.)

One last general point should be mentioned. The application of any pipe-

lining technique or the use of parallelism to increase the sampling rate is

desirable only if it allows a decrease in the performance index J, or in

whatever gauge of system performance one accepts. However, not all sytems

have a performance measure that decreases (improves) monotonicalfy with

decreasing T [11]. Intuitively, any system with sharp resonances will lose

controllability (implying a large J) when the sampling frequency is near a

resonance. One must be aware of such cases. If such a case does not occur,

then pipelining will reduce the performance index, although certainly not

2
as much as the (non-implementable) straightforward rate- 7- LQG compensator

design which adds no delay. Whether this pipelining approach is effective

enough to warrant the higher-order compensator depends on the designer's

particular application.

-25-

VI. CONTROLLER I/O PIPELINING

One common application of pipelining in a feedback environment involves

the often time-consuming compensator input/output (I/O) operations, namely,

the sampling and the A/D and D/A conversion operations. Let us assume that a

structure with one multiplier precedence level (for example, the block

optimal parallel structure [1]) is choosen to implement a compensator, and

that a totally-parallel architecture is used for the multipliers involved.

Assuming negligible D/A time and add time, the compensator can then be modeled

as a two-process task: A/D conversion and hardware multiplication. Further

assume (for simplicity) that each process requires t seconds. Without pipe-

lining, the sampling rate must be no greater than 2T If we now pipeline

these processes, a factor of two increase in throughput and sampling rate is

possible. At each sample time, sampling and A/D conversion of a new y sample

would begin. Then t seconds later the structure multiplications could begin,

overlapping the next sampling and A/D operation. Note that the hardware

multipliers and A/D convertor will now be active 100% of the time. We can

represent this pipelined system (sample rate -) as the designed compensator

structure followed by a series unit delay resulting from the pipeline.

If we apply the design technique outlined in Section V to produce a

(pipelineable) compensator for this I/O case, the order of the compensator

will of course be one greater than the non-pipelined design, implying at

least one additional state and coefficient. No matter what the plant

dimension may be, a block optimal parallel structure will have only one

precedence level [1]. Thus, I/O pipelining with a one-level compensator

structure results in a valid design procedure.

Four examples have been selected to illustrate what can occur with

-26-

compensator (I/O) pipelining. Each example consists of four cases. Case 1

represents the plant discretized at a T second sampling period with its

corresponding LQG compensator (no pipeline). Case 2 represents the plant

T
discretized at a - second sampling period with its corresponding LQG

compensator. This case does not include any pipelining, but is not physically

implementable due to the short sampling interval. The performance index

for this case constitutes an unreachable lower bound to the performance of

the augmented-plant approach to pipelining (case 3). Case 4 (blind pipelining)

results when the compensator designed for case 2 is pipelined in order to

make it physically implementable. Thus the delay due to the pipeline is

ignored in the pipelined design, usually resulting in a performance level

that is worse than the non-pipelined level (and perhaps even in a system

that is unstable). Assuming that J is a monotonic increasing function of T,

we can expect that the different cases will rank, from highest J to the

lowest, as follows: case 4, case 1, case 3, case 2. (It is possible but

unlikely that case 4 could have a lower J value than case 1.) Remember,

however, that case 2 is not implementable.

The simplest I/O pipelining example consists of a single-input,

single-output, single-integrator plant:

xft] -u[t]J+w[t]

y[t] - xlt+w 2[tJ (17)

where T = 6 seconds. Fixed parameters were selected for the continuous-time

performance index and noise intensities, and then discretized. Details can

be found in [1]. Figure 9 illustrates the discretized system and the form

of the compensator before pipelining (case 1) and after pipelining through

state augmentation and redesign (case 3). A one-level version of direct

form II structure [1] is used for the compensator. Note the extra unit delay

-27-

(a) Rate 1 /T system, T=6 (case 1)

wi(k) w2(k)

T Z1

(b) Pipelined System, rate 2/T (case 3)

w(k) w2(k)

f2 (z 1represents a T2 second delay)

(b) Figurpened System, ate 2/T for the Single-Integrator Plant3)

l (k) W2(k)8-T/2 ' k IL - - - - - -Plaknu t.. uaI e z

(;.-represents a T/2 second delay)

Lqom_pe nsator _1

Figure 9: Compensator I/O Pipelining for the Single-Integrator Plant

-28-

in Figure 9b, as mentioned earlier in this section. The form of the system

for case 2 would look the same as that in Figure 9a; however the gains of

all the branches would differ. For case 4, we need only add one series

delay to the signal-flow graph of case 2.

Three other examples are also considered; a double-integrator plant,

a two-state harmonic oscillator plant, and a sixth-order plant derived

from the longitudinal dynamics of the F8 fighter aircraft (see [1]).

The performance indices for all the various cases are shown in

Figure 10.

Key:
Case 1 - rate 1/T system
Case 2 - rate 2/T'system (not Implementable)
Case 3 - rate 2/T pipelined system designed via state augmentation
Case 4 - blind pipelining

example plant T Case 4 Case 1 Case 3 Case 2
single Integrator 6 (unstable) 2.42 2.05 1.34
double Integrator 6 (unstable) 328 179 63.2
harmonic oscillator 6 (unstable) 32.7 12.9 9.72
6-state F8 plant 1 .0038 .00312 .00282 .00222

Figure 10: Compensator I/O Pipelining

Under case 4 we see the consequences of pipelining and ignoring the delay

incurred. Three of the example systems actually became unstable, and with

the fourth, the index J increased. As expected, all the case 2 indices

were lower than case 1, with case 3 lying between the two. To judge the

effectiveness of the state-augmentation pipelining method of case 3, one

must examine the degree of improvement in J relative to the possible

improvement (the difference between cases 1 and 2). The best improvement

shown was for the harmonic oscillator, which is no surprise since the

oscillator's natural frequency of 2 radians/second is close to the unpipe-

lined sampling rate -. The remaining three examples also showed significant

improvement. Again, whether or not the pipelineable compensator (with

-29-

doubled sampling rate, one extra state and at least one extra coefficient)

is to be used will depend on the particular level of performance desired,

the penalty involved in complicating the hardware, and the various system

sampling rate requirements.

-30-

VII. SUMMARY

In this paper we have investigated certain architectural issues

associated with the implementation of digital feedback compensators.

Whenever possible we have drawn on the field of digital signal processing

for techniques and approaches to these issues. However the presence of

a feedback loop around the digital compensator has frequently required

us to modify and extend such techniques.

We have chosen the single-input, single-output, steady-state LQG

control problem as a context in which to present our results, although

the techniques developed usually extend to more general control systems [1].

The concept of a 'structure' for implementing digital compensators

has been presented, along with a convenient and accurate notation. In

Section IV we introduced the architectural notions of serialism, parallelism,

and pipelining in digital systems, and explained the hardware cost/execution

time tradeoff tied to these issues. The issues of serialism and parallelism

were shown to involve basically the same considerations for digital

compensators as for digital filters, while the issue of pipelining was

more complex. Specifically, the extra delays incurred due to the use of

pipelining had a deleterious effect on the performance of the feedback

system. In Section V a design technique based on state-augmentation

was developed for dealing with the problem of control system pipelining.

Finally, the last section treated a typical application of pipelining

techniques to microprocessor-based control systems. For this application,

the compensator A/D input operations and multiply operations could be

pipelined to realize a doubling in the system sampling rate. Four examples

were presented to illustrate the technique.

-31-

REFERENCES

[1] P_ Moroney, "Issues in the Digital Implementation of Control Compensators,"

Ph.D. Dissertation, MIT, Dept. of EE & CS, September 1979.

[2] P. Moroney, A.S. Willsky, P.K. Houpt, "The Digital Implementation of

Control Compensators- The Coefficient Wordlength Issue," IEEE Trans. on
Automatic Control, V.AC-25,No.4, August 1980, pp.

[3] A.P. Sage, Optimal Sstemjs Control, Prentice-Hall, Englewood Cliffs, New

Jersey, 1968.

[4] H. Kwakernaak and R. Sivan, Linear Optimal Control Systems, J. Wiley &

Sons, New York, 1972.

[5] L.R. Rabiner and B. Gold, Theory and Application of Digital Signal Processing,

Prentice-Hall, Inc., Englewood Cliffs, New Jersey, 1975.

[6] A.V. Oppenheim and R.W. Schafer, Digital Signal Processing, Prentice-Hall,

Inc., Englewood Cliffs, New Jersey, 1975.

[7] D.S.K. Chan, "Theory and Implementation of Multidimensional Discrete

Systems for Signal Processing," Ph.D. Dissertation, MIT, Dept. of EE & CS,

May 1978.

[8] J. Allen and R.G. Gallagher, Computation Structures, MIT Course Notes for

6.032, 1977. (to be published)

[9] R.E. Crochiere and A.V. Oppenheim, "Analysis of Linear Digital Networks,"

Proc. IEEE, Vol. 63, No. 4, April 1975, pp.581-595.

[10] J. Allen, "Computer Architecture for Signal Processors," Proc. IEEE, Vol.

63, No. 4, April 1975, pp.624-633.

[11] G.K. Roberts, "Consideration of Computer Limitations In Implementing On-Line

Controls," MIT ESL Rept. ESL-R-665, Cambridge, Mass., June 1976.

-32-

