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Abstract

The focus of this thesis is to investigate the differences that arise in weakly nonlinear
wave interactions under the assumption of a discrete or continuous spectrum. In
particular the latter is investigated in detail for the case of three wave interactions.
It is known that an extra condition on the group velocities is required for resonant
growth. Such so called double resonances can be shown to occur in a variety of
physical regimes.

A direct multiple scale analysis of the spectral representation of a model equa-
tion containing arbitrary linear dispersion and weak quadratic nonlinearity was con-
ducted. Consequently a system of “three wave” equations analogous to those for
simple resonances was derived for the double resonance case. Key distinctions in-
clude an asymmetry between the temporal evolution of the modes and a longer time
scale of O(ev/t) as opposed to O(et) for the case of a discrete simple triad resonance.
A number of numerical simulations were then conducted for a variety of dispersions
and nonlinearities in order to verify and extend the analytic results.

Furthermore, a generalized version of the discrete three wave equations containing
higher order dispersive terms was investigated with the intention of providing a link
between the continuous and discrete three wave cases. Both analytic and numerical
studies were conducted for a number of parameter regimes. In particular for the case
analogous to the double resonance, energy propagation and transfer at the group
velocity predicted by the continuous theory was seen. But differences also persisted
in the time scales which reinforced the subtle, yet significant, distinction between the
continuous and discrete points of view.

Finally, a discussion of double resonances and their effect on statistical treatments
of turbulent flows was given. The existence of double resonances appeared to effect
the hierarchy of the perturbation expansions, and subsequent closures, in a significant
fashion. A modified closure was proposed containing terms arising from both simple
and double resonances.
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Chapter 1

Introduction

Waves occur in an astonishingly diverse range of physical, chemical and biological
systems. In a mathematical sense, such systems may often be described by partial
differential equations containing the two essential effects of nonlinearity and disper-
sion. The former typically causes an initial waveform to steepen and often results
in shock type structures or other singularities. Dispersion serves to balance this by
causing a waveform to spread out, smoothing any sharp transitions. One typically
can scale the equations in order to emphasize either effect, but often the case of most
interest arises when the two effects are taken in balance. The Korteweg-de Vries equa-
tion, for example, represents the result of such a balance for long waves on shallow
water.

Nonlinear evolution equations have been the focus of much study over the past
decades. They are typically derived by a multiple scale argument which separates the
fast time and space oscillations, isolating the longer scale variations in amplitude and
frequency. Although the form of the equations depends on the particular physical
system and regime under consideration, many of the resulting evolution equations
possess similar characteristics. These include a class of so-called solitary wave so-
lutions which manifest the balance between the spreading caused by dispersion and
steepening caused by the nonlinearity. Solitary wave solutions were both derived and
shown experimentally by Korteweg and de Vries [17] and subsequently Gardner et

al. [13] found more complicated multiple soliton solutions for the Korteweg-de Vries
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Equation. Their Inverse Scattering Transform technique was then generalized allow-
ing for a much wider class of nonlinear evolution equations in one space dimension to
be solved. A comprehensive review of this technique and its implications is given by
Ablowtiz and Clarkson [1].

Another intrinsic characteristic brought about by the nonlinearity is that it pro-
vides a mechanism for multiple wave interactions. The nonlinear term facilitates
energy exchange between modes. This leads to the possibility of a resonance when
the nonlinear interaction of two modes force a third mode which is also naturally
admitted by the system. Historically, though, a detailed theory for four wave interac-
tions was actually developed prior to that for three wave interactions. This was due
mainly to the fact that initial investigations, such as that by Phillips [19], involved
gravity waves, a regime where no three wave resonances exist meaning that the effect
of the nonlinearity first comes from cubic rather than quadratic interactions. More
mathematical treatments then followed by Benney [4] and Zakharov and Karpman
[24] resulting in a system of four equations for the slow time evolution of the modal
amplitudes. A similar investigation of three wave systems was conducted by Bloem-
bérgen [7] in the field of nonlinear optics, resulting in an analogous system of three
equations. Spatially independent solutions were then found independently by Jurkus
& Robson [15], Armstrong et al. [2] and Bretherton [8], while Kaup et al. [16] used
the Inverse Scattering Transform technique to give a comprehensive treatment of the
spatially dependent case.

Typically for these systems it is assumed a priori that the spectrum of modes is
discrete and limited to the modes involved in the resonance. But if one considers this
problem from the perspective of an initial value problem where the initial spectrum
is arbitrary and continuously distributed in wavenumber space then the resulting
evolution can change dramatically. In fact an added resonance condition, namely that
the group velocities of two of the three modes in the triad be equal, is required for
there to be any long term growth. This is borne out by the fact that the previously
known spatially dependent solutions for the discrete three wave equations [16] are

valid only for modes whose group velocities are distinct. These solutions encounter a
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singularity when two of the group velocities are equal. Examples of physical regimes
where double resonances can occur include, for instance, internal wave systems and
Wilton ripples in surface gravity-capillary waves.

The distinct nature of these so called “double resonances” was first recognized by
Benney and Saffman [6] in their discussion of random waves in a dispersive media.
In this problem a continuous spectral distribution is taken but the arguments depend
crucially on the dispersion relation not admitting any double resonances. Fields such
as wave turbulence, as described by Zakharov et al. [23] build upon this argument
and thus stand to benefit from a better understanding of the effect double resonances
have on the spectral evolution. The focus of this dissertation will be to investigate
this added resonance condition and more generally the subtle distinctions between
considering continuous or discrete spectra.

To begin the discussion of the effects of double resonances, a derivation of the
evolution equations for a specific physical regime will be given. Using this example

as a guide, a more general model equation will be proposed and studied.

1.1 Multiple Scale analysis for Capillary-Gravity
waves

Surface waves in the capillary-gravity regime provide a good starting point with which
to derive a basic three-wave type system. Furthermore it will be seen that doubly
resonant modes also exist in this regime. The following discussion follows that of
Case and Chiu [9]. |

Consider surface waves on deep water where both gravitational and surface tension
effects are to be considered. Furthermore assume that the flow is inviscid, irrotational,
and incompressible.

By virtue of irrotationality, introduce a velocity potential @(T, z,t) where Vo = &
the velocity field of the flow, ¥ represents the horizontal coordinates (z,y) and simi-

larly V, represents the gradient over these coordinates only. By virtue of Incompress-
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ibility it is evident that ¢ must satisfy Laplace’s Equation:

Vip=0. (1.1)

As is often the case in problems such as this, the nonlinearity arises not in the
governing equation but in the boundary conditions. First there is a dynamic condition
that the pressure on either side of the surface is balanced by the effects of surface

tension:

Lopze Do . (Velz=h) \
bt 3007 =29, (T e, 12)

where 7 is the surface tension, p the density, g the gravitational acceleration, and
h(z,t) the height of the free surface.. Secondly there is a kinematic condition relating

the motion of the surface to the motion of the fluid at the surface:

he + (V1) - (Voo (7, By 1)) = 6. (F, by t) . (1.3)

Both these conditions are taken at z = h. For convenience, the following dimen-

sionless variables are introduced

(z,y,2) = L(z,y,2),
h — Hh
t— 4=t
g
¢ — Hy/Lgo,

~
P%EP,

where H and L represent the vertical and horizontal length scales respectively.

Then (1.1) remains unchanged while (1.2) and (1.3) become:

18



1 1 V2h
Gt -zt —[— | = _el(vg),
Fle p( 1+6(Vrh)2) #(V9)

hy — ¢.(F,2,t) = —e(V,h)-(V.¢(F, 2,t))

at z =¢h ,

where € = % is a measure of the relative amplitude of the waves.

Now expanding around z = 0 and keeping terms to O(e),

geth—T" = _e(Bah+ L(VE)?) + O(e)

P

at 2=0. (1.4)
he = ¢:(T, 2,t) = €(¢z:h — (Voh) - (Vo4(F, 2,1))) + O(e?) }

At first order (e = 0) the linear equations can be solved to give the well known

solutions for wavenumber k, magnitude %,

hg = A [ei(i'i_‘”t) + c.c.] (1.5)

do = A(_Twe’“’) [0 +ce] | (1.6)

c.c. denotes the complex conjugate of the associated expression, and w satisfies
the dispersion relation
k‘3

Ww=k+ =, 1.7
; (1.7)

which when put back into dimensionalized variables takes the more familiar form

Now suppose one builds upon these linear solutions and consider a solution com-
posed of a superposition of these modes:

Let

19



6= Z(lwz kiz [ (U, pz, pt)e ik FHwt) — Qi(u, Mz’ut)ei(ﬁi-f_wt)] tee, (19)

h =

where P,

3
Z [ (uF, 0, put) T8 4 Q,(uF, 0, put) el ™ “’t)] + c.c. (1.10)
-1

and Q; are the amplitudes of the respective modes, allowed to vary slowly

subject to a small parameter p. In some sense one can think of y as a measure of

the spread of the frequencies around the modes k;. In other words, the width of the

wave-packets as a long scale in space corresponds to a small scale in frequency space.

Now substituting (1.9) and (1.10) into (1.4) and (1.1) the resulting equations are:

[ OP,; W 3P] il mwt) | [ an iw; 0Q; ] ikim—wt) | oo ,

ot Mk @ Bt P o2
(OL [P2P3ez(k2+k3) F+{watws3)t + Q Q ei(k2+k3)-r—(w2+w3)t:| ) (111)
[ iw; 0P, 2u - 9 o
— —k;- vrP v P i(K;-Ftwit)
M ki ot P ] +

, 0P, 2
[ ZIC: ot 5 sz_—sz*} et e,
—¢ (,6 [Pzpaez(kz-i-ks)-r+(w2+w3)t + Q2Q3ez(k2+ﬁa)-F—(wz+w3)t] ) _ (112)

Note that the terms of O(u°) have cancelled by virtue of the fact our solutions

are based on the solutions of the linearized problem. Also, only the first of the

nonlinear terms on the right is shown, with a and 8 being interaction coefficients in

terms of k; and w; = w(k;). The exact form of these coefficients is not necessary for

the subsequent discussion, it suffices to say that they represent the magnitude and

direction of energy flow between the two interacting modes (in this case modes 2 and

3) and the resultant mode. But the reader is directed to [9], and more generally [10]

for the complete description of these coefficients. All other nonlinear combinations

are similarly present but for the sake of clarity have been omitted. For these terms

20



it is apparent that they resonate with the linear terms if the following conditions are
met:

Condition 1) k; = ky + k3,

Condition 2) w; = wy + ws ,

Which are the well known three wave resonance conditions, as first noted by
Phillips [19], who studied this problem in the context of gravity waves in the ab-
sence of surface tension. Now each term in (1.11) and (1.12) will have oscillatory

il F *wit) " each of which can be isolated by the standard multiplication and

terms e
integration operations since the equations are linear meaning each forcing term may
be treated separately. Then if, for instance, one considers the terms proportional to
eik1Fe1t) and eliminate P by taking a (1.12) —8 (1.11) the resultant equation takes

the form:

0 = :
% + l‘l’cl ) vrQl + O(p’z) = 6271Q2Q3 + 0(62’ E,U) )

and similarly the amplitudes of the other modes evolves according to:

0 = . N

% +uCsy - V,Q2 + O(ﬂz) = €172Q1Q5 + 0(621 €u)

6Q3 ~ 2y - * 2
/LW + pU'C3 - v'r'Q3 + O(‘LL ) - EZ’Y-’.’)QIQZ + 0(6 ,EIU,) )

where C; is the group velocity of the ith mode. This mathematically captures the
coupling which occurs between the three modes, facilitating energy exchange. ~y; are
the interaction coefficients (exact expressions may be found in [9]) which characterize
this exchange. If a balance p = O(e) is taken the solutions of systems of equations
such as this are known and will be discussed further in the following section. As it
will be shown, systems such as this can be derived from a much simpler and broader

class of PDEs which account for the key effects of dispersion and weak nonlinearity.
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1.2 The Model

Three wave type evolution equations arise in many more physical situations, with
the essential characteristic that each mode is coupled to the others via quadratic
nonlinearity. A simple 1-D model which unifies these cases and captures this effect is

embodied by

us + L(u) = eN(u) , (1.13)

where £ is a linear differential operator, N is a nonlinear and for our purposes as-
sumed quadratic, differential operator, and e is a small parameter governing the weak

nonlinearity. In Fourier space this corresponds to
Ay +iw(k)A = e / H(L,k — DA Ak — )dl | (1.14)

where A is the Fourier Transform of u, w corresponds to the linear dispersion relation
given by £, and H is an interaction coefficient. The modes naturally admitted by the
linearized system are given by the linear dispersion relation w(k), and one assumes
that it is purely dispersive, and odd in k so that the complex conjugate of the linear
solution is also a solution. For each wavenumber k, this gives the corresponding
linearized frequency w. Then by expressing the amplitude in a perturbation expansion
in € one then obtains a hierarchy of integro-differential equations. In this case it is
known, and will be shown in detail in Chapter 2, that conditions 1 and 2 are not
sufficient to generate secularity. i.e. for modes k1,m

Condition 1) [ +m =k,

Condition 2) w(l) + w(m) = w(k),

But if one makes a further stipulation that the group velocities of the two inter-
acting waves, be equal:

Condition 3) w'(l) = w'()
stationary phase analysis predicts a dramatic increase in amplitude for modes whose

wavenumbers are near the so called “doubly resonant” mode k. This suggests that the
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evolution of any system containing such resonances will be dominated by these doubly
resonant modes. Double resonances exist in a variety of systems, including internal
gravity waves and surface waves in the gravity-capillary regime, yet surprisingly there
has been very little prior work done investigating this. It can be easily seen, for

example, that the dispersion relation for capillary-gravity waves (1.8) has a double

resonance at k = 1/ =% commonly referred to as Wilton’s ripples[21].
a
Furthermore Figure (1-1) shows the double resonances for internal waves where a
k
70 .
LR
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o S8,
60 . ..'o::...
)
L
DS .‘: .
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° ....'." .zo.
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Figure 1-1: Double resonant pairs (I, k) for internal waves

simple form for the dispersion relation [12] is

\/kz + 71,27r2

where NV is the Brunt-Viisala frequency characterizing the stratification, kg the height
of the layer, and n an integral parameter corresponding to the particular vertical
mode. In general for arbitrary dispersion the usual construction for simple triad

resonances (conditions 1 and 2) involves taking the curve w(k) and overlaying a second
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plot of the curve with the origin shifted to an arbitrary point on the first curve. A

slight modification of this is shown in Figure 1-2 gives a pictorial interpretation of

o (k)

e e e A —m—mm—— — >

Figure 1-2: Construction of doubly resonant triad k, 1,7 for an arbitrary dispersion
relation.Constants N, hg are taken to be 1, and n varies from 1 to 20

the added condition. This also illustrates a key distinction between simple resonances
and double resonances. The added condition implies that while a typical dispersion
relation may contain a continuum of possible simple resonances, there will be merely
a single or at most discrete set of double resonances in the one dimensional case.
Mathematically this is borne out by the fact one goes from 2 (nonlinear) equations
in 3 unknowns to 3 equations in 3 unknowns. Therefore in the simple resonance case
there is likely a continuum of triples of wavenumbers which satisfy the two conditions
whereas in the double resonance case there are only discrete triples which satisfy the
three conditions. In other words if one of the wavenumbers in a doubly resonant
triad is changed slightly, one or more of the conditions will no longer be satisfiable for

any choice of second and third modes. Thus there is a somewhat paradoxical twist
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that when the spectrum is considered continuous, a discrete set of modes can exhibit
resonant behavior. It will be seen that this paradox is resolved by realizing that it is
in fact not only the modes precisely at resonance but an asymptotically decreasing
band of wavenumbers around each mode which exhibit growth. Or alternatively,
modes which closely, but not exactly, satisfy the resonance conditions will exhibit
growth for a time related to how close to resonance they are. Only in the infinite
time limit do the resonant modes really become a discrete set. This study of the effect
of the continuous spectrum and the added resonance condition will be the focus of
Chapter 2.

In order to draw a more complete contrast and comparison with the continuous
spectrum approach, this problem was also considered under the assumption of a
discrete spectrum. The relevant system of equations turns out, not surprisingly, to
be similar to the classical three wave equations. It can be readily seen that if one

restricts the spectrum to three discrete modes such that
u(z, t) = A(pz, pt)e'** @Y o B(ug, ut)eile—On 4 C(uz, ut)elme=w(mt) 4 ¢ o

where k, I, satisfy Conditions 1 and 2, then (1.13) reduces to:

pAT + pcg(R)Ax — ity a0 Axx + O(4®) = eypeBC + O(e2, ep)

uBr + pc()Bx — is T Byx + O(4®) = eyacAC* +O(en), ¢ (L.15)
uCr + pey(m)Cx — i“z—zd—Z%?lCXX +0(u®) = eypcAB* + O(€, €n)

This approach will be the focus of Chapter 3. As noted earlier, typically a balance
is chosen such that y = O(¢€) <« 1, and the second order derivatives ignored. This then
reduces to the usual three wave system discussed in [16]. But one limitation of these
solutions lies in the fact that it is assumed that the group velocities are all distinct.
In fact, as noted earlier, the solutions obtained via Inverse Scattering Techniques
are singular for the case when two or more of the group velocities are equal. This

suggests that there may be a discrete analogy to the continuous case discussed in
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Chapter 2. But if a Galilean transformation is made such that one moves in a frame
moving at the common group velocity then two of the three equations lose their spatial
dependence. Thus in order to study this a new balance is chosen such that e = O(u?)
so that the higher order spatial derivatives play a role in the evolution. There were
some qualitative similarities between the continuous and discrete approaches, but in
the final analysis it seems apparent that the effects seen in the earlier analysis rely
very much on having a continuous spectrum in order to obtain the contribution from
the stationary phase integrals. Physically this can be interpreted as suggesting that

sideband modes near k, [, m play an important role in the evolution.
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Chapter 2

The Three Wave Problem:

Continuous Spectrum

Typically the three wave problem is taken from a point of view where the solution
is considered to be composed of a discrete set of three modes and then evolution
equations are derived in the spirit of equation (1.15). But it is also interesting to
consider solutions composed of a fully continuous spectrum of modes. This would be
the case, for example, if one considers an initial value type problem where the solution
evolves from an initially prescribed spectral distribution on an infinite, or very large,
domain where boundary conditions do not put restrictions on the spectrum. As will
be seen in the discussion that follows, dramatic differences arise due mainly to the
contribution, or interference, by modes sufficiently close to the resonant modes. Or
from a mathematical point of view, arising from the differences between the asymp-
totic behavior of a Fourier integral involving continuous functions versus Dirac delta

functions.

2.1 Perturbation Expansion

As introduced earlier, consider a model PDE of the form:

us + L(u) = eN(u), (2.1)
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where £ is a linear differential operator, A/ is a nonlinear (quadratic) differential

operator. In Fourier space this corresponds to:

A+ iw(k)A = e / H(l k- DA A - Ddl, (2.2)

where w corresponds to the linear dispersion relation given by £, H corresponds to
the derivatives in . It is assumed that w is odd in k, and that the system is purely

dispersive. Equivalently,

a; = ¢ / H(l, k — Da(l)a(k — e~ 2tbig) (2.3)
where A(k,t) = a(k,t)e™®* and Aw(k,1) = w(l) + w(k — 1) — w(k). So now if one

considers a perturbation series

a = aqag + €eaq +62a2+

then to zeroth order

ao, (k) = 0. (2.4)

So ag is simply the initial wave number distribution. To first order

ay, (k) = / H(l, k — Dao(l)ag(k — 1)e~2tDtg) (2.5)
which can be integrated right away to give

e—ibw(kt _ |
k:/Hlk—l Dag(k —)S—— a1, 2.6

(1;1( ) ( ’ )CLO( )a’o(k ) —ZALU(k,l) ( )

But a long time approximation to this can be obtained by using stationary phase

on (2.5)

- e~ iBw(kDt

—(Awy(k, 1)) < Vi
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where [(k) satisfies

d T '
SAw(kD) =0 = W'(

o~

)=w'(k—1), (2.8)

and then integrating up in time gives

iz 1 ) Ny 2
24/ 2me's \/5/ e iBw(kDt? g ’ (2.9)
) 0

aﬂm%%:w4mw@@

where the sum is understood to be over all possible values of [ which satisfy (2.8). The
merit of (2.9) as opposed to (2.6) is that the v/# growth at resonance has now been
isolated, (Aw(k, i) = 0ie. | =1, k= k) along with the basic peak structure nearby
which is contained in the Fresnel type integral. This form will make computation of
subsequent terms in the perturbation expansion simpler as the phase will be contained
in a single term.

To evaluate and verify the validity of (2.9), Figures 2-1 and 2-2 show a comparison
of (2.9) to (2.6) for this case. These rather artificial dispersion relations were chosen
for clarity and ease of computation, and will be discussed and analyzed further in
Section 2.3, along with more physical dispersions such as that for gravity-capillary
waves discussed in Section 1.1. But for the sake of completeness, Figure 2-3 shows a
comparison for the gravity-capillary dispersion as well, where without loss of gener-
ality the coefficients are taken to be unity. It should be noted that strictly speaking,
in order to compute (2.9), the nonlinear equation (2.8) must be solved for I. But
for wavenumbers nearby [ as in these plots, the following linear approximation easily
suffices, o

w"(k—1)

l(k+5) =l+w"(]_c—l_)+w”(l_)s7

It is clear that the peak structure is captured by the approximation as well as the
temporal growth. The error in the approximation remains O(1) in magnitude and
thus for longer times becomes less and less significant. It arises from the contribution
of the simple resonances which are known to contribute at this level as well as the

fact that the asymptotic form is valid only for long time. As will be seen for the
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Figure 2-3: Comparison for a; with w(k) = vk + k® at t = 10000

purposes of the arguments to follow, it is only the terms which exhibit growth which
are significant.

Essentially a; captures the main mechanism of the double resonance. It is O(1) for
all k except near the peak around k where it exhibits /% growth. Moreover numerical
experiments have clearly shown this structure, as will be shown later in this chapter.
In order to investigate possible saturation and feedback from other modes one needs
to consider higher order terms.

For a, it is seen that

ag, (k) = / 2H (L, k — )ax(l, t)ao(k — )e~ A ®tg] (2.10)

e—iAw(l,m)t -1
—iAw(l,m)
—iAw(k,l,m)t _ e—z‘Aw(k,l)

—1Aw(l, m)

_ / / 2H (L, k — )H(m, | —m)ag(m)ao(l — m)ao(k — 1) e~ B kDt g )

e

- //ZH(l,k— DH(m, 1 — m)ag(m)ag(l — m)ao(k — 1) dmdl
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where Aw(k,l,m) = w(m) + w(l — m) + w(k — 1) — w(k). And this also can now be
integrated right away |

D(Aw(k,l,m),t) — D(Aw(k,1),t)
—tAw(l, m) ’
(2.11)

as(k) = //2H(l,k—l)H(m,l—m)ao(m)ao(l—m)ao(k—l)

—izt_l

where D(z,t) = <——*.

—T

To gain more insight, one can use (2.9) and stationary phase to construct an
approximate long time form for a;. The use of (2.9) in (2.10) introduces a two
dimensional stationary phase integral which contains two possible critical points for
the phase. One represents a repetition of the interaction captured by a;, which is
ignored as is the usual procedure in order to avoid secularity. But the second is a
saddle point which represents a non-trivial feedback involving the two “feeder” modes

[ and k — I. Standard two dimensional stationary phase analysis [22] then suggests

3 dn2me'i H(k — k,K)H(E - 1,]) -

. _ 1 _
as(k) ~ — ao( )ao(k:—l)ao(k—k)\/E/ gTibekRR)? g,
I —(Aw”(k, l))’ﬁ |a| 0
(2.12)
where the sum represents a sum over distinct feeder modes [, and where
a=uw(l) - k), (2.13)
. w'(k — k) — w'(k)
S\ w(l—k) —wi(k)

Note the similar structure to (2.9), the main difference being the Aw(k, k) in the
integral which means there are peaks at [ and k — I. Basically this represents an
interaction whereby the peak in a; interacts with the conjugate of one of the feeder
modes to produce the other. This is presumably the basic feedback mechanism which
could serve to produce a saturation, ceasing the otherwise unbounded growth at k
suggested by (2.9). Figure 2-4 shows a comparison of the analytic expression for

az, (2.11), and the stationary phase approximation (2.12). In this case the exact
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integration is now made mofé dlfﬁcultsmce it 1s d t:W()v'd.‘imérisiISnél étationary. phaée
integral. For this reason it was necessary to restrict the initial condition to a wave
packet around the feeder mode. Again the agreement is good, but not exact due to
the higher order asymptotic terms omitted in the approximation, as well as the fact
that again the asymptotic form is used for all times as opposed to just long times.
Subsequent order terms can be similarly computed, and at each order will alternate
between corrections to the growth at k in the odd terms and feedback in the even

terms. For example

o S UHRRHE-LDHELD o o (% — Dan(l— & R eiwtDig
a3 \/ Awy(k, l)\/ Awy (kD) 0( )ao(k: l)ao(l k)ao(k l) —iAw(k,l)

8m2iH(—1k)H (k=L H(k—k+1,k-1) (l—)ao(

V(= Bwn(ED)/ —Bwy (k kDo

N ™ T — e—iAw(k,l-C—i)t_l
—idw(k,E—1)

??‘I
Ly
SN
o
=)
—
L
—
e
[=)
—
k‘
|
Eon
_+..
o~
S—

(2.14)

Note the temporal terms represent an O(t) growth in the limit Aw — 0 or in other

words as k — k. Thus this term represents a correction to the peak in a; of O(€%).
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And in general, subsequent terms will generate an ordering of the form

A =~ 1+6\/Z+63t+65t%+...,
B ~ 1+&Vi+et+etr+..., (2.15)
C =~ 1+€2\/E+€4t+66t%—|—...,

where A, B, and C represent the amplitudes at k,I, and k — [ respectively. The
mismatch in orders between the doubly resonant and feeder modes highlights the
difference between this and the simple resonant case. Moreover this underlies the
difficulty in obtaining a single system of equations in the spirit of the three-wave

equations for the simple triad case.

2.2 Derivation of a Three Wave type System

There does not seem to be any clear time-scale suggested by (2.15). The initial
growth of the doubly resonant peak is on a scale O(ey/t) but then the subsequent
terms suggest that the feedback occurs on the scale O(e?v/%), and in general there is
a power series structure on this scale.The most successful analytic approach involves
a direct slow-time analysis with a truncation of the expansion, keeping sufficiently
many terms to get the feedback. The success of this method, of course, depends
crucially on the nature of the truncated terms. Often in nonlinear oscillator problems
such truncations do provide successful closures, but it is often not obvious a priori

that such a truncation is justified.

2.2.1 Direct Multiple Scale Analysis

Using the previous analysis of the terms in the perturbation expansion of a, it is clear

that the doubly resonant peak, and the two feeder modes, behave like:

a(k+s,t) = ap(k+s) +ear(k +s,t) + Eag(k+s,t) + ...,
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a(l+s,t) = ao(l+s)+ ax(l+s,t)+ ...,

a(k—T+s,t) = aplk—1+s)+eas(k—1+s,t)+...

where s represents a new wavenumber variable Corresponding to detuning from exact
resonance. The perturbation expansion suggests that the effects of the double reso-
nance are localized to regions around the three modes k1, and k — [, so s is assumed
small. How small is yet to be determined but one would expect a range of s on the

order of the width of the peaks. For convenience, as in (2.15), let:

a(k +s,t) = A(st),
a(l+s,t) = B(st), (2.16)
alk—1+s,t) = C(s,t).

Without loss of generality the slow time-scale is chosen to be that of the initial
growth of a;. Let T = ev/t, and let A, B,C be functions of s,¢ and T". This then

means that (2.16) effectively becomes

A(s,t,T) + eVtAp = ag(k + s) +ear(k + s,t) + €as(k +s,t) + ...,
B(s,t,T) +eVtBr = ao(l+ )+ €ay(l+s,t) + ...,

C(s,t,T) +evVtCp = aglk — I+ s) + €asg(k —1+s,t) + ..,

where the additional slow variation terms are the result of a total derivative in time
due to the PDE, and then an integration in the fast time only. Secular terms on the
right are now balanced with the slow time variation. Where to truncate the right
hand sides is in general not obvious, but clearly in order to capture both the growth
and feedback, terms up to O(e?) must be kept and in fact ag should also be included
in order to consistently have both time scales present in all equations. The validity
of this truncation will be discussed later. Using (2.9), (2.12), and (2.14) the following

system is obtained:
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1 . - )
Ar(s) = g(s)B(F)C(s—7) /0 e Awbts 4R F " gy,

+eT'(F(s,1,T)B(0) |C(0)|* C(s) + F(s,k — I, T)C(0) | B(0) |> B(s)),

— 1 . T INT2 o
Br(s) = eh(I+ s)B(0)C(0)C*(s) /0 e~ AR v g, (2.17)

— _ 1 ) I T T2 o
Cr(s) = eh(k—1+ s)B(0)C(0)B*(s) /0 e~ Bwlbhe R T gy

_ 2V2ne'tH(k+s—1—71+47)

g(S) \/—Awu(E + S, l_—f- 'I:)
h(l) = Am\2me' T H(l — k, k)H (k — I,1)

V=Bwu(E+ 5, Dolal

1. s . - 2
W) H(E + s,1)e5v2r & e-idelradir _ |

F(s,1,T) = = , = ,
\/—Awu(k + S, l) TZ —zAw(k + S, l)

and 7 is given by
WlI+F) = (k+s—-1—7).

As discussed earlier, the growth of the secular terms is confined to a narrow region
around the three wavenumbers. It is now possible to quantify this by considering the
Fresnel type integral terms in (2.17). In particular it is required that the argument
of the exponential be O(1), as this corresponds to the v/t growth which is balanced
with the slow time. Secondly note that Aw(k — I + s, k) ~ as for small s where « is
as defined earlier (2.13). But Aw(k — I + s,k) and Aw(k + s, + 7) will be quadratic
in s, since by definition w'(l) = w'(k — ). Thus the limiting term will be:

_ _ T2
|Aw(k + 5,1+ 7) 5 |= 0(1),
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or
€2 1

o(=).

$=0lgag) = 0l

Exact Resonance

In particular, exactly at resonance, i.e. at s = 0, (2.17) reduces to

Ar = g(0)BC + €T(F(0,I,T)B |C|*C + F(0,k—1,T)C |B|* B),

Br = en()BCC*, (2.18)

Cr = eh(k—1)BCB".

There is a fixed point at A = const, B = const, C = 0 (or without loss of
generality A = const, C = const, B = 0), the stability of this point depends crucially
on the nature of h and thus H. This can be seen using a linear stability analysis but
in fact the decoupling of the B and C equations enables this system to be integrated

exactly. First introduce the standard complex decomposition
B = b(T)e %™ C = ¢(T)e?T) .

Then from (2.18) the last two equations may be combined

d b? c?
T (2Re(h(l))  SRe(h(h - Z))) =0,

then integrated

where by, and cg are the initial values of b and c¢ respectively. This yields a single
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autonomous equation for ¢ which can then be integrated to give

0 _C%ne—anT
= -— = 2.19
© T Re(h(k—1 b2 — Re(h(l))cae—2e<T ’ (2.19)
0
and similarly
b2 2exT
b = ot (2.20)

" Re(h(l))c§ — Re(h(k — I))be?eT ’

where k = Re(h(l))c2 — Re(h(k —1))b3. And the corresponding phase functions are

_ Im(h(l)) —Re(h(k — 1))b3 + Re(h(]))ce 2T
eb - 960 + WE—Z—)) (—2€K,T —In p ) ,
_ Im(h(k — 1)) —Re(h(I))c% + Re(h(k — I))b2e?<T
9c - 9c0 + W (2€I€T —In . ) ,

These expressions can then be used in the first equation to determine A. But the
essential information with respect to stability for the fixed point can now be deduced
from (2.20) and (2.19). In particular if Re(h(l)) and Re(h(k — 1)) are both positive
then b and c approach oo in finite 7. Otherwise one of b or ¢ will approach a constant
while the other goes to zero. Specifically:

if Re(h(l))c2 > Re(h(k — I))b2 then ¢ — 0 and

b J iy - O g

if Re(h(k — 1))b2 > Re(h(l))c? then b — 0 and

-
no
uy]
®
—
>
—~
=
1
\_/I
N
o~
[3%)

otherwise if Re(h(k — 1))b3 = Re(h(l))c3 < 0 as would be the case for the degenerate
Wilton ripple situation where [ = k — I, and thus B and C are identical. In this case

then both b and c go to zero algebraically in 7. The variation in amplitude of the
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Figure 2-5: Evolution at s=0 for w(k) = — tanh(.116335k + 6.31965k%) with by =

co = 28, H(ky, kp) = i(k1+k2), € = .1. Dashed line corresponds to computation with
terms for a4 and as also included.

feeder mode in this case takes the form

2
% ___ (2.21)

2 —
b 1 — 2b¢eRe(h(1))T

This stability criterion, for example, shows that if H(ki, k) = (tky + k)™ cor-
responding to a nonlinearity of ci%uz, there is stability for all n odd, and a finite
time "blow-up” for n even, as one would expect since odd derivatives allow for a
conservation law in u? while even derivatives do not.

Figure 2-5 shows the result of numerically integrating (2.18) for a dispersion re-
lation chosen so k = .9, [ = .25 and a nonlinearity of 2uu,. In this case h(l) =

—2.81(1 +14) and h(k — 1) = —7.29(1 +14). Thus the above stability criterion suggests
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that the fixed point is stable and ¢ — 0 and
b — .2217

agreeing with the numerical result. This dispersion will be studied in more detail in
the next section. Actual numerical tests of the full equations for this case have also
been run and indeed suggest a saturation, but the long times and highly oscillatory
nature of the fast time structure make accurate numerical integration only possible
up to values of ¢ = O(10®) translating to 7' ~ 5. Regardless one cannot expect exact
numerical agreement as (2.17) and thus (2.18) are based an asymptotic analysis and
therefore valid only for long time. But the numerical results obtained, and presented
in the next section, did indeed provide good evidence of saturation and this model
certainly does provide qualitative information as to the mechanism behind it.

As for the validity of the truncation, although as discussed earlier it is difficult to
justify rigorously, it is possible to consider the effect of including the next terms in the
double resonance and feedback. The forms of a4 and as were deduced and added to
(2.17) but provided no qualitative and only a small numerical change to the previous
truncation as shown in Figure 2-5. This can be seen by the fact that all higher order
terms will involve more and more factors of B and C which therefore will not affect
the stability of the fixed point as one amplitude approaches zero. The dashed lines
in Figure 2-5 give an example this and how the correction due to higher order terms
is negligible in terms of the overall behavior.

Another key distinction between the system (2.17) and the classical three wave
equations is that there is now a parameter related to detuning from resonance. This
will allow for not only the amplitudes of the modes in the doubly resonant triad to

be traced, but also modes nearby.

Non-Zero s

As shown above, a doubly resonant mode will grow on a scale of O(y/#) whereas

members of a non-doubly resonant triad will not exhibit any growth at all in the
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continuous spectrum case. This then implies that there is a transition region in
wavenumber space joining these two behaviors. Since the peaks become narrower as
time goes on, if one traces a mode near to a double resonance then it should initially
exhibit O(y/t) growth, which will cease once the peak becomes sufficiently narrow.

Figure 2-6 shows the same run as that in Figure 2-5 along with traces corresponding
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Figure 2-6: Evolution of model for various values of s. w(k) = —tanh(.116335k +
631965,{53) with bo = Cy = 28, H(kl, kz) = ’L(kl + kg), €e=".1.

to s # 0. It shows that as one moves away from the resonance, growth is indeed

inhibited, leveling off at a far smaller value.

2.2.2 Real Space Interpretation

At this point, some comment should be made regarding the real space interpretation
of the double resonances. The essential question is to what extent will these double

resonances be manifested in real space. The answer lies in the fact that the magnitude
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of the effect in real space depends on the area under the spectral distribution. To
investigate this consider the real space analog of the double resonant peak found

earlier

u; = /al(k,t)ei(k“_‘“(k)t)dk ,

where a;(k,t) is the first order correction found earlier. By using the asymptotic
form of this (2.9) and assuming that observations are taken in a frame moving at
some velocity U, i.e. z = Ut then asymptotically, a saddle point type critical point

is obtained when U = w'(l) yielding a dominant contribution

_2mV2rH(k — 1, )ag(l)ag(k — 1) eitke' Ot=w(k))

“ J—Dou(k,D)|al NG

The first noteworthy point is that unlike the typical case of a nonlinear wavetrain in a

(2.22)

dispersive medium where the dominant contribution at a given wavenumber travels at
the group velocity of that wavenumber, now due to the extra phase term in a;, the real
space effects of the double resonance will propagate at the group velocity of the feeder
modes. In other words U = w'(I) as opposed to U = «'(k). Furthermore it should
be noted that with the extra factor of ™! coming from the stationary phase, the /%
growth in Fourier space does not translate to a growth in real space. So although the
amplitude around the doubly resonant mode increases, the fact that the peak also
narrows mitigates this effect. But still double resonances cannot be ignored since the
analytic computations in Fourier space depend on the perturbation expansion being
well ordered. In fact an interesting conclusion which can be drawn in the case of a
continuous spectrum is that the dominant component to the solution will simply be
the linear part for all times. This is in contrast with the discrete case where multi
wave resonances do cause a disordering in the real space expansion. However, a main
purpose of this discussion is to look at the effects caused by the weak nonlinearity and
amongst these, double resonances will certainly play a large role. Moreover, besides
the mathematical implications, the disorderedness of the perturbation expansion in

Fourier space when double resonances are present has direct ramifications on areas
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such as statistical treatments of turbulence ([6], [14]), a discussion of which will be

given in Chapter 4.

2.3 Numerical Experiments

In order to verify and extend these analytic results, a number of numerical experi-
ments were conducted. This was done by using a spectral decomposition in space and
appropriate discretizations in time in order to maintain stability. A combination of
MATLAB and Fortran77 was used for this work, along with Mathematica and Maple
for some of the algebraic computations. Adding to the difficulty was the necessity of
simulating a “continuous” spectrum, meaning a very high resolution was required in
order to suitably resolve the region around the doubly resonant modes. Additionally
it was necessary to accurately evolve the equations for a sufficiently long time for
the asymptotic results to be applicable. In spite of these difficulties, results were
obtained, a summary of which will be presented in this section. Various dispersion
relations including those for internal waves and Rossby waves were analyzed but for
simplicity, a pair of artificial “gravity-capillary” like dispersion relations will first be
studied, designed so that only a single double resonance exists. This will serve to
provide clear information on how the full system evolves and isolate the effects of the

double resonance.

2.3.1 Artificial Dispersions

To begin, the following dispersion relations will be considered
) k25K
Disp. 1 w(k) =tanh | -+ — ],
4 8
Disp. 2 w(k) = —tanh (.116355k — 6.31965]-:3) ,

For small wavenumbers these do resemble the dispersion for gravity-capillary
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waves on a finite depth, but for reasons of ease of numerical simulation they were
chosen so that the high wavenumbers have negligible velocities. They are indeed
both odd in k and possess only a single double resonance. This is the main motiva-
tion for this choice of dispersions, as having a single double resonant point will allow
for direct and clear comparison to the analytic analysis above. More physical disper-
sions, such as that for internal waves, often contain more than one double resonance

and will be considered later in this section.

Disp. 1

It can easily be verified that this dispersion contains a double resonance at
k = 1.02468, [ =m=.5123.

This therefore represents a simple example of a Wilton ripple type double reso-
nance. Furthermore, for simplicity we choose a nonlinearity corresponding to (u?),
or likewise H(ki,k2) = i(k1 + k). For this and all subsequent trials e = .1. Also,
again in order to isolate the double resonant effects, an initial condition is chosen of

the form
A(k,0) = (6—50(10—-6)2 + e—50(k+.6)2)ei100k '

A resolution of 2'® modes in k space was chosen, with bounding values of +2.3103.
It should also be noted that the spectrum bound was chosen so that k,[,7m are
amongst the modes, exact up to the precision of the computation. The time stepping
was done using an RK4 scheme with dt = .01 and all calculations were done in double
precision. As mentioned above, these rather extreme measures are necessary due to
the high precision required in order to simulate a “continuous” spectrum for relatively
long lengths of time.

Figures 2-7 and 2-8 show the change in the spectral distribution at times of 500

and 1000 respectively. Note that A A represents the spectrum once the simple linear
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propagation of the initial condition has been removed. In other words
AA = A(k,t) — A(k,0)e )

It is clear that there is definitely a peak forming at k and even the feedback is
visible around I. Figures 2-9 and 2-10 give a closer look at the peaks, showing
that the structure is also quite similar to that predicted earlier, as shown in Figure
2-1. The slight bulge in the tail around k& = 1.07 may be due to the fact that the
initial condition is slightly biased above I, and indeed it was verified that if the initial
condition is shifted to peak below I then this bulge disappears. The peak at [is
slightly less well defined, given that its growth is on a slower time scale, but there is
at least at this point qualitative similarity which in itself is noteworthy given that the
asymptotic analysis relies on long times. The question of how these peaks grow is also
of interest as it will provide a good comparison to the models posed earlier. Figure
2-11 shows how the doubly resonant peak grows as the amplitude at the feeder mode
decays. For a more quantitative comparison to the direct model note that from (2.21)

— b2
—2b2eRe(h(1))T = (ng - ) .
Figure 2-12 shows that indeed the relation between T' and the right hand side of this
expression appears to be linear for sufficiently large T for the model to be valid. The
slope of this line can then be compared to the known parameter values to give a check
this model. Roughly speaking, the slope is .007, whereas —2b3eRe(h(l)) = .0067. So
the numerical results provide a fairly reasonable agreement with the direct model, at

least for the admittedly limited range of 7' for which computation was feasible.

Disp. 2

Now consider a second dispersion relation, similar to the previous but now designed

so that the double resonance is composed of three distinct modes. The dispersion
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Figure 2-7: Spectral change at ¢t = 500 for system with w(k) — tanh (g + 2—5’;—3)
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relation to be considered is
w(k) = —tanh (.116355k — 6.31965k%) ,
where the double resonance occurs for

[=.25 m = .65 .

ol
Il
Ne)

Figure 2-13 shows the result of a run starting with

Ao(k) -9 (e—SOO(k—.65)2 4+ e—500(k+.65)2 + 6—200(19—.25)2 + e—200(k+.25)2) 1100k

Again the similarity to the direct model is clear. In this case
boRe(h(k —1)) > coRe(h(l)) meaning that according to the previous discussion, the
fixed point corresponds to |B| — const, |C| — 0, and this certainly appears to be the
trend suggested by the numerical simulation. Again a more quantitative comparison

can be made to the model. Note that based on (2.19) and (2.20),

2kT = In (Re (h(kl_ e hé?f + Re(h(l)),cgb = Ap

- (Re(hl(z‘))cﬁ [EBT + Re(h(k - l_”bgD = fe

Figure 2-14 shows how these two possibilities compare to one another and vary with 7'.
The striking similarity between Ap and A¢ provides good evidence that the direct
model does indeed capture the feedback mechanism and the interactions with the
feeder modes. In fact the two curves only differ by at most 8% in an absolute sense.
Furthermore the slope of the curves beyond the initial transient phase is roughly .08
while the value of 2ex = .102, again providing a further piece of evidence that the
model has captured the basic energy transfer mechanism.

Based on these two trials, it is now clear that the direct slow time model agrees

well with numerical simulations of the full nonlinear equations. This is not surprising,
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given that an essential component of the behavior appears to come from the modes

around the doubly resonant modes which are captured in this model.

2.3.2 Gravity-Capillary Waves

Now a more physical dispersion is considered, namely that for capillary-gravity waves
on deep water. As shown in Chapter 1, the dispersion relation for this case takes the

form

w2:k+k3,

where without loss of generality, the coefficients were taken to be unity. For this
dispersion a Wilton ripple type double resonance occurs for k=+v2and 1l = k/2.

Figures 2-15 and 2-16 show the results of a run made with an initial condition
A(k,0) = (e‘5°(k—~6)2 + 6—50(k+.6)2) £i100k

and € = .1. Again, the double resonance is clear, as well as the feedback around
I. A more quantitative comparison is hampered by the limitations on the maximum
computation time. Unlike the two previous dispersions, the group velocity in this
case for high wave numbers becomes arbitrarily large. This then necessitates a large
spatial domain in order to avoid the “wrap around” effect one encounters with the
artificially periodic boundaries needed for a spectral approach. Consequently this
limits the maximum time for which an accurate solution may be evolved using a
reasonable amount of computation time. Nevertheless the traces show the energy

exchange between the modes, which again is in qualitative agreement with the model.

General Initial Conditions

Thus far, the numerical results presented have involved situations where the initial
conditions were chosen in such a way as to emphasize the effects of the double res-
onance in order to allow for clear comparison with the conclusions drawn from the

asymptotics. Clearly, though, natural problems often involve much more general ini-
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tial conditions where the initial spectral distribution covers a much wider range. To

investigate this, a second run was made with an initial condition of

As shown in Figure 2-17 this covers a much wider range of wavenumbers although
not so wide as to necessitate too large a computational domain. Note that the modes
near k = 0 were intentionally diminished in amplitude in order to eliminate trivial
resonances caused by long-short wave interactions. By subtracting off the linear
solution, Figure 2-18 shows the effects of the nonlinearity. It is clear that the double
resonance still persists, but there are other effects present too arising from the simple
resonances. The figure shows how these latter effects remain relatively constant in

time, while the amplitude at the double resonance grows, as expected.

2.3.3 Internal Waves

Internal waves in a stratified fluid is another example of a physical situation where the
dispersion relation admits double resonances. Eckart [12] first studied the problem of
internal waves in the ocean, showing that to first order the evolution is governed by a
Schrodinger type equation. In general, the equations for the two-dimensional motion

of an inviscid incompressible stratified fluid are
Ug + vy, =0,

pe+ups +vpy =0,
p(us + vy + vuy) = —pg

P(’Ut + uwv, + va) = —DPy —9p,

where (u,v) are the horizontal and vertical components of the velocity respectively,

p the density, and p the pressure. Then, as noted in [18], given an initial steady state
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with
G=0=0 p=poll —of(y)]

take a perturbation of the form
u =17+ ey, v ="T— €y, p=p+tep .

Then upon using a Boussinesq approximation where the first order density variations
are neglected in the inertial terms but kept in the buoyancy term, the following

equations result for the perturbation stream and density functions
v2¢t — Pzt EJ(V2¢3 ¢) =0 ) (223)

oo+ N2(y)a + €1 (p, ) = 0, (2.24)

where N2%(y) = f'(y) is the square of the Brunt-Vaiisald frequency, and the Jacobian
operator J is defined by

J(f).g) = fwgy - fygm .

Separating the stream and density functions into vertical and normal mode compo-
nents as follows ¥ = $(y)e’**=) p = j(y)e! >~ the linearized system may then

be decoupled to give

p= , (2.25)
meaning that given boundaries on top(y = 0) and bottom(y = —H) so that

A

$(0) =(—H) =0,

the resulting eigenvalue problem can then be solved to give w. At this point it is

assumed that the stratification, characterized by N, is constant leading to simple
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solutions

- . nmy
Yp = Sm(?) ’
with
9 k2N?
Wy, = 5 | n?n?
k* + 25

Turning to the fully nonlinear problem, take the solution to be an expansion around
these linear eigenmodes, where the coefficients are allowed to modulate in space and

time

Y= ni:o:lv,bn(a:, t) sin (n_;rjy) ,

p= 3" pula,sin("TY)

n=1
Plugging this into (2.23),(2.24) and eliminating the y structure by multiplying by
the appropriate eigenfunction and integrating one obtains an infinite hierarchy of

equations for the evolution of A, and B, where
Yale,t) = [ Aulk,t)e=dk,

oz, t) = / B (k, t)e™dk |

It is clear that without the nonlinear terms, the coefficients 1, and p, are merely
the normal modes listed above. The nonlinearity serves to couple the various vertical
modes. In general this system will contain numerous double resonances, as was shown
in Figure 1-1. For simplicity a truncation at n = 3 provides the minimum case where

there is only a single double resonance corresponding to

k = 8.0066,n =1

[ =4435n=2

m = 3.569,n =3
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where without loss of generality N will be taken to be unity. Although strictly
speaking this system is not a scalar equation of the form (2.1), it will be seen that
there is still room for qualitative comparison with the previous analytic analysis and
resulting models. This system was simulated numerically with ¢ = .1. The initial

conditions were
1(z,0) =0, Wy = e 2% ginlz, W3 = e ¥ sinma

and the initial conditions for p are computed from (2.25). These initial conditions
were chosen in such a way that the modes in the doubly resonant triad were well
represented. Figure 2-19 shows that indeed the structure of the doubly resonant peak
grows and becomes narrower as time increases. The growth of the double resonance
peak is indeed O(+/t), as shown by Figure 2-20. Furthermore, note that one of
the other two modes is asymptotically approaching zero, while the other approaches
a nonzero value. Again it should be noted that further comparison would not be
warranted, as the system is not strictly scalar any longer, so therefore the nonlinearity
is not as clearly defined, but this example does illustrate the robust and fundamental

nature of double resonances.

Higher Order Truncations

A clear limitation of the previous simulation is that the system was truncated at 3
modes in the vertical direction. Figure 2-21 shows the same simulation as above, only
now using 5 modes in the truncation. The double resonance at k = 8.0066 remains
clear, but there are now other peaks nearby corresponding to other resonances. The
introduction of more vertical modes now allows for more possible double resonant
points, as illustrated in Figure 1-1. This again emphasizes the effects of double
resonances, and moreover suggests that as more and more vertical modes are included
then more and more double resonances will occur giving rise to possible couplings and

triad-triad interactions.
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2.3.4 Rossby Waves

Another example of a physical regime which contains double resonances is that of
Rossby waves. To begin, consider the equations for the two dimensional motion of a

rotating fluid
du

E+(u-V)u+f(l?: xu)=-VP,

where u = (u,v) are the horizontal velocity components, f is the rotational fre-
quency, the motion of the fluid being perpendicular to the rotation vector. Now by
introducing a stream function v = ¥, v = —1,, introducing the standard beta plane

approximation (f = fy + By) to allow for small variations in latitude and taking the

curl of this equation, one obtains

9T+ B = eI (V2,4) (2.26)

where € is a measure of the magnitude of the stream function. Again, for simplicity,

a single layer is taken with a height of 7. And just as in the internal wave case, the
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boundary conditions restrict the vertical structure, again suggesting that the solution

take the form of a sine series

Y= i Un(z,t) sinny .
n=1

Then taking the Fourier transform

Yn(z,t) = / An(k, t)e*dk

(2.26) becomes

d
= (K —n?) A, + BikA, = eN.LT.,

where the nonlinear terms (N.L.T.) are given by substituting the expansion into the
Jacobian term and then projecting onto the appropriate vertical eigenfunction. In

particular it is clear that when € = 0, the linear solution is

?ik
A, = en?+k t,

or in other words 1), = e!**~“*) where

Ok

wn(k) = _nz n k2 .

Truncating at 3 modes, there is a double resonance at

k= 2.50829,n = 1

[=1.31225n=2
m = 1.19604,n = 3

Figure 2-22 shows the results from a numerical simulation of the this system (with 3
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Figure 2-22: Spectral distribution at ¢t = 60 for Rossby Wave system

vertical modes), with ¢ = .1, 8 = 10. The initial conditions were
P1(z,0) =0 Ya(x,0) = sin lze 1%’ ¥3(z,0) = sinmaze 1" .

This gives a very clear illustration of how the energy is transferred from the feeder
modes (in this case mostly /) to the double resonance peak. Furthermore, the nearby
structure is also in qualitative agreement with the asymptotics. Figure 2-23 shows the
traces of the amplitudes of the peaks. Again the trends are clear, further computation
was attempted, but was constrained by boundary effects in physical space due to the
effects of a periodic rather than infinite domain.

Higher order truncations in the vertical structure were also attempted in this case.
The results were identical in spirit to that of the internal wave case where simply more
double resonant peaks became visible. The purpose of these simulations, and the three
mode truncations was more to isolate and illustrate the effects of double resonances,

and the results for higher order truncations can in some sense be thought of as a

super position of these individual peaks. Of course there may also be a coupling for
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Figure 2-23: Amplitudes at k,[, 7 for Rossby Wave system

peaks which are sufficiently close to one another, and this will require further study.

Overall the numerical results appear to successfully verify the asymptotic results,
and in the first two cases even give some quantitative agreement with the direct
slow time model (2.17). What is clear from these trials is that in a continuous
spectrum case, beyond the linear solution double resonances play a significant role in
the spectral evolution. In the internal and Rossby wave cases, had more vertical modes
been taken; there would simply be more such peaks, possibly even coupling with one
another. This notion of coupled double resonances is interesting and certainly could
arise, as for example is illustrated by Figure (1-1), the doubly resonant modes for
various couplings can be quite close to one another. Although not the focus of the

present study, this may provide an interesting avenue for future study.

2.4 Higher Order Nonlinearity

In many physical systems, quadratic nonlinearities giving rise to three wave inter-

actions provide the dominant nonlinear effect. However, there are cases where triad
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resonances do not exist. In these cases the dominant nonlinear effect becomes cubic
or higher. An example of this is gravity waves on deep water, w? = gk, where no
three wave resonances exist but four wave resonances do, corresponding to an effec-
tive cubic nonlinearity. This now motivates a more generalized version of the model

equation introduced at the beginning of this chapter,
us + L(u) = eN,(u) , (2.27)

where N, is an nth order nonlinear differential operator. Following similar analysis

as before, in Fourier space this corresponds to:

A +iw(k)A =€ / H(ky, ko, ..., k) A(ky) A(ks).... A(kn )6 (K — an k)dk,  (2.28)

=1

where again w is the linear dispersion relation, and now H is the interaction coefficient

corresponding to the general nonlinearity. Again, the linear part can be eliminated:

a; = € / H(ky,, kg, ..., kn)a(ki)a(ky)...a(ky e iAreBbukn k)t s (o _N™p)drk , (2.29)
=1
where A(k,t) = a(k,t)e”™®* and A,w(k, ki, ks, ..., k) = > w(ki) — w(k) So now if

i=1
one considers a perturbation series

a = ag + €ay +62a2+...

then to zeroth order, as before, ag is simply the initial spectral distribution. At first

order (2.29) becomes,
ay, = / H(ky, kg, ..., kp)ao(k1)ag(ks)...ag(ky e~ Anetbknkaknts (N g ydrk
=1

Again the dominant asymptotic contribution will come from the point of stationary

phase, which once the delta function is removed from the integrand implies that all
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the group velocities at each k; must be equivalent,
w'(k;) = ' (kj) ihwj=1.n.

In general, should a solution, k;, to these equations exist, the dominant contribution

will be S
e—iAnw(k,kl,kz,...,kn)t
alt ~ C n—1 )
t7z

where C' contains the constant factors. Then upon integration this gives

~

a; ~

ds .

n—1

t e=iBnw(kkikz,..kn)s
/ S 2

Note the lower limit of integration is omitted since in this case there are now problems
arising from the singularity at s = 0. The reason for this lies in the fact that the
asymptotic analysis which gives the integrand is valid only for long times, and in fact
near s = 0 is possibly not integrable.

There are now two possible cases. First if n = 3, then a substitution s = e? gives
Int . o -
ay & C/ e—iBnwlkbi ke, En)e’t g

Second, if n > 4 then by a similar substitution as that used earlier, s = vt

P T T e

a; ~ CtT/ e—'LAnw(k,kl,kz,...,kn)v —"td,U ,

and therefore in both cases when there also is an n-wave resonance,

AnUJ(k’, ];:11 kz, ey En) =0 y

k=>"k
;=1

7

this gives a leading order behavior

a; ~ O(téz_") .
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Figure 2-24: Peak structure for various degrees of nonlinearity. Without loss of
generality k =0, C =1 and A,w = k.

In general the structure around this resonant point will look the same as that for
the n = 2 case, only now the width and height of the peak will scale accordingly.
Figure 2-24 shows how the structure, and height of the peaks varies with the different
nonlinearities. In particular, note that for n > 3 the ripple structure away from the
peak disappears, and the peak itself takes on more of a cusp shape.

For n > 2 we expect no growth and thus no secularity of the terms. In fact in
these cases, the O(1) effects from the simple resonances may dominate and existing
theory will be applicable. In other words the perturbation expansion will be well
ordered. This emphasizes the uniqueness of the quadratic nonlinearity for continuous
spectral distributions.

A readily available example of a higher order double resonance lies in the case of
a higher order Wilton ripple type resonance. For example, Disp. 1 introduced earlier,

possesses a solution

for kK = 1.276. This will trivially satisfy the group velocity criterion since the three

66



feeder modes are identical. Figure 2-25 shows a simulation using a cubic nonlinearity
(u®), for this dispersion. Figure 2-26 shows a similar simulation using the gravity-
capillary dispersion. Similarly Figure 2-27 is a simulation with a nonlinearity of
(u*),. In this case k = 1.49198. Note that it is first of all clear that there is a
distinct difference in the peak structure for the higher nonlinearities. In particular
there is a confirmation of the smooth cusp like structure for n = 4 suggested by the
analytical approximation above, and shown by a full numerical simulation in Figure
2-24. Moreover the n = 4 case also brings out the fact that there is also a resonance
at k = 1.0246, the resonant point for the quadratic nonlinearity. This represents
a five wave resonance composed of three modes in the doubly resonant triad along
with another copy of I and its conjugate. Lastly, note that these figures also bring
out how higher the nonlinearities result in a weaker effect, as expected. To illustrate
this further, Figure 2-28 shows a trace of the peak growth for various degrees of
nonlinearity. Although there does appear to be growth (as opposed to decay for
n > 3), it does suggest that the higher the nonlinearity, the slower the growth.

2.5 Higher Dimensional Equations

A second generalization of the model equation is to allow for higher dimensional
dispersions. In other words we now consider our model equation in more than one
spatial dimension

us + L(u) = eN(u), (2.30)

where now u = u(x,t), x being an n dimensional vector. The analysis is again similar

to before, only now the wave numbers are n-vectors as well.
ay(k, t) = € / H(Lk — Da(l)a(k — 1)e~iaweligny (2.31)
where u(x,t) = [ a(k,t)e** " ®tdnk and Aw(k,1) = w(l) + w(k — 1) — w(k).

Again using a perturbation expansion, the zeroth order term will be constant

67



Figure 2-25: Spectral distribution for Disp. 1 at t = 100 for a cubic nonlinearity.
Dashed line corresponds to initial spectral distribution. € = .1.

T T T T

Figure 2-26: Spectral distribution for the gravity-capillary dispersion at ¢ = 500 for
a cubic nonlinearity. Dashed line corresponds to initial spectral distribution. € = .1.

68



1Al

Figure 2-27: Spectral distribution for Disp. 1 at t = 1000 for a quadratic nonlinearity.
Dashed line corresponds to initial spectral distribution. € = .1.
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Figure 2-28: Trace of |A(k)| for Disp.1 for three different nonlinearities (u?), (u®),,
and (u),.
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while at first order
ar, (k,t) = e / H(Lk — Dag(Lag(k — 1)e—2«ltgn] (2.32)
Now the stationary phase condition will take the form
ViAw(k, 1) =0,

where V| corresponds to the gradient with respect to the components of 1. In other
words the group velocities in each direction of the modes 1 and k — 1 are equal. At
vectors 1 where this is the case, the contribution will be

e—iAw(k,i)t
ay, ~ C—5—

w3

t

Then around a point where there is a triad resonance

the contribution to a; takes the form
2—n
a; ~ O(tT) .

Note that for n > 2 this system of double resonance relations is under determined.
There are n equations from the group velocity relation, n equations from the wave
number relation, and then 1 from the frequency relation giving 2n 4+ 1 equations
for 3n unknowns. This means that for higher dimensions there will in general be a
continuum of doubly resonant points. On the other hand the asymptotics suggest
that in higher dimensions the growth will be less pronounced as there will then be
extra factors of \/li from each extra dimension. Does this mean that double resonances

will only be “seen” in the 1-D case? To investigate this, Figure 2-29 shows the result
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of a run using a 2-D version of Disp. 1.
w(k) = tanh(.25k| + 3.125|k|) ,
with an initial condition

ao(k,l) = (,(3—50(76—-6)2 + e—50(’¢+.6)2)ei50k _

In this case the resolution must necessarily be lower (2'° modes in each direction)
limiting the maximum computation time. But even with this constraint the figure
brings out how at [ = 0 the double resonance at k = 1.0246 is clear. Moreover
there is now a circle of doubly resonant points corresponding to the now isotropic
nature of the dispersion relation. To obtain an idea of the growth of the peak, a
comparison was made of this case to the 1D case with the same parameters. Figure
2-30 shows that indeed the growth of the doubly resonant mode is diminished when
a second dimension is introduced. This then begs the question, how two dimensional
does the system need to be for this effect to be felt? The answer lies in a careful
study of the stationary phase analysis. In particular a truly one dimensional spectral
distribution corresponds to, in the 2D case for instance, a(k) = a(k;)d(k;) where k;
are the components of the wavenumber vector. When this is substituted into (2.31)
it reduces to (2.3) as would be expected. Stationary phase can only be applied in the
second dimension provided the variation of the integrand is sufficiently small. Thus
as the second dimension is introduced, the full extra factor of % kis only present once
there is enough structure in the second dimension to sufficiently broaden the delta

function beyond the rapid oscillations of the rest of the integrand.

2.6 General Dimension and Nonlinearity

Having discussed the separate cases of higher order nonlinearity and higher dimen-

sions, a combination of the two will be considered. Specifically the general case of an
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Figure 2-30: Comparison of peak height at (k,0) for Disp.1
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nth order nonlinearity in m dimensions. The model equation remains the same
us + L(u) = eN,(u) , (2.33)

only now u = u(x,t) where x is taken to be an m dimensional vector. This then

corresponds in Fourier space to

a; = € / H(ki,, ks, ..., k,)a(k:)a(ks)...a(k,)e " Arelokuke, kn)t5ge ank,.)dmki .
T e
The subsequent perturbation analysis is identical to the above discussions. The key
factor in order to obtain an estimate of the leading order behavior, is the phase

function

n—1
Anw(ka klak2a ---)kn—l;k - Z kz) )
i=1

where k, has been chosen so that the delta function (wavenumber condition) has
been automatically satisfied. This leaves n arbitrary vectors with m components, for
a total of mn unknowns. The stationary phase integral is taken over n — 1 of these

vector components. The criterion for stationary phase is now

n—1
i=1
meaning that all components of the group velocity for the now n feeder modes are

equal. This when combined with the frequency criterion
n—1
Anw(k) k17 k27 "'7k'n.—1, k — Z k’L) =0 )
i=1

gives a total of m(n — 1) + 1 = mn — m + 1 equations. Meaning there are m — 1 free
parameters, or alternatively there are m — 1 more equations which could be chosen
for the wavenumbers to satisfy. This second option leads to an interesting possibility.
Specifically one can then begin to satisfy some higher order stationary phase criteria

involving the second derivatives of the phase functions. With both the constant and

73



linear terms of the expansion of the phase now rendered zero by the above conditions

the next term in the expansion involves the Hessian matrix A where

d

|
Aij = —Apw(k ky, kg, . ko, k= ) kK 5,7 =1.. —-1),
T w(k, ki, ko 1 ; ) %] m(n — 1)

the derivatives being taken over each of the m components of the n—1 vectors involved
in the integration. Typically if this matrix is non-singular, then the resulting station-
ary phase integral will contribute a factor of \/LE for each component of the integral,

meaning that with only the wavenumber, frequency and group velocity conditions

satisfied,
ay, =~ O( ﬂ}.;lz) ,
t— 2
so that to leading order
a, ~ O(t%n“) .

A degeneracy will occur if Det(A) = 0 and for each dimension for which this matrix
is rank deficient, the corresponding contribution to the stationary phase integral is
now % [22]. This then means that if the m — 1 free parameters are used to render
the rank of A to be m(n—1)—(m—1) = mn—2m+1 then the corresponding leading
order behavior will now be

1
a’].t ~ O( mn—2mj:1_|_m—l) )
t 2 3

so that

2m _mn ; 5

a, ~ O F "5 +8) .

In particular, of interest are any possible values of n > 2 and m > 1 where this
exponent is positive since regardless of dimension or nonlinearity, simple resonances
will have an O(1) contribution. Table 2.1 shows some possible values of this exponent,
and in particular along with the doubly resonant triad case (m,n) = (1,2) that
has been investigated, a positive exponent is encountered for (m,n) = (2,2). This

corresponds to a case where there is a quadratic nonlinearity in two dimensions. And
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|m[n| % -5 +2]

T
32|
6
113 0
AT
3

Table 2.1: Leading order exponents for various dimensions m and nonlinearities n.

in particular when there are modes k and 1 such that

wl) +wk -1) —w(k) =0,

Vo) = Vw(k - 1)

(w0 + win (k= D) (w2 +wa(& ~ 1) ~ (Wi + wra(k ~1)* =0

which compose four equations for the four unknown components. The numerical
subscripts represent derivatives with respect to the particular component of the vec-
tor. Examples of dispersion relations containing points satisfying these conditions
although not overly abundant, are also not difficult to find. One such example, in

some ways a generalized version of the artificial dispersions introduced earlier, is

w(k) = tanh (.4k; + .5k + .7k? + 6K3)

This has a generalized double resonance at k = (1.25874, 400524), 1 =

N

. Figure
2-31 shows the result of a run using this dispersion relation, a nonlinearity of (u?)g,

and initial condition‘of

In particular the figure gives a clear picture of a 2 dimensional version of a doubly

resonant peak. Indeed it is located at k and Figure 2-32 shows how this peak grows
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Figure 2-32: Growth of doubly resonant peak for 2D simulation.
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in time, and indeed the growth is slowed to roughly O(+/t).

The results presented in this chapter provide clear evidence that the three wave
problem behaves in a very different fashion when the spectral distribution is contin-
uous as opposed to discrete. In particular, without the additional resonance criteria,
no modal growth will occur. But when a double resonance does occur, the governing
equations for the three modes (2.17) are similar to the classical three wave system
(1.15). Key differences being a time scale for growth of ey/t as opposed to et and the
inclusion of a parameter for modes away from exact resonance. The effects of double
resonances appear to be robust, occurring for a wide range of dispersions, and each
time with a qualitatively similar peak structure around the doubly resonant mode.
The following chapter will attempt to investigate further the differences between the

continuous and discrete cases, attempting to find a link between the two.
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Chapter 3

The Three Wave Problem:

Discrete Spectrum

As it was shown in the previous chapter, there is clearly a dramatic difference in the
evolution of a three wave system when the spectrum is assumed continuous as opposed
to discrete. Is there a middle-ground? This chapter will attempt to investigate this
question. Perhaps a modification of the traditional discrete three wave system will
serve to bridge the gap between these two cases.
Recall from Chapter 1, a multiple scales analysis yields a system of the form
pAr + pCy(k)Ax — i%%xﬁlxx +0(®) = ennBC +O0O(,en) ,
- 2 dPw(l)

,J’BT + HCQ( )BX - ?’? de

2 72, (
_ pt dPw(m)
pCr + pCy(m)Cx — o

Bxx +O0()*) = epAC” +0( en), (3.1)

Cxx +O0(p®) = ey AB* +O(e% en)

where p represents the spatial scaling parameter for the long space coordinate X and
long time T', while € is a measure of the nonlinearity. It is understood that A, B,C
represent the Fourier amplitudes at the wavenumbers of the members of the triad
k1, ko, ks respectively. Traditionally the O(u?) terms are dropped and a balance is
struck between the O(p) and O,(e) terms. In this case solutions are well known. A

brief discussion of these will first be given.
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3.1 The Classical Three Wave Problem

For a simple triad resonance, it has been shown that the evolution equations for the
amplitude of the three modes involve taking (3.1) where the higher order terms of
O(p?) are dropped. This system has been well studied, a comprehensive summary is
presented by Craik [10]. A re-scaling of the dependent variables reduces the system

to the more canonical form

AT + ClAX = SIBC 5
BT -+ CZBX = SZAC* , (32)
Cr+cCx = s3AB*,

where sy, 83, s3 = £1, and where the wavenumbers satisfy the conditions for a simple

three wave resonance

kl = kg + ]C3 (.U(kl) = w(kg) + U.)(k‘3)

Solutions of this system are well known. In the spatially independent case, conser-
vation laws can be derived and the system integrated to give solutions in terms of
Jacobi Elliptic functions. The spatially dependent case is more complicated but has
been shown to be integrable via the Inverse Scattering Technique [16]. For s; of all
the same sign, the solutions become singular in finite time, but for s; of differing
signs, the solutions remain bounded. But it should be pointed out that a priori it is
assumed in the Inverse Scattering argument that the group velocities are all distinct,
and in fact the argument depends on this fact. This is illustrated by the form of the
solutions and specifically they will be singular should any two of ¢;, ¢z, 5 be equal. To

investigate this breakdown we note that supposing that, say, ¢, = c3, (3.2) becomes
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AT+01AX = S]BC
BT+CQBX = SzAC* (33)

CT+C2CX = S3AB*

In the following section a new system of equations is proposed, a more generalized
system which will hopefully provide some connection between the effects seen in the

continuous and discrete analysis.

3.2 A More Generalized Three Wave System

As discussed in the previous section, it appears that in the case where two of the
three group velocities are equal, (3.2) exhibits dramatically different behavior. A
loose justification of this can be seen by noting that if a Galilean transformation is
made such that X — X —c,T then the spatial dependence of the second two equations
is lost. This suggests that in these two equations the higher order derivative terms
may be significant and should not have been dropped. In other words, consider the

more generalized system

Ar+cAx = mBC
Br +c¢Bx +1dyBxx = ’)’QAC* (34)

Cr+cCx +1idsCxx = v3AB”

It is hoped that the addition of second order terms will serve to bring about similar
effects to those seen in the continuous treatment. Comparison with (1.15), the full
system derived earlier, shows that the constants can be thought of as representing
the appropriate derivatives of the dispersion relation, or interaction coefficients, along
with the scaling parameters.

To obtain a general solution of (3.4) via techniques such as Inverse Scattering is
now likely somewhat optimistic, but numerical simulation along with some analytic

analysis where possible does give some good insight into this system and the effect of
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the additional terms. To begin, it is first helpful to consider a slightly simplified case
where it assumed that B = C. Physically, this is analogous to the case of Wilton’s

ripples, where two of the modes are exactly the same. In other words [ = m = k/2.

3.2.1 The Wilton’s ripple case

Assuming modes B and C are identical, (3.4) now reduces to a system of the form

AT+01AX = ’)’132

Br + ¢;Bx +idyBxxy = v,AB*

Without loss of generality, a Galilean transformation can be made to eliminate c;,

and leave us with the system

Ar = ’)’1B2
Br + ¢;Bx +1idyBxx = Y2AB" | (3.5)

Which can be quickly reduced to a single equation by eliminating A

B B ds B
( T+c2 g}j‘z 2 XX) :717232 (36)
T

Using a combination of analytic and numerical techniques, this system will now be

analyzed with emphasis on the effect of the presence of the d;, term.

Normal Mode Solutions and their Stability

To begin, it is instructive to consider the presence of normal mode solutions. i.e.

solutions of the form
B = Boei(k:z:—wt)

Substituting this into (3.6) it can be shown that such solutions exist provided
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(dok? — cok) £ 1/(dak? — c2k)% — 27172
2

w =

In particular it is interesting to consider the possibility that w be complex. In
other words the solution will exhibit unbounded growth. This “instability” is only
possible if y;y, > 0, which remains consistent with previous analysis of the three
wave system where explosive growth has been found to occur when all interaction
coefficients are of the same sign. Assuming that ;7 > 0 and also without loss of

generality that ¢, > 0, it is clear that if do = 0 then explosive growth occurs for

V27172 k< V27172

Ca C2

The next order correction to this for dy nonzero but small is

\/2 2 d \/2 2 d
_ C’Y1’Yz i 71;2 2 ~|—O(d§) <k < (;)’1’)’2 n 71(;2 2 +O(d§)
2 2 2 2

which shows that this window of instability is shifted by the presence of d, giving
some insight as to the effect of this added term.
Perturbation around known non-periodic Wilton Ripple Solution

To further grasp the impact of the higher order dispersive term suppose it is now

imposed that do = O(€). In other words (3.6) takes the form:

(BT + CzBX + iﬁdzBXX

* = 717232 (37)
),

Then applying an analysis similar to that of Whitham [20], by introducing a fast

phase coordinate €, and slow time and space coordinates 7 = €T, x = €¢X such that

Or = —w(x, 7) Ox = k(x,7),
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then by introducing an expansion
B = By(8,x,7) + €B1(0,x,T)
to zeroth order in ¢, (3.7) reduces to:
(w® — cowk)(BoBo,, — B},) = |B|*,
for which there is a solution [10]
By = a(x, 7)sechf
with a corresponding dispersion relation
w?—cwk+a®>=0.

In order to determine the slow time and space variation of 8 as well as the effect of the
extra dispersive term, the next order must be considered. At this order the solution
can be shown to be

k2
tanh Osechd

By =1
«

with

w.,.—+-c2wx=O.

At the next order, a further secularity condition gives an equation for the evolution

of &
2

[0 Q,Q

X7

— Oy — c2ax‘r + — + Co
(67

=0.
a

These results give more insight into how the added dispersive term effects this so-
lution. Not surprisingly the first order correction depends on the value of d,, but
what is somewhat surprising is that it does not enter into the slow time and space
evolution of the phase or amplitude of the zeroth order solution. This suggests that

although the added dispersive term leads to higher order corrections in the solution,

83



the more global evolution of the phase and amplitude, at least to leading order, remain
unaffected.

Craik [11] gives a more general class of “multiple-lump” solutions to the zeroth or-
der system around which one may perturb and carry out a similar analysis. Although
such analysis may be more general than that presented above, there is qualitatively no
difference in the effect of the added dispersive term. This is not entirely unexpected

as away from the lumps themselves the system becomes approximately linear.

Perturbation in Weakly Nonlinear case

A second regime which allows some analytic analysis is one closer to that of the
three wave system (1.15). In particular one must be aware of the relative sizes of the
coefficients. Note that when compared to the this system the coeflicients in (3.4) ¢
and c; are O(1), d, and d; are O(u) and 7y, v, and Y3 are O(ﬁ) This suggests that if
the scaling parameter is chosen so that # = O(y/€) then the effects of the nonlinearity
will be balanced by the second order dispersive terms.

Under this scaling, (3.5) now becomes

Ar = ey B?
BT + CzBX + ’l:EzngXX = 6’)’2AB* (38)
(3.9)

where all coefficients are now assumed to be O(1). For simplicity a coordinate change

s-——T—{
C2

is made so that (3.8) now becomes
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A, ey, B2

d
B, + iezc—g’(Bss — 2By, + B,,) = eypAB* (3.10)
2

Eliminating A as before yields

Br + 7;‘52%(335 - ZBsr + Brr) 5 9
2 B~ = € ’71’)’23 (3].1)

Now introducing the perturbation expansion
A(r,s) = Ao(r, 8) + €A1 (r,8) + ...

B(r,s) = By(r,s) + €By(r,s) + ...

it is clear that at O(1)

X
Ao, =0 = Ag = Ao(r) = AO(c_z)
X
BOT =0 = Bo = Bo(S) = Bo(T — a)

Introducing a slow time coordinate 7 = €%t so that By = By(7, s) and then at O(¢?)

of (3.11) o i o
1 0r 103 0ss 2
21 ) B
drds <B5‘)+(B5‘)s c (B(*,‘)S_i_’yﬂ/2 0

This can be immediately integrated in r since By is independent of this coordinate.

On doing so, this indicates that B; will grow linearly in r. In order to avoid this

secularity, we obtain the following relation for the slow evolution of By:

By,\ _ ids (B, )
(2) - (%) vm. o

Ca

In general this is a nonlinear PDE governing the slow evolution of the amplitude
function, which as opposed to the strongly nonlinear case above, does indeed contain

a dependence on d,. Although in general not obviously integrable, some information
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can be obtained by considering the stability of normal mode solutions in the same

way as is done on equations such as the Nonlinear Schrédinger Equation [10].

. + dy o B_2
It can be shown that By = Bez(#s (et solves (3.12). Then linearizing around
(st (22 u? B2
this solution by substituting By = (B +b;.e'*+o7) 4 p_e~idsto™ e (v +(?§’f Iz ))into

(3.12) and keeping all terms linear in b, and b_. o remains real provided that

A= guzkﬁ - (Si—z#“ - 717232%M)A4 + 16i—iﬂ6>\2 + 4y B - 1671723%5(% >0
(3.13)

This then gives a stability criterion for all values of A for a given normal mode solution

with wavenumber p. In particular for a given p one can predict which modes will

exhibit the most growth.

Figure 3-1 shows an example of the stability region. One noteworthy point is

5 ' , T T T T T T !

Figure 3-1: Normal mode stability for Wilton’s ripple with B =1, dy = 1,717, = —1
and c; = .5. Contours indicate region of instability.

that for a range of values of pu, the region of instability includes arbitrarily small

values of A. This suggests that the normal modes are unstable to perturbations from
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modes arbitrarily close to that of the underlying wave train. This is analogous to the
Benjamin-Fier instability [3] where growth of sideband modes render a wave train on
deep water unstable.

To illustrate this further Figure 3-2 shows the spectral evolution of B after a
numerical simulation of the full system (3.6). Clearly there is a sideband growth, the
peaks corresponding to a detuning of roughly A = 1.5. To compare to the analytic
prediction, Figure 3-3 shows the value of A in this parameter regime, indicating that
maximum growth occurs at the minimum at A & 2, giving reasonable agreement to

the numerical simulation.

3.2.2 The General Case

Having now investigated the case of the Wilton’s ripple, where B = C, the focus now

will turn to the full system (3.4)

Ar +cAx = mBC
BT + CzBX + 'idZBXX = ’)’zAC*

Cr+cCx +1id3Cxx = ~3AB*

again, with the key question being the effect of the higher order dispersive terms. To
begin, a similar analysis to the Wilton’s ripple can be made in the weakly nonlinear

regime where dj, d3 are small.

Weakly Nonlinear case

Consider (3.4) in the following scaling regime
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Figure 3-2: Fourier transform of full numerical simulation of Wilton’s ripple with
pw=.5,dy=.01¢c3=.5y7=—-1
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Figure 3-3: Stability criterion for Wilton’s ripple numerical simulation. A < 0 corre-
sponds to modal growth.
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AT + CIAX = 6"}’1BC y
Br + ¢;Bx +i€2dyBxx = ey, AC*, (3.14)

CT + CQCX + i62d30XX = 6’)’3AB* .

Then by applying the same transformation as above

X
s=T——,
Ca

r=—,

X
Ca

a similar analysis as in the Wilton ripple case may be conducted. Only now rather
than being able to reduce to a single equation for B, a system of coupled equations

for B and C is obtained. Each of which has zeroth order solutions
BO = Bo(S) CO = Co(S) y

and again by allowing a slow time 7 variation of these functions and computing the

secularity condition at the next order the following evolution equations are obtained

By idy [ By
=1 I Y ByC,
(05)5 2 (C’{,“ s+’Yl’72 0Co ,
Co ids [ Cy

) I N BoCy .
(BS)S 2 (33 S+71'73 0Co

These equations, not surprisingly, have a similar structure to the Wilton’s ripple
case, only now with a coupling between the two feeder modes. And although in
both cases similar to the NLS, it is not immediately clear that these equations are
integrable analytically. A similar normal mode stability analysis was conducted as

for the previous case, yielding qualitatively similar results.
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||Run|61|62|03|d2|d3|’)/1 Y2 73”
1 0}-5[-8]0(0].1]-1]-1
2 0O(-5|-510]0].1]-1]-1
3 0|-5|-5|1].2].1|-1]-1
4 O|-5(-5|.1].1].1]-11]-1
) 0|-5(-5]1040([1]-11]-1
6 0|-51(-5]1|.1]1]-1]-1

Table 3.1: Coefficients for numerical runs.

Other Regimes

Although for more general parameter regimes, (3.4) is not as tractable analytically,
numerical simulations can give insight into the nature of the solutions and in particular
the effect of the dispersive terms.

A number of runs were conducted, and for ease of comparison all with an initial

condition

B(X7 O) - C(X, O) = _56_'8ime—-01m2

The parameters used in the runs are summarized in Table 3.1

To begin Figure 3-4 shows the result of a run where the group velocities are distinct
and the extra dispersive terms are not present. In other words this is a simulation
of the regular three wave equations with a weak nonlinearity. This example shows
how the initial condition in B and C basically propagates at the prescribed group
velocities, after initially interacting and transferring energy to A. In A, the peak at
zero remains there as ¢y = 0. Conversely the left hand peak in A is not permanent,
merely a result of B and C not having completely separated at this point, and thus
still providing some transient forcing to A. Figure 3-5 shows the effect of setting the
group velocities equal. Now the second peak in A does not disappear and will remain
coupled to B and C. This underlies why the analytical solution breaks down in this
case. Now there is a significant part of A moving at the group velocities of the other

two modes. It is this peak that represents the analogy to the doubly resonant peak
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Figure 3-4: 3 Wave simulation for Run 1 at ¢t = 50.
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found in the previous chapter. As was shown in 2.22 it too was characterized by
moving not at the group velocity of the mode k but of the feeder modes [, 7. Now
consider what happens when the coefficients of the higher order dispersive terms are
nonzero. The third run, shown in Figure 3-6, uses the same parameters as Run 2 only
now with nonzero and distinct dy and ds. In this case the group velocities of the B
and C peaks are now ¢z + 2d2k and ¢y + 2dsk respectively where k is the underlying
wavenumber of the wave packet. So as is borne out by the numerical simulation, the
peaks in B and C begin to separate, and thus the second peak in A will disappear as
it did in Run 1. If the coefficients are not distinct, then as shown in Figure 3-7 the
group velocities of B and C' are now back to being equivalent and thus the second peak
in A will persist. The difference now is the fact that the added terms also produce
dispersion within the wave packet. This is not expected to occur in the classical three
wave case where the group velocities are independent of k. Consequently there is
a gradual spreading of the wave packet which does not occur, for example, in Run
2; borne out by the slight decrease in height of this peak in Run 4. Thus far the
runs have involved a relatively weak nonlinearity in order to bring out the effects of
the added dispersive term without too much inter modal coupling. Figures 3-8 and
3-9 show that the nonlinearity mainly accentuates this dispersion by more readily
facilitating energy transfer in to other modes which then move at different speeds.
Overall the main effects of the added dispersive terms appear to be to modify the
group velocity of wave packets and create dispersion within them. It has been shown
that there is a link between this case and the continuous case since when the two
feeder modes represented by B and C have the same group velocity, a wave packet is
produced in A which also moves at this velocity. This is analogous to the behavior
of the doubly resonant peak in the continuous case. Where this analogy fails is in
how the peak grows. A system such as this will always produce an initial growth in
A of O(T = pt) and thus it depends very much and somewhat arbitrarily on what
scaling is chosen for the slow time variable. And for instance when the balance u? = ¢
is taken this implies T' = y/et whereas the continuous analysis suggests a time scale

of T = €*t. This again reinforces how important the neighboring modes are in the
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Figure 3-7: 3 Wave simulation for Run 4 at ¢ = 50.
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Figure 3-9: 3 Wave simulation for Run 6 at ¢ = 80.
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spectral evolution in the continuous case, an effect which is inevitably lost in any

discrete treatment.
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Chapter 4

Random Waves

The statistical description of weakly nonlinear wave interactions in a homogeneous
media is a regime where the presence of double resonances may dramatically affect
the evolution. Essentially the problem involves determining the evolution of certain
statistical quantities of a flow (such as all mean values) given their initial values. This
type of approach is important, for instance, in weak turbulence theories [23] where
the spatial correlations of the velocity field translate directly to the distribution of
eddies and direction of energy exchange. This yields theoretical predictions for the
spectrum of the statistical steady state and thus ultimately insight into the physical
mechanisms behind turbulence. Present theories rely explicitly on there being no
double resonances present in the interactions, as is noted in [6]. This chapter will
investigate the modifications necessary to account for double resonances, and the

implications thereof. First a review of previous theory will be given.

4.1 Random Wave Theory: Simple Resonances

Due to the fundamental nature of this problem and its relevance to turbulence, it has
been well studied. Hasselmann, [14] approached this problem under the assumption
that the correlations obey a Gaussian property allowing four point correlations to
be reduced to products of two point correlations. Benney and Saffman [6] then

demonstrated that this assumption is not necessary, the same closure may be obtained
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in a more general fashion. A brief summary of the analysis is as follows, based on
both this and the subsequent work of Benney and NeWell [5]

As discussed earlier, starting with our model equation introduced in Chapter 1
for the velocity u(z,t),

us + L(u) = eN(u) (4.1)

where L is a linear differential operator, A/ is a nonlinear and for our purposes as-
sumed quadratic, differential operator, and € is a small parameter governing the weak

nonlinearity. In Fourier space this corresponds to:
A +iw(k)A=e / H, k- )ADAK — )l (4.2)

where A is the Fourier transform of u, w corresponds to the linear dispersion relation
given by £, and H is an interaction coefficient corresponding to the derivatives in
N. There is no loss in generality in taking H to be symmetric in its arguments. The

linear time dependence is then separated by taking,
A(k,t) = a(k, t)e k)

so that (4.2) becomes

dal

e / Hynn G @€ mnt8, o dbo, | (4.3)

where as in [5], the following condensed notation is used:

a; = a(l,t) H,n = H(m,n) dkmn = dmdn

Otmn = 6(l —m —n) Wimn = w(l) —w(m) —w(n),

and the limits of integration on all wavenumber variables is understood to be —oco to
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0o. Then assuming a regular perturbation expansion of the form

00
n
a; = ZG anl ,
n=0

and substituting into (4.3) and matching orders of €, one finds that

agr = ao(l) (time independent) , (4.4)
ay = /HmnaOmOJOnA(wl,mn)al,mndkmn ; (45)
Ag = 2/HmanqQOmG'OpanE(wl,mpq;wl,mn)él,mnén,pqdkmnpq ) (46)
where
eia:t -1 t .
A@)=—— By = [ M-y,
(24 0

4.1.1 Spatial Correlations

It will be assumed that u, the solution to (4.1), is a stationary random function.
Furthermore, it should be noted that although [5] treats the more general non-zero
mean case, for the purposes of this discussion a zero mean value will be assumed as
in [6]. In other words,

<u(z,t) >=0,

where < .. > represents a spatial average. The 2 point correlation takes the form
<u(z,thu(z +r,t) >= RO(r,t) = //amane_i‘”m"tei(m”)“"eim'dkmn : (4.7)

The assumption of spatial homogeneity implies that the above correlation should be
independent of z and merely depend on 7. In other words it should have a Fourier

transform of the form

< u(z,t)u(z +r,t) >= /q(2)(m, t)e™ dk,y, . (4.8)
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Comparison of (4.7) and (4.8) implies then that notationally one can represent the

mean of the spectral distributions as follows
< a(m, t)a(n,t) >= ¢@(m,t)é(m + n) . (4.9)

Note that the fact w is odd is used to eliminate the temporal phase term in (4.7).

Similarly the third order correlation is

<u(z,t)u(z +rt)u(z+r,t) > = RO(r ¢

— ///amanape—innptei(m-l-n-Fp)we’i(m’!‘-{-n?")dkmnp ’ (410)
and again using , the Fourier transform of this
RO, ) = [ [ ¢®(m,n,t)emiemsteitmrin g, (4.11)

Thus one can make the identification

< Umana, >= 6(m +n+p)g®(m,n,t) . (4.12)

The fourth order correlation is not quite so simply represented. Although a zero
mean value has been assumed, there still is the possibility of pairs of points remaining
correlated even as their relative separation goes to infinity. This then means that
cumulant terms must be introduced in order to insure the existence of a Fourier

transform,

<ulz,t)u(z +r,t)u(z + 7', thu(z + ") > — <ulz,t)u(z +r,t) ><u(z + 7', )u(z +r") > —
<u(z,thu(z + ') ><u(z+rthu(z+ ") > — <ulz, hu(z +r") >< u(z +r,t)u(z + ') >
RW(r ¢ " 1)

= [ [ [ [d9mnp,08m+n+p+ s)emiemeteitrmiiay,,,,, (4.13)

99



meaning that spectrally one can represent this correlation as

< Amnapas > = S(m+n+p+8)gP(m,n,p,t) +6(m+n)d(p + s)gP (m, t)g® (p, t) +

5(m+ p)é(n + 5)gP(m, t)gP(n,t) + §(m + 8)d(n + p)gdP(m, t)¢@(n,t) . (4.14)

4.1.2 Asymptotic Analysis

An essential component of the subsequent analysis involves the asymptotic behavior
of the temporal dependence of the terms in the expansion of a. For simplicity of the
following perturbation analysis, the required asymptotic terms will now be stated,

derivations of which are given in [5].

A(z) ~ 76(z) + iP G) (4.15)
B(z;0) ~ (mS(x) +P (%)) (t - 7;%) (4.16)
A(z)A(—z) ~ 2nté(z) + 2P (%) % (4.17)

where P represents a principle value integral.
Thus, for example, in the large ¢ limit one can use (4.15) to deduce that to leading

order

/h(m)A(w)dm ~ wh(0) + z'P/ @dm :

4.1.3 Perturbation Analysis
In order to study the effect of the weak nonlinearity, introduce a perturbation expan-
sion

q? = qf(,z) + eq?) + ezqéz) + ... (4.18)
and likewise for the higher order correlations. Now using the above expressions for the

various orders of a, these correlations may be computed and then using the asymptotic

properties of the temporal functions, secular terms may be identified and balanced
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by a slow time variation.

To zeroth order,
4" (m, 1)d(n +m) =< ag(m, t)ao(n, t) >,

and since qq is time independent this term will likewise be constant in time and thus
will not affect the well-orderedness of the perturbation expansion.

At the next order
¢? (m, )d(n +m) =< as(n, t)ag(m, t) + ag(n, t)a (m, t) > .
Using (4.4) and (4.5), along with the symmetry of these two terms
@ (m,)6(n +m) =2 [ [ Hyq < 00,y > A po)Onadig

and on using (4.12) and (4.15)

. 1
qu)(m, t)5(n +m) = 2//Hpq (W‘s(wn,pq) + 1P (—)) Q(()a)(m,Pa t)5(m +p+ q)én,pqdkpq

Wn,pq
(1
~26(m + 1) [ [ Hyq (wa(wn,pq) +iP (w—)) @ (m, 0, )00 padkg  (4.19)
n,pq

At this point a note should be made regarding the criteria for well-orderedness of this
expansion. Since the primary concern is with the real space behavior of the solution,
the criterion for uniformity of the perturbation expansion will be that all the real
space cumulants remain well ordered. In particular, since A remains O(1) for long
time, (4.19) shows that qu) remains bounded. Moreover, the § functions will render
the real space equivalent (inverse transform) of this term also O(1) in time so there
is no secularity at this order.

Secular terms in fact do not arise until O(€?) where

qu)(m, t)o(n +m) =< az(n, t)ag(m,t) + ag(n,t)as(m,t) + a1(n,t)ai(m,t) > .
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Using (4.4),(4.5), and (4.6) along with the asymptotic forms, it is readily shown that

qu) (m, t)é(n +m) = 4té(n + m)Pp, // (Wé(wmqu) +P ( )) Hpq—m—pqu)(ma t)q(()Z) (p, t)dm,pqdkpq

47 [ [ 8(@mpe) Hn - (0,198 (2,005 padlipg + O(1)

Wm Pq

where P,,,, represents a permutation over wavenumbers m and n. It is evident that
to leading order there is linear growth in time, giving rise to secularity and thus
potentially eliminating the well-orderedness of the expansion beyond some time. To
avoid this a long time scale T' = €%t is introduced. Then allowing ¢(® = ¢®(m,t, T)

it can now be seen that this secularity may be eliminated as long as

dgi” ' @),y (2)
. 4Pm'n // ﬂ-d(wm,pq) + 1P Hpq—m—pqo (m)QO (p)‘sm,pqdkpq +
dT Wm,pq

47r//d(wm,pq)Hmn—m—nq(()z)(p)qf(lz)(q)amqukpq7 (420)

This is the closure obtained in [14] and [6] and it represents the slow time energy
exchange within the zero order energy spectrum. But again it should be emphasized
that this result was carried out under the assumption of there being no doubly reso-
nant modes present. The next section will investigate the modifications to this closure

caused by the presence of double resonances.

4.2 Random Wave Theory: Double Resonances

Relaxing the restriction that there be no double resonances changes the analysis
significantly. The key difference arises in the asymptotic analysis where terms similar
to those derived in Chapter 2 will arise in the spectral functions. These terms will
embody the spectral growth brought about by the double resonances, terms which
will also affect the real space hierarchy of the perturbation expansion. To begin, the
asymptotic terms derived above will now be recomputed under the assumption that

double resonances are present.
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4.2.1 Revised Asymptotic Analysis

The following is a more general summary of the leading order behavior of some of the
temporal terms, allowing for double resonances.The additional terms are the result of
a stationary phase analysis, and not surprisingly bear distinct similarity to the terms

in the system (2.17) derived in Chapter 2.

A(f(z)) ~ 2—\/%\/?30(:0))5(1“(3:)) T n8(f(a)) +iP (ﬁ)) (4.21)
Pl 0) ~ S Aot @) + (salote) + P (115 ) (- io @7 )
(4.22)
A(f(z)A(~f(z)) ~ E%t% (3‘( f@) +3(— f(ac))) 5(f'(2))+2mts(z)+2P (i) a% ,
(4.23)

where

$(f(@) = [ L,

0

~ 1 1 . 9 2
o(f@) = [ [ e tdudv

4.2.2 Perturbation Analysis

Again introduce a perturbation expansion for the spectral representations of the cor-
relation functions, (4.18). At zeroth order the correlations remain bounded as there
are no temporal terms present.
At first order, using (4.4), (4.5),(4.12) and now (4.21), the second order correlation
is
21/2mets .

O(m, )é(n+m) = 2Pmd(m+n Hpq( V18 (wn pg)3(w' (p) — o'
a(m, 1)3(n +m) (m+n) [ [ o 1oy Bl @) = (@)

)) q(()3)(m, D, t)én,pqdkpq

+ 76(wnpg) +iP (

Wn,pq

The additional term represents the double resonance, and as was discussed in Chapter
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2, it will exhibit O(v/t) growth around modes corresponding to n = k,p = [, and
g = k —I. This means that around n = k the expansion in Fourier space will be

disordered. In particular the integrations can be carried out to give

2\/%6 ZHPn_p \/_d(wn,pn—P) (()3)(m7ﬁat)
S o e

+ 7T/ —pQC()g) (m, p)d(wnpn—p)dky +i/P( )Q((JS)(map)dkp) - (4.24)

(2)(m t)o(m+mn) = o(m+n)P, (

Wn,pn—p

where p corresponds to wavenumbers such that
w'(p) = w(n — p)

This shows that near a double resonance (i.e. where § is O(1)) the dominant con-
tribution of O(v/t) will come from the double resonance, but otherwise the simple
resonance terms will dominate with an O(1) contribution. This is analogous to the
situation found in Chapter 2 where the disorderedness of the expansion is restricted
to a band of wavenumbers around the double resonance. And also analogous to the
discussion of double resonances in a continuous spectrum, higher order terms must
be investigated before a closure can be proposed. These will include the next order
term in the second order correlation as well as the leading terms in the third order
correlation. The latter is required since unlike in the simple resonance case, (4.24)
shows that the coefficients of g will be secular near a double resonance and thus this
term must be present in any closure.

For the second order correlation at O(€?), using (4.4),(4.5), and (4.6) along with
(4.23) and (4.22)
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g? (m, t)6(m + n) = 6(m +n) (—4t%7?mn 3 Ko(wnnp) Hon—p-pnts. (m, £)as> (5, )

p

3 2 A _
+2t2 Y K (§(wnpn—p) + 16(~wnpn—3)) Hon—5-55-nas" (B, £)a5” (n — B, t)
P

+4tP o / (wé(wn,pn_p) +iP ( )) Hpnp s (m, £)g (p, t)dk,

Wn,pn—p
4t [ 76(nn ) Honp-pp-n8” (9, 8)a” (0 — p, t)dkp) +0(v?), (4.25)

where

V2me i
3 \/wu + wn ,n p)

The last two terms in this expression represent the contribution from the simple

K =

resonance seen earlier. The first two terms correspond to the additional terms arising
from the doubly resonant terms. So again, as has been thematic of double resonances
throughout this investigation, the time scales are modified around doubly resonant
points.

Turning to the triple correlation, at O(e)

0t (1, 8(m + 1+ D) = Pranp [ Hyo < 00,30, > Al Sprsdlve
and then using (4.14) and applying the ¢ functions, the leading order term will be

q§3)(m, n,t)o(m+n+p) = 25(m+n+ p)Pmnp (H_n_pA(wm,_n_p)q(z)(n, t)g®(p, t)

2 271'6_1:%H;.n_1'.
+ Z "im " -
7 \/w (7) + w"(n —7)

\/Zg(wn,,-n_r-)q((,‘l)(m,p, 7,t) + 0(1)) (4.26)

It can be easily shown that asymptotically

meaning that this term will be O(et) around any simply resonant point. Thus in this
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case it is not merely doubly resonant terms contributing at leading order. A similar
term would have been present in q;(lz) had the assertion of zero mean velocity not been
made. Similar terms can be derived for subsequent terms in the expansion and for
higher order correlations, but it will be seen that (4.24), (4.25), and (4.26) will suffice

to provide a closure.

4.2.3 Discussion of Ordering and a Closure

First it should be noted that in the absence of double resonances (4.24), (4.25),
(4.26), and in general all terms in the hierarchy will reduce to the simple resonance
case where the previously derived closures [5] will apply. Thus this discussion will
focus on the case where the modes are members of a doubly resonant triad. Adopting
the convention of Chapter 2, let A, B, C represent the amplitudes at modes k, [ and
k — [ respectively, the first being a doubly resonant mode, and the latter two being
the feeder modes. In order to gain a better idea of the ordering, the secular terms of

(4.24), (4.25), and (4.26) can be represented as follows

< AA* > x e/t(< AB*C* > + < A*BC >)
+e¥t2(< AA® >< BB* > 4+ < AA* >< CC* > + < BB* >< CC* >) + O(&V1)
< BB*> « €t(< AA* >< BB* > + < AA* >< CC* > + < BB* >< CC* >) + O(€?)
<CC*> « ét(< AA* >< BB*> + < AA* >< CC* > + < BB* >< CC* >) + O(€%)
< AB*C* > « et(< AA* >< BB* > + < AA* >< CC* > + < BB* >< CC* >) + O(eV/t)

where for example < AA* > corresponds to the second order correlation q(2)(15, t) and
similarly for the other terms. All the coefficient terms have been set to unity for ease
of discussion. Also it is to be understood that the terms on the left hand side represent
the exact values while those on the right represent the zeroth order terms, qu), q§,3).
Likewise the terms on the left can be thought of as being a slow time variation of the

zeroth order terms as would be the usual procedure in order to eliminate secularity.

As was seen in Chapter 2, the presence of doubly resonant modes creates a multitude
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of time scales and also an asymmetry for the evolution of A compared with B and
C'. Not surprisingly, these characteristics appear to be manifested in this hierarchy as
well, making closure somewhat difficult. Regardless, a consistent closure can be made
by noting first that < AB*C* >, and likewise < A*BC >, will depend on a time scale
T = €t. But it is evident that the second order correlations will vary at slower scales
€2t and €2¢2. Thus assuming that the second order correlations are constant in 7, the

third order correlations may be eliminated and the hierarchy reduces to,

< AA*> o« €i(< AA* >< BB*> + < AA* >< CC* > + < BB* >< CC* >) + O(&V?)
< BB*> « €t(< AA* >< BB* >+ < AA* >< CC* > + < BB* >< CC* >) + O(¢)

<CC*> « €t(< AA*>< BB* >+ < AA* >< CC* > + < BB* >< CC* >) + O(&?)

which is a closed system for the two point correlations. Analogous to the three wave
system for double resonances (2.17), there is a mismatch between the time scales for
the doubly resonant mode and the feeder modes. So, for instance, if a time scale
T = €’ is chosen, as in [6], then an appropriate factor will be required for the A
equation. But otherwise this closure is similar to the simply resonant closure (4.20),
again with the characteristic double resonance effects of a slight mismatch in time

scales and asymmetry between A, B, and C. In general, this closure may be stated

as
dq(z) m VT a2 ]
% = {47 Prun 2 KO(wnjn—p) Hin-g-pnds (M) 25" (P)
p
VT 2v2me T H;, 5 - ~
+Pmn = p P~ 6(wn,ﬁn—ﬁ)Pmﬁ H_ﬁ_m_ﬁA(wm,—ﬁ—m—ﬁ)q(z) (m)q(2)(—m_p))
€ 5 \/w”(p) + wu(n _ p)

+2= 3 K(8(@ngn-p) +18(~wnpn-p)) Hon-—p-5-nds (5)a5” (n — B)
p

+4Pmn/ (W(s(wn,pn—p) +1P ( )) Hpn—p—an(()2) (m)QC(DZ) (p)dkp

Wn,pn—p

+4_/Wa(wn,pn—p)Hpn—p—pp—nqt()Z)(p)q((JZ)(n - p)dkp) )
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This closure contains both scales and is applicable to both simple and double resonant
triads. For example a simply resonant point would not correspond to a wavenum-
ber p, meaning that only the final two terms, the terms from (4.20), would remain.
Moreover analogous to the modified three wave system (2.17) discussed in Chapter
2, the nature of the delta functions in the double resonance terms will provide the

transition between the simple and doubly resonant regimes.

4.2.4 Justification of Closure

Now one must address the question of the validity of this closure and consider the
terms which have been truncated. In particular the next order term in the expansion
for < AB*C* > will contain a fourth order correlation produced by a double resonance

as shown in (4.26). Heuristically the ordering is

<AB'C" >x et(< AA* >< BB* >+ < AA* >< CC* > + < BB* >< CC" >)

+eVt < BCB*C* > +...

The question then arises, if the time scale €%t is to be included as it was in the above
closure, then so should the ev/t term. Indeed that is case but if the hierarchy for this

term is investigated, it can be seen that

< BCB*C* >x et(< AB*C* > + < A"BC >)(< BB* > + < CC* >)+ 0(1) .

The key point to notice is that there is no €4/t term in this expression, due to the fact
that A is not amongst the original modes. Therefore the dominant behavior is due
to simple, rather than double resonances. And more importantly the terms involving
5 point correlations will be O(1) meaning that the closure can be made at this point
without having to include 5 point and higher correlations. Therefore this term may
be coupled with the expression for the three point correlations to form a secondary
closure with the assumption that the two point correlations vary on a slower time

scale remaining valid.
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4.3 Future Areas of Study

Alas, not all the various aspects of this problem could be studied and numerous
avenues of investigation remain. The main focus of this study was to investigate from a
mainly mathematical standpoint the differences that arise between simple and double
resonances. Physical evidence of this phenomenon and experimental verification of
the modified equations and time scales would be of great interest. This could come
from not only studies of water waves, but undoubtedly there exist regimes in other
areas such as nonlinear optics where such resonances may arise.

A key aspect of this study was to understand the effects of a continuous spectrum
and it’s distinctions to the discrete treatment of the three wave problem. Although
Chapter 3 represents an attempt to bridge the gap between these two, certainly
there is much room for more study of this. In particular the effects of introducing
boundaries and how varying the size of the domain may produce varying degrees of
“continuity” in the spectrum and may yield interesting insight

Furthermore, as noted in Chapter 2, many physical systems contain situations
where there are numerous doubly resonant points. Thus a more generalized theory
treating possible coupling of doubly resonant triads would be required before accurate
modelling of such cases could be performed.

However, possibly the most immediately relevant implication of this work lies in
the study of wave turbulence. The modification to the perturbation expansion hier-
archy cannot be ignored and thus additions to the existing theory would be required
in order to adequately model systems containing such resonances. The closure given
in Chapter 4 may serve as a starting point for such a theory, but a more complete
theory, allowing for non-zero mean for example, has yet to be derived and would

involve an even more detailed asymptotic analysis.
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